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Abstract In this paper, we consider permanence of Lotka–Volterra equations. We
investigate the sign structure of the interaction matrix that guarantees the permanence
of a Lotka–Volterra equation whenever it has a positive equilibrium point. An interac-
tion matrix with this property is said to be qualitatively permanent. Our results provide
both necessary and sufficient conditions for qualitative permanence.

Mathematics Subject Classification (2000) 37N25 · 92B05

1 Introduction

One of the important challenges in ecology is to develop a theory which predicts the
stability of an ecosystem when its community structure is given. In this paper, to tackle
this problem, we study the well-known Lotka–Volterra system:

ẋi = xi (ri +
n∑

j=1

ai j x j ), i = 1, 2, . . . , n, (1.1)
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where xi denotes the population density of species i . The parameter ri denotes the
intrinsic growth rate of species i and the matrix A composed of ai j determines the com-
munity structure (the matrix A is called the interaction matrix). One of the important
assumptions in Lotka-Volterra systems is that the functional responses are linear. This
assumption is relaxed in many ecological models to include non-linear functional
responses such as Holling type II functional responses. Although such a relaxation
provides a system with an important stabilization mechanism (e.g., see [17,18]), the
linear functional response has an advantage in developing a general theory applica-
ble to systems of large and complex networks. This paper focuses on the ecological
system with simple functional responses and explores large and complex ecological
networks.

The theory of VL-stable (or dissipative) matrices is one of the important theories
for understanding the global dynamics of Lotka–Volterra equations (e.g., see [4,14,
23,24]). A square matrix A is said to be VL-stable if there exists a positive diagonal
matrix D > 0 such that the symmetric matrix D A + A� D is negative definite, i.e., if
there exist positive numbers di such that

∑

i

∑

j

di ai j xi x j < 0

for all x �= 0. The theory of VL-stable matrices shows that if A is VL-stable, then for
every ri ∈ R system (1.1) has a globally asymptotically stable equilibrium point x̂,
i.e., x̂ is stable in R

n+ and attracts all solutions with the initial conditions x(0) ∈ R
n+

satisfying xi (0) > 0 for all i ∈ supp( x̂ ). Here R
n+ = {x ∈ R

n : xi ≥ 0} and
supp(x) = {i : xi > 0}. If (1.1) has an interior equilibrium point x̂, then x̂ is the
globally asymptotically stable equilibrium point. A matrix A is said to be qualitatively
VL-stable if every matrix with the same sign pattern is VL-stable. The application of
qualitative stability concepts to ecology goes back to May [15]. A necessary and
sufficient condition for qualitative VL-stability is given as follows [4,14]:

(i) aii < 0,

(ii) ai j a ji ≤ 0,

(iii) there are no cycles of length ≥ 3 (i.e., ai1i2 ai2i3 · · · aik i1 = 0 for all
pairwise distinct i1, i2, . . . , ik with k ≥ 3).

(1.2)

Therefore, under this qualitative condition, all species coexist at a globally asymp-
totically stable equilibrium point as long as the positive equilibrium point exists. A
typical example covered by (1.2) is an n species food chain.

Although the theory of VL-stable matrices provides a sufficient condition for global
stability of the Lotka–Volterra equations, it has been recognized that the global sta-
bility is a rather strong concept for species coexistence. In fact, we often observe
species coexistence in the Lotka–Volterra equation even if it does not have a globally
asymptotically stable positive equilibrium point. This implies that species coexistence
is possible under a wider class of community structures than that predicted by the
theory of VL-stable matrices. Therefore, in this paper, instead of global stability we
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Qualitative permanence of Lotka–Volterra equations 865

consider permanence of (1.1). The definition of permanence is given as follows: (1.1)
is said to be permanent if there exists a positive constant δ > 0 such that

δ ≤ lim inf
t→∞ xi (t) ≤ lim sup

t→∞
xi (t) ≤ 1

δ
, i = 1, 2, . . . , n

for all solutions x(t) with x(0) > 0 (xi (0) > 0 for all i). It is obvious that system
(1.1) is permanent if the positive equilibrium point is globally asymptotically stable.
Conversely, even if the positive equilibrium point is unstable, (1.1) can be permanent.
Permanent systems could exhibit every possible type of coexistence dynamics.

In the next section, to emphasize the influence of the community structure on perma-
nence, we define qualitative permanence. Then we list our main results on qualitative
permanence of (1.1). These results include both necessary and sufficient conditions
for qualitative permanence. The necessary condition provides a community structure
with which system (1.1) is not permanent even if it has a positive equilibrium point,
and the sufficient condition provides a community structure with which system (1.1)
is permanent as long as it has a positive equilibrium point. All proofs are given in the
subsequent sections: Sects. 5–7. In Sect. 3, we provide some ecological interpretation
of our mathematical results. In Sect. 4, we define the reduced systems of (1.1) and
introduce a theorem on average Liapunov functions. They are used in the proofs of
our main results. The final section includes concluding remarks.

2 Qualitative permanence

It is known that a positive equilibrium point is necessary for (1.1) to be permanent
(see Theorem 13.5.1 of [4]). If system (1.1) does not have a positive equilibrium point,
then the omega-limit set ω(x) of every x ∈ R

n+ is contained in the boundary of R
n+

(see Theorem 5.2.1 of [4]). Suppose that system (1.1) has a positive equilibrium point,
which is given as a positive root x∗ > 0 of the following equations:

ri +
n∑

j=1

ai j x∗
j = 0, i = 1, 2, . . . , n.

