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The dynamics of interacting structured populations can be modeled
by dxi

dt = Ai(x)xi where xi ∈ Rni , x = (x1, . . . , xk), and Ai(x) are
matrices with non-negative off-diagonal entries. These models
are permanent if there exists a positive global attractor and are
robustly permanent if they remain permanent following
perturbations of Ai(x). Necessary and sufficient conditions for ro-
bust permanence are derived using dominant Lyapunov exponents
λi(μ) of the Ai(x) with respect to invariant measures μ. The
necessary condition requires maxi λi(μ) > 0 for all ergodic meas-
ures with support in the boundary of the non-negative cone. The
sufficient condition requires that the boundary admits a Morse
decomposition such that maxi λi(μ) > 0 for all invariant measures
μ supported by a component of the Morse decomposition. When
the Morse components are Axiom A, uniquely ergodic, or support
all but one population, the necessary and sufficient conditions are
equivalent. Applications to spatial ecology, epidemiology, and gene
networks are given.

© 2009 Published by Elsevier Inc.

1. Introduction

A fundamental issue in population biology is what are the minimal conditions to ensure the
long-term survivorship for interacting populations whether they be viral particles, bio-chemicals,
plants, or animals. When these conditions are met the interacting populations are said to persist
or coexist. Since the pioneering work of Lotka and Volterra on competitive and predator–prey inter-
actions, Thompson, Nicholson, and Bailey on host–parasite interactions, and Kermack and McKendrick
on disease outbreaks, nonlinear difference and differential equations have been used to understand
conditions for population persistence [1–5]. One particularly important form of persistence for deter-
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ministic models is permanence or uniform persistence which corresponds to the existence of a global
attractor bounded away from extinction of one or more species. When such an attractor exists, inter-
acting populations are able to recover from “vigorous shake ups” of the population state. Permanence
has been characterized from a topological perspective [6–8] and with average Lyapunov functions
[9–12] for differential equation models of the form

dxi

dt
= xi f i(x), i = 1, . . . ,k (1)

where xi is the abundance of population i, x = (x1, . . . , xk), and f i(x) is the per-capita growth of
population i.

An important extension of the concept of permanence is robust permanence [13–16] which requires
that (1) remain permanent after sufficiently small perturbations of the per-capita growth rates f i . The
importance of robust permanence stems from the fact that all models are approximations to reality.
Consequently, if nearby models (e.g. more realistic models) are not permanent despite the focal model
being permanent, then one can draw few (if any!) conclusions about the persistence of the biological
system being approximated by the model. One can view robust permanence as one crude form of
structural stability for population models. For this perspective, it is not unexpected that there are
permanent systems that cannot be approximated by robustly permanent systems [17]. In [14,16],
criteria for robust permanence were developed with respect to the average per-capita growth rates∫

f i(x)dμ(x) with respect to invariant probability measures μ supported on the boundary of the
positive orthant (i.e. where one or more populations are extinct). Roughly, these criteria for robust
permanence require that the average per-capita growth rate (i.e. invasion rate) is positive for some
missing species.

While (1) can account for many types of population interactions, it assumes that all individu-
als within a population are exactly the same. However, theoretical biologists have long recognized
that different individuals within a population may be in different states (e.g. different sizes or ages,
living in different spatial locations) and these differences can have important consequences for pop-
ulation dynamics [18–24]. To account for how these differences influence persistence of interacting
populations, we develop criteria for robust permanence for the dynamics of k interacting structured
populations. Roughly, these dynamics correspond to replacing xi in (1) by vectors and f i(x) by ma-
trices. In Section 2, we describe these models in greater detail and review some basic concepts from
dynamical systems theory. In Section 3, we introduce the structured analog of average per-capita
growth rates and define the concept of robustly unsaturated invariant sets. Necessary and sufficient
conditions for an invariant set to be robustly unsaturated are proven. For Axiom A or uniquely ergodic
invariant sets, the necessary and sufficient criteria are shown to be equivalent. In Section 4, we use
Morse decompositions and the criteria for robustly unsaturated invariant sets to develop necessary
and sufficient conditions for robust permanence. In Sections 5 and 6, we provide several applica-
tions of our results to spatially structured ecological models, structured epidemiological models, and
models of gene networks.

2. Models and assumptions

Let xi denote the state of the i-th population that lies in the non-negative cone Ci of Rni . Define
x = (x1, . . . , xk) ∈ C to be the non-negative cone of Rn where n = ∑k

i=1 ni . Let C+
i denote positive cone

{xi ∈ Ci:
∏

j x j
i > 0} for population i and C+ = ∏

i C+
i , the positive cone for the interacting popula-

tions. If x �→ Ai(x) is a map into ni × ni matrices that describes the growth of population i, then the
dynamics of the interacting populations are given by

dxi

dt
= Ai(x)xi, i = 1, . . . ,k (2)

Let x.t denote the solution of (2) with the initial condition x, and more generally the semiflow gen-
erated by (2). Before stating our assumption on (2), recall a few definitions from dynamical systems.
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Given sets I ⊆ R and K ⊆ C, let K .I = {x.t: t ∈ I, x ∈ K }. A set K ⊆ C is invariant if K .t = K for
all t > 0, and forward invariant if K .t ⊂ K for all t > 0. The omega limit set of a set K ⊆ C equals
ω(K ) = ⋂

t�0 K .[t,∞). The alpha limit set of K ⊆ C is α(K ) = ⋂
t�0 K .(−∞, t]. Given a forward in-

variant set K , B ⊂ K is an attractor for the semiflow x.t restricted to K provided there exists an open
neighborhood U ⊆ K of B such that ω(U ) = B . The stable set of a compact invariant set K is defined
by

W s(K ) = {
x ∈ C: ω(x) 	= ∅ and ω(x) ⊆ K

}
The semiflow generated by (2) is dissipative if there exists an attractor B with W s(B) = C.

Throughout this paper, we make the following assumptions:

A1: x �→ Ai(x) is continuous.
A2: Ai(x) is irreducible and has non-negative off-diagonal entries.
A3: x.t is defined for all t � 0.
A4: x.t is dissipative with global attractor Γ (A).

