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Abstract. Fisher's Fundamental Theorem of Natural Selection is extended to 
the selection mutation model with mutation rates e U = ei, i.e. depending only 
on the target gene, by constructing a simple Lyapunov function. For other 
mutation rates stable limit cycles are possible. 
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The classical selection model in population genetics, due to Fisher, Wright and 
Haldane, is in principle well understood. The basic result is Fisher's Fundamental 
Theorem of Natural Selection saying that the mean fitness of the population is 
steadily increasing, which is true for both the discrete time and continuous time 
model (see, e.g. [4, 5, 6, 10, 11, 14]). From this one can conclude that the state 
of the population tends to equilibrium [12]. 

For more general selection models, taking into account e.g. recombination, 
mutation or different fertilities, the state of  knowledge is less satisfying. The basic 
problem would be to extend the fundamental theorem to these more general 
models, i.e. to prove that mean fitness, or some suitable generalization of it, is a 
Lyapunov function. Then the dynamic behaviour would again be reduced to a 
study of  fixed points. The main success in this direction, and essentially the only 
one (besides Theorem 1 below), was Ewen's generalization to multi-locus systems 
with additive fitness scheme [5]. In contrast to this Akin [1, 2] proved a very 
general theorem (Theorem 5 below) implying that most of the extensions of the 
classical selection equation, in particular those allowing recombination or muta- 
tion, exhibit a more complicated dynamical behaviour: oscillations (periodic 
orbits, stable limit cycles) are possible. Hence the usual fixed point analysis 
cannot provide a complete and adequate picture of the evolution of the popula- 
tion. In particular the search for maximizing principles (= Lyapunov functions) 
is a hopeless task. (See [8] for a recent survey on this question.) 

This paper  is devoted to a study of combined action of  selection and mutation. 
We will show that, despite Akin's general result, for a special class of mutational 
effects, namely when mutation rates i ~ j  depend only on the resulting allele j, a 

* Address until July 1986: Department of Mathematics, Northwestern University, Evanston, IL 60201, 
USA 



42 J. Hofbauer 

simple generalization of the Fundamental Theorem holds (Sect. 2). This result 
was motivated by Hadeler's paper [7] who proved maintenance of stability 
properties of a polymorphism when equal mutation rates are allowed. In Sect. 3 
we show that these equations are even gradients with respect to a certain 
Riemannian metric, introduced by Shahshahani [16]. Section 4 contains a dis- 
cussion of Akin's result on cycling together with a concrete example of a stable 
limit cycle in a 3-allelic system. We conclude with some results for the discrete 
time model (Sect. 5). 

My special thanks are due to Professor K. Sigmund. It was his paper [17] 
and his lectures on Shahshahani gradients which led me to find the Lyapunov 
function (2.6). I also thank E. Akin and R. Biirger for helpful discussions. 

1. The model 

The standard selection+ mutation model for separated generations is as follows 
(cf. Crow and Kimura [4]). Consider one gene locus with n alleles A~ , . . . ,  An 
and let x~ . . . .  , x, be their relative frequencies in the gene pool of the population 
at time of mating. Assuming random mating, the relative number of gametes of 
(ordered) genotype A~Aj will be xix~. Due to natural selection only a proportion 
of w~jx~xj will survive into procreative age, where w o = wj~ >i0 are the fitness 
parameters. So the number of newly produced genes Aj is proportional to 
Y~k WjkXjXk = Xj( Wx)j. Now let eo be the mutation rate from A t to A~ (for i ~ j ) ,  then 

e~j~>0 and ~ e~j=l f o r a l l j = l , . . . , n  (1.1) 
i = 1  

for suitably defined e,. Then the frequency x'~ of genes A~ in the gene pool of the new 
generation is proportional to Y~j e~xj( Wx)j. More precisely, it is given by 

x~ = ~ ei jxj(Wx)J W(x)  (1.2) 
j=l 

n 
with W ( x ) = x .  WX=Y,r,s= a WrsX, X~ the mean fitness of the population as the 
usual normalization factor. This is the discrete time selection mutation equation. 
Since differential equations are easier to handle mathematically we replace the 
difference x~-  x~ by & = dxJd t  in order to obtain the continuous time selection 
mutation equation 

