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Garay and Hofbauer (SIAM J. Math.Anal. 34 (2003)) proposed sufficient conditions for robust permanence
and impermanence of the deterministic replicator dynamics. We reconsider these conditions in the context
of the stochastic replicator dynamics, which is obtained from its deterministic analogue by introducing
Brownian perturbations of payoffs. When the deterministic replicator dynamics is permanent and the noise
level small, the stochastic dynamics admits a unique ergodic distribution whose mass is concentrated
near the maximal interior attractor of the unperturbed system; thus, permanence is robust against small
unbounded stochastic perturbations. When the deterministic dynamics is impermanent and the noise level
small or large, the stochastic dynamics converges to the boundary of the state space at an exponential rate.
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1. Introduction

The deterministic replicator dynamics of Taylor and Jonker [26] provides a fundamental model
of natural selection in biological systems. One basic question that can be addressed using this
model is to determine conditions under which a group of interacting species (or traits within one
species) can coexist indefinitely.

A simple sufficient condition for long-term coexistence is the existence of a globally asymp-
totically stable equilibrium. Such an equilibrium exists, for example, when the underlying game
admits an interior ESS (evolutionarily stable strategy): Hofbauer et al. [12] and Zeeman [27] show
that such states are (interior) globally asymptotically stable under the replicator dynamics.

While the existence of a globally stable equilibrium is a sufficient condition for long-term
coexistence, it is certainly not necessary. A more general criterion is provided by the notion of
permanence of Schuster et al. [24], which requires that the boundary of the state space be a
repeller. When the replicator dynamics is permanent, solution trajectories from all interior initial
conditions maintain proportions of all species that are positive and bounded away from zero.
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Hofbauer [9] and Hutson [14] were among the first to establish general sufficient conditions for
permanence; see [15] and [13] for surveys of work on this question.

Since any mathematical model only provides an approximate description of the population
under study, it is important to know whether small changes to a model’s specification would lead
to large changes in results. With this motivation, Schreiber [21] and Garay and Hofbauer [8] intro-
duced sufficient conditions for robust permanence, that is, permanence of all small deterministic
perturbations of the original system.

In this paper, we consider the question of permanence in the context of Brownian perturbations
of the replicator dynamics. The first stochastic differential equation analogue of the replicator
dynamics was introduced by Foster and Young [6]. Later, Fudenberg and Harris [7] offered a
biologically more natural model, known as the stochastic replicator dynamics, based on Brownian
perturbations of the underlying fitness functions. As we shall see, the analysis in this paper applies
not just to Fudenberg and Harris’s [7] dynamics, but to more general Brownian perturbations of
the replicator dynamics as well.

As in the deterministic case, the initial results on long-term coexistence for the stochastic repli-
cator dynamics concerned settings with a single globally attracting state. Using tools specific
to one-dimensional diffusions, Fudenberg and Harris [7] showed that the stochastic replicator
dynamics is recurrent in two-strategy Hawk–Dove games and demonstrated that the unique sta-
tionary distribution of the process places nearly all mass near the ESS when the noise level is small.
This result has since been generalized by Imhof [17], who extended it to games with an interior
ESS and an arbitrary finite number of strategies. In light of the developments in the deterministic
setting, it is natural to ask whether similar results for the stochastic replicator dynamics can be
established whenever the underlying deterministic system is known to be permanent. Doing so is
the main goal of the present study.

In Section 2, we introduce the deterministic and stochastic replicator dynamics, and we review
Garay and Hofbauer [8] sufficient conditions for permanence for the deterministic setting. In
Section 3, we prove that if the replicator dynamics for a game satisfying Garay and Hofbauer’s
[8] conditions is subjected to small Brownian perturbations, then the resulting stochastic process
is recurrent, and that its unique stationary distribution places nearly all mass near the interior
attractor of the unperturbed system.

To supplement these results, we characterize settings in which the stochastic replicator dynamics
is ‘impermanent’, in the sense that its solutions converge to the boundary of the state space at an
exponential rate with probability 1. In Sections 4 and 5, we show that this is the case if Garay
and Hofbauer’s [8] conditions for impermanence hold and if the noise level is sufficiently small
or sufficiently large. Section 6 closes the paper with some concluding discussion.

2. Preliminaries

2.1. The replicator dynamics

The replicator dynamics describes natural selection among individuals programmed to play
strategies from the set {1, . . . , n}. In models of animal conflict, a strategy corresponds to a
phenotype; in population ecology, a strategy corresponds to a species. If we let xi represent
the proportion of individuals playing strategy i, then our state variable x is an element of
� = {x ∈ R

n : xi ≥ 0,
∑

i xi = 1}, the unit simplex in R
n. We let T � = {x ∈ R

n : ∑
i xi = 0}

denote the tangent space of �, and we let ∂� and int(�) denote the boundary and interior of �,
respectively.

