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Abstract

The replicator equation model for the evolution of individual behaviors in a single species with a multi-dimensional continuous trait

space is developed as a dynamics on the set of probability measures. Stability of monomorphisms in this model using the weak topology

is compared to more traditional methods of adaptive dynamics. For quadratic fitness functions and initial normal trait distributions, it is

shown that the multi-dimensional continuously stable strategy (CSS) of adaptive dynamics is often relevant for predicting stability of the

measure-theoretic model but may be too strong in general. For general fitness functions and trait distributions, the CSS is related to

dominance solvability which can be used to characterize local stability for a large class of trait distributions that have no gaps in their

supports whereas the stronger neighborhood invader strategy (NIS) concept is needed if the supports are arbitrary.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Dynamical systems on the set of probability measures
over a continuous trait space have been developed as one
means to predict the evolution and stability of distributions
of individual behaviors in a biological species (Bomze,
1990, 1991; Oechssler and Riedel, 2001, 2002). These
systems generalize the well-known replicator equation
approach of dynamic evolutionary game theory (Hofbauer
and Sigmund, 1998; Cressman, 2003) when the trait space
is finite (i.e. when there are a finite number of pure
strategies) and individuals interact in random pairwise
e front matter r 2005 Elsevier Ltd. All rights reserved.
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encounters that determine their payoffs (i.e. their fitness or
reproductive success). A primary objective of these
theoretical models is the characterization, in terms of static
payoff/fitness comparisons, of static conditions (and
distributions that satisfy the conditions) that imply
dynamic stability. Such conditions then allow practitioners
of evolutionary game theory to describe the outcome of the
evolutionary process without a detailed analysis of the
underlying dynamical system.
For instance, when there are n pure strategies (so trait

space is finite) and there are random pairwise encounters
that contribute additively to fitness, the static equilibrium
concept of an evolutionarily stable strategy defined by
Maynard Smith (1982) (i.e. a strategy for which, whenever
all individuals use this strategy, the population cannot be
invaded by a rare mutant under the influence of natural
selection) has been a huge success since the resultant
heuristic static conditions have a clear biological basis. We
will refer to this case as the matrix game model (Meszéna et
al., 2001) and the equilibrium concept as a matrix-ESS
(Vincent and Cressman, 2000; Cressman and Hofbauer,

www.elsevier.com/locate/yjtbi
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2005) since payoffs are given through an n� n payoff
matrix.2

For continuous trait spaces, an alternative means to
predict the evolutionary outcome is the adaptive dynamics

method that has generated an enormous literature (see
Abrams, 2001 and the references therein) since the phrase
was introduced by Hofbauer and Sigmund (1990). This
method is especially useful when the resident biological
species is monomorphic (i.e. when all individuals in the
population are using the same strategy) and there is a one-
dimensional continuous trait space. Here, adaptive dy-
namics predicts stability of a monomorphic equilibrium if,
for all other monomorphisms that are small perturbations
of this equilibrium, trait substitution through nearby
mutations is only successful when this substitution moves
the population closer to the equilibrium. Mathematically,
the adaptive dynamics of mutation and trait substitution is
modeled here by the canonical equation (Marrow et al.,
1996), a one-dimensional dynamical system (see Section 4)
whose stable equilibria are characterized by the static
convergence stable conditions of Christiansen (1991) (also
called the m-stability concept in Taylor, 1989). Combined
with a further condition (often called the ESS or
uninvadability condition) that guards against the mono-
morphism being successfully invaded by an evolving
dimorphism through a process now referred to as evolu-
tionary branching (Doebeli and Dieckmann, 2000), we
obtain the solution concept of continuously stable strategy

(CSS) introduced by Eshel (1983).
From our perspective, adaptive dynamics and its

canonical equation are approximate descriptions of how
the mean of the distribution of individual behaviors evolves
and do not adequately model the spread of the distribution.
In this paper, we use the replicator equation with a
continuous trait space to model the evolution of the
probability distribution (i.e. probability measure) of
individual behaviors. The CSS and/or convergence stability
conditions are then heuristic tools that at best can suggest
when the distribution will evolve to a monomorphism (i.e.
to a Dirac delta distribution in measure theoretic terminol-
ogy). In fact, Cressman and Hofbauer (2005) have shown
the relevance of the CSS concept (and the closely related
concept of a neighborhood invader strategy (NIS) of
Apaloo, 1997) for stability of monomorphisms in the
measure dynamics of a one-dimensional continuous trait
space. Specifically, a non-CSS monomorphism is unstable
in the measure dynamic and, conversely, a CSS is
dynamically stable if the initial distribution of individual
behaviors is close to the CSS and satisfies an additional
technical requirement concerning the strategies present in
the population (i.e. the support of this distribution).3 Of
2The matrix-ESS terminology will help avoid confusion with the term

ESS as it has been used in the literature with continuous trait spaces.
3See Section 5 for further details of this technical requirement that

successful mutant monomorphisms in the adaptive dynamics approach are

available for trait substitution. Without this requirement, the stronger NIS

conditions are needed to guarantee dynamic stability.
particular interest in proving these results is the technique
of iterated elimination of strictly dominated strategies that
is borrowed from classical game theory and also used in the
stability analysis of evolutionary game theory applied to
matrix games (e.g. Samuelson and Zhang, 1992) but seems
not to have been used previously in the adaptive dynamics
literature.
The main purpose of this paper is then to examine

whether static extensions of the one-dimensional adaptive
dynamics concepts continue their relevance for the measure
dynamic model when the trait space is multi-dimensional.
We begin in Section 2 by briefly developing the replicator
equation on a continuous trait space and introducing
essential notation used throughout the paper concerning
this measure dynamics and the underlying fitness functions.
Sections 3 and 4 provide valuable insight by fully analysing
the replicator equation in the special case of quadratic
fitness functions and normal distributions (Section 3) and
then relating these results to potential static extensions of
the CSS concept to multi-dimensional adaptive dynamics
in Section 4 (see Theorems 5 and 6 there). Section 5
considers the general case of arbitrary fitness functions and
probability distributions in the multi-dimensional setting.
Unfortunately, our results here do not give as thorough a
static characterization of stability for the replicator
equation as that available through the one-dimensional
analysis of Cressman and Hofbauer (2005). Although we
are able to obtain necessary conditions related to adaptive
dynamics for stability of monomorphisms in large classes
of measure dynamic models as well as sufficient conditions
for others, an exhaustive classification is beyond the reach
of our current techniques. The final section discusses these
shortcomings as it summarizes the positive aspects of our
classification.
2. The replicator dynamics on the space of probability