Yq = W(x)  -1 3", eoXjWjkXk--Xi. (1.3) 
L k  

This is the equation studied by Hadeler [7]. Usually, e.g. in the classical selection 
equation which corresponds to the special case e~ = 1 and eij= 0 for i ~ j ,  the 
vector field (1.3) is multiplied by the positive factor W(x) ,  which is equivalent 
to a change of velocity. For our purpose this is not useful, however, 

Crow and Kimura ([4], p. 265) and Akin [1] consider a different model for 
overlapping generations: selection acts in the usual way with Malthusian fitness 
values m~j; mutation effects, being small in general, change the gene frequencies 
linearly. Arguing that simultaneous action of selectional and mutational forces 
in a small time interval At is of smaller order (At) 2 (since both forces are 
independent), they arrive at a continuous time model with separate selection and 
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mutation terms: 

2i=xi mox j -x"  Mx + (eoXj-Ejixi). (1.4) 
j 1 j = l  

The three equations (1.2)-(1.4) describe dynamical systems on the probability 
simplex 

S " = { x = ( x l ' ' " ' x " ) c ~ " :  xi>~Oand ~ xi=m} 

Rather than going into a discussion of which of the models (1.3) and (1.4) is 
the "correct"  or at least "better" one, it seems to be more useful to observe the 
following connection between them: 

Rewrite (1.3) as 

W(x)~, = x,[( W x ) , -  W(x)] + X [~oXj( W x b -  e:,x,( Wx),] 
j # i  

and replace 

to obtain 

two 3% (for i # j )  and woo 1 +6m o (1.5) 

iq = 6xi[ ( Mx  ), - x . Mx ] + 6 E ( eoxj - e~,x~) + 0(82). 
j # i  

Thus after a rescaling of  time, t o  t/8, Hadeler's equation (1.3) with (1.5) yields 
Akin's uncoupled version (1.4) in the limit 6 o 0. So for small selection differences 
and small mutation rates both models are essentially equivalent. 

2. Special mutation rates 

In this section we restrict ourselves to the case of special mutation rates satisfying 

e 0=e i  f o r i # j  (2.1) 

i.e. mutation rates depending only on the resulting alleles. It will become clear 
in Sect. 3 (see especially Theorem 4) that this case deserves a separate analysis. 
(1.1) implies here 

and (1.3) simplifies to 

e , = l + e i - e  w i t h e =  ~ ej, (2.2) 
j=l  

W ( x ) x ,  = x,[(  Wx) ,  - W(x)] + ~ i W ( x )  - ~xi( Wx) ,  

= xi[(1 - e)( W x ) i -  W(x)] + eiW(x). (2.3) 

Kingman ([11], p. 15) uses the same assumption (2.1) in his "house of cards". 
Hadeler [7] considered the case of equal mutation rates e~ = e/n. He posed the 
problem of finding a Lyapunov function in this case, in order to globalize his 
stability results. This will now be done. We write (2.3) as a repIicator equation [ 10, 17] 

2, = x , [ f ( x )  - f (x) ]  (2.4) 
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with 

. ( W x ) i  ~ 2 
f~(x) = ( 1 -  e ) ~ + . -  S and f ( x )  = ~ x , f (x )  = 1. (2.5) 

i= l  

Obviously the functions f ( x )  fulfill the integrability conditions Of/Oxj = Of JOx~. 
This implies the existence of an integral V(x), wi th f (x )  = 0 V/Oxi, which is easily 
computed to 

1 - - e  
V(x) = T log W(x)  + ~ e, log x,. (2.6) 

i= l  

Then 
" O V  

~'(x) = E - - i ,  = E x J , [ f , - f ]  = E x , ( f , - f ) 2 ~  0 (2.7) 
i=10xi 

This proves 

Theorem 1. V(x) is a global Lyapunov function for the continuous time selection 
mutation equation (1.3) with special mutation rates (2.1). 

Exponentiating V(x) we obtain the more suggestive Lyapunov function 

9(x )  W(x)  ~-~ II 2, = x i  '. ( 2 . 8 )  
i= l  

For e = 0, i.e. no mutation, 17"(x) reduces to the mean fitness function W(x). So 
(2.7) is a surprisingly simple and straightforward generalization of Fisher's 
Fundamental Theorem of Natural Selection: 

The change of the modified mean fitess function re(x) is proportional to the 
variance of the selection + mutation terms f ( x ) .  The precise mathematical mean- 
ing of (2.7) (in terms of Shahshahani gradients) will be discussed in Sect. 3. 
There we will also see that this result cannot be extended to mutation matrices 
which do not satisfy (2.1). When dealing with only n =2  alleles however, (2.1) 
is no restriction. This case was analyzed by Roughgarden ([ 14], p. 117ff), for another 
(only approximate) model, also using the Lyapunov function (2.8). 

