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Abstract. The ordinary differential equation 
2 = x ( 1 - x )  (a+bx+cy) and j l = y ( 1 - y )  (d+ex+fy) is 
classified with the methods of topological dynamics. 
This equation describes the evolution of strategies in 
animal contests between two populations. 

1. ESS for Two Populations with Selfinteraction 

The next situation to consider is obviously that of two 
populations X and Y interacting with themselves and 
with each other. The first to define ESS in this case has 
been Taylor (1979). 

Let x 1 . . . .  , x, (resp. Yl,..., Ym) be the frequencies of 
the different X- (resp. Y-) strategies. Let A, B, C, D, be 
the payoff-matrices describing the interaction of X 
with itself, of X with Y,, of Ywith X and of Y with itself. 
The state (p, q)eS,  x S,, is again called ESS if 
(i) it is a best reply against itself, i.e. for all (r, s) + (p, q), 
one has 

r.(Ap+ Bq)+s.(Cp+ Dq)<p.(Ap+ Bq)+q.(Cp+ Dq) ; 
(60) 

(ii) if (r, s) is an alternative best reply, (p, q) fares better 
than (r,s) against (r, s). This means that if equality 
holds in (60), then 

r. (Ar + Bs) + s. (Cr + Ds) < p. (Ar + Bs) + q. (Cr + Ds) 
(61) 

The corresponding differential equations on S, x S,, are 

x i = xi(e i �9 Ax + e i �9 By - x. A x -  x.  By) i = 1 .. . . .  n 
(62) 

yj=yj( f j .Cx+f j .Dy-y .Cx-y .Dy)  j = l ,  ...,m, 
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where e i and fj are the unit vectors corresponding to 
the corners of S, and S,, as in Part  II. 

Again, it is easy to see that (p, q) is an ESS iff the 
function V defined by 

i= t  j=l 

is a strict Ljapunov function. In particular, every ESS 
is asymptotically stable. 

2. Two Strategies for Each Player 

In the case n = m = 2, i.e. if both X and Y have only two 
strategies, the phase space S 2 x S 2 is the unit square,Q2 
and (62) readily becomes (with x=x  I and Y=Yl) 

= x ( t  - x)(a + bx + c y )  

) = y(1 - y)(d + ex +fy) (63) 

for suitable values bf the constants a to f 
These equations, which are a generalization of (42, 

Part lI) will be investigated qualitatively in the re- 
mainder of this paper. Much of the spirit of this study 
is due to Zeeman's paper (1979), where he classifies (5, 
Part  I) for n =  3. In particular, we also omit from our 
considerations certain degenerate cases, corresponding 
to values of the parameters a .. . . .  f where bifurcations 
occur, i.e. where small perturbations lead to drastic 
changes in behaviour. It will easily be seen that in 
doing this, we only exclude a set of parameters of 
measure zero, corresponding to a finite number of 
algebraic relations. Thus we only consider the cases 
which are stable in the sense that the phase-portrait 
remains topologically unchanged under small per- 
turbations of the parameters. 

Before proceeding, however, let us recall that equa- 
tions of type (63) have occured in prominent place in 
network theories for the nervous system. More pre- 
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cisely, the equation 

• x~(1- x~) @ + j~= ~ ~uxj) (64) 

on the unit cube {(xi . . . .  , xn) E IR ~ :0 < x i _-< 1 } have been 
studied by Cowan in (1968) and (1970), under the 
assumption that the matrix (c%) is skew-symmetric. 
The variable x~, here, corresponds to the/- the cell of a 
neural network: it measures the proportion of time 
that this cell is "sensitive" to incoming stimuli. 
Equation (64), then, is a heuristic equation describing a 
situation where the cells are tonic and the damping is 
negligible. In this case, Cowan derives a statistical 
mechanics for the neutral network, using as 
Hamiltonian the function H:  

(xp . .  ,, x , ) ~  ~ [ log0  +Pi exp vi) -PiVi], (65) 
i 

where (Pl, .-',P,) is the (unique) fixed point in the 
interior of the cube and 

�9 x i 
v/= log -- . 