A1 is a basic regularity assumption. The non-negativity of off-diagonal entries in A2 implies that there
are no negative feedbacks between individuals of different states in population i. This assumption is
meet for many types of structured models as discussed in Sections 5 and 6. The irreducibility assump-
tion of A2 is generically meet and implies that all individuals within a population can pass through
all states. In Remark 1, we discuss how this irreducibility assumption can be relaxed. A3 ensures
that the population dynamics are defined for all future time. A4 requires that population densi-
ties/abundances eventually are uniformly bounded, a condition that should be met for an biologically
realistic model.

We say that the semiflow of (2) is permanent if this semiflow is dissipative and there is a positive
attractor B ⊂ C+ such that W s(B) ⊂ C+ . We will denote this positive attractor by Λ(A). Permanence
ensures that populations can recover from rare large perturbations and allows for a diversity of dy-
namical behaviors.

For K ⊂ C and δ > 0, define the δ-neighborhood of K as

Nδ(K ) = {
x ∈ C: |x − y| < δ for some y ∈ K

}
We define a δ-perturbation of (2) to be a system of the form

dx

dt
= Ã(x)x

that satisfies assumptions A1–A4, Γ ( Ã) ⊂ Nδ(Γ (A)), and ‖A(x) − Ã(x)‖ � δ for all x ∈ Nδ(Γ (A)).
Eq. (2) is robustly permanent if there exist δ > 0 and ε > 0 such that all δ-perturbations of (2) are
permanent, and d(Λ( Ã),C \ C+) > ε for all δ-perturbations i.e., there is a common/uniform region of
repulsion around the boundary.

3. Invasion of compact sets

We begin by studying the linear skew product flows on Γ (A) × Rni defined by (x, y).t =
(x.t, Bi(t, x)y) where Y (t) = Bi(t, x) is the solution to dY

dt (t) = Ai(x.t)Y (t) with Y (0) equal to the
identity matrix. Our assumption that Ai is irreducible with non-negative off diagonal entries implies
that Bi(t, x)Ci ⊂ C+

i for all x and t > 0 (see, e.g., [25]). A result of Ruelle [26, Prop. 3.2] implies that
there exist continuous maps ui, vi : Γ (A) → C+

i with |ui(x)| = |vi(x)| = 1 such that
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• the line bundle Ei(x) spanned by ui(x) is invariant i.e. Ei(x.t) = Bi(x, t)Ei(x) for all t � 0;
• the vector bundle Fi(x) perpendicular to vi(x) is invariant i.e. Fi(x.t) = Bi(x, t)Fi(x) for all t � 0;
• there exist constants α > 0 and β > 0 such that

∥∥Bi(t, x) | Fi(x)
∥∥ � α exp(−βt)

∥∥Bi(t, x) | Ei(x)
∥∥ (3)

for all x ∈ K and t � 0.

3.1. Invasion rates

Given any x ∈ Γ (A), define the invasion rate of species i at population state x as

λi(x) = lim sup
t→∞

1

t
ln

∥∥Bi(t, x)
∥∥

When xi = 0, λi(x) provides an upper bound to the rate of growth of population i when introduced
at infinitesimally small densities. Important properties of this invasion rate are summarized in the
following two propositions. For instance, the second proposition implies if (x.t)i stays bounded away
from zero (i.e. population i persists), then λi(x) = 0. Alternatively, if λi(x) < 0, then population i is
doomed to extinction.

Proposition 1. λi(x) satisfies the following properties:

• λi(x) = lim supt→∞ 1
t ln |Bi(t, x)v| for any v > 0 in Rni , and

• λi(x) = lim supt→∞ 1
t

∫ t
0 〈Ai(x.s)ui(x.s), ui(x.s)〉ds.

Proof. To prove the first property, we first show that

λi(x) = lim sup
t→∞

1

t
ln

∣∣Bi(t, x)ui(x)
∣∣

To this end, let v ∈ Rni be any non-zero vector. Since Rni = Ei(x) ⊕ Fi(x), we can write v = aui(x) + w
with a ∈ R and w ∈ Fi(x). Eq. (3) implies

∣∣Bi(t, x)v
∣∣ � a

∣∣Bi(t, x)ui(x)
∣∣ + ∣∣Bi(t, x)w

∣∣
�

∣∣Bi(t, x)ui(x)
∣∣(a + α exp(−βt)|w|)

Hence,

lim sup
t→∞

1

t
ln

∣∣Bi(t, x)v
∣∣ � lim sup

t→∞
1

t
ln

∣∣Bi(t, x)ui(x)
∣∣ � λi(x)

for all non-zero vectors v ∈ Rni . Since ‖Bi(t, x)‖ = sup|v|=1 |Bi(t, x)v|, this inequality implies that

λi(x) = lim supt→∞ 1
t ln |Bi(t, x)ui(x)|. Now let v ∈ C+

i . Then, we can write v = aui(x) + w with a > 0
and w ∈ Fi . Eq. (3) implies

∣∣Bi(t, x)v
∣∣ � a

∣∣Bi(t, x)ui(x)
∣∣ − ∣∣Bi(t, x)w

∣∣
�

∣∣Bi(t, x)ui(x)
∣∣(a − α exp(−βt)|w|)
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Since a > 0, this inequality implies that

λi(x) � lim sup
t→∞

1

t
ln

∣∣Bi(t, x)v
∣∣ � lim sup

t→∞
1

t
ln

∣∣Bi(t, x)ui(x)
∣∣ = λi(x)

To prove the second assertion, let bi(t, x) = ln |Bi(t, x)ui(x)|. Invariance of ui(x) implies that bi(t, x)
is additive:

bi(t + s, x) = ln
∣∣Bi(t + s, x)ui(x)

∣∣ = ln
∣∣Bi(s, x.t)Bi(t, x)ui(x)

∣∣
= ln

∣∣Bi(s, x.t)ui(x.t)
∣∣∣∣Bi(t, x)ui(x)

∣∣
= ln

∣∣Bi(s, x.t)ui(x.t)
∣∣ + ln

∣∣Bi(t, x)ui(x)
∣∣

= bi(s, x.t) + bi(t, x)