Substituting this equation into (1.1) and removing the parameters ri , we obtain

ẋi = xi

n∑

j=1

ai j (x j − x∗
j ), i = 1, 2, . . . , n. (2.1)

Conversely, consider (2.1) with x∗ > 0. It is obvious that x∗ is a positive equilibrium
point of (2.1), and for any pair A = (ai j ) and x∗ the vector r ∈ R

n is uniquely
determined by ri +∑n

j=1 ai j x∗
j = 0, i = 1, 2, . . . , n. So, (2.1) represents any Lotka–

Volterra system of the form (1.1) admitting a positive equilibrium point.
Let Q A be the set of the matrices Ã = (̃ai j ) with the same sign pattern as A = (ai j ),

i.e., sgnãi j = sgnai j for all i, j . Then qualitative permanence is defined as follows:
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Definition 2.1 (Qualitative permanence). An n × n matrix A = (ai j ) is said to be
qualitatively permanent if

ẋi = xi

n∑

j=1

ãi j (x j − x∗
j ), i = 1, 2, . . . , n

is permanent for every Ã ∈ Q A and every x∗ > 0.

Note that qualitative permanence is a property of square matrices. An n × n matrix
A is qualitatively permanent if and only if

ẋi = xi (ri +
n∑

j=1

ãi j x j ), i = 1, 2, . . . , n

is permanent for every Ã ∈ Q A and r ∈ R
n satisfying r + Ãx∗ = 0 for some x∗ > 0.

Hence, if A is qualitatively permanent, then system (1.1) is permanent as long as it
has a positive equilibrium point.

We start with a simple necessary condition for qualitative permanence.

Proposition 2.2 If a matrix A = (ai j ) is qualitatively permanent, then aii ≤ 0 for all
i , and aii < 0 for at least one i .

The proof of this proposition is given in Sect. 5. In the following we restrict to
the “generic” (and realistic) case that all diagonal entries of A are negative. Then we
obtain strong necessary conditions for qualitative permanence as follows.

Theorem 2.3 Suppose that aii < 0 for all i . If a matrix A = (ai j ) is qualitatively
permanent, then

(C1) all cycles of length ≥ 2 are nonpositive (i.e., ai1i2 ai2i3 · · · aik i1 ≤ 0 for all
pairwise distinct i1, i2, . . . , ik , k ≥ 2),

(C2) every negative cycle ai1i2 ai2i3 . . . aik i1 < 0 contains a unique negative ai j .

The condition (C1) follows from a necessary condition for permanence of (1.1) in
terms of the sign of the determinant of the interaction matrix. The condition (C2) is
obtained by constructing an attractive heteroclinic cycle contained in the boundary of
R

n+. The proof of this theorem is given in section 5.
We believe that (C1) and (C2) already characterize qualitative permanence.

Conjecture 2.4 Suppose that aii < 0 for all i and that conditions (C1) and (C2)
hold. Then the matrix A = (ai j ) is qualitatively permanent.

In the following we provide some partial results in this direction. Note that the
conditions (C1) and (C2) are much weaker than the characterization (1.2) of qualita-
tive VL–stability. This provides many sign patterns for the interaction matrix A that
guarantee permanence without global stability of the interior equilibrium, and hence
lead to more interesting dynamics such as a stable limit cycle or chaos. Some explicit
sign patterns are listed in Sects. 3 and 8.

The following theorem provides a sufficient condition for permanence for certain
generalizations of food chains.
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Qualitative permanence of Lotka–Volterra equations 867

Theorem 2.5 Suppose that A has the following sign pattern:

⎛

⎜⎜⎜⎜⎜⎝

• • · · · • •
⊕ • · · · • •
0 ⊕ · · · • •
...

...
. . .

...
...

0 0 · · · ⊕ •

⎞

⎟⎟⎟⎟⎟⎠
, (2.2)

where • denotes an arbitrary sign and ⊕ denotes either 0 or +. Then system (1.1) is
permanent if −A is a P-matrix and there exists a positive equilibrium point.

Note that if −A is a P-matrix, then all diagonal entries of A are negative (the
definition of P-matrices is given in Definition 6.1). The proof of this theorem is given
in Sect. 6.

Since every (nonzero) cycle of A with the sign pattern (2.2) consists of a single •
sign and several ⊕ signs, the sign pattern (2.2) satisfies the condition (C2). Therefore,
by Theorems 2.3 and 2.5 (and Lemma 6.2), we obtain the following theorem, which
provides a sufficient condition for qualitative permanence.

Theorem 2.6 Suppose that aii < 0 for all i and A has the sign pattern (2.2). Then A
is qualitatively permanent if (C1) holds.

In low dimensional cases (i.e., n ≤ 3), the necessary condition (C1)–(C2) given in
Theorem 2.3 becomes a sufficient condition.

Theorem 2.7 Suppose that aii < 0 for all i and n ≤ 3. Then an n × n matrix A is
qualitatively permanent if and only if the conditions (C1) and (C2) hold.

3 Ecological interpretations

In this section, we consider ecological interpretations of our results.
In Theorem 2.3, we provide two necessary conditions (C1) and (C2) for qualitative

permanence which we believe to be also sufficient. (C1) includes the condition that
ai j a ji ≤ 0 for all i �= j . This means that all pairwise interactions are of predator–
prey type or degenerate (ai j a ji = 0). Indeed, strong mutualist interaction can lead
to unbounded orbits, whereas strong competition may lead to competitive exclusion
in form of bistability, both of which are incompatible with permanence. (C2) says
that each nonzero cycle ai1i2 ai2i3 · · · aik i1 contains precisely one negative element.
The reason is that an even number of negative entries would again enable a form of
bistability whereas an odd number (of at least three) allows for a repressilator-like
system that can lead to an attractive heteroclinic cycle on the boundary (e.g., see [19]).

Theorem 2.7 shows that the conditions (C1) and (C2) are necessary and sufficient
for qualitative permanence if n ≤ 3. If n = 1 or 2, the result is clear. Consider the
case n = 3. In this case, every matrix satisfying (C1) and (C2) belongs to at least one
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of the following five sign patterns (up to permutation):

B1 =
⎛

⎝
− 
 

⊕ − 

0 ⊕ −

⎞

⎠ , B2 =
⎛

⎝
− 0 

⊕ − 

⊕ ⊕ −

⎞

⎠ , B3 =
⎛

⎝
− 
 

⊕ − 0
⊕ ⊕ −

⎞

⎠ ,

B4 =
⎛

⎝
− 0 0
⊕ − 


 ⊕ −

⎞

⎠ , B5 =
⎛

⎝
− 
 0
⊕ − 0

 ⊕ −

⎞

⎠ ,

where 
 denotes either 0 or −. Although the matrices B4 and B5 do not have a nonzero
cycle of length 3 (and thus they are reducible), the matrices B1, B2 and B3 could have
a negative cycle of length 3, i.e., a13a32a21 < 0 (note that this cycle can destabilize
the matrices). B1, B2 and B3 are limit cases of the following tri-trophic food web with
omnivory:

B =
⎛

⎝
− − −
+ − −
+ + −

⎞

⎠ .