(1 - xi)p ~ 

I t  is easily checked that H is indeed a constant of 
motion. 

Note that equations of type (64) in n variables can 
also be obtained in the usual way, from the game 
theoretic consideration of n players, interacting with 
each other, every player having the choice of two 
strategies. Now let us turn to the two-dimensional case 
and study (63). 

3. General Results: Fixed Points and Straight Lines 

Let ~l ,  ~2 denote the lines given by 

~b~ :a + bx + cy=O 

~bz:d+ex +fy=O. 

In general (63) admits 9 fixed points: 
The four corners of the square FI=(0,0) ,  

F2=(1,0),  F3=(1,  1), F~=(0, 1), then one on each of 
the limiting lines of the square : 

and finally 
/ cd -  af e_a- bd 1 

F =  ~10~2 = (p,q) = t ~ '  bf - e c  J" 

F as well as F 5 - F  8 may be inside or outside of the 
square. 

Linearization around F 

The next thing one has to do after knowing the fixed 
points is to determine the local behaviour of the flow 
around them. 

The Jacobian of (63) is given by J = {Jij} 

J11 = (1 - 2x) (a + bx + cy)-- bx(1 - x) 

J1 z -- ey(1 - y) (66) 

J21""CX(1  --X) 
J22 = (1 - 2y) (d + ex +fy) +fy(1  - y). 

At the point F we get 

[bp(X-p) cp(1-p)] 
J = [eq(1 - q) fq(1 -- q)J" 

Therefore the eigenvalues are given by 

21, 2 = �89 __ ((tr J) a - 4 det d)i/2], 

where t rJ=bp(1-p)+fq(1-q)  is the trace of the 
Jacobian and de tJ  = p(1 -p)q(1 - q)(b f -  ec) is the de- 
terminant of the Jacobian. 

It follows : 

F is a saddle~A = b f -  ec < 0 

F is a sink,~-A>0 and t r J < 0  (67) 

s o u r c e ~ A > 0  and t r J > 0 .  

Geometric Interpretation 

The sign of the determinant A - - b f - e c  and hence the 
type of the fixed point F can be recognized from the 
geometric position of the lines @1 and 4~ 2 : 

Let us introduce an orientation for lines which do 
not go through the origin in such a way that the origin 

r 

r 

{0,01 / \ 

Fig. l .  Orientation for lines. The oriented angle between ~1 and q~2 
determines via (68) the sign of A and hence the character of the fixed 
point F 



19 

O-a O.b O.c O.d 1.o 1.b 1.c 1.d 

2.0 2.b 2.c 2.d 2.e 2.f 2.g 2.h 

v v v v 

3.a 3.b 4 . a  4 .  b 

Fig. 2. The 20 stable flows on the boundary. We only put an arrow on the edge if there is no fixed point in the interior of this edge. Otherwise we 
indicate the fixed point by a solid dot if it is an attractor and by an open dot if it is a repellor for that edge. A dot in the center of the square 
means that this boundary flow forces the fixed point F to lie inside the square, whereas a dot between brackets says that F may be inside as well 
as outside the square in this case 

lies in the left half plane (Fig. 1). Then basic linear 
algebra implies 

0 <  ~(4~ 1, 452)< 180~ > 0 .  (68) 

In order to describe the phase portraits, we first 
determine all possible flows on the boundary of the 
square. 

We shall see that apart  from degenerate cases such 
as a - - b = 0 ,  where the x-axis consists only of fixed 
points, there are 20 such stable flows on the boundary 
(up to flow reversal and symmetry operations like 
rotations and reflexions of the square). 

Then we shall try to continue the given flow on the 
boundary into the interior of the square. We shall see 
that in some cases this is possible in a unique way but in 
general there are more possibilities. For  shortness we 
shall not do this for all 20 boundary flows in full detail, 
but treat all relevant aspects. We conjecture that (63) 
gives rise to altogether 36 stable flows on the square. 