Recalling (1.5) the same result carries over to Akin's equation (1.4). Since 
log(1 + ~m)/6 -~ m as 6 ~ 0, the above Lyapunov function for Hadeler's equations 
is replaced by 

V(x) = �89 Mx + ~ e, log x, (2.9) 
i=1 

and the fundamental relation (2.7) holds again, if we set 

f i ( x )=(Mx) ,+  ei and f ( x ) = x .  Mx+e.  
Xi 

(Compare also [2, p. 57t"].) 
As a consequence of (2.7) we obtain 

Corollary. All orbits of the continuous time selection mutation equations (1.3) and 
(1.4) converge to the set of fixed points. These are given by the solutions of the 
equation f ( x )  = const. 
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The simple form of the Lyapunov function (2.6) allows us to globalize Hadeler's 
result [7]. 

Theorem 2. Suppose the model without mutation (i.e. e~ = O for i ~ j )  admits a stable 
polymorphism (= interior equilibrium). Then for every choice of mutation rates 
satisfying (2.1) with e =Y~ ej << - 1, the equations (1.2), (1.3) and (1.4) have exactly 
one stationary solution in Sn. This solution is globally stable for the differential 
equations and at least locally stable for the difference equation, 

Proof Let p c in t  S, be the (exponentially) stable polymorphism assumed to exist 
for the selection equation. Then p is a (strict) interior maximum of mean fitness 
W(x)  on Sn. Hence the quadratic form W ( x ) =  x .  Wx is a (strictly) concave 
function on S, and so is log W(x).  The same holds for the log x~, and so the 
Lyapunov functions V(x)  in (2.6) and (2.9) are strictly concave on S,. But then 
V(x) can have only one critical point which is a global maximum. Corollary 1 
then implies the global convergence. The proof  of the discrete time case is deferred 
to Sect. 5. 

Remark. Although this result looks very plausible and coincides with intuition it 
is not true for more general mutation rates that do not satisfy (2.1), as we will 
see in Sect. 4. Also if selection alone produces a globally stable stationary state 
on the boundary of S,, the conclusion does not hold. Even for n =-2 alleles 
mutation terms may produce an additional stable fixed point on the opposite 
side of the simplex. This somewhat unexpected effect was observed by Biirger [3]. 

3. Shahshahani gradients 

In this section I want to explain why it is possible to find such a simple 
generalization of the Fundamental Theorem for special mutation rates. The main 
point in the proof  of  Theorem 1 was, after writing the differential equation in 
"replicator" form 

xi = ~ ( x ) = x i [ f ( x ) - f ( x ) ] ,  f ( x )  =• x l f ( x ) ,  (3.1) 

that the f ( x )  have a common integral V. Thus the trick will work whenever the 
related system ~ = f ( x )  on ~" is the gradient of  some potential V(x). In this 
case (2.7) holds and V(x)  is also a Lyapunov function for the corresponding 
replicator equation (3.1). For the classical selection equation the f ( x )  are linear 
functions: f ( x )  = Y~ w~x~ and the symmetry w o = wj~ ensures the existence of the 
potential V(x )=  x .  Wx. 

The question arises whether there is more behind this analogy. In fact Kimura's 
Maximum Principle claims that for the selection model the change of gene 
frequencies occurs in such a way that the increase in mean fitness is maximal 
(see Crow and Kimura [4], p. 230). A precise mathematical interpretation of this 
statement could only mean that the selection equation is a gradient with mean 
fitness as potential. But this is obviously not true. The situation was cleared up 
by Shahshahani [16] and analyzed further in great detail by Akin [1] and Sigmund 
[17]. That a differential equation is a gradient means essentially that the vector 
field is orthogonal to the contour lines of  its potential function. So gradient 
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systems depend in an essential way on the notion of orthogonality, or angle, or 
inner product. And in fact Crow and Kimura replace the usual distance by a 
certain variance in their proof of the maximum principle ([4], p. 230tt). So, 
following Shahshahani, let us define a new inner product (X, Y)p for vectors X, 
Y in the tangent space TpSn = R~ at every point p 6 int S. by 

(X, Y)v = ~ pT1X, y~ �9 (3.2) 
i = 1  

This is a Riemannian metric for int S,. It is easy to check that this Riemannian 
manifold is essentially isometric to the part of the ( n -  1) dimensional sphere 
lying in the positive orthant (with the usual Euclidean metric), by the simple 
change of coordinates v ~  =y~ (see [1], pp. 39 and 55 for details). 