The fitness of strategy i is described by a function Fi : � → R of the state variable x. In many
applications, fitness is determined through random pairwise interactions to play a symmetric
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normal form game with fitness matrix U ∈ R
n×n; in such cases, the function F : � → R

n takes
the linear form F(x) = Ux. However, we require only that the function F be Lipschitz continuous
(and later C2).

To derive the replicator dynamics, let yi represent the number of individuals playing strategy i,
and suppose that the per capita growth rate of yi is given by the fitness of strategy i: in particular,

ẏi = yiFi(x), (1)

where x is the state variable obtained from y via xi = yi/
∑

j yj . Then,

ẋi = xiF̂i(x),

where

F̂i(x) = Fi(x) −
∑

j

xjFj (x)

is the excess fitness of strategy i over the average fitness in the population. This equation defines
the replicator dynamics for the fitness function F . To ease future comparisons, we express the
replicator dynamics in matrix form:

ẋ = R(x) ≡ diag(x)F̂ (x). (R)

By Lipschitz continuity and standard results, (R) induces a flow � : R × � → � which leaves
both ∂� and int(�) invariant. The flow maps each pair (t, x) ∈ R × � to some �t(x) ∈ �, the
position of the solution with initial condition x at time t . Thus, the map t �→ �t(x) is the solution
trajectory of (R) with initial condition �0(x) = x.

2.2. Permanence and impermanence

The notions of permanence and impermanence for the system (R) are defined in terms of its
attractors. A set A ⊂ � is invariant under (R) if �t(A) = A for all t ∈ R. An invariant set A is
an attractor of (R) if it is non-empty, compact and admits a neighbourhood U such that

lim
t→∞ dist(�t(x), A) = 0

uniformly over x ∈ U . If A is an attractor, its basin of attraction is the open set consisting of all
states x ∈ � for which limt→∞ dist(�t(x), A) = 0.

Following Schuster et al. [24] and Hofbauer and Sigmund [13], we call the dynamics (R) per-
manent if it admits an attractor A ⊂ int(�) whose basin of attraction is all of int(�). Equivalently,
(R) is permanent if ∂� is a repeller under (R). In this case, A and ∂� form an attractor–repeller
pair, see [2], and A is the dual attractor of the repeller ∂�. If instead ∂� is an attractor under
(R), we say that (R) is impermanent.

We illustrate these concepts using a well-known class of examples.

Example 2.1 The hypercycle equation. Suppose that fitness is given by the linear function

F(x) = Ux =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 k1

k2 0 0 · · · 0 0
0 k3 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 0
0 0 0 · · · kn 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3
...

xn−1

xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

k1xn

k2x1

k3x2
...

kn−1xn−2

knxn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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for some k1, . . . , kn > 0. In words, the fitness of strategy i depends positively on the proportion
of individuals playing strategy i − 1, where the indices are counted mod n. The dynamics (R)
corresponding to this fitness function,

ẋi = xi

⎛
⎝kixi−1 −

∑
j

kj xjxj−1

⎞
⎠ (H)

is known as the hypercycle equation. This equation was introduced by Eigen and Schuster [5] as a
model of prebiotic evolution – in particular, of cyclical catalysis in a collection of polynucleotides.

Equation (H) has a unique interior rest point x∗ for all numbers of strategies n. When n equals
2, 3 or 4, the rest point x∗ is interior globally asymptotically stable, so system (H) is permanent.
When n ≥ 5, x∗ is unstable. Nevertheless, Schuster et al. [24] showed that (H) remains permanent.
In fact, Hofbauer et al. [11] used techniques from the theory of monotone dynamical systems to
show that when n ≥ 5, the interior attractor A of (H) contains a minimal attractor which is a
periodic orbit. For further discussion, see Chapter 12 of [13].

Schreiber [21] and Garay and Hofbauer [8] provided conditions for permanence and imperma-
nence of (R) that are stated in terms of ergodic measures for (R) with supports contained in ∂�.
Let M�(∂�) denote the collection of �-invariant Borel probability measures whose supports
are contained in ∂�, and let the subset ME

�(∂�) ⊂ M�(∂�) contain only the ergodic measures:
thus, ME

�(∂�) is the set of extreme points of M�(∂�).
The following result is proved in Hofbauer [8].

THEOREM 2.1 Let p1, . . . , pn > 0. If

n∑
i=1

pi

∫
∂�

F̂i(x)μ (dx) > 0, ∀μ ∈ ME
�(∂�) (P)

then system (R) is permanent. If instead

n∑
i=1

pi

∫
∂�

F̂i(x)μ (dx) < 0, ∀μ ∈ ME
�(∂�) (I)

then system (R) is impermanent.