A first discussion of all 20 classes together with a 
lot of numerical examples can be found in Gottlieb 
(1980). 

4. The Flow on the Boundary 

It  is easy to determine the possible flows on the 
boundary. On each side of the square we have at most 
one fixed point (in the stable case), i.e. up to flow 

reversal there are two possibilities for each side of Q2 : 

; �9 or o--~----@---4--�9 

From the special form of (63) we obtain only the 
following restriction: If  there are fixed points on two 
opposite sides of Q2 then thay have the same type: 
Either both are attractors (restricted to the boundary) 
or both are repellors. 

This is clear, since the sign of • (resp. Y) is constant 
on each halfplane determined by 4~ 1 (resp. 4~a) and the 
fixed points on two opposite sides are just the in- 
tersection of 4~ 1 (or ~2) with these two sides. 

Therefore we arrive at the 20 flows on the bound- 
ary as shown in Fig. 2. In the 7 cases 0a, 0b, la, lb, 2a, 
2c, and 2f the intersection point F of the lines 4~1 and 
~2 always lies outside of Q2, in the four cases 0c, 0d, 
4a, 4b F lies inside, and in the remaining 9 cases the 
position of F is not determined by the flow on the 
boundary. 

5. F is a Saddle or Outside of the Square 

Theorem. If F~intQ2 or if F is a saddle then the co- 
limit of every orbit in Q~ is a fixed point. 

Proof. First Poincar6-Bendixson theory implies that 
there is no closed orbit in the interior of Q2 (there must 
be a fixed point within the closed orbit, which cannot 
be a saddle). Since there is no closed orbit, the co-limit 
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Fig. 3. The flow near a saddle which is contained in the co-limit of 
some orbit 

of any orbit contains a fixed point, say P. Of  course, P 
cannot  be a source. If P is a sink then it is the co-limit of 
this orbit. There remains the case: P is a saddle. If  the 
considered orbit is not an inset of P, we have the 
situation described in Fig. 3. One can find t <  t' such 
that the segment connecting x(t) and x(t') together 
with {x(s):t < s < t'} is a Jordan curve and its interior is 
negatively invariant. Hence it contains a fixed point 
which cannot be a saddle. That  is a contradiction. 
Hence every orbit is either an inset of a saddle or 
converges to a sink on the boundary. 

1. F is Outside 

Let us call a saddle on the boundary which is not a 
corner, a "proper" saddle. 

Then we have the following three situations (up to 
flow reversal): among the (at least 4, at most  8) fixed 
points on the boundary there are 

a) One source, one sink, no proper saddle. 
Then every orbit in the interior goes from the source to 
the sink. 

b) Two sources, one sink, one proper saddle. 
Every orbit  in int Q2 converges to the sink. The outset 
of the saddle separates the basins of repulsion of the 
two sources. 

c) Three sources, one sink, two proper saddles. 
Every orbit in int Q2 converges to the sink, the two 
outsets of the two saddles divide the square into three 
regions which are the three basins of repulsion of the 
three sources (see Fig. 4). 

2. F is a Saddle 

If  F lies inside the square and is a saddle then there are 
always two sinks and two sources on the boundary. 
The insets and outsets of F separate Qz into four 
regions where the orbits go from one of the sources to 
one of the sinks. It  is easy to see that  in the cases 0d, ld, 
2g, 3b, and 4b the flow on the boundary (and even- 
tually the existence of F in the interior of Q2) de- 
termines the position of the lines 4~ and 4 2 in such a 
way that by means of (68) A is negative and hence, 
using (67), F is a saddle (see Fig. 5). 

In some other cases the position of 41 and 4 2 may 
be such that F is a saddle, e.g. in the case 2e, if F lies 
inside the triangle F1FsF 6 (see Fig. 5). For  further 
discussion of 2e see Sect. 6, and Sect. 7 for 2b and 2h. 

