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We consider the hypercycle system of ODEs, which models the concentration of 
a set of polynucleotides in a flow reactor. Under general conditions, we prove 
the omega-limit set of any orbit is either an equilibrium or a periodic orbit. The 
existence of an orbitally asymptotic stable periodic orbit is shown for a broad 
class of such systems. 
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0. INTRODUCTION 

The hypercycle system of differential equations is a simple model of the 
time evolution of the concentrations of a set of polynucleotides, M1, 
M 2 ..... m n ,  in a flow reactor in which M1 catalyzes the replication of M 2 ,  

M 2 that of M3, and so on, finally, Mn catalyzes the replication of M1. The 
hypercycle was proposed by Eigen [1 ] to show that cooperation can lead 
to coexistence of these information carrying macromolecules. The dynami- 
cal form of this coexistence is the subject of the present work. As a 
corollary of our main result, we answer in the affirmative the conjecture of 
Schuster etal. [10] that there exists a stable periodic solution for long 
(large n) hypercycles. 

This paper is heavily dependent upon the results and proofs in [-8]. 
We do not reproduce in their entirety arguments which are substantially 
similar to those already presented in this reference. We always, however, 
give detailed references for these arguments. 
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We consider the dynamical system described by the following system 
of differential equations: 

5r xi_l)-- 2 xjFj(xj, xj_l) ] (0.1) 

where 1 ~< i~< n and we agree to interpret i modulo n. The Fi are con- 
tinuously differentiable functions further described below. The system (0.1) 
defines a dynamical system on Sn_l,  the standard n - 1  simplex in N+, 
given by 

N+ is the usual cone of nonnegative vectors in Rn, Int R+ denotes the 
interior of ~ + ,  and S *  a = S ,_  1 c~ Int R+. By a solution of (0.1) on Sn_ 1, 
we always mean a solution defined on [0, ~ ) .  

Our main assumptions are now described. 

(H1) (0.1) is permanent on S, ~. That is, there exists a positive 
number p such that every solution, x(t), with x(O)eS* 1 
satisfies xi ( t )> p for each i and for all large values of t. 

(H2) Fi(xi, xi_l)  are continuously differentiable functions defined 
for nonnegative values of their arguments and satisfying 

OVi 
> 0 (O.2) ~Xi- 1 

for every i. 

(H3) S*_1 contains a unique equilibrium point p of (0.1). Further- 
more~ 

Det DF(p) 5 0  (0.3) 

(H4) F =  (F1, F2 ..... Fn) is homogeneous of degree q > 0: 

F(sx) = sqF(x), s >1 O, x ~ ~+ (0.4) 

A special class of systems of the above type which have received con- 
siderable attention in the literature is given by 

Fi=aix i+bi  lx i_l ,  ai~>0, bi>O (0.5) 
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Sufficient conditions for (0.1) with (0.5) to be permanent are known. If 
a i = 0  for al l  i, then (0.1) is permanent; if a~>0 for al l  i, then (0.1) is 
permanent if and only if the matrix 

dl - I  - 1  . . . .  1 0 

0 d2 - 1  . . . .  1 --1 

- 1 0 d3 . . . .  1 - 1 ( 0 . 6 )  

--1 --1 --1 -.. 0 d. 

is an M-matrix, where d i=  ( b j a i ) - 1 .  See Ref. 7 (p. 189). Recall that a 
square matrix is an M matrix if its off-diagonal entries are nonpositive and 
if all principal minors are positive. If F is given by (0.5), then (H1)-(H4) 
are not independent of each other. In Ref. 7 it is shown that (H1) implies 
(H3), including (0.3), when F is given by (0.5). Obviously in this case (H2) 
and (H4) hold as well. Thus, if F is given by (0.5), only (H1) need be 
assumed. 

Our main results can now be stated. 

Theorem .4. I f  (H1) - (H4)  hold, then every orbit beginning in S* 1 is 
attracted either to p or to a nontriviaI periodic orbit. I f  Diag(p) DF(p) has 
more than one eigenvalue with positive real part, equivalently, i f  p is unstable 
for (0.1) in the linear approximation on S ,_  1, then (0.1) has a nontrivial 
periodic orbit. I f  F is analytic on Int ~+ ,  then there can be at most finitely 
many periodic orbits in S*_ 1 and at least one of these is orbitally asymptoti- 
cally stable i f  p is linearly unstable. 

