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Abstract. The question of the long term survival of  species in models governed 
by Lotka-Volterra difference equations is considered. The criterion used is 
the biologically realistic one of permanence,  that is populations with all initial 
values positive must eventually all become greater than some fixed positive 
number. We show that in spite of  the complex dynamics associated even with 
the simplest of such systems, it is possible to obtain readily applicable criteria 
for permanence in a wide range of cases. 
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1. Introduction 

Systems of difference equations have been much used in the modelling of the 
interactions of  species with non-overlapping generations, see Hassell [3] for 
example. It is well known that even for one species the dynamics may be extremely 
complex, and it may be very difficult to predict the detailed asymptot ic  behaviour. 
However, one of the most important questions from a biological point of  view 
concerns the conditions under  which long term survival of  all the species is 
assured, and it is our aim to show here that notwithstanding the complex dynamics 
which may occur, it is often possible to give rather simple and complete answers 
to this question for an important  class of  models. 

We consider here the system of difference equations 

x xexp{r } ' aox j ( i =  1 , . . . ,  n) (1.1) 
j = l  

on ~ ,  where x = ( X l , . . . ,  x , ) '  is the vector of  populations at one generation, 
and x '  is the corresponding vector at the next generation. The ri are assumed to 
be constants and A = (ao) is a constant matrix. For closely spaced generations, 
these equations may be written in the form 

xi(  t + e)  = xi( t ) exp{  e[  ri - ( A x (  t ) )i]}, 
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and subtracting x~(t) from each side, dividing by e, and taking the limit as e ~ 0 
we obtain the familiar system of Lotka-Volterra differential equations 

~, = xi{r , -  (Ax)~} (i = 1 , . . . ,  n). (1.2) 

For n = 1, the map x' = x e r-ax has been studied in detail by May and Oster 
[19], and was shown to exhibit a similar scenario of chaotic behaviour for large 
r as its more popular but biologically less realistic counterpart x ' =  r x ( 1 - x ) .  
Some two species cases have been considered, for example by Hassell [3], but 
higher dimensional difference systems of the type (1.1) have rarely been tackled 
in the literature. In this paper we want to show that (1.1) has been unjustly 
neglected, and is perhaps the most tractable discrete time model in Mathematical 
Ecology. We will point out that many results long known for (1.2) directly carry 
over to (1.1), in particular the crucial "averaging property",  noticed originally 
by Volterra [23, pp. 173 et seq.], on the convergence of the time averages towards 
the equilibrium point (Lemma 2.4), which brings order from chaos. These remarks 
suggest that (1.1) is the natural analogue of  (1.2) for discrete time and may 
therefore justifiably be termed a system of Lotka- Volterra difference equations. 

The classical approach to questions of coexistence is through asymptotic 
stability or global asymptotic stability of a necessarily unique interior equilibrium 
point. However, from a biological point of view a more realistic criterion, that 
of permanence, appears to be that long term survival holds if and only if 
asymptotically (that is as the number of generations becomes very large), the 
species densities should become and remain greater than some fixed strictly 
positive quantity which is independent of the initial values if these are positive. 
This does not impose the restriction that the populations should settle down to 
fixed values, but on the other hand does not allow populations in the long run 
to remain near the boundary 0R+ of the nonnegative cone ~+ (corresponding to 
extinction of at least one species). In contrast, asymptotic stability and global 
asymptotic stability seem unrealistic in that they are too restrictive in requiring 
convergence to fixed values, while asymptotic stability is too weak in allowing 
orbits starting too far from the equilibrium point to converge to the boundary. 
We shall study the question of long term survival here from the point of view of 
permanence. 

The system (1.1) is said to be permanent ~ if there is a compact (that is closed 
o n n 

and bounded) set M in the interior R+ of R+, and thus with minimum distance 
from 0R+ greater than zero, such that for every initial value in ~}+ the orbits enter 
and remain within M. The system is weakly persistent if for any initial value in 

o n 

~+, lim su[~j_.~ xi ( j )> 0 (i = 1 , . . . ,  n), where x~(j) is the population of species i 
at generation j ;  clearly permanence is a stronger property than weak persistence, 
although in certain circumstances the latter implies the former, see [2]. A property, 
for example permanence, is said to be robust if it is preserved under sufficiently 
small perturbations of the parameters in (1.1); it is clearly desirable that any 
condition in this area should be robust as it will not then be destroyed by small 

1 The equivalent terms, cooperativeness, permanent coexistence, uniform persistence, and ecological 
stability have also been used in the literature 
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changes in the specification of the system, and several of our results here are for 
robust permanence. 

The idea of  permanence is implicitly contained in Schuster et al. [20, 22] who 
studied a certain chemical network. Their ingenious technique has been simplified 
and adapted to yield a general method, based on the concept of an "average" 
Liapunov function, for establishing permanence by Hofbauer [4] and Hutson 
[11]. As shown by Jansen [16], this method is particularly effective for Lotka- 
Volterra equations because of the averaging property. There is now a considerable 
amount known concerning permanence in several different types of models, 
ranging from ordinary differential equations to partial differential equations 
(reaction-diffusion systems) and differential inclusions which allow for uncer- 
tainty in the specification of a system, see [1, 2, 7-15, 17, 24] for a wide range 
of applications. Permanence for general systems of difference equations has been 
studied by Hutson and Moran [ 14], a particular case being treated in [5]. However, 
our object here is to show that, because an analogous averaging property holds, 
for the special case of  difference equations of Lotka-Volterra type (1.1) a great 
deal more can be said. 