measures

The probability measure dynamics is the extension of the
replicator equation originally defined for matrix games
with a finite trait space (Taylor and Jonker, 1978). In
general, individuals are assumed to play a strategy s in a
fixed trait space S and the population state is given by a
probability measure P on a measurable space ðS;BÞ. If
A 2 B, PðAÞ is interpreted as the proportion of individuals
in the population who are using strategies in the set A.
For our model of a multi-dimensional continuous trait

space, S will be a Borel subset of Rn andB will be the Borel
subsets of S (i.e. the s-algebra of the Borel sets of Rn

intersected with S and so P is a Borel measure).4 Let DðSÞ
denote the set of probability measures with respect to
ðS;BÞ. Since P is a Borel measure, there is a unique
4In fact, S will typically have further topological properties such as

being convex and open (or closed with nonempty interior). The Borel

subsets of Rn form the smallest s-algebra containing the open subsets of

Rn.
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(relatively) closed subset of S, called the support of P, such
that the measure of its complement is 0 but every open set
that intersects it has positive measure (Royden, 1988).

The measure dynamics on DðSÞ (see Eq. (1) below) is
given in terms of the fitness (or expected payoff) pðs;PÞ ¼
pðds;PÞ of an individual using strategy s when the
population is in state P. Here, for a given s 2 S, ds denotes
the Dirac delta measure that assigns unit mass to fsg. We
will assume throughout that the fitness pðs;PÞ is given
through a continuous real-valued payoff function p : S �

S�!R by pðs;PÞ ¼
R

S
pðs; yÞPðdyÞ. In particular, matrix

games that assume random pairwise interactions and a
finite trait space S may be put in this form.5 The mean
payoff to a random individual in the population with state
P is then pðP;PÞ �

R
S
pðds;PÞPðdsÞ.

We assume the replicator equation Eq. (1) describes how
the population state evolves (i.e. its solutions define
trajectories Pt in DðSÞ).

dP

dt
ðAÞ ¼

Z
A

ðpðds;PÞ � pðP;PÞÞPðdsÞ. (1)

Heuristically, this dynamic increases the probability of
those sets of strategies A that have a higher expected payoff
than the mean payoff to a random individual in the
population. It has been shown (Oechssler and Riedel, 2001)
that there is a unique solution that satisfies this dynamics
for all positive t given any initial probability measure P0

with compact support when pðs; yÞ is continuous.6 Here A

is a Borel subset of S and dP=dt at time t is defined to be
limh!0 ðPtþh � PtÞ=h with respect to the variational norm
(i.e. limh!0 kdP=dtðAÞ � ðPtþh � PtÞ=hðAÞk ¼ 0 where k � k
is the variational norm as in Oechssler and Riedel, 2001).
Furthermore, the support of Pt is the same as for P0 for all
tX0. A population state P� is an equilibrium of Eq. (1) if
and only if pðds;P

�Þ � pðP�;P�Þ ¼ 0 for all s 2 suppðP�Þ.
Our primary aim in this paper is the investigation of the

convergence and stability properties (especially related to
monomorphic equilibrium population states ds) of the
measure dynamics (1). Heuristically, dynamic stability of
P� refers to the question whether Pt stays close and/or
evolves to P� if the initial P0 is chosen appropriately in
DðSÞ. From Oechssler and Riedel (2002), it is clear that the
answers to the stability question depend critically on the
concept of closeness of probability measures (i.e. on the
topology used for the space of Borel probability measures),
when the trait space is not a finite subset of Rn.

We feel the weak topology captures best the essence of
evolutionary convergence in our biological systems. This
topology will mostly be applied to neighborhoods of
monomorphic P�. In general, for a probability measure P�
5In fact, Bomze and Pötscher (1989) argue that the existence of such a

pðs; yÞ for an arbitrary trait space S means the evolutionary game can be

interpreted as being based on pairwise interactions. It is only the form of

pðs;PÞ that is important to us, not whether players are competing pairwise.
6If pðs; yÞ is not continuous or P0 does not have compact support, one

must be careful that the desired integrals are defined. The latter concern is

discussed further for the normal distributions of Section 3.
with finite support fx1; . . . ;xmg, we can take �-neighbor-
hoods in the weak topology to be of the form

fQ 2 DðSÞ : jQðB�ðxiÞÞ � P�ðfxigÞjo� 8i ¼ 1; . . . ;mg,

where B�ðxÞ is the open ball of radius � centered at x. In
particular, two monomorphisms dx1

and dx2
are within � of

each other if and only if the Euclidean distance between
these points is less than �. In the following all topological
notions in DðSÞ are taken for this weak topology, unless
otherwise stated.

2.1. The fitness function pðs; yÞ

For the multi-dimensional continuous trait space, we
assume S is the closure of an open connected subset of Rn

that contains the origin in its interior. In fact, we often
assume S is star-shaped with respect to the origin (i.e. if
x 2 S, then so does the line segment joining 0 to x). We are
particularly interested in the stability of the monomorph-
ism d0. To this end, consider the Taylor expansion of pðx; zÞ
about ð0; 0Þ 2 R2n

pðx; zÞ ¼ pð0; 0Þ þ r1p � xþr2p � zþ 1
2
½x � ðr2

11pÞx

þ 2x � ðr2
12pÞzþ z � ðr2

22pÞz� þ h:o:t:;

where for i 2 f1; 2g, rip is the gradient vector of p at the
origin in the ith variable (e.g. ðr1pÞk ¼ ðqpðx; zÞ=qxkÞ

jðx;zÞ¼ð0;0ÞÞ) and r2
ijp is the n� n matrix with entries the

appropriate second-order partials.
Each monomorphism is a rest point of Eq. (1). Their

stability in the weak topology requires the monomorphism be
a NE of the payoff function restricted to the game with
nearby strategies (e.g. 0 is such a NE if pðx; 0Þppð0; 0Þ for all
x sufficiently close to 0). Since 0 is an interior point, this
implies the gradient r1p is the zero vector and x � ðr2

11pÞxp0
for all x 2 Rn. In fact, we will assume the symmetric Hessian
matrix r2

11p is negative definite throughout to avoid technical
issues. That is, we assume 0 is a strict NE of the restricted
game.7 Since r2