A corollary of Theorem A is as follows. 

Corollary. I f  F is given by (0.5) with ai = 0, then for n <~ 4, p is a 
global attractor on S'n_1. I f  n >1 5, then p is unstable and there exists an 
orbitally asymptotically stable periodic orbit in S* n 1" 

The first assertion of the corollary is known. See Ref. 7 (12.6). The 
second assertion had been conjectured in Ref. 10. For interesting work 
related to this conjecture see Refs. 2 and 9. 

The remarkable fact about Theorem A is that it is not proved by 
studying solutions of (0.1) at all but rather by considering solutions of a 
related system on ~+ given by 

Yi= Yi[Fi(Yi, Yi 1 ) - K ]  (0.7) 
where 

K = ~ p i F i ( p i ,  pi 1)=Fj(pj ,  pj 1) 
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Our hypotheses (H1)-(H4) imply that (0.7) is a cooperative and 
irreducible system [-4, 5, 12] as well as a monotone cyclic feedback system 
[-8] on R+. Note also that p is an equilibrium of (0.7). The relationship 
between (0.1) and (0.7) is simple and we give it here. Let y(t) be a solution 
of (0.7) with y ( 0 ) e In t  N+. By a solution of (0.7), we always mean a 
solution maximally extended in the forward direction. Then y(t) remains 
in the interior of N+ for t > 0 and a simple computation shows that 

z(t) = Q[y(t)] - y(t)/~ y~(t)eS*_l 

satisfies the equation 

zi=g(t) ziI F,(z~, zi-1)- ~ zjFj(zj, zj- l) ] (0.8) 

where 

7z(t)=I~ yi(t)l q 

As n(t) is positive, z(t) traces out a portion of the positive orbit of (0.1) 
through z(0). It is important to point out here that while solutions of (0.1) 
are globally defined due to the compactness of S*, solutions of (0.7) need 
not be. If y(t) has maximal interval of existence [0, z) where 0 < ~ ~ o% 
then the range of z(t), defined above, is {x(s): 0 ~< s < o-}, where x(s) is the 
solution of (0.1) satisfying x(0)=z(0)  and a=~on(t)dt. In general, the 
range of z(t) is only a portion of the positive orbit of (0.1) through z(0). 
Observe that if Z Yi(t) is bounded from above and from below, then z = oe 
and the range of z(t) is the entire positive orbit of (0.1) through z(0). 

As (0.1) is assumed to be permanent, the orbit of (0.1) through z(0) 
has compact closure B in S*_ 1. This implies that the solution y(t) of (0.7) 
lies in the cone over B described by C-- {x e ~ "  x = sv for some s >/0 and 
v eB}. In particular, if the orbit of (0.7) through y(0) is bounded and 
bounded away from the origin, then this orbit has compact closure in 
Int ~_ .  Our assumptions (H3) and (H4) imply that (0.7) has exactly one 
equilibrium, namely, y = p, in Int ~ _ ,  and hence we may apply a modified 
version of Theorem 4.1 [8] to the solution y(t) to conclude that it is 
asymptotic either to p or to a periodic orbit in Int N~_. Thus we can exploit 
the permanence of (0.1) to describe the asymptotic behavior of certain solu- 
tions of (0.7). We will be able to return the favor, that is, we show that 
there exists an invariant n -1-mani fo ld  M for (0.7) and a Lipschitz 
homeomorphism from M onto S* 1, establishing a topological conjugacy 
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between orbits of (0.1) and those of (0.7). M is the boundary of the basin 
of attraction of the origin for (0.7) in Int ~+ if K >  0. Theorem A is proved 
by using results from Ref. 8 applied to (0.7) on M. 