Additivity of bi(t, x) and the fact that bi(0, x) = 0 implies

d

dt
bi(t, x) = lim

s→0

bi(t + s, x) − bi(t, x)

s

= lim
s→0

bi(s, x.t)

s
= d

ds

∣∣∣∣
s=0

bi(s, x.t)

= 〈 d
ds Bi(s, x.t)ui(x.t), Bi(s, x.t)ui(x.t)〉

|Bi(s, x.t)ui(x.t)|2
∣∣∣∣
s=0

= 〈
Ai(x.t)ui(x.t), ui(x.t)

〉
The Fundamental Theorem of Calculus implies

bi(t, x) =
t∫

0

〈
Ai(x.s)ui(x.s), ui(x.s)

〉
ds

and the second assertion follows. �
Proposition 2. For the solutions of (2) we have:

• if xi > 0, then λi(x) � 0;
• if λi(x) < 0, then limt→∞(x.t)i = 0;
• if lim supt→∞ |(x.t)i | > 0, then λi(x) = 0.

Proof. First, assume that x satisfies xi > 0. Since the semiflow is dissipative, there exists γ > 0 such
that |x.t| � γ for all t � 0. Proposition 1 and the definition of the skew product flow imply

λi(x) = lim sup
t→∞

1

t
ln

∣∣Bi(t, x)xi
∣∣ = lim sup

t→∞
1

t
ln

∣∣(x.t)i
∣∣

� lim sup
t→∞

lnγ

t
= 0

To prove the second assertion, assume that λi(x) < 0. If xi = 0, then the invariance of the faces of
C imply that (x.t)i = 0 for all t � 0. Alternatively, if xi > 0, then Proposition 1 and the definition of
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the skew product flow imply

lim sup
t→∞

1

t
ln

∣∣(x.t)i
∣∣ = λi(x) < 0

The final assertion follows from the first two assertions. �
3.2. Invariant measures

We review some definitions from ergodic theory. Given a Borel probability measure μ on C, the
support of μ, denoted supp(μ), is the smallest closed set whose complement has measure zero. A Borel
probability measure μ is called invariant for (2) provided that

∫
h(x)dμ(x) = ∫

h(x.t)dμ(x) for all
t � 0 and for all bounded continuous functions h : C → R. An invariant measure μ is called ergodic
provided that μ(B) = 0 or 1 for any invariant Borel set B .

For an invariant measure μ define the invasion rate of species i with respect to μ as

λi(μ) =
∫
C

〈
Ai(x)ui(x), ui(x)

〉
dμ(x)

Proposition 3. Let μ be an invariant measure. λi(μ) satisfies the following properties:

• λi(x) = limt→∞ 1
t

∫ t
0 〈Ai(x.s)ui(x.s), ui(x.s)〉ds exists for μ-almost every x. Moreover, if μ is ergodic,

λi(x) = λi(μ) for μ-almost every x;
• if μ is ergodic, then there exists I ⊂ {1, . . . ,k} such that μ(

∏
i∈I C+

i ) = 1 and λi(μ) = 0 for all i ∈ I .

Proof. Let μ be an invariant measure. Define hi(x) = 〈Ai(x)ui(x), ui(x)〉. The Birkhoff ergodic theorem
and Proposition 1 imply

λi(x) = lim
t→∞

1

t

t∫
0

hi(x.s)ds

exists for μ-almost every x. Moreover, λi(x) = λi(μ) μ-almost surely if μ is ergodic.
Assume μ is ergodic. By ergodicity and invariance of the faces of C, there exists I ⊂ {1, . . . ,k} such

that μ(
∏

i∈I C+
i ) = 1. Let K ⊂ ∏

i∈I C+
i be a compact set such that μ(K ) > 0. The Poincaré recurrence

theorem and the Birkhoff ergodic theorem imply that there is x ∈ ∏
i∈I C+

i such that x.tn ∈ K for
some tn ↑ ∞ and λi(x) = λi(μ) for all i. The third assertion of Proposition 2 implies λi(μ) = 0 for all
i ∈ I . �
3.3. Robustly unsaturated sets

Let K ⊂ ∂C be a compact isolated invariant set for the flow x.t restricted to ∂C. K is unsaturated
if W s(K ) ⊂ ∂C and K is isolated for x.t . If K is not unsaturated, then K is saturated. K is robustly
unsaturated for (2) if there exists δ > 0 such that the continuation of K for any δ-perturbation of (2)
is unsaturated.

Theorem 1. Let K be a compact isolated invariant set for x.t restricted to ∂C. Assume one of the following
equivalent conditions hold

• for all invariant measures μ supported by K

max
1�i�k

λi(μ) > 0 (4)
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• there exist pi > 0 such that

∑
1�i�k

piλi(μ) > 0 (5)

for all ergodic probability measures supported by K .

Then K is robustly unsaturated for (2). Alternatively, if x �→ A(x) is twice continuously differentiable and K is
robustly unsaturated, then (4) holds for all ergodic measures μ supported by K .

Remark 1. For some applications (e.g., the disease model considered in Section 6.1), it useful to relax
the irreducibility assumption A2. For instance, if there exists an open neighborhood U of K such that
for each i, Ai(x) has a fixed off-diagonal sign pattern for all x ∈ U , then Ai(x) can be decomposed into
a finite number, say mi , of irreducible components. For each of these irreducible components, one
can define λ

j
i (μ) = ∫

C〈A j
i (x)u j

i (x), u j
i (x)〉dμ(x) where A j

i (x) is the submatrix of Ai(x) corresponding

to the j-th irreducible component of Ai(x) and u j
i (x) is the continuous invariant subbundle for the

irreducible linear cocycle determined by A j
i (x). If we define λi(μ) = max1� j�mi λ

j
i (μ), then all of the

assertions of Theorem 1 still hold.

Proof. To prove the first assertion of the theorem, we need the following lemma. We call an invariant
measure μ for (2) saturated if λi(μ) � 0 for all i.