6. A Ljapunov-Function 

Theorem. Assume that the fixed point F=(p,  q) lies 
inside the square. Further let A > 0 (i.e. F is either a 
sink or a source), and bf  > 0. Then the function 

V(x, y) = x"(1 - x) 1 - P[yq(1 - y) x - q]r 

is a Ljapunov-function (for some convenient r > 0) for 
Eq. (63). 

Corollary. Let A > 0 and F = (p, q) inside the square. If 
b, f <  0, then F is a global at tractor (each orbit con- 
verges to F). If  b, f > 0, then F is a global repellor (each 
orbit comes from F). 

Proof First it is easy to see that F = (p, q) is the unique 
global maximum of V. 

V = ( l o g V ) ' = P  x - ( 1 - P ) ~ _ x  + r [ q ~ - ( 1 - q  ~ _ y ]  

ic 
- -  [p(1 - x ) -  (1 - p ) x ]  

x(1 -x)  

+ r ~ Fq(1 - y ) -  (1 - q)y] 

= (p - x)(a + bx + cy) + r(q - y)(d + ex + f y ) .  (69) 

We now introduce new coordinates 

= x - p  and ~ / = y - q  and obtain 

~'/V = - ~(b~ + c t l ) -  r~(e~ + ftl) 
= - b{ z - (c + re)~tl - rfq 2 . 

This quadratic form is definite if 

(c + re) 2 < 4rbf . 

Now a short calculation shows that whenever bf>O 
and A = b f - e c  > 0 there exists an r > 0, such that this 
condition is satisfied. 

This theorem is very useful for our classification, 
since the nature of the fixed points on the boundary 
lines determines the sign of the coefficients b and f :  

Lemma. If  one of the fixed points Fs, F 7 lies on the 
square and is an attractor (repellor) when restricted to 
the boundary, then f < 0  ( f > 0 )  and similar for F6, Fs, 
and b. 

Proof  Suppose F s = ( O , - f )  is an attractor�9 Then 
\ J / 

~ > 0  near F~, which means d>0 .  Since F s lies in Q2, 
f<0.  

The other cases run in a similar way. 
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Fig. 4. The 16 possible phase portraits of (63) if there is no fixed point in the interior 
of the square. The lines ~t ,  ~z are drawn if their position is relevant for F lying 
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Fig. 5. The 8 phase portraits of (63) if the fixed point F is a saddle 
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Fig. 6. In these four cases limit cycles can occur. For the flows lc and 2b a limit cycle exists whenever F is a source. The cyclic flow 0c is 
discussed in Sect. 8 

Corollary. If there is an attractor inside a horizontal 
and one inside a vertical boundary line and if F is not a 
saddle (A > 0), then F is a global attractor. 

This corollary determines the qualitative behaviour 
of four classes, namely 2e (if F is not a saddle, i.e. if F 
lies outside the triangle F~FsF6, see Fig. 5), 2d, 3a, and 
4a. 

So 16 of all 20 boundary classes are completely 
classified. One should pay attention to the fact that in 
all these 16 classes the flow on the boundary together 
with the position of the lines ~1, ~b2 (if necessary at all) 
determines the flow in the interior of the square and 
that the co-limit of any orbit is a fixed point. The flow is 
"gradient-like", there are no limit cycles. 

This is in contrast to the remaining four classes 0c, 
lc, 2b, and 2h: Note that the position of all 9 fixed 
points and the flow on the boundary is not changed if 
we multiply the vectors (a, b, c) and (d, e, f )  by arbitrary 
positive constants. 

Now if b and f have different sign (which is fulfilled 
in 2h and may be the case for 0c, lc, and 2b) and A is 
positive, then F can change from a sink to a source by 
such a manipulation, since t r J  = bp(1 - p) + fq(1 - q) 
can change sign. So we see that these four cases (with F 
inside the square and A >0)  allow several contin- 
uations of the flow into the interior. 

Moreover numerical investigations show that in 
these cases limit cycles can occur. We will prove this in 
the first three cases; for the boundary flow 2h, how- 
ever, we are not able to prove occurrence of limit 
cycles. 