This matrix includes two nonzero cycles of length 3: a13a32a21 < 0 and a12a23a31 > 0.
The latter cycle is not allowed for qualitative permanence. In fact, the matrices B1, B2
and B3 do not have this cycle. If the latter cycle exists, strong competition may lead
to competitive exclusion in form of bistability as mentioned above. Species 2 and 3
are indeed competing for a common resource, species 1.

Our results are robust against a small perturbation of the parameters ri and ai j . If
(1.1) satisfying some sufficient condition given in this paper has a positive equilibrium
point, then, by definition, it is permanent. Furthermore, it is still permanent even if
we replace the zero entries of A by nonzero entries close to 0. For example, consider
system (1.1) with B1 as an interaction matrix, and suppose that this system has a
positive equilibrium point. Then this system is still permanent even if we replace the
(3, 1)-entry of the interaction matrix by ε whose absolute value is sufficiently small
(ε is also allowed to be negative). Since the same conclusion also holds for other matri-
ces, a comparison of B1, B2 and B3 with B shows that the positive cycle a12a23a31 > 0
must be very small for the application of our results. As mentioned above, competi-
tive exclusion can follow from large a12a23a31. More generally, suppose the n-trophic
food web with species i feeding on species i − 1, i = 2, . . . , n and species 1 at the
bottom. If species n (top-predator) also feeds on species 1, the food web has two long
cycles, a1kak, k−1 . . . a21 = − + · · · + and a12 . . . ak−1, kak1 = − · · · − +. Although
the former cycle satisfies (C1) and (C2), the latter cycle is not allowed for qualitative
permanence, then it could lead to extinction of species due to competitive exclusion or
heteroclinic cycles observed in a repressilator-like system (note that both cycles can
destabilize the matrix). To avoid this extinction, the food web must have a pattern to
reduce the latter cycle. This means that if a food web has such a cycle due to omnivory,
then some top down effect in the path through several trophic levels, or the bottom up
effect directly from the bottom to the top trophic level must be small. However, it is
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Qualitative permanence of Lotka–Volterra equations 869

not clear how small must the absolute value of such a cycle be to allow for permanence
(but see [4] for a classification of permanence of (1.1) with n ≤ 3).

4 Preliminaries

In this section, we define a reduced system of (1.1) and develop a method for proving
our theorems.

4.1 Reduced systems

A reduced system of (1.1) is introduced to obtain useful information about the equi-
librium points of (1.1) and their external eigenvalues. The same technique is utilized
by Kirlinger [9] in a three predator one prey system. Before the definition of a reduced
system of (1.1), we introduce some notation. Define I = {1, 2, . . . , n} (This notation
is used throughout this paper). Let J = {i1, i2, . . . , ik} ⊂ I and J �= ∅, I . Let A11
(resp. A22) be the principal submatrix of A with respect to J (resp. I\J ). Let A12
(resp. A21) be the submatrix of A with ai j , i ∈ J , j ∈ I\J (resp. ai j , i ∈ I\J , j ∈ J ).
Then, by renumbering the indices, A is transformed to

(
A11 A12
A21 A22

)
.

Similarly we define r1 (respectively, r2) by the vector composed of ri , i ∈ J (respec-
tively, ri , i ∈ I\J ). If A22 is nonsingular, we can define the reduced system of (1.1)
with respect to J as follows.

Definition 4.1 If A22 is nonsingular, then the following system is called the reduced
system of (1.1) with respect to J :

ẋi = xi (r
J
i +

∑

j∈J

a J
i j x j ), i ∈ J,

where r J
i and a J

i j are defined by

rJ =

⎛

⎜⎜⎜⎜⎝

r J
i1

r J
i2
...

r J
ik

⎞

⎟⎟⎟⎟⎠
:= r1 − A12 A−1

22 r2,

AJ =

⎛

⎜⎜⎜⎜⎝

a J
i1i1

a J
i1i2

· · · a J
i1ik

a J
i2i1

a J
i2i2

· · · a J
i2ik

...
...

. . .
...

a J
ik i1

a J
ik i2

· · · a J
ik ik

⎞

⎟⎟⎟⎟⎠
:= A11 − A12 A−1

22 A21.
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The reduced system is denoted by (1.1)J . If J = I\{k}, then r J
i and a J

i j , i, j ∈ J , are

given by r J
i = ri − aikrk/akk and a J

i j = ai j − aikak j/akk .

The matrix AJ is often called the Schur complement of A22 in A, and Schur’s
identity says that det A22 det AJ = det A.

The following lemma is useful for checking the feasibility of the reduced systems.

Lemma 4.2 Let k ∈ J . Suppose that A22 is nonsingular. Then the reduced system
(1.1)J\{k} is defined if a J

kk �= 0.

Proof It is straightforward to show a J
kk = det A′

22/ det A22, where A′
22 is the principal

submatrix of A with respect to (I\J )∪ {k}. (This is a special case of Schur’s identity)
The assumption implies det A′

22 �= 0.

The equilibrium points of the reduced system (1.1)J are closely related to those
of (1.1).

Lemma 4.3 For x̂ ∈ R
n, let x̂1 and x̂2 be the vectors composed of x̂i , i ∈ J , and x̂i ,

i ∈ I\J , respectively. Suppose that A22 is nonsingular.