The integrals in Equations (P) and (I) represent the expected excess fitness of strategy i, where
the expectation is taken with respect to the ergodic measure μ. Thus, the permanence condition
(P) requires that for some positive vector p = (p1, . . . , pn), the p-weighted average of these
μ-expected excess fitnesses is positive for every ergodic measure μ on ∂�. Since F̂i(x) = Fi(x) −∑

j xjFj (x), condition (P) can be described loosely as requiring unused strategies to tend to
outperform the population average. In contrast, the impermanence condition (I) requires unused
strategies to tend to underperform the population average.

Garay and Hofbauer [8] provided other conditions that are equivalent to (P) and (I), and they
show that these conditions imply permanence and impermanence for small C0 perturbations of
(R). For future reference, we note that their Theorem 4.4 and Sections 12.2–12.3 of Hofbauer and
Sigmund [13] together imply that the hypercycle Equation (H) satisfies permanence condition (P)
for all n ≥ 2.
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2.3. Stochastically perturbed replicator dynamics

Fudenberg and Harris [7] proposed the following stochastic analogue of the replicator dynamics
(R). In place of the deterministic Equation (1), Fudenberg and Harris [7] assumed that the per
capita growth rate of the number of individuals playing strategy i is stochastic, given by the sum
of the fitness of strategy i and a standard Brownian motion Bi(t):

dYi(t) = Yi(t) (Fi(X(t)) dt + σidBi(t)) , (2)

where Xi(t) = Yi(t)/
∑

j Yj (t) and σi > 0. The resulting law of motion for the state X(t) can
be obtained via a straightforward application of Ito’s formula. Define the σ -adjusted fitness of
strategy i by

Fσ
i (x) = Fi(x) − σ 2

i xi,

and let

F̂ σ
i (x) = Fσ

i (x) −
∑

j

xjF
σ
j (x) = F̂i(x) − σ 2

i xi +
∑

j

x2
j σ

2
j (3)

be the excess σ -adjusted fitness of strategy i. Applying Ito’s formula to Equation (2) reveals that
the law of motion for X(t) is

dX(t) = diag(X(t))
(
F̂ σ (X(t)) dt + (I − 1X(t)T )diag(σ ) dB(t)

)
, (S)

where I denotes the n × n identity matrix, 1 ∈ R
n is the (column) vector of ones and T denotes

transposition. This equation defines the stochastic replicator dynamics.
Our results apply to more general stochastic perturbations of Equation (R). We consider

stochastic differential equations of the form

dX(t) = diag(X(t))
(
F̃ (X(t)) dt + �(X(t)) dB(t)

)
, (S′)

where (i) B(t) = (B1(t), . . . , Bm(t))T is an m-dimensional standard Brownian motion defined
on some probability space (�, F, P), and (ii) F̃ : � → R

n and � : � → R
n×m are Lipschitz

continuous maps with the property that for each x ∈ X, the drift vector

R̃(x) = diag(x)F̃ (x),

and the columns S1(x), . . . , Sm(x) of the diffusion coefficient matrix

S(x) = diag(x)�(x) (4)

are elements of T �. Note that Equation (S′) can be written component by component as

dXi(t) = Xi(t)

⎛
⎝F̃i(X(t)) dt +

m∑
j=1

�j(X(t)) dBj(t)

⎞
⎠ ,

where �1(x), . . . , �m(x) are the columns of �(x).

Generalizing the terminology in [8], we call (S′) a random δ-perturbation of (R) if∑
i

|F̂i(x) − F̃i(x)| +
∑
i,j

|�ij (x)|2 ≤ δ

for all x ∈ �, and a random δ-perturbation of (R) on ∂� if this inequality holds whenever x ∈ ∂�.
In the latter case, the nature of the perturbation outside a neighbourhood of ∂� is unrestricted.
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By standard results, the Cauchy problem associated with (S′) and with initial condition X0 = x

admits a unique (strong) solution, which is denoted by (Xx
t , t ≥ 0). The set int(�) is invariant

under (S′), in the sense that for any t ≥ 0 the events {Xx
t ∈ int(�)} and

⋂
s≥t {Xx

s ∈ int(�)}
coincide P – almost surely. The set ∂� is invariant in this same sense.

To prove our permanence result, we require the following full rank condition on the random
perturbations in Equation (S′). We call system (S′) non-degenerate if for all x ∈ int(�), the
column vectors S1(x), . . . , Sm(x) span T �. A direct calculation reveals that this requirement is
satisfied by the stochastic replicator dynamics (S). For our impermanence results, even weaker
non-degeneracy conditions will suffice – see Section 4.