Lemma 1. Let δn be a non-negative sequence that converges to zero as n → ∞. If μn are saturated invariant
measures for δn-perturbations of (2), then the weak∗ limit points of {μn}∞n=1 is a non-empty set consisting of
saturated invariant measures for (2).

Proof. Let δn be a non-negative sequence that converges to zero. Let μn be saturated invariant
measures for δn perturbations, ẋ = An(x)x, of ẋ = A(x)x. By weak∗ compactness of Borel probability
measures supported on N1(Γ (A)), there exist weak∗ limit points of μn . Let μ be such a weak∗ limit
point. Since μn are supported by N1(Γ (A)) for all n sufficiently large, μ is supported by N1(Γ (A)).
To verify that μ is an invariant measure for (2), let h : C → R be a bounded continuous function.
Let t > 0 and ε > 0 be given. Choose n sufficiently large so that | ∫C h(x)dμ(x) − ∫

C h(x)dμn(x)| � ε ,
| ∫C h(x.t)dμ(x) − ∫

C h(x.t)dμn(x)| � ε , and |h(x.t) − h(xn.t)| � ε for all x ∈ N1(Γ (A)). Then
| ∫C h(x.t) − h(x)dμ(x)| is

�
∣∣∣∣
∫
C

h(x.t)dμ(x) −
∫
C

h(x.t)dμn(x)

∣∣∣∣ +
∣∣∣∣
∫
C

h(x.t)dμn(x) −
∫
C

h(x)dμ(x)

∣∣∣∣
� ε +

∫
C

∣∣h(x.t) − h
(
xn.t

)∣∣dμn(x) +
∣∣∣∣
∫
C

h
(
xn.t

)
dμn(x) −

∫
C

h(x)dμ(x)

∣∣∣∣
� 2ε +

∣∣∣∣
∫
C

h
(
xn.t

) − h(x)dμn(x)

∣∣∣∣ +
∣∣∣∣
∫
C

h(x)dμn(x) −
∫
C

h(x)dμ(x)

∣∣∣∣
� 3ε

where the last line follows from the invariance of μn for xn.t . Since ε > 0 and t > 0 are arbi-
trary, we have

∫
C h(x.t)dμ(x) = ∫

C h(x)dμ(x) for all t > 0 and all bounded continuous functions
h : C → R. It follows that μ is an invariant measure for (2). To see that μ is saturated, de-
fine hn

i (x) = 〈An
i (x)un

i (x), un
i (x)〉 where un

i (x) spans the invariant one-dimensional bundle given by
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[26, Prop. 3.2] for dx
dt = An(x)x. Since An

i (x) → Ai(x) uniformly for x ∈ N1(Λ(A)) as n → ∞,
[26, Prop. 3.2] implies that un

i (x) → ui(x) converges uniformly for x ∈ N1(Λ(A)). Given ε > 0,
choose n sufficiently large so that |hn

i (x) − hi(x)| � ε for all x ∈ N1(Λ(A)) and | ∫C hn
i (x)dμ(x) −∫

C hn
i (x)dμn(x)| � ε . Then

λi(μ) �
∫
C

∣∣hi(x) − hn
i (x)

∣∣dμ(x) +
∣∣∣∣
∫
C

hn
i (x)dμ(x) −

∫
C

hn
i (x)dμn(x)

∣∣∣∣
+

∫
C

hn
i (x)dμn(x)

� 2ε

Since ε > 0 is arbitrary, λi(μ) � 0 for all i and μ is saturated. �
Using this lemma, we prove that if K is saturated, then there exists a saturated invariant measure

μ supported by K . Assume K is saturated. Work of Hofbauer and So [7, Thm. 2.1] implies that either
there exists y ∈ W s(K ) ∩ C+ or K is not isolated for the unrestricted flow x.t . If there exists y ∈
W s(K )∩C+ , then for all t > 0 define νt = 1

t

∫ t
0 δy.s ds where δy.s denotes a Dirac measure based at the

point y.s. Dissipativeness of (2) and weak∗ compactness of the Borel probability measures supported
by Λ(A) imply there exist tk → ∞ such that the sequence νtk converges in the weak∗ topology to a
Borel probability measure μ with support in K . A standard argument implies that μ is x.t invariant.
Define hi : C → R by hi(x) = 〈Ai(x)ui(x), ui(x)〉. Proposition 2 and weak∗ convergence imply that

0 � λi(y) = lim sup
t→∞

1

t

t∫
0

hi(y.s)ds

= lim sup
t→∞

∫
C

hi dνt

� lim sup
k→∞

∫
C

hi dνtk = λi(μ)

for all i. Alternatively, suppose that K is not isolated for the semiflow. Then there exists a sequence
of positive ω-limit sets that accumulate on K . Let μn be a sequence of ergodic probability measures
supported by these ω-limit sets. Propositions 1 and 3 imply that μn are saturated for all n. Applying
Lemma 1 with δn = 0 for all n implies that there exists a saturated invariant measure μ supported
by K . Hence, we have shown that if K is saturated, then there exists a saturated invariant probabil-
ity measure μ supported by K . Equivalently, (4) holding for all invariant probability measures with
support in K implies that K is unsaturated.

Next, we show that if K is not robustly saturated, then there exists a saturated invariant measure
supported by K . Indeed, suppose K is not robustly saturated. Then there exists a non-negative se-
quence δn converging to zero and a sequence of saturated measures μn for δn-perturbations of (2)
with support in the continuation of K . Let μ be a weak∗ limit point of {μn}∞n=1. Lemma 1 implies
that μ is saturated. Moreover, since the continuation of K converges to K as δn → 0, μ is a sat-
urated invariant measure for (2) supported by K . Hence, we have shown that if K is not robustly
saturated, then there exists a saturated invariant measure supported by K . Equivalently, if (4) holds
for all invariant measures with support in K , then K is robustly unsaturated.