(a) If x̂1 ≥ 0 is an equilibrium point of the reduced system (1.1)J and x̂2 =
−A−1

22 (r2 + A21̂x1) ≥ 0, then x̂ ≥ 0 is an equilibrium point of (1.1).
(b) If x̂ ≥ 0 is an equilibrium point of (1.1) satisfying x̂2 > 0, then x̂1 ≥ 0 is an

equilibrium point of the reduced system (1.1)J . Furthermore, for any i ∈ J with
x̂i = 0, r J

i + (AJ x̂1)i is the external eigenvalue of (1.1) evaluated at x̂ with
respect to the xi -direction.

Proof Consider case (a). By assumption, x̂1 and x̂2 satisfy

x̂i (r
J
i + (AJ x̂1)i ) = 0, i ∈ J, (4.1)

r2 + A21̂x1 + A22̂x2 = 0. (4.2)

Substitution of x̂2 = −A−1
22 (r2 + A21̂x1) into the first equation yields

x̂i (ri + (A11̂x1)i + (A12̂x2)i ) = 0, i ∈ J. (4.3)

Hence, by (4.2) and (4.3), we see that x̂ is a nonnegative equilibrium point of (1.1).
Consider case (b). Every equilibrium point x̂ of (1.1) with x̂2 > 0 satisfies (4.2)

and (4.3). Equation (4.2) leads to x̂2 = −A−1
22 (r2 + A21̂x1) and its substitution into

(4.3) yields (4.1), which is the equilibrium equation for the reduced system (1.1)J .
For i ∈ J , we have

r J
i + (AJ x̂1)i = (r1 − A12 A−1

22 r2)i + ((A11 − A12 A−1
22 A21)̂x1)i

= ri + ( Âx )i ,

where (4.2) is used. This implies that if x̂i = 0, then r J
i +(AJ x̂1)i denotes the external

eigenvalue of (1.1) evaluated at x̂ with respect to the xi -direction.
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4.2 Average Liapunov functions

One of the powerful tools for proving permanence of (1.1) is an average Liapunov
function. The function P(x) = x p1

1 x p2
2 · · · x pn

n is often used as an average Liapunov
function to show that the boundary of R

n+ is repelling (see [4]). However, in this paper,
we adopt the function P(x) = xi , i ∈ I , as an average Liapunov function to show
that the face Si = {x ∈ R

n+ : xi = 0} is repelling. More precisely, by using this
function, we show that, in a given compact forward invariant set X ⊂ R

n+, there exists
a compact absorbing set X ′ ⊂ X\Si for X\Si (i.e., X ′ is forward invariant and for
every x ∈ X\Si the semi-orbit γ +(x) satisfies γ +(x) ∩ X ′ �= ∅). By the combination
of some known results (e.g., see Corollary 2.3 of [7] and Theorem 2.5 of [5]), we can
obtain the following lemma.

Lemma 4.4 Suppose that X ⊂ R
n+ is a compact forward invariant set. If there exists

an i ∈ I such that

ri + ( Âx)i > 0

for all equilibrium points x̂ ∈ Si ∩ X, then there exists a compact absorbing set
X ′ ⊂ X\Si for X\Si .

Proof Let S = Si ∩ X and define P : X → R+ by P(x) = xi . The theory of average
Liapunov functions [4,7,8] ensures that the conclusion of the lemma follows if

(a): P(x) = 0 if and only if x ∈ S,
(b): For every x ∈ S

sup
T >0

T∫

0

ri + (Ax(t))i dt > 0, (4.4)

where x(t) is a solution of (1.1) with x(0) = x.

The condition (a) is obviously satisfied. Let us check the condition (b). We first claim
that if (4.4) holds for every x ∈ ω(y) (ω(y) is the omega-limit set of y), then (4.4)
also holds for the solution starting at y. For h > 0 and T > 0, define

U (h, T ) = {x ∈ X :
T∫

0

ri + (Ax(t))i dt > h}.

Then U (h, T ) is open. Let y ∈ S and y(t) be a solution with y(0) = y. Suppose that
(4.4) holds for every x ∈ ω(y). Then the sets U (h, T ), h > 0, T > 0, form an open
cover of ω(y). Since ω(y) is compact, there exist h > 0 and T1, T2, . . . , Tm > 0 such
that

ω(y) ⊂ ∪m
i=1U (h, Ti ) =: W.
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Note that U (h2, T ) ⊃ U (h1, T ) if h1 ≤ h2. Since W is a neighborhood of ω(y), there
exists a t0 ≥ 0 such that y(t) ∈ W for all t ≥ t0. Therefore, for some t1, t2, . . . , tl ∈
{T1, T2, . . . , Tm}, the following inequality holds

t0∫

0

ri + (Ay(t))i dt + h
l∑

j=1

t j > 0.

This implies that the integral of (4.4) for y becomes positive at t = ∑l
j=0 t j .

Let k(x) be the number of positive components of x. By induction on k, we show
that (4.4) holds for all x ∈ S. If k(x) = 0 (thus x = 0 and S contains the origin), then
(4.4) holds since ri > 0. Suppose that (4.4) holds if 0 ≤ k(x) ≤ m − 1. Let x ∈ S
with k(x) = m. Then (i): 0 ≤ k(y) ≤ m − 1 holds for every y ∈ ω(x) or (ii): there
exists a point y ∈ ω(x) with k(y) = m. In case (i), the induction hypothesis and the
claim proved above yields (4.4). In case (ii), the averaging property of solutions of
(1.1) implies that there exists a sequence s j → ∞ and an equilibrium point x̂ ∈ S
such that

lim
j→∞

1

s j

s j∫

0

x(t)dt = x̂

(e.g., see Theorem 5.2.3 of [4] and Lemma 2.4 of [5]). Therefore, by assumption,

1

s j

s j∫

0

ri + (Ax(t))i dt > 0

holds for j sufficiently large. This implies that (4.4) holds.

5 Proof of Proposition 2.2 and Theorem 2.3

In this section, we prove the necessary conditions for qualitative permanence: Propo-
sition 2.2 and Theorem 2.3. Proposition 2.2 and condition (C1) follow from known
necessary conditions for permanence of (1.1) (see Lemmas 5.1 and 5.2). On the other
hand, the condition (C2) is obtained by constructing an attractive heteroclinic cycle
located in the boundary of R

n+ (see Lemma 5.4).
First, we list two lemmas utilized to obtain Proposition 2.2 and condition (C1).