In order to clarify the implications of the assumption (0.3) for (0.1), 
we introduce some additional notation. Following Ref. 3, (0.1) may be 
written as 

2 = f ( x ) - [ e * f ( x ) ] x  (0.9) 

where 

fi(x) :xiFi(x) 

e =  (1, 1 ..... 1)* 

and u* denotes the transpose of the vector u. 
Similarly (0.7) becomes 

= f ( y )  - Ky (0.10) 

The Jacobian of (0.10) at y = p is given by Diag(p)DF(p) .  Writing J(p) 
for the Jacobian of the right-hand side of (0.9) at x = p, direct calculation, 
using the homogeneity of F, gives the following: 

Dr(p) p = (q+ 1) Kp 

Diag(p) DF(p)  = Df(p) - KI 

J(p) = Diag(p) DF(p)  - pc* [Diag(p) DF(p) + KI] 

J(p) p = -Kp,  e*J(p) = -Ke* 

It follows that Kq is an eigenvalue of Diag(p)DF(p)  with corresponding 
eigenvector p. As Diag(p) DF(p) is an irreducible matrix with nonnegative 
off-diagonal entries, by (H2), the Perron-Frobenius theorem, together with 
the positivity of p, implies that Kq is a simple eigenvalue which is strictly 
larger than the real part of all other eigenvalues of Diag(p)DF(p).  
Straightforward calculations as in Ref. 3 show that Diag(p)DF(p)  and 
J(p) share n - 1 common eigenvalues. Indeed, if 2 r Kq is an eigenvalue of 
Diag(p) DF(p)  with corresponding eigenvector u, then 2 is an eigenvalue 
of J(p) with corresponding eigenvector u - ( e * u ) p .  Hence the stability of 
the equilibrium x = p  for (0.l) on Sn_l is determined by the n - 1  eigen- 
values of Diag(p)DF(p)  distinct from Kq, whereas - K  is the eigenvalue 
at p transversal to Sn l- 

In particular, (0.3) means precisely that p is a nondegenerate equi- 
librium for (0.1), i.e., the eigenvalues of J(p) are nonzero (and K r  
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If K < 0, then the remaining n - 1 eigenvalues have negative real part, 
and p is linearly stable for (0.7) on Int E+ as well as for (0.1) on S,_1. As 
we show in Lemma 1.1, p is actually globally stable in this case. 

If K > 0 ,  then some eigenvalues may have nonnegative real part. 
However, (HI)  and the index theorem in Ref. 7 (Chap. 19.3) imply that the 
number of eigenvalues of J(p) with positive real part must be even. Hence, 
for K > 0 ,  (0.3) can be improved to 

Det[- - DF(p ) ]  < 0 (0.11) 

or, after evaluation, 

H ( -  ~F[]<H( c3Fi ~ (0.12) 
\Oxi_,/ 

Hence, if K >  0, Diag(p) DF(p)  has an odd number of eigenvalues with 
positive real part. 

The following notation is used. We write x ~< y for vectors x and y 
provided that x ; ~  y~ holds for every i and we write x ~  y if the strict 
inequality x~ < 2~ holds for each i. If x ~ y, then Ix, y ]  is the set of vectors 
z satisfying x~<z~< y. If A and B are subsets of R", then A ~ B  (A ~ B )  
means that a ~< b (a ~ b) holds for every choice of a e A and b e B. We write 
co(z) for the omega (positive) limit of a point z and c~(z) for the alpha 
(negative) limit set of z. 

Recall that if y and z are initial conditions for a cooperative and 
irreducible system such as (0.7) and if y ~ z, y r z, then y(t) ,~ z(t) holds for 
all t > 0 ,  where y(t) and z(t) are the solutions of (0.7) satisfying y ( 0 ) = y  
and z(0) = z. This property of solutions of (0.7) is referred to as the strong 
monotonicity property. See Refs. 4-6 and 12 for further details. 

1. P R O O F  O F  T H E O R E M  A 

In this section we establish our main result by studying the asymptotic 
behavior of the system (0.7) on IR~, assuming throughout that (H1)-(H4)  
hold. Note that the homogeneity of the Fi, or (0.8), implies that the ray 
through p, {sp: s >t0}, is invariant with dynamics 

,~ = K S ( S  q - -  1) (1.1) 

Using (H3), one easily shows that p is the only equilibrium point in 
Int E+,  if K r 0. 

We first treat the trivial case K <  0. 
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Lemma 1.1. I f  K < 0, then p is a globally stable equilibrium for (0.7) 
on Int ~% [and therefore for (0.1) on S*_1]. 