To see the equivalence of the conditions given by (4) and (5), let Δ = {p ∈ Rk+:
∑

i pi = 1} and
notice that
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min
μ

max
i

λi(μ) = min
μ

max
p∈Δ

∑
i

piλi(μ)

where the minimum is taken over invariant probability measures μ with support in K . The Minimax
theorem (see, e.g., [27]) implies that

min
μ

max
i

λi(μ) = max
p∈Δ

min
μ

∑
i

piλi(μ) (6)

where the minimum is taken over invariant probability measures μ with support in K . Since
minμ

∑
i piλi(μ) is attained at an ergodic probability measure with support in K , the equivalence

of the conditions given by (4) and (5) is established.
To prove the final assertion of the Theorem, assume x �→ A(x) is twice continuously differentiable

and there exists a saturated ergodic measure μ supported by K . Proposition 3 implies that there
exists I ⊂ {1, . . . ,k} such that μ(

∏
i∈I C+

i ) = 1 and λi(μ) = 0 for all i ∈ I . Since K ⊂ ∂C, {1, . . . ,k} \ I
is non-empty. We will show that (2) is not robustly permanent by proving that for all δ > 0 there
exists a δ-perturbation of (2) for which the continuation of K is saturated. Let δ > 0 be given. Choose
V ⊂ Nδ(Γ (A)) to be a compact neighborhood of Γ (A) such that V .t ⊂ int V for all t > 0. Let η > 0 be
such that W =: Nη(Γ (A)) ⊂ V . Let ρ : C → [0,1] be a C∞ function such that ρ(x) = 1 for all x ∈ Γ (A)

and ρ(x) = 0 for all x ∈ C\W . Define Ã = ( Ã1, . . . , Ãk) by

Ãi(x) =
{

Ai(x) if i ∈ I

Ai(x) − δ
2 Idρ(x) if i /∈ I

where Id denotes the identity matrix of appropriate dimension. Let x̃.t denote the semiflow of ẋ =
Ã(x)x. Since x̃.t = x.t whenever x.[0, t] ∈ C\ W , it follows that Ṽ .t ⊂ int V for all t > 0. Hence, Γ ( Ã) ⊂
V ⊂ Nδ(Γ (A)). We also have ‖A(x) − Ã(x)‖ � δ

2 . Therefore, ẋ = Ã(x)x is a δ-perturbation of (2). By

construction, x.t = x̃.t for all x ∈ K and t � 0. Hence, μ is ergodic for the semiflow of ẋ = Ã(x)x and
λi(μ) � − δ

2 for this semiflow and i ∈ {1, . . . ,k} \ I . Let L and O be the Lyapunov exponents and

Oseledec regular points supported by μ for ẋ = Ã(x)x (see, e.g., [28] for definitions). At each point
x ∈ O , the splitting of Rn determines three subspaces: the stable subspace Es(x), the center subspace
Ec(x) and the unstable subspace Eu(x). Proposition 3 and our choice of Ã imply that Es(x) ∩ C+ 	= ∅.
The Pesin stable manifold theorem [28, Corollaries 3.17 and 3.18] implies that tangent to Es(x), Ec(x)
and Eu(x) are locally x̃.t-invariant families of C1 discs W s

x , W c
x and W u

x corresponding to the stable,
center and unstable manifolds. The family of stable manifolds W s

x is contained in W s( Ã, supp(μ)).
Since Es(x) ∩ C+ 	= ∅, W s

x ∩ C+ 	= ∅ for some x ∈ K . Consequently, K is saturated for ẋ = Ã(x)x. �
The difference between the sufficient and necessary condition is that for the sufficient condition,

(4) has to hold for all invariant measures supported by K , while for the necessary condition, (4) has
to hold only for ergodic measures supported by K . Since the invariant measures lie in the convex hull
of the ergodic measures, the sufficient condition can be more restrictive than the necessary condition.

For three classes of invariant sets, the necessary and sufficient conditions coincide. Recall, a com-
pact invariant set K for (2) is uniquely ergodic if K only supports one invariant measure. Recall a
compact invariant set K is Axiom A if the flow of (2) restricted to K is transitive and hyperbolic (see,
e.g., [29] for definitions).

Corollary 1. Assume x �→ A(x) is twice continuously differentiable. If K ⊂ ∂C is a compact invariant set and
either it is uniquely ergodic or Axiom A, then K is robustly unsaturated if and only if (4) holds for all ergodic
measures μ with support in K .

Proof. If K is uniquely ergodic, then the assertion follows immediately. For an Axiom A invariant set,
Sigmund [30, Thm. 1] has proven that invariant measures supported by periodic orbits of K are dense
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in the set of invariant probability measures supported by K . In particular, any invariant measure can
be approximated by an ergodic measure and, consequently, the result follows. �

Another special case where the necessary and sufficient conditions coincide is when K supports
all populations except one. For discrete-time models, this case was considered by [22].

Corollary 2. Assume x �→ A(x) is twice continuously differentiable. Let K ⊂ ∏
i�2 C+

i be a compact invariant
set. Then K is robustly unsaturated if and only if λ1(μ) > 0 for all ergodic measures supported by K .

Proof. Since K ⊂ ∏
i�2 C+

i , Proposition 3 implies that λi(μ) = 0 for all ergodic measures μ supported
by K and 2 � i � k. The ergodic decomposition theorem implies that λi(μ) = 0 for all invariant mea-
sures μ supported by K and 2 � i � k. Therefore, for any invariant measure μ supported by K ,
(4) holds if and only if λ1(μ) > 0. The ergodic decomposition theorem implies λ1(μ) > 0 for all invari-
ant measures supported by K if and only if λ1(μ) > 0 for all ergodic measures supported by K . �
4. Morse decompositions and robust permanence

To state the sufficient condition for robust permanence, we use a characterization of permanence
due to Garay [8] and Hofbauer and So [7] that involves Morse decompositions of the boundary flow.
Conley [31] defined a collection of sets {M1, . . . , Mm} to be a Morse decomposition for a compact
invariant set K if

• M1, . . . , Mm are pairwise disjoint, compact isolated invariant sets for the flow of (2) restricted
to K .

• For each x ∈ K there are integers r = r(x) � s = s(x) such that α(x) ⊆ Mr and ω(x) ⊆ Ms .
• If r(x) = s(x), then x ∈ Mr .

Garay, Hofbauer and So [8,7] proved the following characterization of permanence.