3. Stochastic permanence

We now turn to the question of permanence under stochastically perturbed replicator dynamics.
As we noted at the onset, permanence obtains most simply in a deterministic system when there is
a globally attracting interior equilibrium – for instance, an interior ESS. Imhof [17] showed that
in such cases, the permanence of the deterministic system extends to its stochastic analogues: in
particular, he proved that if the underlying game F has an interior ESS x∗, the stochastic replicator
dynamics (S) is recurrent, with a stationary distribution that places nearly all mass close to x∗. Of
course, this result does not apply to permanent systems without an interior ESS – including, for
example, the hypercycle equation with n ≥ 4.

Our main result, Theorem 3, addresses this more general question. It shows that when the level
of noise is small, random perturbations of permanent replicator dynamics – in particular, replicator
dynamics satisfying condition (P) – are ‘stochastically permanent’ in a variety of senses.

A probability measure μ on int(�) is called invariant under (S′) provided X(t) has law μ

whenever X(0) has law μ and is chosen independently on {Bt, t ≥ 0}. Equivalently∫
P(Xx

t ∈ A)μ (dx) = μ(A),

for all Borel sets A ⊂ int(�) and all times t > 0.

THEOREM 3.1 Assume that R is C2 and that Condition (P) holds. Then for every r > 0, there
exists a δ̄ > 0 such that for all δ ∈ (0, δ̄), every non-degenerate random δ-perturbation of (R) on
∂� enjoys the following properties:

(i) There exists a unique probability measure μ on int(�) that is invariant under (S′). The
measure μ is absolutely continuous with respect to the Lebesgue measure on int(�) and
satisfies ∫

1

dist(x, ∂�)r
μ (dx) < ∞.

(ii) There exist positive constants C, α > 0 such that for all x ∈ int(�) and every Borel set
B ⊂ int(�),

|P(Xx
t ∈ B) − μ(B)| ≤ Ce−αt

dist(x, ∂�)r
.

(iii) For all x ∈ int(�) and all ψ ∈ L1(int(�), μ),

lim
t→∞

1

t

∫ t

0
ψ(Xx

s ) ds =
∫

ψ dμ

P – almost surely.
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(iv) Let A ⊂ int(�) be the dual attractor of ∂� for the dynamics (R), and suppose that r < 1.
Then for any neighbourhood N of A,

μ(� \ N ) = O(δr log δ).

Proof Our proof relies on the following lemma, which can be seen as a special case of more
general geometric ergodic theorems for discrete time Markov chains. The lemma follows from
Theorems 8.1.5, 8.2.16 and 8.3.18 in [3], or from Theorem 15.0.1 in [19].

LEMMA 3.1 Let U be an open subset of R
d , and let p : U × U → R

+ be a positive continuous
Markov transition kernel. For any bounded or non-negative Borel function � : U �→ R, define

P�(x) =
∫

p(x, y)�(y) dy,

and

P n� = P(P n−1)(�)

for all n ≥ 1 with the convention that P 0� = �. For any Borel set A ⊂ U , set

P n(x, A) = P n1A(x).

Assume that there exists a non-negative continuous function H : U → R
+ such that

(a) limx→∂U H(x) = ∞, and
(b) PH(x) ≤ aH(x) + b for all x ∈ U , where 0 < a < 1 and b ∈ R.

Then

(i) There exists a unique p-invariant probability measure μ. This measure is absolutely
continuous with respect to Lebesgue measure and satisfies

∫
H(x) μ (dx) < ∞.

(ii) There exist constants C ≥ 0 and 0 < ρ < 1 such that

|P n(x, A) − μ(A)| ≤ Cρn(1 + H(x)),

for any Borel set A ⊂ U.

(iii) Let (Yn) be a Markov chain with transition kernel p, and let f ∈ L1(μ). Then for any initial
distribution,

lim
n→∞

1

n

n∑
i=1

f (Yi) =
∫

f (x) μ (dx),

P – almost surely.

We now proceed with the proof of Theorem 3.1. Let the constants pi, i = 1, . . . , n, be as
in Equation (P) of Theorem 2.1. Without loss of generality, we may assume that

∑
i pi = 1. It

follows easily from Theorem 3.4, Remark 3.5 and Theorem 4.4 in [8] that there exists a constant
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α > 0, a neighbourhood U of ∂�, and a C2 map W : � → R such that∑
i

piF̂i(x) + 〈∇W(x), R(x)〉 > α, (5)

for all x ∈ U . It follows that the map V : U \ ∂� �→ R defined by

V (x) =
∑

i

pi log xi + W(x) (6)

satisfies

〈∇V (x), R(x)〉 > α, (7)

for all x ∈ U \ ∂�.

Consider now a random δ-perturbation of (R) on ∂� given by (S′). It induces a diffusion process
on � whose infinitesimal generator L acts on C2 functions according to the formula

Lψ(x) = 〈∇ψ(x), R(x)〉 + Aψ(x), (8)

where

Aψ(x) = 1

2

∑
i,j

xixjaij (x)
∂2ψ

∂xixj

(x) (9)

and

a(x) = �(x)�(x)T . (10)

Hence, for all x ∈ U \ ∂�

LV (x) =
∑

i

piF̂i(x) + 〈∇W(x), R(x)〉 − 1

2

∑
i

piaii(x) + AW(x).