Lemma 5.1 (Theorem 13.5.2 of [4]). If system (1.1) is permanent with interior equi-
librium x∗, then (a)

∑
aii x∗

i < 0 and (b) det(−A) > 0.

Lemma 5.2 Suppose that aii < 0 for all i . If det(− Ã) > 0 for every Ã ∈ Q A, then
(C1) holds.
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Qualitative permanence of Lotka–Volterra equations 873

Proof Let A be an n × n matrix. Then, by assumption, we have

det(− Ã) = (−1)n
∑

σ∈Sn

(sgn σ )̃a1σ(1)ã2σ(2) · · · ãnσ(n) > 0.

where Sn is the set of all permutations of {1, 2, . . . , n}. Let τ be a cyclic permuta-
tion (i1 i2 . . . ik) of length k ≥ 2. Then sgn τ = k − 1. Suppose that the cycle
ai1i2 ai2i3 . . . aik i1 is positive. Choose ãi j as follows:

ãi i = −1, i ∈ I\{i1, i2, . . . , ik}
ãi i = −ε, i ∈ {i1, i2, . . . , ik}
ãi j = ε, i, j ∈ I, j �= τ(i), i �= j.

Then

det(− Ã) = −ãi1i2 ãi2i3 · · · ãik i1

+ (−1)n
∑

σ �=τ, σ∈Sn

(sgn σ )̃a1σ(1)ã2σ(2) · · · ãnσ(n),

where the first term does not contain any ε, but each term in the summation contains
at least one ε. If ε is sufficiently small, then det(− Ã) becomes negative. This is a
contradiction, thus any cycle of length ≥ 2 is nonpositive.

Lemma 5.2 is essentially Theorem 3.1 in [16]. For convenience we included a proof
here. Now Part (a) of Lemma 5.1 immediately implies Proposition 2.2 while condition
(C1) follows by combining Part (b) of Lemma 5.1 with Lemma 5.2.

In order to construct an attractive heteroclinic cycle, we define a specific matrix.
For n ≥ 3, define a matrix D(α1, α2, . . . , αn) by

D(α1, α2, . . . , αn) =

⎛

⎜⎜⎜⎝

−1 0 · · · 0 α1
α2 −1 · · · 0 0
...

...
...

...

0 0 · · · αn −1

⎞

⎟⎟⎟⎠ .

Note that this matrix has a cycle α1α2 · · · αn . The matrix D(α1, α2, . . . , αn) has the
following property.

Lemma 5.3 Let s = (r1, r2, . . . , rn−µ)�, B = D(α1, α2, . . . , αn−µ) be an
(n −µ)-dimensional vector and an (n −µ)× (n −µ) matrix. Then the n-dimensional

vector r = (r1 − µα1, r2, . . . , rn−µ, 1, . . . , 1)� and the n × n matrix A = D(α1, α2,

. . . , αn−µ, 1, . . . , 1) satisfy s = r{1,2,...,n−µ} and B = A{1,2,...,n−µ}.

Proof This lemma follows from the definition of the reduced systems (see
Definition 4.1).
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Let J = {1, 2, . . . , n − µ}. Let ri and Ai j , i, j ∈ {1, 2}, be the same as in
Definition 4.1. Then they are given as follows:

r1 = (r1 − µα1, r2, . . . , rn−µ)�, r2 = (1, 1, . . . , 1)�,

A11 =

⎛

⎜⎜⎜⎝

−1 0 · · · 0 0
α2 −1 · · · 0 0
...

...
...

...

0 0 · · · αn−µ −1

⎞

⎟⎟⎟⎠ , A12 =

⎛

⎜⎜⎜⎝

0 · · · 0 α1
0 · · · 0 0
...

...
...

0 · · · 0 0

⎞

⎟⎟⎟⎠ ,

A21 =

⎛

⎜⎜⎜⎝

0 · · · 0 1
0 · · · 0 0
...

...
...

0 · · · 0 0

⎞

⎟⎟⎟⎠ , A22 =

⎛

⎜⎜⎜⎝

−1 0 · · · 0 0
1 −1 · · · 0 0
...

...
...

...

0 0 · · · 1 −1

⎞

⎟⎟⎟⎠ .

Since the inverse of A22 is given by

A−1
22 =

⎛

⎜⎜⎜⎝

−1 0 · · · 0
−1 −1 · · · 0
...

...
. . .

...

−1 −1 · · · −1

⎞

⎟⎟⎟⎠ ,

it is clear that rJ = r1 − A12 A−1
22 r2 = (r1, r2, . . . , rn−µ)� and AJ = A11 −

A12 A−1
22 A21 = D(α1, α2, . . . , αn−µ) hold.

The important point of this lemma is that the positive entries in the matrix A are
removed in the reduction process.

The following lemma provides an example of a matrix A leading to an attractive
heteroclinic cycle contained in the boundary of R

n+. The system is related to the
repressilator [19]. In the statement of the lemma and its proof, FJ , J ⊂ I , denotes the
equilibrium point x of (1.1) satisfying xi > 0 for all i ∈ J and xi = 0 for all i ∈ I\J .

Lemma 5.4 Let m be an odd integer with 3 ≤ m ≤ n, and let J− = {i1, i2, . . . , im}
be a subset of I with i1 < i2 < · · · < im. Define µi1 , µi2 , . . . , µim and J+ as follows:

µi1 = n − im + i1 − 1,

µi j = i j − i j−1 − 1, j = 2, 3, . . . , m,

J+ = I\J−.

Suppose that

ri =
{

1 + µi c i ∈ J−

1 i ∈ J+,
αi =

{
−c i ∈ J−

1 i ∈ J+,
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where c > 1. Then (1.1) with A = D(α1, α2, . . . , αn) has a heteroclinic cycle � :
FI1 → FI2 → · · · → FIm → FI1 , where

I1 = {i1, i3, i5, . . . , im−2} ∪ J+

I2 = {i3, i5, i7, . . . , im} ∪ J+
...