Sufficient conditions for permanence are obtained in Sect. 2; the mathematical 
technique used here is that of discrete semidynamical systems. Although the 
proofs are somewhat technical, the principal results, Theorem 2.5 and Corollary 
2.6 are simple and easy to apply. Considerations of the limitation of the environ- 
ment dictate that for the model (1.1) to be realistic some condition of uniform 
boundedness must apply to the orbits; this question has only recently been 
resolved for Lotka-Volterra differential equations [6], and for difference equations 
there appears to be little information available. A discussion is given in Sect. 3. 
Necessary conditions for permanence based on degree theory are given in Sect. 
4 and the results are combined in Sect. 5 to yield a complete characterization for 
robust permanence for three species problems. In one form these conditions take 
the form of a simple and attractive geometrical criterion, Theorem 5.2(c). Finally 
we give two applications in Sect. 6, the first pointing out the difference between 
conditions leading to asymptotic stability and permanence, the second dealing 
with perhaps one of the most difficult three species problem, the analogue of the 
May-Leonard system for three competing species. 

2. Sufficient conditions for permanence 

The principal aim of this section is to show that there is a set of algebraic 
conditions, straightforward to check in practice, at the (finite number of) equili- 
brium points on the boundary, which are enough to ensure permanence. This 
result, which is given in Theorem 2.5, also has a useful geometrical form, Corollary 
2.6. A complementary result, Theorem 2.7, gives a similar criterion for showing 
that there is an attractor in 0 ~ ,  when of course the system is not permanent. 

The theory of discrete semidynamical systems (abbreviated here to SDS) 
provides the basic mathematical tool, and some standard notation for these is 
first introduced. Let (X, d) be a locally compact metric space (which will here 
be a subset of ~_), and let T: X-> X be continuous. For k c  7/+ (the non-negative 
integers) put x .  k = T k x ,  and note that x .  0 = x and x .  (kl + k2) = (x.  kl) �9 k2 for 
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kl, k2 ~ Z +. The semiorbit through x is the set 

7+(x) = {y: y = x .  k for some k c 7/+}. 

The O-limit set, which essentially describes the asymptotic behaviour of  the 
semiorbit, is defined to be 

O(x)  ={y:  x" k i ~ y  for some sequence (ki) -~ oc}. 

For a subset Xo c X put 

~*(Xo) = U ~+(x), O(Xo)= U O(x). 
x~Xo x~Xo 

Xo is said to be forward invariant if TXo c Xo and strictly forward invariant if 
TXo c J~o- The set M is said to be absorbing for Xo if it is forward invariant and 
7+(x) c~ M r 2~ for every x c Xo. As the terminology suggests, this means that 
every semiorbit starting in Xo is "sucked into" M from which it cannot then 
escape. Xo is a global attractor if limj_,oo d(x  .j,  Xo) = 0 for every x e X. The SDS 
is said to be dissipative if there is a bounded global attractor. The proof  of  the 
following lemma may be deduced directly from that of  Hutson [11, Lemma 2.1] 
and is omitted. 
Lemma 2.1. Let U be open with compact closure, and suppose that V is open and 
forward invariant, where (J c V c X. Then/fy+(x)  c~ U r O for every x c V, 7+(/J)  
is compact and absorbing for V. 

Remark. For a dissipative SDS on R+ with global attractor )20 an application of 
the lemma to an open e-neighbourhood U of Xo shows that there is a compact  
absorbing set for ~ .  

To frame the system (1.1) in this setting, rewrite it as 

xl = xi exp{f(x)}  (i = 1 . . . .  , n), (2.1) 

where 

j = n  

f ( x )  = r i -  ~ a~xj. (2.2) 
j = l  

This may be expressed as x ' =  Tx where T:N~_~R+ is the continuous map with 
ith component  

( Tx)~ = x~ exp{f(x)}.  (2.3) 

In dynamical systems terminology the condition of permanence may be 
rephrased as follows. 

Definition. The system (2.1) is said to be permanent if and only if there exists a 
N+ of R+ which is contained in ~+ compact  absorbing set M for the interior ~ " " ~ " 

(and whose minimum distance from the boundary 0R~ is thus non-zero). 
It will be assumed throughout that the SDS on R~_ is dissipative, in which 

case in view of the remark after Lemma 2.1 there is a compact  absorbing set for 
R~_. We remark that dissipativity is equivalent to the possibly more familiar notion 
of ultimate or eventual uniform boundedness,  that is the existence of a constant 
L such that 

l i m s u p x ~ ( k ) < L  ( i = 1 , . . . ,  n) 
k~oo 
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for all x �9 N+. The question of dissipativity is itself of some interest, and is 
discussed for (2.1) in detail in Sect. 3. When this condition holds, the analysis 
may evidently be restricted to the compact absorbing set 7+({x: 0 ~< xi <~ L}). From 
here on we take this set to be X, which is therefore now a compact metric space, 
and let S=Xc~O~_. The condition of permanence may then be thought of 
intuitively as the requirement that S repels orbits in some strong uniform sense. 

The role of  the function P below will be discussed shortly after some simple 
algebraic identities have been derived. For any vector p = (p~, . . . ,  Pn) of strictly 
positive real numbers, define the continuous function P:X--> ~+ by setting 

i ~ n  

P(x) = [I xP', 
i ~ l  

and note that P(x) = 0 if and only if x �9 S. Put 

c~(m,x)=P(Tmx)/P(x)  ( m � 9 1 4 9  (2.4) 

Let 

~)(X) = ~. Pifi(x) = ~ Pi aijxj . (2.5) 
i = 1  i ~ l  1 

Then from (2.3) and (2.4), 

c~(1, x) = exp{~b(x)}. (2.6) 

Since ~b:X->N is continuous, (2.6) provides a continuous extension of a ( 1 , ' )  
to X. Now for any kl, k2 �9 77+, x e X \S ,  

c~(k, + k2, x) = P[x" (k,+k2)]/P(x) 

P[x ' (k l+k2)]  n(x" kl) 
P(x .  k,) P(x) 

--= a(k2, x '  k l )a (k l ,  x). (2.7) 

In particular the relation c~(s,x)=a(1, Tx). a(1, x) provides a continuous 
extension of  a ( 2 , . )  to X, and proceeding inductively, of a(m, . )  to X for all 
m �9 77 +. By repeated application of (2.7), 

a ki, x = oL(k0, x) H a , x" Y~ ki (2.8) 
k i = 0  j = l  i = 0  

for any k o , . . . ,  kt �9 77+ and x �9 X,  which implies 

[j=m-I 
q~(x "j)~. (2.9) a(m,  x ) : e x p [  j~o ) 