Therefore, by choosing δ small enough, we can assume that

LV (x) ≥ α, (11)

for all x ∈ U \ ∂�.

Set λ = r/ inf i pi and define

H = exp(−λV ). (12)

Then, H is C2, positive, and satisfies

lim
x→∂�

H(x) = ∞

and

H(x) ≥ K

dist(x, ∂�)r
, (13)

for some constant K > 0. On the other hand, recalling Equation (4),

LH = −λH

[
LV + 1

2
λ

m∑
k=1

〈∇V, Sk〉2

]
.

Since 〈∇V, Sk〉 = 〈p, �k〉 + 〈∇W, Sk〉, for δ small, we have that

LH ≤ −βH
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on U for some β > 0, say β = λα/2. Hence,

LH ≤ −βH + γ (14)

on int(�). It then follows from Ito’s formula that

eβtH(Xx
t ) − H(x) =

∫ t

0
eβs(βH(Xx

s ) + LH(Xs)) ds + Nt

≤ γ

β
eβt + Nt, (15)

where

Nt =
∫ t

0
eβs(−λH(Xs)) dMs,

and (Mt)t≥0 is the continuous martingale defined by M0 = 0 and

dMt = 〈∇V (Xx
t ),

∑
j

Sj (Xx
t )dB

j
t 〉

=
m∑

j=1

[
n∑

i=1

(pi�ij (X
x
t ) + Sij (X

x
t )

∂W

∂xi

(Xx
t ))

]
dB

j
t . (16)

Let τN = inf{t ≥ 0 : H(Xx
t ) > N}. Then, Nt∧τN

is a martingale, and so E(Nt∧τN
) = 0.

Replacing t by t ∧ τN in Equation (15), taking the expectation, and letting N → ∞ yields

E(H(Xx
t )) ≤ e−βtH(x) + γ

β
. (17)

Let {Pt }t≥0 denote the Markov semigroup induced by (S′) on int(�). Then, Equation (17) can
be rewritten as

PtH ≤ a(t)H + b (18)

with 0 < a(t) < 1.On the other hand, by the non-degeneracy assumption, there exists a continuous
positive kernel pt(x, y) such that

Ptψ(x) =
∫

pt(x, y)ψ(y) dy.

(see, e.g., Theorem 7.3.8 [4]). Therefore, Lemma 3.1 applies to Pt for any t > 0.

Applying this lemma, let μ denote the unique invariant probability measure of P1. Then, μ is
also the invariant probability measure of Pt for all t > 0: the invariant measure for Pt is invariant
for Pkt = P k

t ; thus, the invariant measure for Pk/2n is independent of k and n, and so, by the density
of the dyadic rationals in the reals, is an invariant measure of Pt for all t > 0. The integrability
condition of assertion (i) then follows from inequality (13).

Let μψ be shorthand for
∫

ψ dμ and let Pn(x, .) denote the measure defined by Pn(x, A) =
Pn1A(x) for all Borel sets A.

Now, for any continuous bounded function ψ and any 0 ≤ s < 1,

|Pn+sψ(x) − μψ | = |Pn(Psψ)(x) − μ(Psψ)| ≤ |Pn(x, .) − μ|V T ‖Psψ‖∞,

where |.|VT stands for the total variation norm. Hence, by Lemma 3.1(ii),

|Pn+s(x, ·) − μ|VT ≤ ρn‖Psψ‖∞(1 + H(x))

≤ ρn(1 + H(x))‖ψ‖∞,

so assertion (ii) of the theorem holds.
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For � ∈ L1(μ), the function u(x) = P(limt→∞ 1/t
∫ t

0 �(Xx
s ) ds = μ�) is clearly harmonic

for P1 (that is, P1u = u). Hence, by Lemma 3.1 (iii) and Theorem 17.1.5 [19], u is a constant. On
the other hand, by the Birkhoff ergodic theorem, u(x) = 1 for μ almost all x, so that u(x) = 1
for all x.

It remains to prove the last assertion of the theorem. To reduce notation, we write Cst to denote
a constant that may change from line to line or within a line. Let K denotes the Lipschitz constant
of R and set λ = K/(1 − r)α. By Gronwall’s inequality, with �t(x) the flow of (R),

E(|�t(x) − Xx
t |2)1/2 ≤ Cst eKt tδ.

Let 0 ≤ ψ ≤ 1 be a smooth function on � which is 1 on a neighbourhood of A and 0 outside N .

Thus by Lipchitz continuity of ψ,

|Ptψ(x) − ψ ◦ �t(x)| ≤ Cst eKt tδ.