11p is symmetric, we can diagonalize it by an
orthogonal transformation and then all diagonal entries �dk

are negative. Furthermore, a change of variables (that
replaces xk with

ffiffiffiffiffi
dk

p
xk and takes the payoffs with respect

to these new variables) allows us to assume r2
11p ¼ �2I

where I is the n� n identity matrix. Without loss of
generality, the fitness function can then be written in these
new coordinates as

pðx; zÞ ¼ pð0; 0Þ þ r2p � z� x � xþ x � Bz

þ
1

2
z � ðr2

22pÞzþ h:o:t. ð2Þ

(i.e. r2
11p ¼ �2I and r2

12p ¼ B).
7The condition pðx; 0Þopð0; 0Þ is related to the concepts of uninvad-

ability and evolutionarily stable strategy (ESS) as used in adaptive

dynamics (Marrow et al., 1996; Vincent et al., 1996). We especially avoid

this latter terminology since the ESS description is overused in the

literature and may have different interpretations for different readers. On

the other hand, strict NE seems to have a universally accepted meaning.
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In terms of the Taylor expansion, the replicator equation
(1) can then be rewritten as

dP

dt
ðAÞ ¼

Z
S

Z
S

Z
A

ðpðx; zÞ � pðy; zÞÞPðdxÞPðdyÞPðdzÞ, (3)

where the integrand is given by

pðx; zÞ � pðy; zÞ ¼ ðy� xÞ � ½xþ y� Bzþ h:o:t:�. (4)

In particular, the constant and linear terms in the fitness
function are irrelevant for the dynamic analysis.

3. The replicator equation with normal distributions and

quadratic fitness functions

In this section, we analyse the replicator equation when
the higher-order terms are ignored in Eq. (4) and the initial
probability measure P0 is the (multivariate) normal
distribution Nðm;CÞ with mean vector m 2 Rn and
covariance matrix C 2 Rn�n. From Section 2.1, we may
assume fitness has the form of the quadratic function

pðx; zÞ ¼ �x � xþ x � Bz (5)

for x; z 2 S ¼ Rn and B an n� n matrix.
We proceed as follows. The first step is to show that the

class of normal distributions is forward invariant under the
replicator equation. Therefore, the infinite-dimensional
measure dynamics is reduced to a finite-dimensional system
of nþ n2 ordinary differential equations for the mean and
covariance matrix. These facts are stated in Theorem 1
below where it is also apparent that the dynamics of the
covariance matrix does not depend on the mean vector.
The next step is to obtain the explicit solution (Theorem 2)
for the evolution of the covariance matrix. Substitution of
this solution into the dynamics for the mean results in a
system of linear differential equations with time varying
coefficients. The stability analysis of this system for the
equilibrium d0 (i.e. for the limit of the normal distributions
Nð0;CÞ as C approaches the zero matrix) is summarized in
Theorems 3 and 4 in terms of the matrix B.

Theorem 1. The class of normal distributions is forward

invariant under the replicator dynamics (1). Assume that the

initial distribution is normal, P0 ¼ Nðm;CÞ for a mean

vector m 2 Rn and a covariance matrix C 2 Rn�n. Then the

solution of the replicator dynamics starting at P0 is given by

Pt ¼ NðmðtÞ;CðtÞÞ, where the mean and the covariance

matrix solve the initial value problem

m0ðtÞ ¼ CðtÞðB� 2IÞmðtÞ (6)

C0ðtÞ ¼ �2CðtÞCðtÞ. (7)

with mð0Þ ¼ m and Cð0Þ ¼ C.

The proof of Theorem 1 (and most other theorems) is in
the Appendix. Since the dynamical system (7) for the
covariance matrix does not depend on the mean vector, we
may study this system of differential equations on its own.
The following theorem gives the explicit solution which can
be easily verified.
Theorem 2. For any initial positive semidefinite matrix Cð0Þ,
the solution of Eq. (7) is given by

CðtÞ ¼ Cð0ÞðI þ 2Cð0ÞtÞ�1. (8)

Note that Eq. (8) is well defined for all tX0.
Alternatively, one can write the solution in the following
way.

CðtÞ ¼ OTDðtÞO,

where O is an orthogonal matrix such that OCð0ÞOT ¼ D

for some diagonal matrix D (and OT denotes the transpose
of O) and DðtÞ is the diagonal matrix with entries

DiiðtÞ ¼
Dii

1þ 2tDii

. (9)

In particular, the covariance matrix CðtÞ converges to the
zero matrix, and CðtÞ ¼ ð1=2tÞI þOð1=t2Þ as t!1

whenever the initial condition Cð0Þ is positive definite. By
inserting solution (8) into Eq. (6), the mean evolves
according to the time-dependent linear differential
equation

dm

dt
¼ Cð0ÞðI þ 2Cð0ÞtÞ�1ðB� 2IÞmðtÞ. (10)

After changing the time-scale ðtþ 1 ¼ e2tÞ this differential
equation becomes asymptotically autonomous

dm

dt
¼ ðB� 2IÞmðtÞ þ RðtÞmðtÞ (11)

with exponentially decreasing remainder term
RðtÞ ¼ ð2Cð0Þ � IÞðI þ 2ðe2t � 1ÞCð0ÞÞ�1ðB� 2IÞ. There-
fore the eigenvalues of B� 2I determine the asymptotic
behavior of mðtÞ and imply the following theorem (see its
proof in the Appendix for further details).

Theorem 3. Consider the replicator equation (1) restricted to

the class of normal distributions with quadratic fitness

functions as in Eq. (5).
1.
 If every eigenvalue of the matrix B� 2I has negative real

part, then d0 attracts all normal distributions P0 of the

form Nðm;CÞ with positive definite symmetric covariance

matrix C (i.e. CðtÞ ! O and mðtÞ ! 0 as t!þ1).
Furthermore, d0 is asymptotically stable with respect to

all such P0 with initial covariance matrix C orthogonally

similar to a positive diagonal matrix D (i.e. OCOT ¼ D)
satisfying minfDii=Djj j 1pi; jpngX� for some �40.
2.
 If some eigenvalue of B� 2I has positive real part, then d0
is unstable: for all positive definite C there are m

arbitrarily close to 0 such that along the solution with

initial P0 ¼ Nðm;CÞ one has kmðtÞk ! 1 as t!1.8

It is important to note that, in part 1 of Theorem 3, we
do not state that d0 is asymptotically stable with respect to
all P0 of the form Nðm;CÞ with positive definite symmetric



ARTICLE IN PRESS
R. Cressman et al. / Journal of Theoretical Biology 239 (2006) 273–288 277
covariance matrix C. In fact, this asymptotic stability
requires stronger assumptions on B.