7. Limit Cycles 

7.1. The Boundary Flow lc 

First the given boundary flow implies (see Fig. 6) that 
~. (~1, ~2)> 180 ~ 

Together with a > 0, d <  0 and (68) we have A > 0. 
That means by (67) : F is either a sink or a source. The 
lemma in Sect. 6 implies b > 0. If ~2 is decreasing, f > 0, 

and the theorem in Sect. 6 applies : F is a global sink. If 
~b 2 is increasing, f < 0 ,  and following the above re- 
mark, F may also be a source. 

The lines ~1, ~b2 divide the square into four regions, 
where the signs of • and p are constant. If F is a source 
then every orbit in the interior of Q2 enters in turn the 
regions I, II, III, IV, I,... (see Fig. 6). If F is a sink, the 
orbits could also converge to F staying in one region 
forever. Hence the outset of the saddle F 6 spirals 
inwards. But if F is a source, Poincard-Bendixson 
theory implies that the co-limit of the outset is a 
periodic orbit. This situation is similar to that in 
Kolmogoroffs  paper (1936). Numerical investigations 
suggest that there is only one closed orbit, if F is a 
source, and that there is no closed orbit, i fF  is a sink (F 
is then a global sink). 

7.2. The Boundary Flow 2b 

The same argument implies the existence of limit cycles 
if F is a source. Again we conjecture that there is 
exactly one periodic orbit, if F is a source and that 
there is no periodic orbit, if F is a sink (see Fig. 6). 

However it is also possible in this case, that F is a 
saddle, namely if q52 crosses the x-axis to the right of 
F 6 and the line y--= 1 to the left of F 8. Then F 6 and F 8 
are sinks. This corresponds to the situation in Sect. 5, 
see also Fig. 5. 

7.3. The Boundary Flow 2h 

If F lies outside of the triangle F t F s F  6 then F is a 
saddle. Its outsets go to the sinks F 4, F 6 and its insets 
come from the sources F2, F 5 (see Fig. 5). 

If F lies inside the triangle F1FsF6, F is either a 
sink or a source, F~ and F 6 are saddles, b > 0, f < 0 (see 
Fig. 6). If we consider the outset of F 6, then it may tend 
towards F either converging to F or to a limit cycle, it 
may converge to F 5 (that means it is also the inset of 
Fs) or it may converge to the sink F 4. 
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In this case we have no exact results, we even 
cannot prove the existence of a limit cycle. The outset 
of F 6 may converge to F, ,  it may converge (as inset) to 
the saddle F 5, it may converge to F or to a limit cycle 
in the interior of Q2. 

8 .  T h e  B o u n d a r y  a s  L i m i t - S e t  

In this case (see Fig. 6) the line ~1 has to cross the two 
vertical boundary lines and ~2 the two horizontal 
boundary lines. Hence the intersection point F of ~1 
and ~2 lies in the interior of Qv  Since the angle 
$ ( ~ 1 , ~ 2 ) > 1 8 0  ~ and a d < 0  we have (68) 
A = b f - e c  > 0 a n d  F cannot be a saddle. 

The flow around F = (p, q) is determined by the sign 
of tr J = bp(1 - p) + fq(1 - q). If tr d > 0, F is a source, for 
t r J<0 ,  F is a sink. If furthermore b, f < 0  (that means 
~1 is increasing and ~2 is decreasing) then the 
Theorem in Sect. 6 applies and F is a global sink. 

Now let us determine the flow near the boundary. 
Using a method which was applied in Hofbauer (1981) 
to prove cooperation of certain higher dimensional 
dynamical systems we derive a condition for the 
boundary bd Q2 to be an attractor or a repellor 
respectively. 

The o>limit of the orbits on bd Q2 consists just of 
the four corners of the square. I f  we now can find a 
function V with the following properties 

V>=0 on Q2 and V(x)=O iff x~bdQ 2 (70) 

# 
~ > 0  near the corners (71) 

then the boundary is a repellor. If (71) is replaced by 

- - <  0 near the corners (72) 
V 

then the boundary is an attractor. 
We shall use V as in Sect. 6, leaving open the choice 

of~, ~ in (0, 1) and r > 0  (/5, ~ need not correspond to the 
coordinates of F). 