Integrating the last inequality gives

|μψ − μψ ◦ �t | ≤ Cst eKt tδ

by the invariance of μ. It follows that

μψ ≥
∫

{V ≥−v}
ψ ◦ �t dμ − Cst eKt tδ

for all v > 0. Since A is a global attractor, we can find for each v > 0 a time tv such that
ψ(�t(x)) = 1 whenever t ≥ tv and V (x) > −v. Therefore, Markov’s inequality implies that

μψ ≥ μ(V ≥ −v) − Cst eKtv tvδ ≥ 1 − e−λv

∫
H dμ − Cst eKtv tvδ.

Now, using the fact that V (�t(x)) ≥ αt + V (x) on a neighborhood of ∂� (since 〈∇V, F 〉 ≥ α)
one can choose tv to be

tv = tv0 + (v − v0)

α
,

for some v0 large enough and any v ≥ v0. Thus,

μψ ≥ 1 − Cst e−λαtv − Cst eKtv tvδ.

Therefore, choosing v in such a way that tv = −(1 − r)/K log(δ), we conclude that

1 − μψ ≤ Cst δ + Cst δr log(δ). �

In some cases, the invariant measure μ can be explicitly computed. Fudenberg and Harris [7]
found beta distributions for n = 2 and Hofbauer and Imhof [10] found Dirichlet distributions for
n strategy games that are close to zero-sum games.

4. Stochastic impermanence

Our next result, Theorem 4.1, shows that when the level of noise is small, random perturbations
of impermanent replicator dynamics – in particular, replicator dynamics satisfying Condition (I)
– approach ∂� exponentially fast with high probability.
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This result requires a weaker non-degeneracy condition than that used in Theorem 3.1. Rewrite
Equation (S′) using the Stratonovich formalism, so that

dXt = J (Xt) dt + S(Xt) ◦ dB
j
t , (19)

where

Ji(x) = xiF̃i(x) − 1

2

m∑
j=1

n∑
k=1

∂Sij

∂xk

(x)Skj (x).

We call the set A ⊂ � accessible from x ∈ � if there exists a non-negative number u and
smooth maps ηi : [0, ∞) → R, i = 1, . . . , m, that allow one to ‘steer’ the solution of the ordinary
differential equation

dy

dt
= uJ (y(t)) +

m∑
j=1

ηj (t)S
j (y(t)), (20)

with initial condition y(0) = x to A, in the sense that y(t) ∈ A for some t ≥ 0. We call A weakly
accessible from x if every neighbourhood of A is accessible from x, and weakly accessible if it
is weakly accessible from all x ∈ int(�).

By Chow’s [1] theorem (see, e.g., [20]), a sufficient condition for every subset of � to be weakly
accessible is given by Hörmander’s condition:

Lie(S1, . . . , Sm)(x) = T �, for all x ∈ int(�), (21)

where Lie(S1, . . . , Sm) is the Lie algebra generated by S1, . . . , Sm and Lie(S1, . . . , Sm)(x) =
{L(x) : L ∈ Lie(S1, . . . , Sm)}.

Remark 4.1 Hörmander’s condition is satisfied if (S′) is non-degenerate, as assumed in
Theorem 3.1. In fact, the non-degeneracy assumption in Theorem 3.1 can be weakened to the
assumption that Hörmander’s condition holds for every random δ-perturbation of (R).

THEOREM 4.2 Suppose that R is C2 and that condition (I) holds. Then there exist constants
α > 0 and δ̄ > 0 such that every random δ-perturbation of (R) on ∂� with δ ∈ (0, δ̄) satisfies
the following property: given any 0 < β < 1, there exists a neighbourhood U of ∂� such that

P
(

lim sup
t→∞

log(dist(Xx
t , ∂�))

t
≤ −α

)
≥ β,

for all x ∈ U . If in addition ∂� is weakly accessible, then

P
(

lim sup
t→∞

log(dist(Xx
t , ∂�))

t
≤ −α

)
= 1,

for all x ∈ �.

Proof Let V be Function (6) introduced in the proof of Theorem 3.1. A variation of the argument
we used there shows that for δ small enough,

LV ≤ −α < 0,

on a neighbourhood Ũ of ∂�.
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Let (Xx
t ) be a solution to (S′) with x ∈ Ũ \ ∂�, and let Vt = V (Xx

t ). By Ito’s formula,

Vt = V (x) +
∫ t

0
LV (Xx

s ) ds + Mt,

where Mt is the martingale given by Equation (16).
Equation (16) implies that the quadratic variation of Mt satisfies 〈M〉t ≤ Ct for some C > 0.