Define next 

/3(x) = sup a(m, x), (2.10) 
m ~ l  

and note that since P(x)> 0 if x e X \ S  and P, T are continuous, fl(x) is finite 
for each x c X \ S .  However, fl(x) may take the value +oo if x � 9  S. 
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We wish to show that orbits are repelled by S, and by a standard Liapunov 
function type argument we see that the condition a(1,  x) = P ( T x ) / P ( x ) >  1 for 
all x in a neighbourhood of S, that is P is increasing along semiorbits, is enough 
to ensure this. However, this condition will not usually be satisfied for the type 
of system considered here, nor will it be easy to invent an alternative Liapunov 
function P. Our objective here is to show that the much weaker condit ion/3(x) > 1 
for x ~ S, which requires only that P should increase over some (rather than 
every) section of the orbit, is sufficient for permanence. This justifies the term 
"average Liapunov function" for P. A preparatory technical lemma is needed. 

Lemma 2.2. Let K a X be compact, and suppose that f l(x) > 1 for every x ~ K. Then 
there is a closed neighbourhood V of K such that if for some y c X we have ~ (y ) c V, 
then/3(y) = +oo, and y c S. 

Proof The proof  is divided into two stages. We first claim that there are a 
neighbourhood W of K, an /~> 0, and a /~< oo such that for any x c W there is 
a positive integer kx ~</c with a(kx, x) ~ 1 +/~ For each h > 0, k 6 Z + define the 
following subsets of X:  

U(h, k) ={x:  a(k, x ) >  l+h} .  

As a(k," ) is continuous, each U(h, k) is open, and since f l ( x ) >  1, from (2.10) 
these sets form an open cover of K. However, K is compact,  so there is a finite 
subcover. Also U(hl,  k) ~ U(h2, k) if hl<~ h2, so it follows that there are an 
/~> 0, integers k ~ , . . . ,  kj, and an open neighbourhood W of K with 

K c W c UI----~ U(/~, k,). 

This establishes the claim, for on each U(h, kj), a(kj, x)> 1+/~, and kj~ ]~= 
max k;. 

To complete the proof, choose a closed neighbourhood V c  W. I f  for some 
y ~ X ,  ~ ( y ) c  V, from the definition of J2-1imit set, for some ko, y" k e  W for 
k ~> ko. From what was proved above, there is a sequence (kg) in 7/+ with 1 ~< k~ <~/~ 
such that for every i ~  > 1, 

a(k,,  y .  (ko+" �9 �9 + ki-1)) >~ (1 +/T). 

Hence from (2.8) 

a ( i Z ,  i=0 ki' Y)  >~ a( k~ y)( l + ~)t' 

and it follows that ~(y)  = 0% since a(ko,  y) > 0. 
Finally, y c S, for as remarked previously, f i(y) is finite for each y ~ X \ S .  

Our first sufficient condition for permanence is the following theorem. This 
is a special case of a result of  Hutson and Moran [14], but its proof  is an 
immediate consequence of Lemmas 2.1 and 2.2 which are needed later, and is 
included for completeness. 

Theorem 2.3. Let the system (2.1) be dissipative. I f  f l (x )> 1 for each x c  S, per- 
manence holds. 
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Proof With the notation of Lemma 2.2, take K = S and N = X \ S ,  from that 
lemma 12 (x) c~ N # O ,  for otherwise x e S contrary to assumption. It then follows 
from Lemma 2.1 with U = N  and V = X \ S  that M =  7+(N -) is the required 

R + .  compact  absorbing set in X \ S  c ~ ~ 

Use of this theorem depends on estimates of  fl at every point x e S. As shown 
in [14], it is in fact enough if f l ( x ) >  1 for each x 6  12(S). However, in view of 
the complexity of  the 12-limit sets of  difference equations even in low dimensions, 
it will often be difficult to check even this condition. Our next and principal 
objective is to show, by exploiting the averaging property as in [16], that it is 
sufficient if f i (x*)> 1 for the boundary equilibria x* only. At these points it is 
clear from (2.9) that f l(x*) = +oo if q~ (x*) > 0, so this criterion is readily checkable. 
We will also see in Sect. 4 that q~(x*) is a linear combination of the "external 
eigenvalues", which provides a relationship with the intuitive biological concept 
of "invasion parameter" .  

Define the average population vector over m generations )7(m)= 
( ) ~ l ( m ) ,  . . . , ~. (m))  by putting 

k ~ m  1 

Y,i(m)=m -1 Y~ ( x ' k ) i .  
k = 0  

Then from the linearity of  (2.5), (2.9) can be rewritten as 

a (m,  x) = exp{mq~(ff(m))}. (2.11) 

Consider now a subsystem of (2.1) of  order q obtained by setting n - q  of  
the populations zero and rearranging the indices so that the non-zero populations 
correspond to i = 1, . . . ,  q. 

Lemma 2.4. Assume that xi > 0 (1 ~ i <~ q ). Suppose that there are real numbers 
b > 0 and b', and a sequence (kj) -~ oo such that b < (x .  kj)i < b' (1 <~ i ~< q, j /> 1). 
Then there are a subsequence, again denoted by (kj), and an equilibrium point x* 
such that 

lim ff(kj) = x*. 
j ~oO 

Proof The averages satisfy the same inequalities, so by compactness there is a 
convergent subsequence .~(kj). Then for 1 ~<i~ < q, 

m=kj 
ky 1 log[(x" kj)i/xi] = k j  - 1  Y, log[(x- m)i / (x"  (m - 1))i] 

rrl ~ k. 