Im = {im−1, i1, i3, . . . , im−4} ∪ J+.

This heteroclinic cycle is attractive if c > (m + 1)/(m − 1).

Proof We shall employ Theorem 1(b) of [3] to prove this theorem (see also Theorem
17.5.1(b) of [4]).

First we consider the existence of the equilibrium points FI1 , FI2 , . . . , FIm . By
Lemma 5.3, rJ− = (1, 1, . . . , 1)� and AJ− = D(−c,−c, . . . ,−c) hold. It is straight-
forward to show that the reduced system (1.1)J−

has the equilibrium points

F{i1,i3,i5,...,im−2}, F{i3,i5,i7,...,im }, . . . , F{im−1,i1,i3,...,im−4}.

By Lemma 4.3(a), we shall show that FI1 , FI2 , . . . , FIm are equilibrium points of (1.1).
Let r2 be the vector composed of ri , i ∈ J+ and A21 and A22 be the submatrices of
A with respect to the indices i ∈ J+, j ∈ J− and i, j ∈ J+, respectively. Then
r2 is a positive vector and A21 is a nonnegative matrix. Furthermore, we see that
−A22 is a nonsingular M-matrix (all off-diagonal entries of −A22 are nonpositive
and all principal minors of −A22 are positive). By the M-matrix theory, we can show
that −A−1

22 ≥ 0 (e.g., see Chap. 6 of [1]). Additionally, the sign pattern of −A22

implies that all diagonal entries of −A22 are positive, all diagonal entries of −A−1
22

are positive. Hence, −A−1
22 r2 is positive, and thus −A−1

22 (r2 + A21x1) is positive for
all x1 ∈ R

m+. Consequently, by Lemma 4.3(a), system (1.1) has the equilibrium points
FI1, FI2 , . . . , FIm .

Let us consider the existence of the heteroclinic orbit �1 connecting FIm and FI1 .
Since the heteroclinic orbit �1 is contained in the face Sim := {x ∈ R

n+: xim = 0},
we consider the dynamics of (1.1) on Sim . On the face Sim , system (1.1) is
reduced to the (n −1)-dimensional Lotka–Volterra system with the interaction matrix
D(α1, . . . , αim−1, 0, αim+2, . . . , αn). Note that this matrix satisfies the qualitative
VL-stability criterion (1.2). By the VL-stability theory (e.g., see Sect. 15.3 of [4]
and [23,24]), this subsystem has an equilibrium point p which is globally asymptoti-
cally stable in the sense that every solution x(t) with x(0) ∈ R

n−1+ and xi (0) > 0 for
all i ∈ supp(p) converges to p. Since the Jacobi matrix evaluated at FI1 has a single
positive eigenvalue corresponding to the xim -direction and n − 1 negative eigenval-
ues (see Table 1), FI1 is asymptotically stable within Sim . Thus p = FI1 . Similarly,
we can show that the Jacobi matrix evaluated at FIm has a single positive eigenvalue
corresponding to the xim−2 -direction and n − 1 negative eigenvalues. Therefore, by
the unstable manifold theorem, we can construct a heteroclinic orbit connecting FIm

and FI1 . By the similar argument, we can also construct the heteroclinic orbits �i ,
i = 2, . . . , m, connecting FIi−1 and FIi . Therefore, the heteroclinic cycle � exists.
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Table 1 The eigenvalues of FI1

xi1 xi1+1 · · · xi2−1 xi2 xi2+1 · · · xi3−1 xim xim+1 · · · xi1−1
· · ·

−1 −2 · · · −µi2 − 1 1 − c −1 · · · −µi3 1 −1 · · · −µi1

It is obvious that a small neighborhood of � within the boundary of R
n+ is contained

in ∪i∈J− Si . The dynamics in ∪i∈J− Si implies that the heteroclinic cycle � is asymp-
totically stable within the boundary of R

n+.
By Theorem 1(b) of [3], we see that the attractivity of this heteroclinic cycle is

determined by the eigenvalues of the Jacobi matrix of (1.1) evaluated at the m equilib-
rium points. In our case, it is sufficient to show that the sum of the external eigenvalues
at each FIi is negative, then the heteroclinic cycle becomes attractive. Let us focus
on FI1 . There are (m + 1)/2 external and n − m + (m − 1)/2 internal eigenvalues
associated with FI1 . (m − 1)/2 of the external eigenvalues are 1 − c < 0 and the
remaining one, which corresponds to the xim -direction, is 1. Since every equilibrium
in the heteroclinic cycle has similar eigenvalues, the heteroclinic cycle is attractive if

m − 1

2
(1 − c) + 1 < 0

1 − c < − 2

m − 1

c > 1 + 2

m − 1
= m + 1

m − 1
.

Proof of Theorem 2.3 By Lemmas 5.1 and 5.2, it is clear that the condition (C1) is
necessary for qualitative permanence.

Consider the condition (C2). Let r and A be the same as in Lemma 5.4. Then
system (1.1) has an attractive heteroclinic cycle on the boundary of R

n+ if c is large.

Furthermore, since the reduced system (1.1)J−
has a positive equilibrium point

(
1

1 + c
,

1

1 + c
, . . . ,

1

1 + c

)
,

Lemma 4.3(a) shows that system (1.1) also has a positive equilibrium point. Therefore,
the matrix A is not permanent. It is straightforward to show that this result still holds
even if we slightly perturb the matrix A (e.g., we replace the zero entries of A by
ε ≈ 0) since our proof of Lemma 5.4 is robust against a small perturbation to the
parameters. This implies that an n × n matrix with a negative cycle of length n is not
qualitatively permanent if the cycle contains multiple negative entries.

Finally consider the case where an n×n matrix A contains a shorter negative cycle of
length k < n that consists of multiple negative entries. It is clear that system (1.1) with
the following matrix A can have an attractive heteroclinic cycle on the boundary of R

n+:
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A =

⎛

⎜⎜⎜⎝

B 0 · · · 0
0 −1 · · · 0
...

