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Abstract I present a short proof of the minmax theorem using the replicator dynamics.
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1 Introduction

The minmax theorem of von Neumann [10] says that

max
x∈X min

y∈Y U (x, y) = min
y∈Y max

x∈X U (x, y)

where X, Y are the unit simplices in Rn,Rm and U : X × Y → R is a continuous function,
quasi-concave in x and quasi-convex in y. The proof was by induction on the number of
variables, see also [7]. An important special case is whereU is a bilinear functionU (x, y) =
x ·Ay, with A an n × m matrix.

The idea to use dynamics for proving the minmax theorem (and computing the equilibria)
goes back to Brown [1,2]: for symmetric zero-sum games, i.e., A = −AT, he proved together
with von Neumann [2] that the solutions of a certain differential equation converge to the set
of equilibria. In [1], he showed that the (continuous time) fictitious play process approaches
the set of equilibria in any finite zero-sum game, which implies the minmax theorem for any
n × m matrix A. Brown’s fictitious play process [1] is now often framed as best response
dynamics and can be used to prove the minmax theorem for more general payoff functions
U , which are continuous and concave/convex, see [6]. For the original version [10] for
continuous quasi-concave/quasi-convex functions, a dynamic proof is still missing. Another
proof based on differential inclusions can be found in [8].

In the present note, I give a short proof of the minmax theorem in the matrix case, based
on the replicator dynamics.
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2 Replicator Dynamics

The replicator dynamics [5] for an n × m bimatrix game (A, B) is given by

ẋi = xi
(
ei ·Ay − x ·Ay

)
i = 1, . . . , n

ẏ j = y j
(
e j ·Bx − y ·Bx

)
j = 1, . . . ,m

Here xi denotes the frequency of strategy i of player 1, hence x = (x1, . . . , xn) is in the
probability simplex �n = {x ∈ [0, 1]n : ∑

xi = 1}, y j is the frequency of strategy j of
player 2, y = (y1, . . . , ym) ∈ �m , and ei denotes the i th unit vector.

Besides its original derivation from evolution and natural selection, there are at least two
economic motivations based on imitation and on reinforcement learning.

For a zero-sum game B = −AT, in the interior of �n × �m we obtain

ẋi/xi = ei ·Ay − x ·Ay i = 1, . . . , n (1)

ẏ j/y j = −x ·Ae j + x ·Ay j = 1, . . . ,m (2)

Now add these equations

ẋi
xi

+ ẏ j
y j

= ei ·Ay − x ·Ae j ∀i, j

and integrate

log xi (T ) − log xi (0) + log y j (T ) − log y j (0)

T
= ei ·Aȳ(T ) − x̄(T )·Ae j

where

x̄(T ) = 1

T

∫ T

0
x(t)dt, ȳ(T ) = 1

T

∫ T

0
y(t)dt

denote time averages of the solutions of (1, 2). Now consider limit points, i.e., choose a
sequence Tk → ∞ s.t. x̄(Tk) → x̄ , ȳ(Tk) → ȳ. Since log xi (T ) ≤ 0, we obtain 0 ≥
ei ·Aȳ − x̄ ·Ae j ∀i, j or

ei ·Aȳ ≤ x̄ ·Ae j ∀i, j. (3)

Multiplying by xi and y j and summing over i and j , we obtain

max
x∈�n

x ·Aȳ ≤ min
y∈�m

x̄ ·Ay (4)

and

min
y

max
x

x ·Ay ≤ max
x

x ·Aȳ ≤ min
y

x̄ ·Ay ≤ max
x

min
y

x ·Ay,

and together with the obvious inequality, we obtain

min
y∈�m

max
x∈�n

x ·Ay = max
x∈�n

min
y∈�m

x ·Ay. (5)

Additionally, (3) or (4) also imply

x ·Aȳ ≤ x̄ ·Aȳ ≤ x̄ ·Ay ∀x, y (6)

so (x̄, ȳ) is a pair of optimal strategies for the zero–sum game. (In particular, this shows the
existence of equilibria.)
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Furthermore, if we integrate (1, 2) directly, then we obtain 0 ≥ ei · Aȳ − ā and 0 ≥
−x̄ ·Ae j + ā, with ā = limT→∞ 1

T

∫ T
0 x(t)Ay(t)dt , and hence

ei ·Aȳ ≤ ā ≤ x̄ ·Ae j ∀i, j. (7)

Comparing with (6), we get ā = x̄ ·Aȳ.
Summarizing, besides minmax theorem (5), we have shown:

Theorem Every limit point (x̄, ȳ) of the time averages (x̄(T ), ȳ(T )) of positive solutions
(x(t), y(t)) of the replicator dynamics is a pair of optimal strategies of the zero-sum game.
And the time averages of the payoffs

1

T

∫ T

0

∑
i, j

ai j xi (t)y j (t)dt

converge to the value x̄ ·Aȳ of the game, as T → ∞.

3 Remarks

1. If log xi (T ) and log y j (T ) are bounded functions of T (i.e., the solution stays at a positive
distance from the boundary of�n and�m), thenwe have equality in (3) for all i, j , and the
existence of a fully mixed equilibrium follows. The converse holds as well, see [3,5,9]:
If (p, q) > 0 is an equilibrium of the zero-sum game, then the relative entropy

H(x, y) = −
∑
i

pi log
xi
pi

−
∑
j

q j log
y j
q j

≥ 0

or Kullback–Leibler divergence is a constant of motion for (1, 2): Ḣ = 0. The replicator
dynamics is even a Hamiltonian system w.r.t. a suitable symplectic or Poisson structure
[3], and hence, on each level set of H , by Poincaré’s recurrence theorem, almost every
solution is recurrent. The behavior of the solutions might be chaotic, but by the above
theorem, their time averages approach the set of equilibria.

2. For nonzero-sum games, a similar argument shows that the time averages

1

T

∫ T

0
xi (t)y j (t)dt

(i.e., how often does player 1 use strategy i against strategy j of player 2 in a given
period) converge (as T → ∞) to the set of exact coarse correlated equilibria, see [4].
This holds also for N player normal form games.
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