= k j  1 E~ f ( x ' ( m - 1 ) )  
m = l  

=f~(g(kj)) 

by the linearity of  the f .  The left-hand side tends to zero as j ~ oo, and hence the 
limit x* of  the convergent subsequence .~(kj) satisfies f ( x * ) =  0. Thus x* is an 
equilibrium point of  (2.1). 
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Theorem 2.5. Let  the system (1.1) be dissipative. Assume  that there are real numbers 

P~ , �9 �9 �9 Pn > 0 such that 

i = n  

qS(x*) = Y, p i f ( x * )  > 0 (2.12) 
i=1 

for  each equilibrium point x* in OR+. Then (1.1) is permanent. I f  (1.1) is robustly 
dissipative, robust permanence holds. 

Proof  Broadly this is carried out by induction on the dimension. Regarded as a 
subset of R+, OR+ is composed of n faces of dimension (n - 1) obtained by setting 
x ~ , . . . ,  x, zero in turn. Denote the intersection of each of these with X by F ("-1), 
and the set of all these faces by U F(n-1). Define F ( " -2 ) , . . . ,  F(~ {0} together 
with their interior and boundary similarly. 

From (2.10)-(2.12), / 3 ( x * ) > l  for each equilibrium point x * c S .  From 
Theorem 2.3, it is enough to show that /3(x)  > 1 for each x c S. Since the origin 
0 is an equilibrium point,/3 (0) > 1. Suppose next that for some q with 0 ~< q ~< n - 2, 
/3(x) > 1 for all x e U F(q). Let x be an interior point of s o m e  F (q+l). Then either 
g2(x) c U F(q), or g2(x) contains an interior point Xo, say, of F (q+~). In the first 
case, by the induction hypothesis and Lemma 2.2 with K = U F(q),/3(x) > 1. In 
the second case, there is a sequence (kj )~  oo with lim~_,oo x.  kj = xo. By Lemma 
2.4 the averages g(kj) converge to an equilibrium point x*, say, and it follows 
from (2.11) and (2.12) tha t /3(x)  > 1. Thus /3(x)> 1 if x~  F (q+l), and the result 
follows by induction. 

Note finally that for a sufficiently small change in the parameters of (1.1), 
the number of boundary equilibrium points cannot increase and their position 
is only slightly changed. Hence ~b remains positive at these points. Together with 
robust dissipativity this guarantees robust permanence. 

Theorem 2.5 is our central result on sufficient conditions for permanence in 
Lotka-Volterra systems of difference equations. The principal point of this 
theorem is that it reduces the question of permanence to a (finite) algebraic 
problem, that of deciding when there exist n positive numbers Pi, such that the 
linear expressions ~b(x*) given by (2.5) are greater than zero at a finite number 
of equilibrium points. Some remarks concerning this follow. 

(i) It can happen that there is a line of equilibrium points, but it has been shown 
in [16] that only the extreme points in R+ need be checked. Hence, as stated 
above, only a finite number of inequalities enter into the computation, so the 
problem is indeed purely algebraic. Furthermore, this algebraic problem is clearly 
identical with that for systems of Lotka-Volterra differential equations. A useful 
consequence of this is that the extensive results [7, 8] already available for the 
differential equation case may be used directly, and this will be done at several 
places in later sections. 

It may also be useful to note that the problem is of linear programming type, 
so the powerful techniques available there may be exploited, see [16]. 

(ii) There is a simple geometrical condition for permanence for systems of 
Lotka-Volterra differential equations, see [7, 8] which in view of the remark 
above we may quote directly. 
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Corollary 2,6, Let D denote the set of  points where no species increases, that is 

D = { x :  r<- Ax},  

where r = (r~, . . . ,  rn). Then if  dissipativity holds, the system (1.1) is permanent if 
D is disjoint from the convex hull C of  the boundaryfixed points. 

(iii) We will see in Sect. 5 that, at least in low dimensions n ~ 3, the conditions 
in Theorem 2.5 or Corollary 2.6 in fact characterise the robust permanence of 
(1.1). For n >14 this remains an open question. 

(iv) Whenever Theorem 2.5 characterises permanence there is a noteworthy 
consequence, which may be seen by setting a 0 = rico/Kj, and rewriting (1.1) in 
the form 

, _ ( c o x  j �9 x i -  xi exp r i 1 -J  
j = l  

Then permanence is completely independent of  the basic growth rates ri and 
"carrying capacities", Ki, and is determined solely by the "communi ty  matrix" 
(co). This holds under the restriction that changing the ri does not destroy the 
boundedness assumption, which is true for a large class of  interaction schemes 
(see Lemma 3.3), but not for mutualists (see Lemma 3.2). On the other hand, as 
pointed out with some regret by Strobeck [25] for (1.2), the local stability of  the 
interior fixed point may depend critically on the r~. 

The following theorem, a generalization of a result in [1], is a partial converse 
to Theorem 2.5. It will be useful when necessary conditions for permanence are 
discussed in Sect. 5. 

Theorem 2.7. Suppose (1.1) is dissipative. Assume that there is a subset M of S 
which is strictly forward invariant (for the SDS restricted to S), and that there are 
positive numbers P l , . . . ,  Pn > 0 such that oh(x* ) < 0  for every equilibrium point 
x* �9 M. Then M contains an attractor, that is there is a neighbourhood U of M in 
X such that Y2(x) c M for every x ~ U. 

Proof This is based on arguments very similar to those used in proving Theorem 
2.5 and is therefore only given in outline. 

The result is first proved under the assumption that 6(x) < 1 for every x �9 M, 
where 6(x)=infm~>l a ( m , x ) .  Since S2()~]r)c r / ~ c  M, an argument similar to 
that of  Lemma 2.2 (with the inequalities reversed) for the SDS restricted to. S 
shows that 6 ( x ) =  0 for every x �9 M. It follows that there are a neighbourhood 
W of M in X, an h > 0 and a / ~ <  co such that if x �9 W there is a positive integer 
kx <~/~ with ce(kx, x ) < ~ l - h .  

Let V be a neighbourhood of TM in X such that 

V ~  S c  M. (2.13) 

Then U =  Wc~ T - I ( v ) c ~  . .  . n  T-~(V)  is a neighbourhood of 2~ in X. Since 
r~\ U is disjoint from S, by (2.13) there exists p > 0 such that P(x)  > p for x ~ f ' \  U. 
Hence with I ( p ) = { x c X \ S :  P ( x ) < p } ,  I ( p ) ~  V c  U. 