To see this, we consider degenerate normal distributions
Nðm;CÞ with a positive semidefinite covariance matrix C

with m in the range of C (i.e. Gaussian distributions
confined to a linear subspace of Rn). Then Eq. (11) is
replaced by

dm

dt
¼ PðB� 2IÞmðtÞ þ PRðtÞmðtÞ, (12)

where P ¼ limt!1 2tCð0ÞðI þ 2tCð0ÞÞ�1.9 Then P is a
projection matrix (i.e. P ¼ PT ¼ P2) since its eigenvalues
are 0 and 1 only.

Note that two (possibly degenerate) normal distributions
are close in the weak topology if and only if their means
and covariances are close in the Euclidean metric. Since
there are normal distributions with a positive definite
covariance matrix arbitrarily close to these degenerate
ones, stability requires every eigenvalue of PðB� 2IÞ to
have negative real part. This condition implies the
following result on instability.

Theorem 4. If B� 2I is not negative semidefinite (i.e.

x � Bx42kxk2 for at least one x 2 Rn) then d0 is unstable

for Eq. (1) restricted to normal distributions.

It is instructive to compare Theorems 3 and 4 in the case
where every eigenvalue of the matrix B� 2I has negative
real part but B� 2I is not negative semidefinite (in
particular, B� 2I cannot be a symmetric matrix). In the
proof of Theorem 4 we construct rank one matrices Cð0Þ
and means mð0Þ such that mðtÞ ! 1 as t!þ1, i.e. there
is divergence for normal distributions concentrated on
certain lines through 0. By continuous dependence on
initial conditions in Eqs. (6) and (7), there are positive
definite covariance matrices ~Cð0Þ and means ~mð0Þ close by
such that k ~mðtÞk=k ~mð0Þk becomes arbitrarily large for some
t. Hence d0 is unstable even for normal distributions with
positive definite covariance matrix. However, in this case,
~mðtÞ will eventually converge to 0 after this long excursion
away by Part 1 of Theorem 3.1.

This phenomenon—attractivity without stability—
requires a multi-dimensional trait space.
4. Multi-dimensional adaptive dynamics, the canonical

equation and CSS

As stated in the Introduction, a main purpose of this
paper is to examine the relevance (for the dynamic stability
of the replicator equation with multi-dimensional contin-
uous strategy space) of static extensions of the one-
dimensional stability conditions developed by adaptive
dynamics (e.g. the CSS and NIS concepts). The compar-
9Inserting Cð0Þ ¼ PCð0Þ in Eq. (10) leads to Eq. (12) instead of Eq. (11)

with PRðtÞ exponentially decreasing when restricted to m in the range

of C.
isons developed in this section continue to be based on a
quadratic payoff function pðx; yÞ.
The canonical equation (13) from adaptive dynamics for

the evolution of a (monomorphic) population with mean m

through mutation and trait substitution was developed by
Dieckmann and Law (1996). Following Meszéna et al.
(2001) (see also Leimar, 2005), this takes the form (in our
notation)

m0ðtÞ ¼ 1
2
uðmÞNðmÞCðmÞr1pðx;mÞ

��
x¼m

. (13)

Here uðmÞ and NðmÞ are positive real-valued functions
giving the mutation rate and the equilibrium population
size respectively at mean m. These can be ignored in
analysing the limiting behavior of the canonical equation
since they do not affect the evolutionary trajectory but only
the speed of evolution along this trajectory (and so
1
2

uðmÞNðmÞ will be deleted from now on). More impor-
tantly, the covariance matrix CðmÞ (which now charac-
terizes the expected mutational effects in different
directions from m and does affect its evolution) is assumed
to depend only on m. In the earlier formulation of adaptive
dynamics by Hofbauer and Sigmund (1990) the symmetric
and positive definite matrix CðmÞ comes from a Rieman-
nian metric on the trait space.
To compare Eq. (13) to the replicator dynamics, assume

m ¼ 0 is a strict NE in the interior of the trait space as in
Section 2.1. Then r1pðx; 0Þjx¼0 ¼ 0 and so m ¼ 0 is an
interior equilibrium of Eq. (13). With the same change of
variables that led to Eq. (2) in Section 2.1, the canonical
equation becomes

m0ðtÞ ¼ CðmðtÞÞðB� 2IÞmðtÞ. (14)

m ¼ 0 is called convergence stable (with respect to CðmÞ) if
it is asymptotically stable under Eq. (14).
A quick glance at Eq. (6) shows the canonical equation is

quite closely related to the evolution of the mean for
normal distributions under Eq. (1) with quadratic fitness
functions. When CðmðtÞÞ ¼ cðtÞI for some positive function
cðtÞ40; the two dynamical systems have the same
trajectories for the mean although the mean evolves much
slower under the replicator equation through the change in
time-scale (given by tþ 1 ¼ e2t) as the covariance ap-
proaches the zero matrix. In general, the only difference
mathematically is that Eq. (14) is an autonomous system of
differential equations whereas Eq. (6) is not. As we will see,
this difference has important consequences for multi-
dimensional trait space on how convergence stability is
related to dynamic stability of Eq. (6) where the covariance
matrix CðtÞ is given explicitly in Theorem 2.
For a one-dimensional trait space, convergence stability

is independent of the choice of CðmÞ. That is, m ¼ 0 is
asymptotically stable with respect to the canonical Eq. (14)
for one choice of positive variance as a function of m if and
only if it is for any other choice. In fact, a one-dimensional
strict NE that is convergence stable is called a Continuously

Stable Strategy (CSS), a concept introduced by Eshel
(1983). Furthermore, m ¼ 0 is a CSS if and only if d0 is
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asymptotically stable under (6).10 Unfortunately, this
correspondence does not extend beyond one dimension as
illustrated by the following example.