For a differentiable function V on S,, the Shahshahani gradient Gradp V is 
then the unique vector ~ TpS,, with 

(Gradp V, I0p = DpV(Y)  for all Y c  TvS, , (3.3) 

where DpV: TpS, ~ ~ is the derivative of V at p. 
Gradients f =  grad V with respect to the Euclidean metric are easy to recognize: 

here the integrability conditions Of/Oxj = of JOx~, or equivalently the symmetry of 
the Jacobian matrix of f are necessary and sufficient conditions. It would be 
useful to have a similar characterization for vector fields on S,, which are given 
in the form (3,1), to be Shahshahani gradients. If  the vector field f in (3.1) is 
defined in a whole neighbourhood of int S, in R we may compute 

A 

But since we are interested only in S. itself, only the action on vectors in TpS. = Rg 
is of relevance. So, following Akin ([1], p. 173), we consider the bilinear form 

Hpf( Y, Z)  = ( Y, ( D J ) ( Z ) ) p  for Y, Z ~ TpS. = R~. 

Concrete evaluation gives 

 j(Y, z)= x • o], 
i,3" " P i  OXj  x = p  

= ~ pT l ( f  _ f )  Y~Z,+ • f , j (p )  ~ Z j  (3.5) 
i l . j  

with f , j  = af/Oxj for short. Since at interior equilibria the first sum disappears 
this leads to a considerable simplification of the original formula (3.4). Now we 
can state 

Theorem 3. For a vector field ~ ( x ) = x i [ f ~ ( x ) - f ( x ) ] ,  as in (3.1) defined in a 
neighbourhood U of int S~, the following conditions are equivalent: 

(a) f is a Shahshahani gradient on int S,. 
(b) There exist functions V, 4,: U-+ ~ such that f ( x ) =  O V/Oxi+ q,(x) holds on 

int S.. 
(c) The Jacobian bilinear form Hpf  is symmetric at every p ~ int S.. 
(d) f , j  + fj, k + fk.~ = f.k + fk j  + fj, i holds on int S. for all i, L k. 
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Proof. ( a ) ~ ( b ) .  If f =  Grad V, then (3.3) implies 
A 

( f(x) ,  Y)x =E OV/Oxi" Yi 
i 

for all Y e R g  and all x e i n t  S.. Choosing Y~ =Zi-x~(~ Zj) for arbitrary Z c N " ,  
we obtain by equating coefficients 

roV =xOVl 
-(x)=x'koxi j :'oxjJ o n  S n .  

Comparing with (3.1) we conclude that (b) holds. 
( b ) ~ ( c ) .  Since the f are of the form 

f (x)=OV/Oxi+O(x)+(Zxj-1)~oi(x)  f o r x 6  U, 

the ~0~ being arbitrary functions, the partials are given by 

O f  02V +04`+qh(x) f o r x ~ i n t S , .  
OXj ON i OXj OXj 

Inserting this into (3.5), the terms with 4', qh disappear by 5~ Y~ = Y, Zj = 0. What 
remains is a symmetric bilinear form. 

( c ) ~ ( d ) .  The symmetry of Hpf( Y, Z) implies 2 (f,: -fj,~) Y~Zj =- 0 for all Y, 
Z e Rg. With Y = ei - ek and Z = ej - ek (ej being the unit vectors in N')  we obtain 
(d). 

( d ) ~ ( b ) .  Define for X l  + "  " ' ' ~ - X n _ l  ( 1 ,  Xi> 0 

g i ( X l ,  " . .  , X n - 1 )  = f i ( X l ,  . . . , X n - 1 ,  1 - xl . . . . .  X n - 1 ) .  (3.6) 

Then g~ coincide with f on S, and g~4 = f , : - f :  by the chain rule. So (d) implies 
(with k = n): 

gi, j - g,,j = gj, i - gn,~ 

These are just the integrability conditions for g~- gn (1 ~< i ~< n - 1) on R n-1. Thus 
we find an integral V=  V(x l , . . . ,  xn-1) with 

0V 
gi--gn=~x i , i = l , . . . , n - - 1 .  