Let x � 9  U c  W. Then by definition of W there is a k with l~<k~</~ 
such that a(k ,  x) <~ 1 - h. Hence P ( x .  k) < P(x )  �9 (1 - h) <p ,  where x .  k ~ I (p) .  
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Then x . k c Tk U c V and x . k ~ I ( p ) ~ V c U, from which it follows that x .  k~  
I ( p )  71 U. By iteration we obtain a sequence (k~)--> co with k~+l- k~ <~/~ such that 
x . k~ ~ I ( p ) c~ U and P(  x . k~) ~ O. Since P(  x . k)<~ d P  ( x . k~) holds for all k with 
k~<~k<~k~+l, where 6 = m a x { a ( m , x ) : O < ~ m < ~ k , x ~ X } ,  we conclude that 
P ( x .  k ) ~  0 and ~2(x)c  M. Thus every orbit in I ( p ) c ~  U converges to M. 

Finally, the averaging Lemma 2.4 implies again that 6(x*) < 1 at every equili- 
brium point x* in M is sufficient to ensure that 6(x) < 1 at every x c M. 

3. Boundedness 

The results throughout are based on the hypothesis that the system (1.1) is 
dissipative. It is clear from the finiteness of  the universe that a hypothesis at least 
as strong as this is required for biological reality. However, the problem of 
deciding when the difference equations lead to dissipativity is not a simple one, 
and appears not to have received much attention in the literature. For the 
corresponding Lotka-Volterra differential equations (1.2) necessary and sufficient 
conditions are known. However, we shall show that whilst the analogous necessary 
conditions are still valid (Lemma 3.1), they are not sufficient (Lemma 3.2). It is 
curious to note that the sufficiency breaks down in what might be regarded as 
the most "cooperat ive"  s y s t e m - - t h a t  of a pair of  muralists. Paradoxically the 
very fact that mutualists assist each other may lead to orbits which approach 
infinity, but which also come extremely close to both the axes, thus increasing 
the probability of extinction under external stresses. A sufficient condition 
(Lemma 3.3) is given which excludes such mutualist interactions. 

We call the matrix A a B-matr ix  if 

Vx ~ ~+\{0} 3 i: x~ > 0 ancl (Ax)~ > 0. (3.1) 

Biologically this property means that for the interaction matrix A in the Lotka-  
Volterra equations (1.2) or its discrete time analogue (1.1), at every possible state 
x of  the system, at least one of the species, say i, "suffers" in the sense that its 
growth rate r~ is reduced to r~ - (Ax)g due to the interaction of the other species. 

These matrices were studied in detail in [6]. In particular, it was shown there 
that (3.1) is equivalent to the fact that, for every choice of  the ri, dissipativity 
holds for the Lotka-Volterra differential equations (1.2). The following lemma 
shows that for the difference equations, it is still a necessary condition. 

Lemma 3.1. I f  the sys tem (1.1) is dissipative and  ri > 0 (or robustly dissipative and  

the ri are arbitrary) then the interaction matr ix  is a B-matrix.  

Proo f  Supbose A is not a B-matrix, then neither is its transpose A t (see [6]) and 
(3.1) gives us a vector p1>0, p # 0  with p i ( A p ) ~ O  for all i. On the support  
I = {i: p~ > 0} of p we have 

( a~p)~ = ( p ' a ) i  <~ 0 (3.2) 

for i ~ / ,  and so p" A x  <~ 0 for all x with supp x c L We restrict our attention to 
this subsystem henceforth. It follows from (2.4)-(2.6) that P ( x ' )  > P ( x )  i f p .  r > 0. 
I f  p .  r ~< 0 then we exploit the robustness assumption and by slightly decreasing 
the diagonal terms of A we can achieve strict inequality in (3.2). Then for large 
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x with s u p p x = / ,  we get p .  A x < p .  r and again  P ( x ' ) > P ( x ) .  So the sets 
{x c R~+: P ( x )  >i a} are strictly forward  invar iant  for  large a and all orbits in these 
sets go to infinity. This gives a contradict ion.  

In contras t  with the differential equat ion  case, (3.1) is not  sufficient to guaran-  
tee dissipativity of  (1.1). This is shown by  the fol lowing coun te rexample  for  two 
mutual is t ic  species with interact ions mode l led  by the equat ions 

x ' =  R x  e x p ( - a x  + by) 
(3.3) 

y'  = Ry  exp(bx  - ay),  

with R, a, b > 0. The interact ion matr ix  A is a B-mat r ix  if 

det  A = a 2 - b 2 > 0, (3.4) 

that  is if the mutual is t ic  effects are smaller  than  the intraspecific compet i t ion.  
N o w  the line x = y  is invariant ,  and there x ' = R x e x p [ ( b - a ) x ] ,  so for  b >  a 
(when by (3.4) A is not  a B-matr ix)  there are orbits converging to infinity, which 
is in accordance  with L e m m a  3.1. However ,  the fol lowing l e m m a  shows that  in 
addit ion,  for  a > b u n b o u n d e d  orbits exist if  R is large enough.  

Lemma 3.2. I f  R >  a / b  > 1, then (3.3) has unbounded orbits. 

Proof  The idea is to construct  orbits which start  near  the x-axis,  that  is with x 
large, y small,  and which j u m p  to points  near  the y-axis  with x '  small  and less 
than  y, y '  large and  greater  than  x. To be more  precise we consider  ho rn - shaped  
regions 

BK, M = {(x, y)  ~ ~2: x >! M, xy <~ K and y t> x e-bx}, (3.5) 

where  K > 0 is arbi t rary and M is any n u m b e r  satisfying the inequalit ies 

M >~ a - l ,  (3.6) 

m / >  2(a  - b) -1 log R, (3.7) 

M >1 K a / l o g ( R b / a ) .  (3.8) 

I f  B'K.M denotes  the image  of  BK, M under  the reflection (x, y)~--~(y, x )  then we 
claim that  (3.3) maps  BK, M into B'K, Ma/b. By iteration this proves  that  all orbits 
starting in BK, M are unbounded .  