Proof. In this case, since F(0) =0,  0 is repelling. But (1.1) shows that 
solutions on the invariant ray through p converge monotonically to p as 
t tends tO infinity. For any y ~ Int R~ we can choose 0 < r < 1 < s such that 
yl=-rp<<.y<<.sp=-y2. Then, by monotonicity, yl(t)<~y(t)<~y2(t) for all 
t>~0, a n d h e n c e y ( t ) ~ p a s  t ~ .  | 

For the rest of the paper we assume K > 0 .  In this case the origin is 
an attracting equilibrium for (0.7) and p is either a saddle point or a 
repellor. We write [0, r) for the maximal interval of existence of a solution 
y(t) of (0.7), where z depends on y(0) and 0 < z ~< oo. From (1.1), p repels 
solutions on the invariant ray through p, which coincides with the "most 
unstable manifold" of p [12]. By simple comparison with solutions on this 
ray, we obtain the following result on the basins of attraction of the 
equilibria 0 and 0% defined as 

B(0)= { y s  ~+:  lim y ( t )=0 ,  where y ( 0 ) = y }  
t ~ c O  

Lemma 1.2. 

(a) I f  y ~ B(O), then [0, y]  c B(O). 

(b) [ O , p ] - { p } c B ( O ) .  

(c) [p, oo]-{p}=B(oo). 
For the proof of (b) and (c), one uses the strong monotonicity of the flow. 

Integration of (1.1) reveals that solutions of (0.7) beginning on the 
invariant ray through p and larger than p blow up in finite time (~ < co). 
By comparison with such a solution, it follows from Lemma 1.3(d) that 
every point of B(oo) has finite escape time, z. 

Finally, we may define the analog of S,_1 for (0.7). Let 

M =  boundary of B(0) relative to Int ~+ 

The following lemma is closely related to a result in Ref. 6. 

Lemma 1.3. M has the following properties. 

(a) M is an &variant set for (0.7) containing y =  p. 

(b) M does not contain distinct points y and z such that y <~ z. 

865/3/3-9 
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(c) Every ray {tv: t~>0}, yeS*  i, intersects M exactly once. M is 
Lipschitz homeomorphic to S *  1. 

(d) Every positive orbit beginning on M has compact closure in M. On 
the other hand, y(O)eInt  ~+ belongs to an unbounded forward 
orbit if and only if l i m t ~  yi(t) = ~ for each i. Thus, B ( ~ )  = 
{y: y i ( t ) ~  ~ as t ~ r  for each i}. 

(e) The flow of (0.7) on M is topologically equivalent to the flow of 
(0.1) on S*n_~. In particular, (0.7) possesses a compact attractor 
on M. 

Proof. The invariance of M is immediate from its definition and p 
belongs to M by Lemma 1.2(b). If y(0) and z(0) belong to M and 
y(0) ~< z(0), then y(t) ~ z(t) for t > 0 by strong monotonicity. Hence we 
may find u(1)eB(0) close to z(0). But this implies that y ( 1 ) ~  u(1) and 
hence y(1)eB(0)  by Lemma 1.2(a), a contradiction. Thus (b) holds and 
the uniqueness of the intersection of a ray with M follows. To see that the 
ray actually intersects M, observe that (tv)>> p for sufficiently large t and 
such (tv) do not belong to B(0). On the other hand (tv) belongs to B(0) 
for small t by Lemma 1.2. It follows that the ray intersects M. Hence an 
injective map is defined from S *  1 onto M by assigning to each v s S*_ 1 
the unique point of intersection of the ray through v with M. This map can 
be shown to be Lipschitz continuous and its inverse, Q restricted to M, is 
also Lipschitz continuous. See Ref. 6 for more details. 

We now turn to assertion (d). Let y(0) ~ Int ~+ and suppose that y(t) 
is defined for t ~ [-0, ~), 0 < ~ ~< ~ .  Suppose also that there exists m > 1 such 
that for each t s  [0, v) we have yi(t)<~mpi for some i, where p is the equi- 
librium. We claim that y(t) is bounded as t ~ v. If not, then Y(t)= Z yi(t) 
is unbounded and hence lim i n f t ~ z i ( t ) = O  for some value of i, where 
z( t )=y( t ) /Y( t ) .  But this contradicts that (0.1) is permanent by the 
arguments given in Section 0. Thus if y(0) belongs to B(m), then for each 
m >  1 there exists s t  [0,~) such that y(s)>>mp. But then y(t)>>mp for 
s ~< t < ~ by monotonicity and the fact that the ray through p is an orbit of 
(0.7). On the other hand, if y(0)e  M, then y(t) is bounded since no point 
of M can be related to p except p itself. This proves (d). 