Theorem 2 (Garay, Hofbauer–So). If {M1, . . . , Mm} is a Morse decomposition for ∂C, then (2) is permanent if
and only if each of the components Mi are unsaturated.

Theorems 1 and 2 imply the following result:

Theorem 3. If {M1, . . . , Mm} is a Morse decomposition for ∂C and (4) holds for each of the components
of the Morse decomposition, then (2) is robustly permanent. Conversely, if x �→ A(x) is twice continuously
differentiable and (4) is violated by an ergodic measure supported by one of the components of the Morse
decomposition, then (2) is not robustly permanent.

Theorem 3 in conjunction with Corollaries 1 and 2 yield a characterization of robust permanence
for a class of structured models.

Corollary 3. Let {M1, . . . , Mm} is a Morse decomposition for ∂C. Assume x �→ A(x) is twice continuously
differentiable and for each Morse component Mi one of the following assertions hold

• Mi is Axiom A,
• Mi is uniquely ergodic, or
• there exists j ∈ {1, . . . ,k} such that Mi ⊂ {x ∈ C : xl � 0 for l 	= j}.

Then (2) is robustly permanent if and only if (4) holds for all ergodic measures supported by
⋃

i Mi .
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Our results also provide a structured analogue for characterizing totally permanent systems [32].
For an ergodic probability measure μ, define supp(μ) to be the subset I ⊂ {1, . . . ,k} such that
μ(

∏
i∈I C+) = 1.

Corollary 4. The following statements are equivalent:

• for all ergodic probability measures μ with support in ∂C,

λi(μ) > 0 for all i ∈ {1, . . . ,k} \ supp(μ)

• (2) and all of its subsystems are robustly permanent.

Proof. Suppose the first statement holds. Then unsaturated condition given by (5) with p = (1, . . . ,1)

and Theorem 3 implies that (2) and all its subsystems are robustly permanent. The other direction
follows from the necessary condition for robust permanence in Theorem 3 and the second assertion
of Proposition 3. �

To illustrate the broad applicability of Theorem 3, we develop applications to spatially structured
models in Section 5 and to a disease model and a gene network model in Section 6.

5. Applications: patch models

A fundamental application of our results are to spatially structured models, with k species dispers-
ing between m patches [33–35]:

dx j
i

dt
= x j

i f j
i

(
x j) +

∑
l

d jl
i xl

i − e j
i x j

i , i = 1, . . . ,k, j = 1, . . . ,m (7)

where x j
i denotes the density of species i in patch j, x j = (x j

1, . . . , x j
k) is the vector of species densities

in patch j, f j
i is the per-capita growth rate of species i in patch j, d jl

i � 0 is the dispersal rate for

species i from patch l into patch j, and e j
i is the emigration rate of species i out of patch j. Hence

e j
i �

∑
l dlj

i . We assume that the matrices (d jl
i ) j,l are irreducible for each species i. It is then easy to

write (7) in the form (2), with xi = (x1
i , . . . , xm

i )′ where ′ denotes transpose.

For a single species (7) generates a monotone flow. Under mild assumptions, e.g., each f j
i is de-

creasing and negative for large densities, there is a globally stable equilibrium, see, e.g., [36] and [37,
Sect. 5.4]. This equilibrium will be positive if the invasion rate at the origin λ(0), which is given by
the leading eigenvalue (stability modulus) of the matrix (d jl + f j(0) − e j), is positive.

5.1. Two species

For two competing species, e.g., each f j
i is decreasing with respect to both species and is negative

at large densities, the dynamics are still monotone, and hence almost all orbits converge to an equi-
librium. Robust permanence requires two conditions. First, λi(0) > 0 for both species in which case
there are two single species equilibria E1 and E2. Second, the invasion rates λ2(E1) and λ1(E2) are
positive. Whether there is a unique positive globally stable equilibrium for the robustly permanent
system depends in a delicate way on the system parameters, see [38]. For slowly dispersing popula-
tions (i.e. 0 < e j

i � 1 for all i, j), the robust permanence condition is particularly straight forward to

verify. Let E j
i be the largest solution to x j

i f j
i (x j

i ) = 0 i.e. the equilibrium attained by species i in patch
j when there is no dispersal and no competitors. For slowly dispersing populations, E1 is close to the
product (E1

1, . . . , Em
1 ), and the matrix A2(E1) is close to the diagonal matrix diag( f j

2 (E j
1))

m
j=1. Hence
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the invasion rate λ2(E1) is close to max j f j
2 (E j

1). So we obtain: The system with two slowly dispersing
competing species is robustly permanent if and only if

max
j

f j
2

(
E j

1

)
> 0 and max

j
f j

1

(
E j

2

)
> 0 (8)

Intuitively, robust permanence requires for each species there is at least one patch where it can
persist.

For predator–prey systems the situation is even easier. Since (under mild assumptions on the prey
dynamics) the Morse decomposition of ∂C is given by two equilibria {0,E1}, the spatial predator–
prey system is robustly permanent, if the predator can invade at the prey equilibrium: λ2(E1) > 0.
However, the global dynamics are likely to be more complicated. For instance, if in each patch there
is a globally stable limit cycle (e.g., [39–41]) and dispersal is sufficiently slow (i.e. 0 < e j

i � 1 for
all i, j), our results about robust permanence and the theory of normally hyperbolic manifolds [42]
imply that there is a positive m dimensional torus, which attracts almost all orbits in C, whenever
max j f j

2 (E j
1) > 0.