Let (x, y )  c BK, M. Then  

(xy) '  = ( x y ) R  2 e -(a-b)(x+y) ~< xy <~ 1<2, (3.9) 

since x >~ M and (3.7) holds.  Moreove r  

y'  = y R  e bx ay >1 x e-bX R e bx ay = R x  e -ay. 

Using y <~ K / x <~ K / M and (3.8) we obtain  

y'>~ a x / b  >t a M / b  >1 1/b. (3.10) 

Finally, since the funct ion y ~ y e -by is monoton ica l ly  decreasing for  y > 1/b  
we have 

x ' / ( y '  e b Y ' ) > ~ x R e - a X + b y / ( a x e - O X / b ) = R b a  l ebY>~l. (3.11) 

(3.9), (3.10) and (3.11) imply  (y', x ' ) c  BK, Ma/V. 
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We conclude this section with a sufficient condition for boundedness. We call 
the interaction matrix A hierarchically ordered if there exists a rearrangement of 
the indices such that a~ ~ 0 whenever i ~<j, and additionally ai~ > 0 for every i. 
This means that positive interspecific effects (i.e. a o < 0) occur only from lower 
to higher levels. This excludes all types of  mutalism, but allows for any kind of 
predator-prey or competitive interaction. 

Lemma 3.3. I f  A is hierarchically ordered then the difference equation (1.1) is 
dissipative (for every choice of  the basic growth rates ri). 

Proof Since a ~ > 0  for i~ j<-n ,  from (1.1) with i = 1 ,  

x~ ~< xl exp(rl - allXl), 

and it follows that x~ is bounded by the constant K1 = er:l/a11. Inserting this 
bound into (1.1) with i = 2, we find by the same argument that, after at most two 
generations, x2 is bounded by a constant /s Repeating the argument, we see 
that T" maps R+ into the compact  set {x: 0 <~ x~ ~< K~}, which implies dissipativity. 

Lemma 3.2 suggests that this result might be best possible in the sense that 
for every matrix A which is not hierarchically ordered and hence has what may 
be described as a "generalized mutualist cycle" (by which we mean a directed 
cycle of  positive interspecific interactions), (1.1) will have unbounded orbits for 
large r~. This is in contrast with the situation for the differential equations where 
the result of  Lemma 3.3 holds for all B-matrices. 

4. Saturated equilibria and necessary conditions for persistence 

Theorem 2.5 provides a sufficient condition for permanence. In an attempt to 
characterise permanence we now derive a set of  necessary conditions, which are 
in fact valid even for weak persistence. Although these conditions are in general 
far from sufficient, we will see in Sect. 5 that they are strong enough to give 
characterisations if n <~ 3. 

Consider an equilibrium point 2 of  the difference equation (1.1) and let 
I = {i: xi > 0} be its support. The entries of  the Jacobian matrix J(ff) of  (1.1) at 

are given by 

OXl (t~ik_~,iaik) exp(r~--Y~ a~ffj), : i k (  = 

[ 6ik -- g~a~k ( i C I) 
/ \  

Lo (ir i ~ k ) .  

Hence J(ff) splits into two blocks: the index set I defines the "internal" block 
corresponding to the restriction of (1.1) to the species i ~ L The "external"  block 
is a diagonal matrix whose entries are the external eigenvalues p~(ff) = expf~(~), 
where 

f(Y~) = ri - 2  aox: (4.2) 
J 
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are just the external eigenvalues of the Lotka-Volterra differential equations (1.2) 
at ~. Since pi(~) = limx_~ xJx i ,  pi(~) has the biological interpretation of a growth 
rate or "invasion parameter" of the (missing) species i at ~. At ff = 0, the p~ and 
f reduce to the basic growth rates R~ and r~ of each species. 

The equilibrium ~ is called saturated (compare [8]) if all its external eigen- 
values p~(ff)<~ 1 (i~ I)  or equivalently f(ff)<~ 0. If the system is at a saturated 
equilibrium ff then it is proof  against the invasion of the missing species i ~/ .  
Note that an interior fixed point is always saturated since it has no external 
eigenvalues, while 0 is saturated only if it is semi-stable. The biological relevance 
of  this concept relies on the following fact. If  an orbit y+(x) with x ~ ~ R + converges, 
then its limit point is a saturated equilibrium. For our special system (1.1) the 
same also holds for the time averages if(m) (this being shown by an argument 
similar to that used in proving Lemma 2.4). 

Conversely if ff is a strictly saturated equilibrium (i.e. pi(~) < 1 for all i~ I )  
then the stable manifold of  ff intersects the interior of R~_ and thus ff is the limit 
of interior orbits of (2.1). 

In particular, permanence and even weak persistence are incompatible with 
the existence of a strictly saturated fixed point on the boundary. Moreover if 
weak persistence or permanence is a robust property of the system, saturated 
boundary fixed points may not occur either, as at least one of them could be 
made strictly saturated by a small perturbation. In other words, in a robustly 
weakly persistent system, at every boundary fixed point ~ at least one of the 
external eigenvalues p,(~) is larger than 1 or at least one of the f ( ~ )  is positive. 
In many cases (but not in general) this condition is also sufficient to guarantee 
weak persistence. 

Permanence of (1.1), on the other hand, is guaranteed (and in many cases 
characterized) by Theorem 2.5 if a certain weighted sum Y. p ~ (~ )  of the logs of 
the external eigenvalues is positive at every boundary fixed point. 

The internal block (i.e. the restriction to the index set I )  of  the Jacobian J(ff) 
of  (2.1), on the other hand, differs from the Jacobian matrix of the Lotka-Volterra 
equation (1.2) only by the identity matrix. Thus the internal eigenvalues of the 
difference equation are obtained by adding unity to the internal eigenvalues of 
the differential equation, in contrast to the connection (4.2) via the exponential 
function for the external eigenvalues. 