Recalling (3.6) this implies (b) with 4  ̀= gn. 
( b ) ~ ( a ) .  From ~ Y/= 0 we compute 

1 roy  _fJ 
OV 

= E = 

Thus (3.3) is established. 

Remark. (a)c*(b)  is taken from Sigmund [17]. Condition (c) is due to Akin ([1], 
p. 175). The explicit integrability condition (d) which is the most useful in 
applications was motivated by the corresponding cycle condition for linear f ' s  
discovered by Sigmund [17]. 
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In particular, conditons (b)-(d) are obviously satisfied i f f ,  j =fJa. This explains 
the analogy pointed out in the beginning of this section and implies 

Corollary. The selection mutation equations (1.3) and (1.4) with special mutation 
rates (2.1) are Shahshahani gradients with potential V given by (2.6) and (2.9) 
respectively. 

That this is not true for more general mutation rates is a consequence of the 
following theorem, which corrects the slight mistake in [1], p. 181 that made this 
present paper possible. 

Theorem 4. The mutation equation 

:ri = ~ e~xj - xi (3.7) 
j = l  

is a Shahshahani gradient if and only if  the mutation rates satisfy (2.1). 

Proof Writing (3.7) in replicator form (3.1), we have f ( x )  = ~j eoxJx~ and hence 
for i # j ,  f o  = eJx~. The integrability condition (d) then says (for i, j, k pairwise 
different) 

eij+ejk+eki=eik+ekJ+ ejk f o r  all x ~ i n t S , .  
x~ xj Xk X~ Xk X~ 

This implies, by taking the limit x~ -~ 0, that e~ = elk for all j # k, and hence 
ei~ = e~ (i # j ) .  Therefore (eij) is of the special form (2.1). 

Of course this theorem does not mean that the general mutation equation 
(3.7) behaves less nicely from the purely qualitative point of view. (3.7) is a linear 
equation and if e0> 0 holds for sufficiently many i ~ j ,  the Perron-Frobenius 
theorem implies the existence, uniqueness and global stability of a polymorphic 
equilibrium (see Akin [1], p. 160ff). So the Shahshahani metric is just not the 
right tool to study mutation. But Theorem 5 below shows that it is still relevant 
for the combined action of selection and mutation. 

4. Limit cycles 

This section deals with more general mutation rates than (2.1). Our emphasis is 
to demonstrate that the Corollary of Theorem 1 is no longer true in this case: 
the dynamic behaviour is in general not gradient-like. The following simple 
example shows that stable limit cycles may occur. 

In order to make computations tractable we take the simplest nontrivial case: 
we assume that all homozygotes A~Ai have the same fitness and also all heterozy- 
gotes A~Aj ( i # j ) .  When working with the simpler equation (1.4) this means 
m o = s6~i, where s measures the selective advantage of the homozygotes. Motivated 
by the successful treatment of the hypercycle and similar systems in Schuster et 
al. [15], we assume mutation rates to be cyclic symmetric, i.e. %. = ej_~. Then 

n - - I  
~=o  e~ = 1, where the index i of ei is now considered as a residue modulo n. 
Then (1.4) reads 

xi = sx,(x~- Q(x) )+ ~ e~_ixj - xi (4.1) 
j=l 
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n 2 
with Q ( x )  = ~i= a x i. Obviously the barycenter m = ( 1 / n , . . . ,  1/n) of  the simplex 
is a stationary solution of (4.1). We compute the Jacobian of (4.1): 

D~(x )  = OYc,/Oxj = sgo(xi - O ( x ) )  + sxi(8 U - 2xj) + ej_~ - 6~. (4.2) 

The divergence of the vector field is the trace of  the Jacobian 

div = Z D u ( x )  = s E (x, - Q ( x )  ) + s (E  xi - 2 Z x~) + neo - n 

= s(2 - (n + 2) O ( x ) )  + n ( e o -  1). 