Hence, by the strong law of large numbers for martingales, we have that

lim
t→∞ Mt/t = 0, (22)

P – almost surely. Let τ = inf{t ≥ 0 : Xx
t ∈ ∂Ũ} be the exit time from Ũ . It follows from

Equations (11) and (22) that

lim sup
t→∞

Vt

t
≤ −α,

P – almost surely on the event {τ = ∞}. Hence,

lim sup
log(dist(Xx

t , ∂�))

t
≤ − α∑

i pi

= −α,

P – almost surely on {τ = ∞}, since

log(dist(x, ∂�)) = log(inf
i

xi) ≤
∑

i

pi log xi.

To conclude the proof of the first assertion, it remains to show that for any 0 < β < 1, there
exists a neighbourhood U of ∂� such that P({τ = ∞}) ≥ β whenever x ∈ U . Let λ be a positive
constant (to be chosen later), and let G be the map defined by G(x) = eλV (x) for x ∈ int(�) and
by G(x) = 0 for x ∈ ∂�. On int(�)

LG = λG

[
LV − 1

2
λ

m∑
k=1

〈∇V, Sk〉2

]
= G

[
LV − 1

2
λ

m∑
k=1

(〈p, �k〉 + 〈∇W, Sk〉)
]

,

so that for λ small enough,

LG ≤ 0

on Ũ . This makes the process G(Xx
t∧τ ) a supermartingale. Hence,

E(G(Xx
t∧τ )1τ<∞) ≤ E(G(Xx

t∧τ )) ≤ G(x).

Write Ur = {x ∈ � : G(x) < r} for r > 0. Fix r small enough so that Ur ⊂ Ũ and set U =
U(1−β)r . Then letting t → ∞, the Lebesgue-dominated convergence theorem implies that

rP(τ < ∞) ≤ G(x) ≤ (1 − β)r.

Hence,

P(τ = ∞) ≥ β > 0.

We now pass to the proof of the second assertion. Fix T > 0 (to be chosen later) and let
W denotes the space of all continuous paths w : [0, T ] → � equipped with the topology of
uniform convergence and the associated Borel σ -field. Let Wx = {w ∈ W : w(0) = x}, and let
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Px denotes the probability law of {Xx
t }0≤t≤T on Wx. Let D : W �→ R be the function defined by

D(w) = inf0≤t≤T dist(w(t), ∂�).

LEMMA 4.1 The constant T can be chosen such that

Px(w ∈ W : D(w) < ε) > 0,

for all x ∈ � and ε > 0.

Proof Given x ∈ �, u ≥ 0, and a smooth map η = (η1, . . . , ηm), let yu,η,x denote the solution
to Equation (20) with initial condition x. Since ∂� is weakly accessible, there exist ux ≥ 0 and
ηx such that yux,ηx ,x enters Nε(∂�). Let us first show that we can always assume that ux = 1. If
ux > 0, set η̃x(t) = ηx(t/ux). Then, t → y1,η̃x ,x(t) = yux,ηx ,x(t/ux) enters Nε(∂�). If ux = 0,

then by continuity of u → yu,ηx ,x(t), yu,ηx ,x enters Nε(∂�) for u > 0 small enough and we are
back to the preceding case. In summary, we have established the existence of ηx and tx ≥ 0 such
that y1,ηx ,x(tx) ∈ Nε(∂�).

Now, by the continuity of z → y1,ηx ,z(tx) and the compactness of �, we can assume in addition
that tx ≤ T for some T independent of x. The claim now follows from the support theorem
[25] (see also [16], Chapter VI, Section 8), according to which the topological support of Px

(i.e., the smallest closed subset of Wx having Px measure 1) is the closure in Wx of the set
{y1,η,x |[0,T ] : η is smooth}. �

We continue with the proof of Theorem 4.2. Let hε : R
+ → [0, 1] be a continuous function such

that hε(x) = 1 for x ≤ ε and hε(x) = 0 for x > 2ε (for example, hε(x) = (1 − (x − ε)+/ε)+).
Then,

Px(w ∈ W : D(w) < 2ε) ≥
∫

W
(hε ◦ D)(w) Px (dw)

≥ Px(w ∈ W : D(w) < ε) > 0.

The continuity of hε ◦ D, the weak* continuity of x �→ Px , and the compactness of � then imply
that

Px(w ∈ W : D(w) < 2ε) ≥ γ, (23)

for some γ > 0 and all x ∈ �. Now let

E = {w ∈ W : lim sup
t→∞

log(dist(w(t), ∂�))

t
≤ −α},

and let τ(w) = inf{0 ≤ t ≤ 1 : dist(w(t), ∂�) < 2ε}. Using the strong Markov property,
combined with Equation (23) and the first assertion of the theorem, we find that

Px(E) =
∫

W
[Pw(τ(w))(E)1τ(w)<∞]Px (dw) ≥ βδ

uniformly in x, from which it follows that Px(A) = 1. Indeed, by a standard martingale result,
limt→∞ E(1E |Ft ) = 1E P – almost surely, where Ft is the σ -field generated by {w(s) : s ≤ t}.
On the other hand, the Markov property implies that E(1E |Ft ) = Pw(t)(E) ≥ βδ, completing the
proof of the theorem. �
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COROLLARY 4.1 Assume that R is C2 and that condition (I) holds. Then there exist δ, α > 0 such
that for every parameter σ satisfying

0 < sup
i

|σi | ≤ δ

and every x ∈ �, the solution (Xx
t ) to the stochastic replicator dynamics (S) satisfies

lim sup
t→∞

log(dist(Xx
t , ∂�))

t
≤ −α

P – almost surely.