Using (69) condition (71) is equivalent to 

P).I + rq#l > 0 

(1 - P))-2 +r?/#2 > 0  
(73) 

(1 - P))-a + r(1 - q)#3 > 0  

P).4  + r(1  - ~ ) # r  > 0 ,  

where 

).1 = a  #1 = d  

).2 = - a - b  # 2 = d + e  

).3 = - a - b - c  #3 = - d - e - f  

) .4=a+c #4= - d - f  

are the eigenvatues of the corners [which can be 
obtained from (66)]. According to the cyclic flow on 
the boundary 21, #2, 23, #4 are positive and #1, 2> #3, 
)-4 are negative. So (73) becomes 

2 i 1 - ~  22 
- - - <  - - r < - -  - -  
c7 #1 q #2 

- -  - -  < - r < - -  - - .  ( 7 4 )  
1 - ~  #3 1 - ~  #4 

We can find a positive r satisfying (74) if each term on 
the left side is smaller than each term on the right side. 
Setting 2 j#  i = vi we get 

~v 1 <(1 -~)v2 

(1 - q-)vl < ~v~ 

~v3 < (1 - ~)v2 

(1 - ~ ) v 3  < ~ v ,  

or  

V2 P V3 ~ < V l  - - <  < - -  and v2< 
111 1 - f i  v 4 v 3 1 - ~  v 4" 

Both inequalities are satisfied for some p, qe(0, 1)iff 

~1V3 
v" = > 1. (75) 

1:2V 4 

So we have proved. 

Lemma. (i) bd Q2 is a repellor, if v > l  ()-1#2,~3#4 
> #122#324).  
(ii) bd Q2 is an attractor, if v < 1 (21#2)].3#4 < #122#3).4). 

Hence we may consider v as the eigenvalue of the 
boundary given by a kind of Poincar6-section. 

The condition v > 1 may also be written as 

bc ef 
< 

(a+b)(a+c) (d+e)(d+ f )  

or b e p ( 1 - p ) < c f q ( 1 - q ) .  (76) 

This condition is independent from the conditions 
t r J ~ 0  which determine the local behaviour around 
the fixed point F:  Multiplying the vectors (a, b, c) and 
(d,e, f)  with positive constants (see also the end of 
Sect. 6) changes the sign of t r J  (if b f < 0 )  and so the 
flow near F. However condition (76) and hence the 
flow near the boundary remain the same. We conjec- 
ture that this manipulation induces a Hopf-bifurcation 
(which is generic, if v # 1 and degenerate, if v = 1, see 
Fig. 7). Now if F and bd Qz are both repellors or both 
attractors, that is, if t r J  and v -  1 have the same sign, 
the existence of a (stable or unstable)l imit  cycle is 
guaranteed by Poincar6-Bendixson. What  we cannot 
prove is that there is only one periodic orbit in this case 
and that there are no limit cycles in the other cases. 
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9 = 1 

,,)> I 

tr J<O 

P and bdQ are attractors 

-> unstable limit cycle 

P attractor 

bdQ repellor 

tr J=O 

All orbits are periodic 

Hopf-bi furcat ion 

trJ>O 

q/ 
P repellor 

bdQ attractor 

P and bdQ are repellors 

4 stable limit cycle 

Fig. 7. Qualitative behaviour of (63) for the cyclic boundary flow 0c (under the hypothesis, that  there is at  most  one limit cycle) 

If we now make the following 
Hypothesis. System (63) admits at most one limit cycle 
(which is supported by numerical investigations), then 
we arrive at the qualitative behaviour shown in Fig. 7. 

9. An Invariant 

The aim of this section is to integrate our differential 
equation and find a constant of motion in the special 
case, where both t rJ=bp ( 1 - p ) + f q ( 1 - q ) = O  and 
v - 1 .  