...
. . .

...

0 0 · · · −1

⎞

⎟⎟⎟⎠ ,

where B is a k × k matrix with a negative cycle of length k that consists of multiple
negative entries. Similarly to the above, this result is robust against a small perturba-
tion to the parameters. Hence every matrix with a negative cycle containing multiple
negative entries is not qualitatively permanent. This completes the proof. ��

6 Proof of Theorem 2.5

In this section, we prove Theorem 2.5. Before its proof, we introduce some useful lem-
mas utilized in the proof. The lemmas are closely related to the concept of P-matrices,
which is defined as follows:

Definition 6.1 (P-matrix) A matrix A is said to be a P-matrix if all its principal minors
are positive. A matrix A is said to be a qualitative P-matrix if every Ã ∈ Q A is a
P-matrix.

A qualitative P-matrix is characterized as follows.

Lemma 6.2 (Theorem 3.1 of [16] and Exercise 15.5.5 of [4]). A matrix −A is a
qualitative P-matrix if and only if aii < 0 for all i and (C1) holds.

When we apply Lemma 4.4 to (1.1), we have to construct a compact forward
invariant set X . By the following lemma, the existence of such a compact set is ensured.

Lemma 6.3 (c.f. Theorem 15.2.1 and Exercise 15.4.3 of [4]). If −A is a P-matrix,
then there exists a compact absorbing set X ⊂ R

n+ for R
n+.

The equilibrium point x̂ of (1.1) is said to be saturated if ri + ( Âx )i ≤ 0 whenever
x̂i = 0. A positive equilibrium point is necessarily saturated. By definition, if x̂ is not
saturated (unsaturated), then there exists an i ∈ I such that x̂i = 0 and ri + ( Âx )i >

0. The following lemma shows that, under the condition that −A is a P-matrix, all
boundary equilibrium points are unsaturated if (1.1) has a positive equilibrium point.

Lemma 6.4 (Theorem 15.4.5 [4]). System (1.1) has a unique saturated equilibrium
point for every r ∈ R

n+ if and only if −A is a P-matrix.

Now we are ready to prove Theorem 2.5. We use a sequential method to prove
permanence, similar to [10–13].

Proof of Theorem 2.5 By Lemma 6.3, system (1.1) has a compact absorbing set X ⊂
R

n+ for R
n+. Therefore, we focus on the orbits in X .

Hereafter, we shall show that there exists a sequence i1, i2, . . . , in such that each
∪k

j=1Si j , k = 1, 2, . . . , n, is repelling. Let J = I\{i1, i2, . . . , ik−1} and J �= ∅, I .
For the induction hypothesis, we suppose that there exists a compact absorbing set
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X I\J ⊂ X\ ∪i∈I\J Si for X\ ∪i∈I\J Si , and the matrix AJ has the same sign pattern
as (2.2) (note that A22, which is the principal submatrix of A with respect to I\J , is
nonsingular since −A is a P-matrix). Then system (1.1) has a boundary equilibrium
point x̂ such that x̂i > 0 for i ∈ I\J and x̂i = 0 for i ∈ J since the subsystem of
(1.1) on ∩i∈J Si is permanent (e.g., see Theorem 13.5.1 of [4]). By Lemma 6.4, x̂ is
unsaturated, i.e., r J

i = ri + ( Âx )i > 0 holds for some i ∈ J . Choose an ik such that
r J

ik
> 0 and r J

i ≤ 0 for all i ∈ J with i > ik . Since x̂ is a unique equilibrium point

located in ∩i∈J Si ∩ X I\J , Lemma 4.4 with r J
ik

> 0 implies that the subsystem of (1.1)
on ∩i∈J\{ik }Si is permanent. Therefore, the subsystem has a positive equilibrium point,
i.e., system (1.1) has an equilibrium point x̆ satisfying x̆i > 0 for i ∈ (I\J )∪{ik} and
x̆i = 0 for i ∈ J\{ik}. By the relationship of equilibrium points between (1.1) and
(1.1)J , we obtain r J

ik
+ a J

ik ik
x̆ik = 0. This implies a J

ik ik
< 0.

We claim that each equilibrium point x of system (1.1) on X I\J ∩ Sik satisfies
xi = 0 for all i ∈ J with i > ik . Suppose not. Then, by Lemma 4.3, the reduced
system (1.1)J has an equilibrium point x1 such that xi > 0 for some i ∈ J with i > ik .
Since all elements below the sub-diagonal of AJ are zero and xik = 0, the equilibrium
equation

xi (r
J
i + (AJ x1)i ) = 0, i ∈ J (6.1)

still holds even if we replace all xi , i ∈ J , i ≤ ik , by zero. Therefore, we can construct
a vector x such that

xi = 0, i ∈ J, i ≤ ik

xi ≥ 0, i ∈ J, i > ik

and both (6.1) and

ri + (Ax )i = 0, i ∈ I\J

are satisfied. Note that x is an equilibrium point of (1.1). Since both x and x̂ are
saturated equilibrium points in the subsystem composed of species i ∈ supp( x ), we
have a contradiction to Lemma 6.4. This completes the proof of the claim.

By the sign patterns of x and AJ ,

r J
ik

+
∑

j∈J

a J
ik j x j = r J

ik
> 0

holds for every equilibrium point x ∈ X I\J ∩ Sik . Therefore, Lemma 4.4 implies that
Sik is repelling in X I\J , thus ∪k

j=1Si j is repelling. By Lemma 4.2 and a J
ik ik

< 0, the

reduced system (1.1)J\{ik } can be defined and the matrix AJ\{ik } has the same sign
pattern as (2.2).

Similarly to the above, if we choose i1 ∈ I such ri1 > 0 and ri ≤ 0 for all i > i1,
then we can show that Si1 is repelling. This completes the proof. ��
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7 Proof of Theorem 2.7

Proof of Theorem 2.7 It follows from Theorem 2.3 that the conditions (C1) and (C2)
are necessary for qualitative permanence.