Earlier arguments established that if y(0)~ M, then Q maps the orbit 
of y(0) onto the orbit of (0.1) through Qy(O), preserving the direction of 
the flow. Indeed, if y(0)e  M, then Z yi(t) is bounded from above and from 
below, so that from our remarks following (0.8) in Section 0, the range of 
z ( t )=Q[y ( t ) ]  coincides with the positive orbit of (0.1) through z(0). 
This establishes the equivalence of the flows. The existence of a compact 
attractor for (0.7) on M follows from the fact that (0.1) is permanent 
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on S ,_ I  and thus there exists a compact attractor for (0.1) on S*_1. 
This proves (e). [] 

Theorem 1.4. The forward orbit of a point on M approaches.either p 
or a nontrivial periodic orbit. 

Proof. This follows immediately from Lemmal.3(d) ,  (0.11), and 
Theorem 4.1 of Ref. 8. Note that (0.7) has equilibria on the boundary of the 
nonnegative cone so Theorem 4.1 does not immediately apply. However, 
since the closure of the orbit is compact in M and M contains only the 
equilibrium p, the arguments yielding Theorem 4.1 apply here. Observe 
that (0.11) is precisely (4.5) in Ref. 8 (Theorem 4.1). [] 

We remark that all periodic orbits of (0.7) are linearly unstable, i.e., 
every such orbit has one real Floquet multiplier larger than one by 
Lemma 1.2 of Ref. 11. 

Our next result describes the possible asymptotic behavior of orbits of 
(0.7) not on M. 

Lemma 1.5. Int N+ cB(O)u  M u  B(oo). 

Proof. Suppose y(0) does not belong to B(0), M, or B(oo). Then the 
forward orbit through y(0) is bounded and hence has compact closure in 
Int R+. Its limit set is either p or a nontrivial periodic orbit by the same 
reasoning as in the previous theorem. In any case there exists r~ (0, l) 
such that y~=ry(O)EM. From (0.8) we know that y( t )=s( t )y l[z ( t )] ,  
where s(t)> 1 and z(t) is a monotonically increasing reparameterization 
of time. If y~(t) ~ p  as t ~  o% then also y ( t ) ~ p  as t ~  o% since p is 
the only possible limit set on the ray {rp:r>O}. But then all solutions 
starting in the interval [Yl, Y] are attracted to p, so that p is a "trap" in 
the terminology of Ref. 5. But this implies that the leading eigenvalue at p 
is nonpositive, which contradicts K >  0. 

If e)(yl) is a periodic orbit '/1, then ~o(y)=72 is a periodic orbit on 
the cone C spanned by 71 from the apex 0. As noted above, each of these 
periodic orbits is linearly unstable and its "most unstable manifold," 
constructed in Ref. 11, is contained in the cone C by (0.8). This implies 
71 = 72. But this contradicts the limit set dichotomy of Ref. 5, which says 

7~ ~ 72. [] 

Lemma 1.6. I f  7 is a nontrivial periodic orbit on M and I41"(7) is its 
stable manifold, then W*(7) c M. Similarly, W*(p) c M. 

Proof. If y(0) belongs to W*(7)--M, then by Lemma 1.5 either 
y(0)eB(0)  or y(O)eB(oo), either of which are contradictions. Similar 
reasoning leads to the other conclusion. !1 
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Theorem 1.7. I f  Diag (p )DF(p )  has more than one eigenvalue with 
positive real part, then there exists a relatively open, positively invariant 
subset U of M such that the limit set of  the orbit of  every point of  U is a 
nontriviaI periodic orbit. 