Example 1. Consider the two-dimensional trait space R2

with quadratic fitness function (5) and

B ¼
0 b

c 0

� �
,

where b; c are both positive. By Theorem 3, d0 is attractive
under Eq. (1) for the class of normal distributions if and
only if the eigenvalues of B� 2I , l1;2 ¼ �2�

ffiffiffiffiffi
bc
p

, are
both negative, i.e., bco4. Also, by Theorem 4, d0 is
unstable for this class if B� 2I is not negative semidefinite,
i.e., jbþ cjo4.

Example 1a. Suppose CðmÞ is the constant symmetric
matrix

C ¼
1 a

a 1

� �

for all m where a is a fixed parameter satisfying jajo1 so
that C is positive definite. Then m ¼ 0 is globally
asymptotically stable under Eq. (14) if and only if every
eigenvalue of CðB� 2IÞ has negative real part.

With b ¼ 1=4 and c ¼ 4, the eigenvalues of B� 2I are
�1;�3 and so d0 is attractive for the replicator dynamics
restricted to the normal distributions if jajo1. On the other
hand, the sum of the eigenvalues of CðB� 2IÞ is the trace
�4þ 17a=4 of

�2þ 4a 1=4� a

�2aþ 4 a=4� 2

 !
.

Thus, some eigenvalue has positive real part if 16=17oao1
and so m ¼ 0 is not attractive for the canonical equation
(14) with constant covariance matrix parameterized by
these a.

The mathematical reason for this difference between
properties of the replicator equation and the canonical
equation (see Theorem 6 below) is that B� 2I is not
negative definite for b ¼ 1

4
and c ¼ 4 since jbþ cj44.

Furthermore, even if B� 2I were negative definite, the
asymmetry of B implies there is a continuous choice CðmÞ

depending on m for which m ¼ 0 is unstable.

Example 1b. For an explicit example of this latter
phenomenon, take b ¼ 1 and c ¼ 1

2 (so B� 2I is negative
definite) with

CðmÞ ¼
a2 ab

ab b2

 !
,

10The condition for asymptotic stability in both dynamics is that the

only entry b� 2 of the matrix B� 2I is negative (i.e. bo2). Here we ignore

the degenerate case with b ¼ 2. Similarly, the above definition of CSS

ignores the possibility that a non-strict NE can be a CSS, a situation we

also view as degenerate.
where

a

b

 !
�
�14 42

�39 16

� �
m1

m2

 !
.

Substitution into Eq. (14) yields

m01

m02

 !
¼

a2 ab

ab b2

 !
�2 1

1=2 �2

 !
�14 42

�39 16

 !�1 a

b

 !

¼
1

202

a2 ab

ab b2

 !
1 10

�10 1

 !
a

b

 !

¼
a2 þ b2

202

a

b

 !
.

Thus,

a0

b0

 !
¼

a2 þ b2

202

�14 42

�39 16

� � a

b

 !

and so m ¼ 0 is unstable for Eq. (14) since the trace of this
last 2� 2 matrix is positive. 11 On the other hand, d0 is
globally asymptotically stable for the replicator dynamics
restricted to the normal distributions in the sense of
Theorem 3, Part 1.

The two choices of explicit parameters in Examples 1a
and 1b above illustrate two methods to extend the one-
dimensional CSS conditions to multi-dimensions. The
more common approach (Meszéna et al., 2001) is to
consider m� 2 Rn a multi-dimensional CSS if it is a strict
NE that is convergence stable with respect to any choice of
constant positive definite symmetric covariance matrix C.
Translating m� to the origin, this is equivalent to asserting
CðB� 2IÞ has every eigenvalue with negative real part for
all choices of C. Hines (1980b); Cressman and Hines (1984)
(see also Leimar, 2005) show this is true if and only if
B� 2I is negative definite, which in the above example is
the condition jbþ cjo4. The negative definiteness of B�

2I is also equivalent to (multi-dimensional) m-stability
introduced by Lessard (1990).
In another approach, Leimar (2005) considers a more

restrictive notion of CSS by allowing all continuously
varying CðmÞ that are positive definite but not necessarily
symmetric, a condition Leimar called absolute convergence

stability (see also the concept of a Darwinian demon in
Leimar, 2001). He then showed this condition is equivalent
to B� 2I being symmetric and negative definite, a similar
result as that illustrated in Example 1b. The essential
properties for this specific example are that A � �14

�39
42
16

� �
has an eigenvalue of positive real part and that ATðB� 2IÞ

is positive definite.
11CðmÞ is only positive semidefinite. Positive terms can be added to the

diagonal of CðmÞ to make it positive definite, at least for ma0. If these

terms are of the form oða2 þ b2Þ (i.e. they go to zero faster than a2 þ b2),
they will not affect the instability of m ¼ 0 under Eq. (14).
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By the following definition, we follow the first perspec-
tive of Lessard (1990); Meszéna et al. (2001) in this paper.

Definition 1. m� 2 Rn is a multi-dimensional CSS if it is a
strict NE and convergence stable with respect to any
choice of constant positive definite symmetric covariance
matrix C.

That is, we define a strict NE to be a CSS if B� 2I is
negative definite, i.e., x � Bxo2kxk2 for all xa0. There are
several reasons for this choice. Not only is mutational
covariance near a monomorphic equilibrium assumed to be
constant in most treatments of adaptive dynamics (Vincent
et al., 1993; Metz et al., 1996; Meszéna et al., 2001), it is
also a standard assumption in earlier treatments of
evolution of strategy distributions from game-theoretic
models where payoff functions are often assumed bilinear
as in pðx; yÞ ¼ x � By (Hines, 1980b).12 For us, another
important reason is that this definition of CSS is the most
relevant condition for dynamic stability of the general
replicator equation (1) analysed in the following section
(see Theorem 12 there).

The above example and/or the proof of Theorem 3 show
that dynamic stability depends critically on the evolution of
the covariance matrix CðmðtÞÞ and/or CðtÞ. However, if B�

2I is symmetric, all concepts are equivalent. That is, we
have the following.

Theorem 5 (Symmetric B). Suppose B is symmetric. The

following four statements are equivalent.13
(1)
12

vari

stab

mod

stra

vari
13

igno
d0 is attractive under Eq. (1) for the class of non-

degenerate normal distributions.

(2)
 d0 is Lyapunov stable under Eq. (1) for the class of all

normal distributions.

(3)
 m ¼ 0 is a CSS.