Since the flow is restricted to S, we have to subtract the eigenvalue transversal 
to Sn, given by - f ( x ) = - s Q ( x ) ,  to obtain the divergence divo within Sn: 

divo = s ( 2 -  (n + 1) O ( x ) )  + n ( e o -  1). (4.3) 

Since Q ( x )  =•  x ~  (1/n)(Y. xi) 2 = 1/n,  we have for positive s 

div0 ~< s(1 - 1 / n ) +  n ( e o -  1). (4.4) 

So the divergence is negative on Sn\{m} whenever 

n 2 

s ~< (1 - eo). (4.5) 
n - 1  

Now we specialize to n = 3 alleles. Then the eigenvalues A, ] at m within $3 are 
easily computed as 

A = s / 3  - 1 + Co+ e lw + e2g~ 

with w = exp(2~ri/3). They are complex if e~ r E 2 and their real part is 

Re A = 3-3(~1 -[- E2)" 

For s =9(e1+ e2) the eigenvalues are purely imaginary and a Hopf  bifurcation 
occurs, taking s as parameter.  Since for all s <~ 9(el + ~2), divo < 0 holds on S3\{m} 
by (4.4) and (4.5), Bendixson's negative criterion implies that there are no periodic 
orbits in this case, and thus m is globally asymptotically stable. As this holds 
even at the critical value s = 9(el + e2), the bifurcation is supercritical. Since the 
vector field is analytic we may conclude (see [13], Corollary 4.4) without need 
for cumbersome "vague attractor" computations that a unique branch of stable 
limit cycles appears for s slightly larger than 9(e~+ e2). (Fig. lb.) I f  s increases 
further, 3 pairs of  fixed points are created simultaneously and the limit cycle, 
whose period tends to infinity, disappears in a triangle of  heteroclinic orbits (See 
Fig. lc, d). 

So we see that the interaction of mutation and selection may lead to stable 
limit cycles. Maybe this is not too surprising for the above example since the 
fixed point for the mutation field (s = 0) is already a focus which is then destabil- 
ized by the selection part. But one can also construct examples of  H o p f  bifurca- 
tions when the selection field has a stable polymorphism (compare the remark 
in Sect. 2). Moreover the same bifurcation behaviour appears for any mutation 
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rates that are not of the special form (2.1). This is a consequence of the following 
basic theorem of Akin ([1], p. 186): 

Theorem 5. Let f ( x )  be a vector field on S, which is not a Shahshahani gradient 
(e.g. any mutation field (3.7) with mutation rates not of  the form (2.1)). Then there 
exists a family of  selection matrices (m~)= M ~, such that the combined field 

= f , ( x ) + x i ( ( M " x ) i - x  �9 MAx) 

(this is then (1.4)) undergoes a Hopf bifurcation and periodic orbits occur. 

In this general form, however, Akin's theorem does not say anything on the 
stability of  the periodic orbits. It could happen that the Hopf  bifurcations are 
always subcritical or critical. The periodic orbits would then be of less biological 
relevance since they would not be observable. But the above example just shows 
that stable limit cycles are indeed possible. 

By the approximation argument (1.5) the same result holds for Hadeler's 
version (1.3), at least after the mutation rates eq are rescaled to 6e o by some 
small factor 8 > 0. With the rescaling W--> 1 + 3W the difference equation (1.2) 
turns out to behave essentially like Euler's discretization of the differential 
equation (1.3), with 6W/ (1  + 6W) as step length. Thus Akin's Hopf  bifurcation 
result also carries over to the discrete time model, and stable limit cycles (= attract- 
ing invariant curves) also occur in (1.2) for nonspecial mutation rates. (For a 
precise treatment of this idea see [9].) 

Akin also applied his theorem to other equations, in particular to multilocus 
systems. He proved that the vector field on S, that models the effects of recombina- 
tion between two loci is never a gradient with respect to Shahshahani's metric. 
Thus Hopf  bifurcations occur. The actual computations proving that even stable 
limit cycles are possible are more difficult in this case, however; see Akin's memoir 
[2]. It is tempting to conjecture that even more complicated dynamic behaviour, 
i.e. chaotic motion, is possible for these two extensions of the selection model, 
allowing either mutations or recombination. 