Proof If σi �= 0, every solution to ẏ = Si(y) converges to ∂�, since ẏi = σiyi(1 − yi). Hence,
every neighbourhood of ∂� is accessible from all x ∈ �, so the result follows from Theorem 4.1.

�

The stochastic impermanence results in this section imply the transience of the stochastic
processes (S) and (S′) on int(�). For (S) with linear fitness function F , further conditions implying
transience have been found in Khasminskii and Potsepun [18] Hofbauer and Imhof [10].

5. Stochastic impermanence at large noise levels

Theorem 4.1 shows that when the noise level is small, the behaviour of the stochastic dynamics
(S′) agrees with the behaviour of the deterministic dynamics (R): the impermanent deterministic
dynamics becomes a stochastic dynamics that approaches ∂� with high probability. Another
way of enforcing convergence to ∂� is to add large levels of noise to an arbitrary deterministic
replicator equation. The noise makes the solutions of the system quickly approach ∂�; given the
form of equation (S′), a small enough neighbourhood of ∂� is nearly impossible to leave.

THEOREM 5.1 Suppose that R is C2 and that there exist p1, . . . , pn > 0 such that for all x ∈ ∂�,

∑
i

pi

⎛
⎝F̃i(x) − 1

2

m∑
j=1

�ij (x)2

⎞
⎠ < 0. (24)

Then there exists an α > 0 such that the following property holds: given any 0 < β < 1, there
exists a neighbourhood U of ∂� such that the solution to (S′) satisfies

P
(

lim sup
t→∞

log(dist(Xx
t , ∂�))

t
≤ −α

)
≥ β,

for all x ∈ U . If we assume in addition that ∂� is weakly accessible, then

P
(

lim sup
t→∞

log(dist(Xx
t , ∂�))

t
≤ −α

)
= 1,

for all x ∈ �.

Proof Let V (x) = ∑
i pi log(xi).Then the computation made in the proof of Theorem 4.1 shows

that LV (x) ≤ −α < 0 on some neighbourhood of ∂�, and our conclusion follows in a similar
fashion. �
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In the stochastic replicator dynamics (S), the role of the function F̃i from dynamics (S′) is
played by the excess adjusted fitness function F̂ σ

i , which depends directly on the noise level σ

(cf Equation (3)). For this reason, to obtain implications of Theorem 9 for the dynamics (S) we
must assume a weakened form of condition (I), one that only considers the ergodic measures
μ ∈ ME

�(∂�) that are point masses on the vertices of �.

COROLLARY 5.1 Suppose that R is C2 and that there exist p1, . . . , pn > 0 such that∑
i piF̂i(ek) < 0 for each vertex e1, . . . , en. Consider the stochastic replicator dynamics (S)

where σ1 = · · · = σn = σ̄ . Then, for σ̄ large enough, the second conclusion of Theorem 5.1
holds.

Proof In the case of the dynamics (S),

F̂ σ
i (x) − 1

2

∑
j
�ij (x)2 = F̂i(x) + 1

2σ 2
(∑

i
x2

i − 1
)
,

so that Inequality (24) holds true at each vertex and, by continuity, on a neighbourhood U of the
vertices e1, . . . , en. Outside U ,

∑
i x

2
i − 1 < 0, so for σ̄ large enough, Equation (24) holds true

in this case as well. �

6. Concluding remarks

In two recent papers, Schreiber [22], [23] considered small bounded random perturbations of
discrete time dynamical systems on a set D (not necessarily the unit simplex) with closed invariant
boundary ∂D. Under non-degeneracy assumptions similar to ours, Schreiber [23] proved that
almost sure convergence to ∂D occurs if and only if the deterministic dynamics contains no
attractor in int(D). Thus, Schreiber [22] proposed the existence of an interior attractor as the
more appropriate notion of ‘persistence’.

The results of the present paper show that unbounded noise may lead to very different
behaviours, and so renew the case for permanence. In particular, in view of our Theorem 4.1,
almost sure convergence to ∂D is possible even with the presence of attractors in int(D), as long
as the deterministic system is impermanent in the sense of Condition (I). On the other hand, per-
manence of the deterministic system (P) leads to stochastic permanence under small unbounded
noise.
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