(4)
 m ¼ 0 is a strict NE and absolutely convergence stable.
The reason for this equivalence is that, for symmetric
matrices, negative definiteness is equivalent to all eigenva-
lues being negative. The stability assertion in statement 2
follows from the Fundamental Theorem of Natural Selection

(see Oechssler and Riedel, 2002, Theorem 1, or Cressman
and Hofbauer, 2005, Section 4.2). Specifically, mean fitness
~pðP;PÞ is a Lyapunov function for Eq. (1) for the
equivalent payoff function ~pðx; yÞ ¼ �x � xþ x � By� y � y

which is symmetric (i.e. ~pðx; yÞ ¼ ~pðy;xÞ) and P ¼ d0 is a
maximizer of ~pðP;PÞ if and only if B� 2I is negative
definite.
See however Hines (1980a) where it is shown that non-constant

ances arise quite naturally and can play an important role in the

ility analysis. Effects of evolving (co)variances are important in

els of quantitative genetics as well (e.g. Bürger, 2000) where the mean

tegy dynamics is similar to the canonical equation, although here

ances are again sometimes assumed constant (Abrams, 2001).

These equivalences ignore degenerate possibilities. For example, we

re situations where relevant eigenvalues have zero real part.
On the other hand, if B is not symmetric, none of the
statements are equivalent by Examples 1a and 1b. We then
have the following theorem.

Theorem 6. Suppose B is not symmetric and m ¼ 0 is a strict

NE. Then
(1)
 d0 is attractive and asymptotically stable (as in Theorem

3, Part 1) under Eq. (1) for the class of normal

distributions if and only if every eigenvalue of B� 2I

has negative real part.

(2)
 m ¼ 0 is a CSS if and only if B� 2I is negative definite.

(3)
 m ¼ 0 is not absolutely convergence stable.
Remark. By Theorem 6 and the discussion following
Theorem 4, the multi-dimensional CSS concept emerges
by requiring asymptotic stability with respect to all positive
semidefinite covariance matrices with one-dimensional
range (i.e. a line through the origin). By Theorems 3 and
4 restricted to each such line, we have an independent proof
of the result (Lessard, 1990; Meszéna et al., 2001) that the
multi-dimensional CSS concept is equivalent to the one-
dimensional CSS conditions for each line through the
origin.

5. Stability of monomorphisms under the replicator equation

The explicit analysis of the replicator dynamics in
Section 3 relies heavily on the assumptions the payoff
function pðx; yÞ is quadratic and the initial population is
normally distributed with mean m. Such normal distribu-
tions are one way to model aggregate individual mutations
for a monomorphic population at m. An underlying
assumption of the replicator equation (1) is that each
individual reproduces offspring with its same trait and at a
rate equal to its fitness. If this reproduction of clones is
subject to small shocks from m that are independent of
each other, the Central Limit Theorem can be used to
conclude the initial traits will be normally distributed after
such a shock. So here mutation is treated indirectly by
considering variations of initial conditions.
In the remainder of the paper, we consider other initial

distributions (that can also be given a mutational
interpretation) and arbitrary payoff functions. We will be
most interested in convergence and stability properties of
monomorphisms dm� under Eq. (1) for initial distributions
whose support is close to m� to reflect the adaptive
dynamics assumption that trait substitution involves only
nearby mutations. This means we cannot simply use the
weak topology on DðRnÞ (or on DðSÞ for that matter) since
P may be close to dm� in the weak topology and still have
support all of Rn (e.g. a normal distribution with mean 0
and small variance is close to d0 in the weak topology).
That is, for stability with respect to the weak topology, one
must also account for possibly large payoff effects of
(admittedly rare) interactions involving an individual
whose strategy is far from that of the monomorphic
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15Throughout Section 5, we again ignore degenerate possibilities. Thus,

here we assume B� I is not negative semidefinite. There is a partial

converse as well; namely, if B� I is negative definite (i.e. x � x� x � Bx40

for all x), then d0 attracts all dimorphic P with support containing 0.
16An NIS is also known as a good invader (Kisdi and Meszéna, 1995)
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population. To avoid this problem, we concentrate instead
on convergence to dm� in the weak topology for initial
distributions whose support is close to m� (see the concept
of neighborhood attractivity in the following definition). It
is important to note that neighborhood attractivity also
requires m� to be in the support of these initial distributions
since the replicator dynamics (1) in a continuous trait space
shares the same property of its analog for a finite number
of traits; namely, suppPt ¼ suppP0 for all tX0 (Bomze,
1991). The main advantage of this concept is that the
Taylor expansion of the payoff function about the
monomorphism can be used (specifically, up to quadratic
terms) as a good approximation.

Remark. Alternatively, we could modify the weak topol-
ogy by defining P close to P� if P is close to P� in the weak
topology and the support of P is close to that of P�. In fact,
when the trait space is one dimensional, this is the
approach taken by Eshel and Sansone (2003) who called
this the maximal shift topology. However, every mono-
morphism P� ¼ dm� is then automatically stable in this
modified weak topology since P is close to dm� if and only if
its support is close to m�.14 However, Pt cannot converge to
dm� in this new topology since the support of Pt does not
converge to fm�g. That is, if dm� is neighborhood attractive,
then it immediately enjoys stability properties under this
new topology but convergence must still be taken with
respect to the weak topology. For this reason, we prefer
not to formally define a modified weak topology.

Definition 2. Let Q be a set of probability distributions,
whose support contains that of P�, that is forward
invariant under Eq. (1). P� is attractive for Q if Pt

converges to P� in the weak topology for every P0 2 Q.
P� ¼ dm� is neighborhood attractive for Q if, for some
neighborhood U of m� in Rn, Pt converges to P� in the
weak topology for every P0 2 Q with suppP0 � U .

Clearly, neighborhood attractivity depends critically on
the choice of Q. For instance, in the trivial case that dm� is
the only distribution in Q with support close to fm�g, dm� is
neighborhood attractive by default. Sections 5.1 and 5.2
examine the attractivity properties of Definition 2 for two
choices of Q that are more important. In either case, it is
assumed that Q contains measures whose support is a small
closed neighborhood of m� ¼ 0 in the Euclidean topology.
As shown in Lemma A.1 in the Appendix, the attractivity
concept in Definition 2 then requires at a minimum that m�

be a NE locally (i.e. pðm�;m�ÞXpðx;m�Þ for all x near m�,
see also Alós-Ferrer and Ania, 2001). To avoid technical
complications, we again assume throughout Section 5 that
m is in fact a local strict NE as determined by the second-
order Taylor expansion of p. Furthermore, we assume that
the trait space has been parameterized in such a way that
m� ¼ 0 is in the interior of S and the Taylor expansion of
14This statement is no longer true for stability of a non-monomorphic

distribution P� (for dimorphisms, see Cressman, 2005).
pðx; yÞ up to quadratic terms is given by Eq. (5). To repeat,
we make the following assumption.