5.2. Rock–paper–scissors dynamics

The Lotka–Volterra model of rock–paper–scissor dynamics is a simple model that is used as proto-
type for understanding intransitive ecological outcomes [43,44]. Here, a simple spatial version of this
dynamic is given by

dx j
1

dt
= x j

1

(
1 − x j

1 − β j x j
2 − α j x j

3

) +
∑

k

d jk
1 xk

1 − e j
1x j

1

dx j
2

dt
= x j

2

(
1 − α j x j

1 − x j
2 − β j x j

3

) +
∑

k

d jk
2 xk

2 − e j
2x j

2

dx j
3

dt
= x j

i

(
1 − β j x j

1 − α jx j
2 − x j

3

) +
∑

k

d jk
3 xk

3 − e j
3x j

3

where α j ∈ (0,1) and β j > 1 for all j. A more general version of this dynamic is presented in [44].
Under the assumption that there is no cost to dispersal (i.e. e j

i = ∑
l dlj

i for all i, j), the maximal in-
variant set in ∂C consists of the origin 0 and a heteroclinic cycle connecting positive single species
equilibria E1, E2, and E3. For slowly dispersing populations (0 < e j

i � 1 for all i, j), E1 is close
to (x1, x2, x3) = (1, . . . ,1,0, . . . ,0,0, . . . ,0) and the invasion rates λ2(E1) and λ3(E1) are close to
max j 1 − α j and max j 1 − β j . For the other equilibria Ei , the invasion rates of the missing species
are also given by max j 1 − α j and max j 1 − β j . Consider the Morse decomposition of ∂C given by 0
and the heteroclinic cycle. Since λi(0) = 1 > 0 for i = 1,2,3, 0 is robustly unsaturated. An algebraic
computation reveals that (4) holds for all invariant measures supported by the heteroclinic cycle (i.e.
all convex combinations of the Dirac measures supported by the equilibria) if and only if

max
j

(
1 − α j) > −max

j

(
1 − β j)

Equivalently,

2 > min
j

α j + min
j

β j
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In particular, even if the heteroclinic cycle is attracting for each patch when the system is uncoupled
(i.e. 2 < α j + β j for all j), it can be repelling for the weakly coupled system.

5.3. Three species Lotka–Volterra in spatially homogeneous environments

Consider Lotka–Volterra dynamics in a spatially homogeneous environment:

dx j
i

dt
= x j

i

(
ri −

∑
s

aisx j
s

)
+

∑
l

d jl
i xl

i − e j
i x j

i , i = 1, . . . ,k; j = 1, . . . ,m (9)

We assume that dissipativity can be shown by a linear Liapunov function: There are ci > 0 such
that

∑
i ciaisxi xs < 0 holds for all x ∈ Rk+ \ {0}. Then the weighted sum of densities across all patches∑

i, j ci x
j
i is decreasing for large densities and hence (9) generates a dissipative semiflow with global

attractor Γ . We further assume that for each patch j and each species i the immigration rate equals
the emigration rate, i.e.,

e j
i =

∑
l

d jl
i (10)

This guarantees that the set H = {x ∈ C: x j
i = xl

i ∀i, j, l} of spatially homogeneous states is forward
invariant under (9).

Now consider the Lotka–Volterra dynamics without spatial structure

dxi

dt
= xi

(
ri −

∑
s

aisxs

)
, i = 1, . . . ,k (11)

It has been shown [12, Ch. 16.1, 16.2] that for k = 3, (11) is robustly permanent (robust meaning here
within the class of Lotka–Volterra systems) if and only if all equilibria on the boundary of R3+ are
unsaturated and whenever there is a heteroclinic cycle connecting the one species equilibria then this
cycle is repelling. Equivalently the following four conditions hold:

(i) there exists an interior equilibrium x̂ (i.e. Ax̂ = r with x̂ � 0);
(ii) det(−A) > 0;

(iii) the 2 species subsystems are not bistable competition systems;
(iv) if there is a heteroclinic cycle between the one species equilibria, say E1 → E2 → E3 → E1 then

the following inequality holds

λ2(E1)λ3(E2)λ1(E3) >
∣∣λ3(E1)λ1(E2)λ2(E3)

∣∣ (12)

Furthermore, the proof in [12, Ch. 16.1, 16.2] shows that the boundary flow of (11) has a simple
Morse decomposition: if (iv) applies then there are two Morse sets, the origin 0 is a repeller, and
the heteroclinic cycle is the dual attractor (within ∂R3+); if (iv) does not apply then the finitely many
boundary equilibria form a Morse decomposition of the boundary flow.

Theorem 4. Under the above assumptions, (9) for k = 3 is robustly permanent if and only if (i), (ii), (iii) and
(iv) hold.

Proof. Suppose (9) is robustly permanent. Since the nonspatial system (11) is the restriction of (9) to
the invariant subspace H, (11) must be robustly permanent and hence (i)–(iv) hold.

Conversely, suppose that (i)–(iv) hold. We show that the above Morse decomposition of the bound-
ary flow of (11) (now in H) is also a Morse decomposition for (9) restricted to the maximal invariant
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subset of ∂C which is contained in the spatial two species subsystems of (9). For this we show that
in each 2 species system the orbits of (9) converge to H. (For the one species subsystems this is obvi-
ous.) If a two species subsystem of (11) has an internal equilibrium, say E12 then by assumption (ii),
this is not a saddle but a sink, and hence a11a22 > a12a21. This implies that the 1–2 submatrix of A
is VL-stable [12, Ch. 15.3], and [45] implies that E12 is the global attractor for the spatially structured
system (9) restricted to the first two species.

If a two species subsystem of (11) has no internal equilibrium, then a one species equilibrium say
E1 is the global attractor. Then Lemma 2 (see below) shows the corresponding result for (9). A similar
proof applies to the case where the origin 0 is the global attractor of a two species subsystem.

Finally observe that under the above assumptions (9)–(10), the invasion rates λi at spatially ho-
mogeneous boundary equilibria are the same for (9) and (11). Since all boundary equilibria are
unsaturated for (11), they are for (9) as well. The same applies in case (iv) to the heteroclinic cycle.
Note that the condition (12) on the eigenvalues is equivalent to the fact that all invariant measures
supported on the heteroclinic cycle are unsaturated, see [16, Ex. 4.5]. �
Lemma 2. Suppose, in a two species Lotka–Volterra system (11) (k = 2) all interior orbits converge to the one
species equilibrium E1 . Then all orbits of the spatial version (9) (k = 2) converge to the spatially homogeneous
one species equilibrium E1 ∈ H.