It is easy to check that these two conditions are 
equivalent with the following situation: Either 
b = f - - 0  [this is just the case treated in Schuster and 
Sigmund (1980)] or 

e + c = 0 and ( f  + d)(bd- ae) = (a + b)(cd- af). (77) 

In this case a short calculation shows that 

G(x, y)dx + H(x, y)dy = 0 where 

G(x, y) = x -  1 -~(1 - x ) ~ -  2y-P(1 - y ) P -  l( d + ex + f y) and 

H(x, y) = x -  =(1 -- x) ~- t y -  1 -P(1 -- y)e- 2(a + bx + cy) 

is an exact differential form equivalent to our differen- 
tial equation (63), if we choose 

(a+b)d ( f  +d)d 

bd - ae cd - af 

a(a + b) a( f  + d) 
and f l = - b d - a e -  c d - a f  (78) 

Its integral q)(x, y) cannot be written in a closed form. 
But we can conclude everything we want to known on 
the shape of the integral curves ~0(x, y) = const from the 
equations 

q~x=G and q~y=H. 

Theorem. If A -- b f -  ec > 0, the fixed point F lies inside 
Q2 and the conditions t r J = 0  and v=  1 are satisfied 
(that is, if the eigenvalues at F are purely imaginary 
and the eigenvalue of bd Q2 is 1), then in some 
neighbourhood of F all orbits are periodic. If the flow 
is circulant (flow 0c) then all orbits in the interior are 
dosed. 



Proof Obviously F = (p, q) is the only critical point of q) 
inside QE and the Hessian at F is given by 

q~x~Ory - q)~y 
: (b f -  ec)p- 1 - 2~(1 _ p)2~-  3 q -  1 - 2/~(1 _ q)a~- 3 > 0. 

Hence F is an extremum of ~0 and orbits near F are 
periodic. In the case of a circulant flow on the 
boundary c~ and fl lie in (0, 1) and therefore Fx=G 
~ x - l - ~ ( 1 - x )  ~-2 in x = 0  and x =  1 and hence is not 
integrable. That  means F(x, y)-~ o% if (x, y) tends to the 
boundary. 

One can easy convince oneself that this situation 
occurs only in the two boundary classes 0c and 2h. 

One could also try to use the invariant qo(x, y) as a 
Ljapunov-function for other parameter values of 
a, b . . . .  as it was done in Sect. 6 with the invariant V for 
the case b = f =  0. 

One obtains that this is possible whenever 

(trJ) 2 > p(1 - p)q(1 -- q)(e + c) 2 . (79) 

Hence if (79) is fulfilled, there can be no limit cycles. 
However condition (79) is too weak to prove the 
existence of a Hopf-bifurcation, as it does not apply to 
the case t r J - -0 ,  v+  1. 

10. Conclusion 

In the three parts presented we have shown that a class 
of ordinary differential equations is applicable to a 
wide variety of phenomena associated with self- 
replication. In particular, they offer a very general 
frame for an understanding of the evolution of animal 
behaviour. Additionally, they apply to many other 
questions of biological relevance like self-organization 
of macromolecules (Eigen and Schuster, 1979), nervous 
systems (Cowan, 1970) and population genetics. 
Finally, we mention that Hofbauer has recently shown 
that equation (5, Part I) is equivalent to the Lotka- 
Volterra equations (Hofbauer, 1980) 

j=t 

used frequently in mathematical ecology. Thereby, he 
was able to prove that limit cycles cannot occur in two- 
dimensional Lotka-Volterra systems, but do occur for 
any dimension n > 2. 
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Equation (63), then is interesting for two more reasons. 
On one hand, it is instructive to see how a two- 
dimensional Volterra-Lotka equation gets modified by 
multiplication with terms like 1 - x and 1 - y. There are 
remarkable changes in the phase portrait, such as the 
possibility for limit cycles. On the other hand, (63) 
occurs as restriction of the three-dimensional Volterra- 
Lotka equation, and hence is a step towards its 
investigation. It seems that the non-linearities en- 
countered in self-replication are quite ubiquituous and 
may all be described essentially by the same very 
flexible equation. 
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