Assumption. m� ¼ 0 is a local strict NE (i.e. pðx; 0Þopð0; 0Þ
for all x sufficiently close (but not equal) to 0) and
the Taylor expansion of pðx; yÞ about ð0; 0Þ is pðx; yÞ ¼
�x � xþ x � By up to second-order terms.

5.1. Dynamic stability, neighborhood superiority and NIS

In this section, we seek the strongest type of attractivity
possible by taking Q ¼ Q0 :¼fP 2 DðSÞ : 0 2 suppPg. Con-
sider the trajectory in DðSÞ for initial P0 with support f0; xg
and x 2 S. The replicator equation (1) for such P0 is

dP

dt
ðf0gÞ ¼ Pðf0gÞðpðd0;PÞ � pðP;PÞÞ

¼ Pðf0gÞPðfxgÞ½ðpð0; 0Þ � pðx; 0ÞÞPðf0gÞ

þ ðpð0; xÞ � pðx; xÞÞPðfxgÞ�

¼ Pðf0gÞPðfxgÞ½x � xPðf0gÞ

þ ðx � x� x � BxÞPðfxgÞ� þ h:o:t. ð15Þ

If x � x� x � Bxo0 for some xa0, then dP=dtðf0gÞo0 if
x is sufficiently close to 0 and PðfxgÞ is sufficiently close to
1. Since 0 is in the interior of S, we may assume x 2 S.
Thus, Pt does not converge to d0 and so d0 is not attractive
for such dimorphic P0.
That is, neighborhood attractivity of d0 for Q0 implies B�

I is negative definite.15 This negative definiteness condition is
similar to the CSS condition of adaptive dynamics (see
Definition 1 of Section 4). In fact, it is more closely related to
the static condition called a neighborhood invader strategy

(NIS) (McKelvey and Apaloo, 1995; Apaloo, 1997).16 The
trait 0 is NIS if it has higher payoff against all nearby
monomorphic populations dx than the expected payoff of x.
That is, we have the following definition.

Definition 3. m� 2 Rn is a NIS if

pðm�; xÞ4pðx;xÞ (16)

for all other x 2 Rn in a neighborhood of m�.

From the Taylor expansion of a general payoff function
pðx; yÞ about ð0; 0Þ, 0 is NIS if

r2p � xþ 1
2
x � ðr2

22pÞx4r1p � xþr2p � xþ 1
2
½x � ðr2

11pÞx

þ 2x � ðr2
12pÞxþ x � ðr2

22Þx� þ h:o:t.

Since 0 is in the interior of S, r1p � x ¼ 0 and so the NIS
condition is that

x � ðr2
11pÞxþ 2x � ðr2

12pÞxo0.
and as satisfying (multi-dimensional) m�-stability (Lessard, 1990). For a

one-dimensional trait space, Eshel and Sansone (2003) proved the NIS

condition is necessary for neighbourhood attractivity of d0.
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By reparameterizing our trait space so that p is given by
Eq. (2) (i.e. r2

11 ¼ �2I and r2
12 ¼ B), the local strict NE 0

is NIS if and only if B� I is negative definite. Further-
more, from Eq. (16) combined with the fact that
pð0; 0Þ4pðx; 0Þ for all other x 2 Rn in a neighborhood of
0, B� I is negative definite if and only if 0 strictly
dominates all other nearby x in the two-strategy game
based on the trait space f0;xg. This game-theoretic
characterization that

pð0; zÞ4pðx; zÞ

for all z 2 f0; xg is important for comparison to the
analogous characterization of the CSS condition in Section
5.2 (see Eq. (17) there).

Another game-theoretic characterization with attractiv-
ity consequences is given in terms of the following
definition introduced by Cressman (2005) for continuous
strategy spaces. Neighborhood superiority is closely con-
nected to the concept of evolutionarily robust (Oechssler
and Riedel, 2002) (also called locally superior with respect

to the weak topology by Cressman and Hofbauer, 2005)
whereby pðP�;PÞ4pðP;PÞ for all P sufficiently close to P�

in the weak topology.

Definition 4. The monomorphism P� ¼ dm� is neighborhood

superior if, for all other P with support sufficiently close to
m�, pðP�;PÞ4pðP;PÞ.17

The following result summarizes the above discussion.

Theorem 7. The following four statements are equivalent

under our above Assumption for Section 5.
(1)
17

18

evol

(198

tical
d0 is neighborhood superior.

(2)
 0 is an NIS.

(3)
 0 strictly dominates all other nearby strategies x in the

two-strategy game based on the trait space f0; xg.

(4)
 B� I is negative definite.
The only non-obvious implication in the above Theorem
is that the first statement is implied by any one of the other
three statements. This proof is Theorem 1 in Cressman
(2005). An NIS need not be neighborhood superior if
quadratic terms in the Taylor expansion do not determine
the NIS conditions. Oechssler and Riedel (2002) provide
the counterexample pðx; yÞ ¼ ðx� yÞ4 � 2x4 with a one-
dimensional trait space (see also Eshel and Sansone, 2003).

Intuitively, a neighborhood superior P� should be
neighborhood attracting since P� has a higher than average
payoff at every nearby population state P.18 Unfortu-
nately, we are only able to prove the following partial result
for general payoff functions.
Cressman (2005) analysed this concept for any P� with finite support.

For a finite trait space S, this intuition is equivalent to the notion of an

utionarily stable strategy (i.e. a matrix-ESS) by Maynard Smith

2). Furthermore, it is well-known a matrix-ESS is locally asympto-

ly stable for the replicator equation on a finite trait space.
Theorem 8. If d0 is neighborhood superior and P0 has

compact support sufficiently close to 0 and containing 0, then

d0 is an o-limit point of Pt.
19

In the special case of symmetric payoff functions (i.e.
pðx; yÞ ¼ pðy;xÞ), we have the following characterization,
similar to Theorem 2 of Oechssler and Riedel (2002) and
Theorem 4 in Cressman and Hofbauer (2005).