We conclude with a critical remark. It is not quite clear how relevant this 
cycling result is for real biological populations. Indeed mutation rates are usually 
much smaller than selection rates. The selection+ mutation field can then be 
treated as a perturbation of the selection equation. Since the latter is structurally 
stable in general, small mutations will not change the situation very much: only 
the boundary equilibria will move inwards the simplex S,, if they are stable, and 
some of the unstable ones will move outwards. It would be useful to find concrete 
estimates of how large the mutation rates may be (compared e.g. with the variance 
of the wij) in order to retain a gradient-like behaviour. 

5. The difference equation 

In this last section I want to collect a few results on the difference equation (1.2). 
It would be desirable to show that our function V from (2.6) serves as a Lyapunov 
function for the discrete time model as well, if mutation rates are special. But 
this seems to be a much harder problem which I have not yet solved. So I confine 
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myself to some partial results which indicate that the difference equation behaves 
similarly to the differential equation. 

In order to generalize Hadeler's theorem [7] to the difference equation we 
have to exclude overshooting effects. This is done by means of the following 
lemma, which is essentially contained in Losert and Akin [12]. 

Lemma. All eigenvalues of the derivative of the discrete time selection equation at 
any point p c S, (which need not be an equilibrium point) are nonnegative. For 
interior p all eigenvalues corresponding to directions within S, are even strictly 
positive (i f  all w, > 0). 

Proof The derivative is given by 

6 (Wp)i_~ p~w~j 2P~(Wp)i(Wp)j (5.1) 
D,j= #p. Wp p. Wp (p.  Wp) 2 

Since the selection equation is a Shahshahani gradient, Theorem 3(c) applies 
and D is selfadjoint with respect to the Shahshahani inner product. Thus it is 
sufficient to consider the quadratic form 

x. 2(x .  (5.2) 
,=,p. Wp.p, p.  Wp \ p .  Wp] 

Now Dp = 0 and so the eigenvalue corresponding to the (irrelevant) direction 
orthogonal to Sn is zero. Substituting y = x - (x ,  Wp/p .  Wp)p the corresponding 
one-dimensional degeneracy of the quadratic form (5.2) can be eliminated: 

(x, Dx)p = ~ (Wp)i" y2 y.  Wy 

i=lp" Wp'pi p" Wp 

rlp.\,i2 [p,~,12 ]2 
-2p'lwp i,,=, ~ w'~LtT,)Y'+t~} YJJ (5.3) 

with equality only for y = 0 (since w. > 0). Therefore (5.2) is a positive definite 
quadratic form on R~ and so all eigenvalues of D are positive. For boundary p 
the additional eigenvalues pointing into the interior of S. are given by 
(Wp)~/p. Wp and are obviously nonnegative. 

Proof of Theorem 2 for discrete time. (1.2) reduces for special mutation rates (2.1) 
to 

xl = (1 - e)xi( Wx)i/x" Wx + ei. (5.4) 

We know already from Theorem 2 that there is a unique equilibrium p e S, which 
is stable for the differential equation (2.3). Now the derivatives of (1.2) and of 
(1.3) differ only by the identity matrix. This implies that all eigenvalues of (5.4) 
have real part less than 1. Since the derivative of (5.4) differs from that of the 
pure selection equation only by the factor 1 - e i> 0, its eigenvalues are real and 
nonnegative, according to the lemma. Thus they are all located within the unit 
circle and p is stable for the dynamics (5.4). 

For general mutation rates we can view the difference equation (1.2) as the 
composition of the selection map T: x~ ~ x~( W x ) J x .  Wx and the linear stochastic 
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map x ~  Px, (Px)i = ~ j  eux j. N o w  the inversion theorem of  Losert and Akin [12] 
says that (whenever w~ > 0 for all i, j )  the selection map T is a diffeomorphism 
of  S~, i.e. a bijective smooth map Sn ~ Sn whose  inverse function is also smooth. 
(The local invertibility corresponds to that part of  the lemma claiming that 0 is 
not an eigenvalue of  the derivative). As long as mutation rates are not too large 
we have det P >  0. Then mutation maps Sn onto a smaller simplex P(Sn) inside 
S~. Thus the combined map (1.2) is a diffeomorphism from Sn onto P(Sn), 
whenever all w o > 0 and det P >  0. This result suggests that (1.2) will not behave 
much worse than the differential equation (1.3). In particular it completely settles 
the n = 2 allelic case, as no overshooting effects are possible as long as det P = 
1 - e l - e 2 >  0 and so orbits converge monotonical ly  towards the equilibrium 
states. 
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