Let us consider the sufficiency. It is obvious that an n × n matrix A with n ≤ 2
is qualitatively permanent if (C1) holds. Indeed such a matrix satisfies the sufficient
condition given in Theorem 2.6.

Let us consider the case n = 3. By listing all the sign patterns satisfying (C1) and
(C2), we see that such sign patterns are categorized into at least one of B1, B2, . . . , B5
listed in Sect. 3 (up to permutation). Therefore, in order to prove the theorem, we shall
show that every sign pattern Bi , i = 1, 2, . . . , 5, is qualitatively permanent.

By Theorem 2.6, the sign pattern B1 is qualitatively permanent. To show that the
remaining sign patterns are qualitatively permanent, we construct a sequence i1, i2, i3
such that Si1 , Si1 ∪ Si2 and Si1 ∪ Si2 ∪ Si3 are repelling. This is the same method used
in the proof of Theorem 2.6.

First, we shall show that S1 is repelling in all cases. On the face S1, there are at
most four equilibrium points, which have the following sign patterns:

p0 =
⎛

⎝
0
0
0

⎞

⎠ , p1 =
⎛

⎝
0
+
+

⎞

⎠ , p2 =
⎛

⎝
0
+
0

⎞

⎠ , p3 =
⎛

⎝
0
0
+

⎞

⎠ .

Since the first rows of all Bi are nonnegative, the existence of a positive equilibrium
point implies r1 > 0. Therefore, the origin p0 is unstable in the x1-direction. Further-
more, since every boundary equilibrium point is unsaturated, r1 + (Ap1)1 > 0 holds.
The inequalities r1 + (Ap2)1 > 0 and r1 + (Ap3)1 > 0 can be shown as follows. Let
x∗ be a positive equilibrium point. Then r + Ax∗ = 0 holds. Let p2 = (0, y, 0)� and
p3 = (0, 0, z)�. Then y and z satisfy

r2 + (Ap2)2 = −(Ax∗)2 + a22 y = 0,

r3 + (Ap3)3 = −(Ax∗)3 + a33z = 0.

Thus y = (Ax∗)2/a22 and z = (Ax∗)3/a33. By these equalities, we have

r1 + (Ap2)1 = −(Ax∗)1 + a12 y

= −(Ax∗)1 + a12(Ax∗)2/a22

= (−a11 + a12a21

a22
)x∗

1 + (−a13 + a12a23

a22
)x∗

3 ,

r1 + (Ap3)1 = −(Ax∗)1 + a13z

= −(Ax∗)1 + a13(Ax∗)3/a33

= (−a11 + a13a31

a33
)x∗

1 + (−a12 + a13a32

a33
)x∗

2 .

It follows from the sign patterns of B2, . . . , B5 that these two numbers are positive.
Therefore, S1 is repelling (i.e., i1 = 1).
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We can choose i2 and i3 as follows. Since r1 > 0, the x1-axis always has an
equilibrium point (+, 0, 0). Since this equilibrium point is unsaturated and every
equilibrium point on the interior of S2 and S3 are also unsaturated, at least one of
S2 and S3 are repelling in R

3+\S1. The interior of the remaining face Si contains
one equilibrium point, which is unsaturated. Therefore, the sequence 1, 2, 3 or 1, 3, 2
completes the proof. ��

8 Concluding remarks

In this paper, we have investigated permanence of Lotka–Volterra equations from a
qualitative, structural point of view. When does the structure of a community, i.e.,
the signs of the interaction matrix, guarantee permanence of the system, assuming
only the existence of an interior equilibrium? Theorem 2.3 provides two necessary
conditions (C1) and (C2) for such qualitative permanence which we believe to be
also sufficient. Theorem 2.7 proved that they are necessary and sufficient if n ≤ 3.
This theorem is proved by listing all possible sign patterns satisfying (C1) an (C2) and
examining qualitative permanence of each pattern. Unfortunately, if n = 4, the possible
sign patterns satisfying (C1) and (C2) are categorized into 60 maximal sign patterns
(up to permutation). It remains open to question whether (C1) and (C2) are sufficient
for qualitative permanence if n ≥ 4 (see Conjecture 2.4; Theorem 2.6).

Let us compare the conditions (C1) and (C2) with the ones for qualitative
VL-stability. By definition, the concept of qualitative permanence is weaker than
that of qualitative VL-stability. Indeed, the class of qualitative VL-stability is a proper
subset of the class of qualitative permanence. For example, consider the following
sign pattern:

B ′
1 =

⎛

⎝
− − −
+ − −
0 + −

⎞

⎠ .

Since B ′
1 is a special case of B1, B ′

1 is qualitatively permanent. However, it is not
qualitatively VL-stable since it has a cycle of length 3, i.e., a13a32a21 < 0. This cycle
can destabilize the matrix B ′

1. In fact, since qualitative VL-stability is equivalent to
qualitative stability (or sign stability) under the assumption aii < 0 for all i (e.g.,
see [14,22]), we can choose the parameters ri and ai j leading to a permanent system
with an unstable positive equilibrium point (note that the Jacobi matrix evaluated at a
positive equilibrium point x∗ is given by (x∗

i ai j )). Note that B ′
1 gives a special case

of a system with intra-guild predation, which is known as a system with oscillatory
dynamics [6].

We can expect that interaction strengths in food webs of real ecosystems have
patterns. For example, we can expect that the effect of an insect feeding on a tree
is very small, but the converse is very large [21]. In fact, an increasing number of
studies find a pattern in food webs of real ecosystems. For example, de Ruiter et al.
[2] found that the effect of a predator on its prey is relatively large at lower trophic
level, while the effect of a prey on its predator is relatively large at higher trophic
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level. Furthermore, Neutel et al. [20] found the pattern that a long cycle comprises
relatively weak links. These studies examine patterns for stability of steady state in
ecosystems (thus the patterns are observed in community matrices, which correspond
to the Jacobi matrices evaluated at a positive equilibrium point, constructed from data
of real ecosystems). As the stability theory does, our results of qualitative permanence
would provide a pattern that we expect to be ubiquitous in real ecosystems.
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