Proof. If the system is of predator–prey or mutualistic type then Hasting’s [45] result applies again.
So let us assume that the local interaction is given by the competition system

dx1

dt
= r1x1(1 − x1 − αx2),

dx2

dt
= r2x2(1 − βx1 − x2) (13)

with 0 < α < 1 < β . In this case, Kazuo Kishimoto (letter to JH, Oct 1987) has given the following
argument. There exists a family of forward invariant rectangles contracting to E1. This shows that all
interior solutions of (9) (k = 2) converge to E1. �

Theorem 4 shows that a spatial network of identical patches is permanent, if the within patch
dynamics is permanent, and three species Lotka–Volterra dynamics. It is not clear how to extend this
result to more than three species. The crucial step in the three species case is that permanence pre-
cludes bistable two species subsystems. The spatial version of a bistable two species system allows
plenty of stable equilibria outside H, see [33]. However, permanent four species Lotka–Volterra sys-
tems may have two species bistable subsystems [12, Ch. 16.4]. So there may be invariant sets on the
boundary outside H which need to be unsaturated to make (9) permanent.

6. More applications

6.1. Disease dynamics with density-dependent demography

Gao and Hethcote [46] introduced a model of disease dynamics with density-dependent demo-
graphy. Here we consider a variation of their model in which a population of size P has a per-capita
birth rate b(P ) and per-capita death rate d. To ensure that the population persists in the absence of
the disease, we assume that there exists K > 0 such that b(K ) = d. To describe the disease dynamics,
let S be the number of individuals susceptible to the disease, I the number of infected individuals,
and R the number of individuals that have recovered from the disease. We assume that P = S + I + R .
If the disease transmission is asymptotic, β is the contact rate between susceptible and infected indi-
viduals, γ is the rate at which individuals recover from the disease, and m the mortality rate due to
the disease, then the population dynamics are given by

dP = b(P )P − dP − mI

dt
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dI

dt
= β(P − I − R)

I

ε + P
− (γ + d + m)I

dR

dt
= γ I − dR,

where ε > 0 is a constant. It is useful to introduce a change of coordinates in which y = I
P and z = R

P :

dP

dt
= (

b(P ) − d − my
)

P

dy

dt
=

(
β(1 − y − z)

P

ε + P
− γ − m(1 − y) − b(P )

)
y

dz

dt
= γ y − (

b(P ) − my
)
z.

Setting x1 = P and x2 = (y, z)′ where ′ denotes transpose yields a structured model where A1(x) =
b − d − my and

A2(x) =
(

β(1 − y − z) P
ε+P − γ − m(1 − y) − b(P ) 0

γ my − b(P )

)

Since {0, (K ,0,0)} is a Morse decomposition of the boundary dynamics, Theorem 3 and Remark 1
imply that this model is robustly permanent if and only if b(0) > d and β K

ε+K > γ + m + d. In par-

ticular, for ε > 0 sufficiently small, one requires that the basic reproductive number β
γ +m+d is greater

than one.
Remarkably, this same criterion determines robust permanence of models with significantly more

complicated boundary dynamics. For example, suppose the focal population is a predator species. If
the prey has abundance N and exhibits logistic dynamics, f (N) is the per-capita predator consump-
tion rate of the prey, and b(N) is the per-capita reproductive rate of the predator, then the dynamics
become

dN

dt
= rN(1 − N/K ) − f (N)P

dP

dt
= (

b(N) − d − my
)

P

dy

dt
=

(
β(1 − y − z)

P

ε + P
− γ − m(1 − y) − b(N)

)
y

dz

dt
= γ y − (

b(N) − my
)
z

where r > 0 and K > 0, and f (N),b(N) satisfy f (0) = b(0) = 0. Define x1 = N , x2 = P , x3 = (y, z)′ . Let
us assume that the disease-free community (i.e. y = z = 0) is permanent (i.e. b(K ) > d) and let A be
the global attractor in the interior of the P –N plane. Under these assumptions, a Morse decomposition
of the boundary dynamics is given by (x1, x2, x3) = (0,0,0), (x1, x2, x3) = (K ,0,0), and A. Since the
equilibria (0,0,0) and (K ,0,0) are unsaturated, it remains to characterize λ3(μ) for any invariant
measure μ supported by A. Proposition 3 and Remark 1 imply

λ2(μ) =
∫ (

b(x1) − d
)

dμ(x) = 0
C
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Hence
∫

C b(x1)dμ(x) = d and

λ3(μ) = β

∫
x2

ε + x2
dμ(x) − γ − m − d

Theorem 3 and Remark 1 imply that this structured model is robustly permanent if β
γ +m+d > 1 and

ε > 0 is sufficiently small.

6.2. Gene networks

The repressilator is an oscillatory gene network based on three (or more generally an odd number
of) transcriptional repressors. Such a system has been genetically engineered in E-coli by Elowitz and
Leibler [47]. Mathematical models go back to [48,49]. They all involve concentrations of proteins and
mRNAs. A modified model with auto-activation was suggested in [50]

ẋi = β(yi − xi) (14)

ẏi = αF (x)i − yi (15)

with

F (x)i = xi g(xi, xi−1) = xi

1 + xi + ρxi−1 + κρxi xi−1
(16)

Here xi and yi are normalized concentrations of proteins and mRNAs belonging to gene i, ρ is the
strength of repression and κ a cooperativity parameter. This is a structured system of type (2)(

ẋi
ẏi

)
=

( −β β

αg(xi, xi−1) −1

)(
xi
yi

)
(17)

In [50, Thm. 3], it was shown that for n = 3, α > 1 and ρ > 1, system (14) has a heteroclinic cycle
connecting the 3 single gene equilibria (similar to the rock–scissors–paper dynamics of Section 5.2).
Moreover

• the system is permanent, i.e., the boundary of R6+ is repelling, if λ + μ > 0,
• this heteroclinic cycle is asymptotically stable if λ + μ < 0

where λ > 0 and μ < 0 are the invasion rates of the two missing genes, i.e., the leading eigenvalues
of the 2 × 2 matrix in (17) evaluated at the appropriate single gene equilibria (for explicit expressions
see [50, Eqs. (127), (128)]).

Theorem 3 implies the permanence condition implies the stronger conclusion of robust perma-
nence. A similar result holds for n odd, but the heteroclinic cycle is then actually a heteroclinic
network.
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