Proof. The Jacobian of (0.7) at y = p  is given by D iag (p )D F (p ) .  
Thus (0.11) implies that D e t [ - D i a g ( p ) D F ( p ) ] < 0 .  In particular, the 
Jacobian has an odd number of eigenvalues with positive real part. As we 
assume that there is more than one such eigenvalue, it follows that there 
are at least three. We can now apply the ideas of Theorem 4.1 in Ref. 8 
together with Remark 4.4 in that paper. Let 

U-= { y 6  M c~JV': N ( y -  p )=  2} 

where N is the integer-valued function defined as N(z )=  # {i: zizi_ 1 < 0} 
in the aforementioned paper and dV is its domain. As JV is open and N is 
continuous on Y ,  it is clear that U is open in M. Furthermore, U is 
positively invariant. Indeed, since N can only decrease along a forward tra- 
jectory and since it assumes only even values, it follows that if y(0)~  U, 
then either N [ y ( r  holds for all t > 0  or N [ y ( t ) - p ] = O  must 
hold for all large t > 0. But the latter means that either y(t) >> p or y(t) ~ p 
holds for all large values of t. Hence, either y(0)~ B(0) or y ( t ) ~  oe, by 
Lemma 1.2. In any case we have a contradiction and this proves that 
U is positively invariant. In order to see that U is not empty, let 
z = ( p l ,  lp2,1p3,...,lpn), where l > 1  so z>>.p=(pl, p2,...,p, ). Then there 
exists a unique r > 0 such that rz ~ M by Lemma 1.3. Clearly r < 1 since the 
orbit through z is unbounded by Lemma 1.2. But rlpi > Pi must hold for 
some i>~2 or else rzEB(O) by Lemma 1.2. It follows that rl> 1 and this 
easily implies that N ( r z -  p)=-2. Thus rz ~ U. 

If y(0) ~ U, then y(t) tends to a nontrivial periodic orbit as t ~ oo by 
Theorem 4.1 and Remark 4.4 of Ref. 8. �9 

Proposition 1.8. I f  F is analytic in Int 0~+, then there are at most 
finitely many periodic orbits on M. 

Proof. The proof is essentially identical to the proof of Theorem 4.3 
in Ref. 8. The permanence of (0.1) implies that (0.7) has a compact attrac- 
tor A on M, that is, A is a compact subset of M which contains the positive 
limit set of all orbits of points of M. The attractor A provides the compact 
attracting set required in the hypotheses of Theorem 4.3 mentioned above. 
Observe that the proof of the assertion in Theorem 4.3 that there are at 
most finitely many periodic orbits did not use the hypothesis that Dr(x , )  
has at least two eigenvalues with positive real part. �9 
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Proposition 1.9. Assume that the hypotheses of  Theorem 1.7 and 
Proposition 1.8 hold. Then there exists an orbitally asymptotically stable 
periodic orbit o f  (0.7). 

Proof. Let U be the open subset of M identified in Theorem 1.7. We 
will show.that  U contains an orbitally asymptotically stable periodic orbit 
by an indirect argument. Assume that no such periodic orbits exist in U. 
Observe that U is positively invariant and contains the positive limit set of 
every orbit beginning in U. Every such limit set is a nontrivial periodic 
orbit by Theorem 1.7, and furthermore, U contains only finitely many 
periodic orbits by Proposition 1.8. 

Let 7 be a periodic orbit of (0.7) in U. By the theory in Ref. 8, if 
{c~k}~= ~ are the Floquet multipliers of 7 ordered such that ~ > ~ k + ~ ,  
where ~r k = Ic~kl and N, is the real part  of the direct sum of the generalized 
eigenspaces of the period map (Poincar6map)  associated with the 
linearized equation about  7 corresponding to all Floquet multipliers e with 

= 1~], then we have 

0"1 > 0 " 2 ~ 0 " 3  > 0 " 4 ~ 0 " 5 >  . . .  >(Tn_i~Gn, 0"1 ==~1 > 1 

and 

N = 0  on ~f~, N =  2h on N,2h + N,2h+~ for h =  l, 2 , . . . , b -1  (1.2) 

where n = 2 b -  1 is odd, N*I is one-dimensional and ~-2~, + No2h+~ is two- 
dimensional. Furthermore,  ~2h ~2h + i > 0. When n is even, then 

0 " 1 > 0 " 2 ~ G 3 > 0 " 4 ~ 0 - 5 >  . . .  > a  n 2 ~ f f  n l > 0 ~ n ,  0 " 1 = ~ 1 >  1 

and, in addition to (1.2) and the above, N = n  on No~ which is one-dimen- 
sional and c~ n > 0. 