Recall that the index of a vector field at a fixed point ~ is defined as the sign 
of the determinant of the Jacobian matrix of the vector field at that point (if 
is regular, that means that this determinant is non-zero). The above argument 
shows that at every regular fixed point ff the index with respect to the differential 
equation (1.2) is identical with its Lefschetz index for the map (2.1). 

Lemma 4.1. Suppose that (2.1) is robustly dissipative (or that the interaction matrix 
A is a B-matrix). Then the difference equation (2.1) has at least one saturated fixed 
point. I f  all saturated fixed points are regular then the sum of their indices equals 
( -1)" .  

Proof We have seen that the systems (1.1) and (1.2) have the same fixed points, 
the same saturated fixed points, and also their respective indices coincide. Now 
recall Lemma 3.1 and the fact [6] that when A is a B-matrix dissipativity holds 
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for the differential equations (1.2). The assertion of the lemma is then a con- 
sequence of the corresponding result for the differential equation proved in [7, 8]. 

We note that the above result is not restricted to (1.1) but holds for general 
maps on E+ with appropriate  dissipativity assumptions. 

Theorem 4.2. Suppose that (1.1) is robustly dissipative (or more simply that A is a 
B-matrix). Then the following conditions are necessary for (1.1) to be robustly 
permanent or robustly weakly persistent. 

(i) (1.1) has an interior fixed point ~. 
(ii) det A >  0. 

(iii) I f  there exists a fixed point ~ with fik = 0 and Yi >~ 0 for i ~ k then the 
submatrix A (k~ with kth row and column deleted has positive determinant. 

Proof As pointed out above, a robustly weakly persistent system cannot have a 
saturated fixed point on the boundary. Lemma 4.1 shows that there is at least 
one saturated fixed point, so an interior fixed point )7 > 0 must exist. This interior 
fixed point ~ is unique. Otherwise there would be a line of  fixed points whose 
intersection with OR+ would still be a saturated fixed point. Uniqueness implies 
det A r 0 and hence regularity of  ft. Then the second part of  the lemma applies 
and shows that ind(~) = ( - 1 )  n or det A > 0 by (4.1). Finally (iii) is a consequence 
of the eigenvalue formula 

fk() 7) = xi det A /de t  A (k) 

established in [7]. 
A partial converse of  this is the following statement which can be proved in 

the same way as was done for differential equations in [7]: if A is a P-matrix,  
that is all principal minors det(a~)i j~/> 0, and (1.1) has an interior fixed point 
then there is no saturated fixed point on the boundary and hence no interior 
orbit can converge to a point on the boundary. 

5. The characterisation of permanence for three species 

In this section we finally characterise (robust) permanence of (1.1) if the number 
of  species is three or less. Surprisingly it turns out that the sufficient condition 
in terms of linear inequalities of  Theorem 2.5, or the equivalent geometric 
condition of Corollary 2.6, actually characterise robust permanence. On the other 
hand the necessary conditions given in Theorem 4.2 characterise robust weak 
persistence and, up to one exceptional case, robust permanence as well. Thus, 
at least for n <~ 3? both the sufficient conditions obtained by use of  an average 
Liapunov function in Sect. 2, and the necessary conditions obtained with index 
theory in Sect. 4 are good enough to give characterizations. This is noteworthy 
as difference equations, even with few species, are usually considered to be 
extremely hard and are rarely treated in the literature. 

We start with the case of  two species where the proof  is an easy application 
of our previous results and is left to the reader, see also Example 6.1 below. 

Theorem 5.1. I f  (2.1) with n = 2  is robustly dissipative, then the following are 
equivalent. 

(1) (2.1) is (robustly) permanent. 
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(2) (2.1) is robustly weakly persistent. 
(3) The interior fixed point exists and det A = alia22- a12aza > O. 
(4) The interior fixed point lies outside the convex hull of the boundary fixed 

points. 

The study of three species systems is complicated by one exceptional case 
discovered by May and Leonard [18] for the differential equation, see Example 
6.2. In this case interior orbits can converge to the boundary,  but the S2-1imit 
sets are not contained in one boundary face. The system is then weakly persistent 
but not permanent.  

More precisely we call the system (1.1) a system of May-Leonard type if 
r i > 0  ( i = 1 , 2 , 3 ) ,  a , > 0  (so the one-species fixed points Fl(r l /an ,  O, O), etc. 
exist), and the external eigenvalues pj(Fi) = exp A 0 at F~ have the following cyclic 
sign pattern: Al2, A23, A31/> 0 and A21, A32, AI~ ~< 0 (or this pattern reversed), where 

Aij = rj - riaJ a,, 

see Example 6.2. In this case we need to impose an additional condition to 
guarantee permanence.  

(iv) I f  (1.1) is of May-Leonard  type then 

~12/~23~31 + ~21/~32/~ 13 > 0. (5.1) 

Theorem 5.2. Suppose (1.1) with n = 3 is robustly dissipative. Then the following holds 
(a) (1.1) is robustly weakly persistent if  and only if  properties (i), (ii) and (iii) 

of Theorem 4.2 hold. 
(b) (1.1) is robustly permanent if and only if properties (i), (ii), (iii) and (iv) hold. 
(c) (1.1) is robustly permanent if and only if  the two sets C and D of Corollary 

2.6 are disjoint. 

The corresponding result for the differential equation was established for 
two-prey one predator systems by Hutson and Vickers [9], for three competitors 
in [1], and for general three species systems by Hofbauer  [7]. 

Proof Theorem 4.2 shows that (i), (ii) and (iii) are necessary conditions for robust 
weak persistence, respectively robust permanence. For the converse we use the 
result in [7]. The proof  there shows that the algebraic conditions (i)-(iv) imply 
that the system of linear inequalities (2.12) has a positive solution p~ > 0. Thus 
Theorem 2.5 yields permanence.  

We are left with showing that (iv) is necessary for robust permanence,  and 
for this we proceed as in [1] or [7] using Theorem 2.7. We first establish the 
existence of a suitable strictly forward invariant set M. Since the origin 0 is a 
source, there is an open neighbourhood U of 0 such that the vector Tx points 
outwards if x c U\{0}. Now X \  U is compact,  and so therefore is T ( X \  U). 
Further, clearly 0~ T ( X \ U ) .  Thus there is a closed ball B centre 0 with B c  U 
such that B ~ T ( X \  U ) =  ~ .  Since X is forward invariant, it follows that X \ B  
is strictly forward invariant, and so therefore is M = S ~ ( X \ B )  relative to S. 

A simple calculation shows that the only boundary equilibrium points in M 
are the one species equilibrium points F~. It is also easy to see that ~t12~23/~31-t- 

�9 ~21~32/~13<0 implies for all i the existence of p i > 0  such that ~jpjAij<0. I f  
equality occurs in (5.1) we can achieve this by a small perturbation of the 
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parameters using robustness. Thus P(x) = [I xf, is decreasing near the equilibrium 
points F~, and hence in the average near M, and by Theorem 2.7, M contains 
an attractor. Thus (1.1) is not permanent in this case. Since there is no saturated 
fixed point on the boundary, the system is nonetheless still weakly persistent. 

6. Applications 

As an illustration we consider two examples. The first shows that the criterion 
of asymptotic stability may be highly misleading. 

Example 6.1. The difference equation analogue of the standard Lotka-Volterra 
model for a predator-prey interaction with x, y the respective populations may 
be expressed in the form 

x'= x exp{r(1 - x )  - y } ,  
(6.1) 

y'  = y exp{s(-1 +/3x)}, 

where r, s,/3 > 0. An elaboration of the argument in Lemma 3.3 shows that (6.1) 
is dissipative. Apart from the origin, there is only one boundary equilibrium 
/=1(1, 0), and there the external eigenvalue is exp A with A = s(/3 - 1). If  A ~<0, 
that is/3 ~< 1, /=1 is saturated and it may be shown that y ~ 0 along all orbits. If  
A > 0 there is an interior equilibrium. The set C is the line segment of the x-axis 
from the origin to F1, and D is the intersection of {(x, y) ~ R2+: x ~</3-1} and the 
region to the right of the line r(1 - x )  - y  = 0. If A > 0 these are disjoint, and by 
Corollary 2.6 the system is permanent. If intraspecific competition is introduced 
for the predator, (6.1) becomes robustly dissipative and Theorem 5.1 applies 
directly. The system is then robustly permanent iff there is an interior equilibrium, 
iff the boundary equilibrium F1 is not saturated. 

When/3 > 1, the condition for asymptotic stability of the interior equilibrium 
is that both the following hold: 

s ( / 3 - 1 ) < l ,  

r [ 2 -  s(/3 - 1)] < 4/3. 

Thus here asymptotic stability is an unnecessarily restrictive condition for the 
long term survival of species. If  r or s is large, it may be expected that the 
dynamics will be complicated, perhaps leading to chaos, but the system is still 
permanent. 

Example 6.2. Consider the following difference equations for three competing 
species: 

x~ = xl exp[r(1 - xl - c~x2 -/3x3)] 

x~ = x2 exp[ r(1 - /3xl  - x2 - c~x3)] 

x~ = x3 exp[r(1 - aXl -/3x2 - x3)], 

where 0 < a < 1 </3 and r > 0. These are the analogue of a set of Lotka-Volterra 
differential equations studied in [18, 21]. There are four boundary equilibria 
(0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1), and an interior equilibrium (1, 1, 1)/(1 + 
a +/3). The region D of decrease of all species is the intersection of those regions 
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to the  r ight  o f  each  o f  the  p l a n e s  1 - Xl - a x 2 - / 3 x 3  = 0, 1 - /3Xl  - x 2 -  o/x 3 = 0 ,  

1 - a x l  - /3x2  - x3 = 0, a n d  it is easy  to check  tha t  this  is d i s jo in t  f rom the  convex  
hu l l  o f  the  b o u n d a r y  e q u i l i b r i a  i f  a n d  o n l y  i f  a + fl < 2. By T h e o r e m  5.2(c) this 

c o n d i t i o n  is neces sa ry  a n d  suff icient  for  r o b u s t  p e r m a n e n c e .  I f  a +/3  > 2, in  the  
d i f ferent ia l  e q u a t i o n  case there  is a he t e roc l i n i c  cycle j o i n i n g  the  b o u n d a r y  
equ i l i b r i a  o n  the  pos i t ive  c o o r d i n a t e  axes w h i c h  a t t racts  all  orbi ts  (except  for 

those  s ta r t ing  on  the  l ine  Xl = x 2 = x 3 ) ,  as s h o w n  in  [21]. F o r  the  d i f ference  
e q u a t i o n s ,  u n d e r  the  s a m e  c o n d i t i o n s  there  is a n  a t t rac to r  in  the  b o u n d a r y ,  b u t  
o n  gene ra l  g r o u n d s  this  is l ike ly  to be  ex t r eme ly  c o m p l e x  i f  r is large.  I f  o~ + 13 < 2 
the  s tab i l i ty  of  the  i n t e r i o r  e q u i l i b r i u m  wil l  be  lost  for  large r, a n d  the  orbi ts  will  

be  c o m p l e x  p e r h a p s  l e a d i n g  to chaos ,  a l t h o u g h  the  sys tem is p e r m a n e n t .  
These  e x a m p l e s  s h o w  tha t  the  c r i t e r ion  for  p e r m a n e n c e  is r ead i ly  checked  

for  th ree  species  by  the  use  of  T h e o r e m  5.2. F o r  f o u r  or m o r e  species ,  whi ls t  
t h e o r e m s  2.5 a n d  2.6 still  p ro v i d e  a s imple  way  o f  f ind ing  suff icient  c o n d i t i o n s  

for  p e r m a n e n c e ,  it is n o t  k n o w n  at the  p r e s e n t  t ime  w h e t h e r  these  c o n d i t i o n s  a r e  
a lso necessa ry .  
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