If U contains a periodic orbit 7 with a2 = :~2 = 1 and cr 3 < 1, then 7 is 
hyperbolic and WS(7) is an n - 1-dimensional manifold contained in M by 
Lemma 1.6. In this case, 7 is orbitally asymptotically stable on M in con- 
tradiction to our hypothesis. But U contains at least one periodic orbit 7 
which attracts an open subset of U. For  such an orbit it must be the case 
that e2 = ~3 = 1 and that ~4 < 1, since 7 cannot be hyperbolic. Thus 7 has 
a two-dimensional center manifold, We(7), which is homeomorphic  to 
( - 1, 1) x S 1. As 7 is an isolated periodic orbit, solutions of (0.7) beginning 
at z ~ WC(7) sufficiently close to 7 either spiral toward [co(z)= 7] or away 
from [c~(z)=717. If ~ attracts all orbits beginning on W~(7) sufficiently 
near 7, then 7 is orbitally asymptotically stable on WCS(7 ). In this case, 
We'(7) is an n -  1-dimensional manifold contained in M, by arguing as in 
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Lemma 1.6. It follows that 7 is orbitally asymptotically stable on M in 
contradiction to our hypothesis. Returning to our periodic orbit 7 which 
attracts an open subset of U, if e (z)=V for all z on WC(7) sufficiently near 
to V, then 7 cannot attract an open subset of U. Hence 7 must be a 
saddle-node orbit for the flow restricted to WC(7). 

In order to be more precise we introduce some ideas from Ref. 8. 
There it is shown that if Hi is the projection of ~n onto the ( x ,  x i_ 1) plane 
defined by H i x = ( x i ,  xi 1), then Hi, restricted to WC(7), is a 
diffeomorphism onto its range and Hi7 is a closed Jordan curve in ~2. 
We(v) is homeomorphic to ( - 1 ,  1 ) x S  1 so we may choose coordinates 
such that 

7 = { 0 } •  1 

H i [  ( - 1, O) x S 1 ] c (UiT)int 

HiE(O , 1) X S 1 ] c2 (UiT)ext 

where "int" and "ext" refer to the interior, respectively, exterior component 
of R 2_  Hi7. We say that 7 is attracting (repelling) from the exterior on 
We(7) provided that o (z)  = 7 [e(z) = 7-] for all z e (0, 1) x S 1. The notion of 
attracting and repelling from the interior on WS(7) are similarly defined 
with ( - 1 ,  0 ) x  S 1. In Ref. 8 we observe that distinct periodic orbits 71 and 
72 are such that Hi71 and Hi72 do not intersect and that Hip is contained 
in (HiT)int for every nontrivial periodic orbit 7. Furthermore, there is a 
partial ordering on the set of periodic orbits on M (or on U) as follows: 

71 <72 if Hi71 ~ (Hi72)in t. 
Consider now a periodic orbit, 7, in U which attracts an open subset 

of U. By our hypotheses, 7 is a saddle-node orbit with respect to the flow 
restricted to Wc(7). We assume that 7 is attracting from the interior and 
repelling from the exterior on we(7). The argument is similar if the reverse 
is true. Since there are only finitely many periodic orbits in U, we may 
assume that 7 is maximal, with respect to the partial ordering defined 
above, among all orbits in U possessing the following properties: (1)7 has 
a two-dimensional center manifold on which 7 is attracting from the inte- 
rior and repelling from the exterior, and (2) 0 4 < 1. By Lemma 1.6 or, more 
accurately, by the ideas in the proof of Lemma 1.6, it follows that the por- 
tion of WC(7) described by ( - 1 ,  0)•  S 1 belongs to M, since all orbits, on 
it tend to ? as t increases. Consider (0, 1) • S 1, which, in general, may not 
belong to M. If [ - ( 0 , 1 ) x S 1 - ] ~ U  and z ~ ( 0 , 1 ) x S  1, then ~(z)=  7 and 
og(z) = 7", where 7* is a periodic orbit in U, by Theorem 1.7. Arguing as in 
Ref. 8 (Theorem 4.2), one shows that if (_9(z) is the entire orbit through z, 
then N ( z l - z 2 ) = 2  whenever zl,  z2 are distinct points of the closure of 
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(9(z). Indeed, by Lemma 3.9 of Ref. 8, N[z(t) - z(s)] = 2 whenever t # s  are 
sufficiently negative. As N[z ( t+r ) - z ( s+r ) ]  is nonincreasing in r, it 
follows that either N [ z ( t + r ) - z ( s +  r ) ]  = 2 holds for all r or the value 
zero is attained for all large r. But the latter implies that z(t + r) 4 z(s + r), 
or the reverse inequality holds for all large r. This, in turn, implies that z(t) 
converges to an equilibrium as t ~ oo by the convergence criteria of Refs. 4 
and 5, and since this is impossible, we have that N[z(t + r ) -  z(s + r)]  = 2 
for all r. Hence our claim is established. In particular, this implies that 
7 r  that is, the orbit through z is not a homoclinic orbit to y but, in 
fact, is a heteroclinic orbit connecting distinct periodic orbits satisfying 
7 < 7*. Furthermore, if z(t) is the solution of (0.7) satisfying z (0 )=  z, then 
z(t) approaches 7* along We'(y*). It follows that N attains the value 2 on 
some (r for the variational equation about y* with o- ~< 1. Hence arguments 
parallel to those in Ref. 8 (Theorem 4.2) show that c~ 2 = ~3 = 1 (recall that 
a3 cannot be less than one, for then 7" is orbitally asymptotically stable on 
U, contrary to our assumption). It follows that 7* has a two-dimensional 
center manifold which is attracting from the interior. Since 7* cannot be 
orbitally asymptotically stable on U, Y* must be repelling from the exterior 
on its center manifold. This gives a contradiction to the assumed maxi- 
reality of 7 in U with the properties (1) and (2). 

Now suppose that (0, 1 ) x S ~ is not contained in U. One can argue as 
in Lemma 1.5 that for each z ' e  (0, 1 )xS~  there exists z e  U on the ray 
through z' such that z(t)=s(t)z'(r(t)) holds for all t in their common 
domain, where s ( t )>  1 or s ( t )<  1 holds for all t. As in Lemma 1.5, it 
follows that z ( t ) - z ' ( t )~O  as t ~ - o r .  As z(t) approaches 1' along its 
center unstable manifold as t--* - o o  and z(t) cannot be related to a point 
of 7 by 4 ,  it follows that there exists T >  0 such that whenever t < - T ,  
s <  - T  and t#s ,  then N[z( t ) -z(s)]  = 2  and N[z( t ) -  7]= 2. Using the 
fact that N[z(t+ r ) -z ( t ) ]  is nonincreasing in t for each r # 0  and that no 
two points of the orbit through z can be related by 4 ,  one sees that 
N ( z ~ - z j  = 2 whenever zl ,  z2 are distinct points of the closure of (9(z). It 
follows that Hi(9(z) does not meet Hiy. Now Hiz'(t) approaches H~y from 
(HiT)ext as t ~  - m  since z' belongs to (0, 1 ) x S <  Hence, there exists tl 
and t2 such that Hiz'(tl)4II?/ and Hiz'(h)~ H~7, where the inequalities 
are componentwise in N 2. But s(t)z'[z(t)] =z( t )  implies that H I ( t 2 ) 4  
H~z[r-l( t j] ,  if s >  1, or H~z[r - l ( t l ) ]~Hf ( t l ) ,  if s <  1. We note here 
that the projections have positive coordinates. In either case, it follows that 
//i(9(Z) c (HiT)ext. Now z(f) tends to a periodic orbit V* in U as t ~ 0% by 
Theorem 1.7. Arguing exactly as in the paragraph above, we obtain that 
7 < 7 "  and that 7" has the properties (1) and (2). This, again, is a 
contradiction to our assumption that y is maximal with these properties 
and completes our proof. II 



436 Hofbauer, Mallet-Paret, and Smith 

R e m a r k .  T h e o r e m  A a n d  the  co ro l l a ry  fol low f rom L e m m a  1.3(e), 
T h e o r e m s  1.4 a n d  1.7, a n d  P r o p o s i t i o n s  1.8 a n d  1.9. 
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