Theorem 9. Suppose pðx; yÞ is a symmetric payoff function

(in particular, B is symmetric).20 Then d0 is neighborhood

attractive for the set Q0 if and only if d0 is neighborhood

superior.

Remark. Attempts to extend Theorem 9 to general pðx; yÞ
have an interesting history. Oechssler and Riedel (2002)
conjecture that Theorem 9 remains true for the weak
topology when p is not symmetric (see their concept of
evolutionarily robust). Eshel and Sansone, 2003 provide a
proof of Theorem 9 for general pðx; yÞ if the trait space is
one dimensional (although we have been unable to follow
all the details of this proof). If Q is taken as the set of all
measures with Pðf0gÞ40, Theorem 9 was proven by Bomze
(1990) for pðx; yÞ ¼ fðxÞ þ fðyÞ, by Oechssler and Riedel
(2002, Theorem 3) (see also Cressman, 2005, Theorem 1)
for general pðx; yÞ.

5.2. Dynamic stability, dominance solvability and CSS

Section 5.1 illustrates the importance of the static NIS
concept for stability of the replicator dynamics (1). We now
turn to the relevance of the CSS concept. From the
adaptive dynamics perspective, dynamics (15) models trait
substitution from x to 0 in one step, whereas the canonical
equation is built on the premise that mutation and trait
substitution is a gradual process whereby x evolves to 0 in a
sequence of many steps.
For a one-dimensional trait space, the canonical

equation requires all traits between 0 and x be available
for substitution and so we now assume the support of P0

contains this interval. The heuristic condition (Eshel, 1983)
for a strict NE at m� ¼ 0 to be a CSS amounts to replacing
inequality (16) with

pðy;xÞ4pðx;xÞ (17)

whenever y is close to x and between 0 and x. The Taylor
expansion of pðx; yÞ about ð0; 0Þ now yields a local strict
NE satisfies Eq. (17) if and only if bo2 where b is the only
entry of the 1� 1 matrix B in Eq. (5).
Cressman and Hofbauer (2005) were able to use an

iterated strategy domination argument to show that, for
any jbjo2, d0 is attractive for initial distributions P0 whose
support is a (sufficiently small) interval S containing 0.
19d0 is attractive for Q0 if and only if d0 is the unique o-limit point of Pt

for all such P0 2 Q0.
20We may assume pðx; yÞ has the form pðx; yÞ ¼ �x � xþ x � By� y �

yþ h:o:t: since the terms pð0; 0Þ þ r2p � y and �y � y (cf. Eq. (2)) are

irrelevant for the replicator equation.
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Specifically, they showed the game with the continuum of
traits in S is strictly dominance solvable (see Definition 5
below) to the trait 0. By this process, each trait x 2 S that is
strictly dominated by another trait y 2 S is eliminated and
then each remaining trait that is strictly dominated (in the
reduced game with the resultant trait space) by another
remaining trait is eliminated, etc. If every trait except 0 is
eventually eliminated by this countable process, standard
techniques extended from finite trait space (Samuelson and
Zhang, 1992) show d0 is attractive for the above initial
distributions with respect to the replicator equation under
this iterated elimination of strictly dominated strategies
(Cressman and Hofbauer, 2005) (see also Heifetz et al.
(2003) and the proof of Theorem 10 below).

In this section, we extend this argument to a multi-
dimensional setting, starting with the concept of domi-
nance solvability similar to that introduced by Moulin
(1984).

Definition 5. The game with compact trait space S is
strictly dominance solvable to x� 2 S if there is a countable
nested sequence of closed subsets Si in S with Siþ1 � Si

and S0 ¼ S satisfying
(i)
21

kxk

kBk

suffi

dom
for every iX0 and every x 2 SinSiþ1, there exists a y 2

Si such that pðy; zÞ4pðx; zÞ for all z 2 SiT

(ii)
 1

i¼0 Si ¼ fx
�g.
Theorem 10. If the game with compact trait space S � Rn is

strictly dominance solvable to x� 2 S, then Pt converges to

dx� in the weak topology for each initial distribution P0 with

full support S.

The most straightforward application of this theory to
our multi-dimensional setting is through the following
theorem when B is symmetric (and the trait space is
parameterized so that the payoff function has form (5) up
to quadratic terms). A set S � Rn is called star-shaped

about 0 if it contains the line segment from 0 to x for every
x 2 S. Hence for n ¼ 1, S is an interval containing 0. Let
Q� be the set of all probability measures in DðSÞ whose
support is star-shaped about 0.

Theorem 11. Suppose B is symmetric. The games restricted

to all compact trait spaces S � Rn that are star-shaped about

0 and sufficiently close to 0 are strictly dominance solvable if

and only if kBko2.21 Furthermore, if kBko2, then d0 is

neighborhood attractive for the replicator equation (1) for

Q�.

Notice that 0 is a CSS if kBko2 since we then have

x � ðB� 2IÞxokBkkxk2 � 2kxk2o0
Here kBk is the operator norm of B (i.e. kBk � supkxk¼1kBxk where

is the Euclidean length of x). We ignore the degenerate possibility

¼ 2. Strict dominance solvability for all games with trait space S

ciently close to x� is closely related to the concept of locally strictly

inance solvable defined by Moulin (1984).
for nonzero x (i.e. B� 2I is negative definite). The
condition kBko2 also has an interesting connection to
the Cournot tatonnement process of Moulin (1984). To see
this clearly, let us ignore the non-quadratic terms in Eq. (5).
For our single-species model, the Cournot process is the
sequence of best replies yiþ1 � arg maxfpðx; yiÞ : x 2 Rng

which is given by yiþ1 ¼
1
2

Byi. This discrete-time tatonne-
ment process converges to 0 if and only if the eigenvalues
of 1

2
B all have modulus less than 1. For symmetric B, this is

equivalent to kBko2.
When kBko2 but B is not symmetric, the proof of

Theorem 11 still shows that the games restricted to all trait
spaces S � Rn that are star-shaped about 0 and sufficiently
close to 0 are strictly dominance solvable if kBko2 (and so
d0 is still neighborhood attractive for Q�). However, there
are other choices of B with kBk42 for which the associated
games are strictly dominance solvable (see Section 5.3).
The reason for this is that we do not need to use Euclidean
distance as in the proof of Theorem 11 (where the nested
sequence of trait spaces are disks). The essential inequality
there is that, for nonzero y0,

y0 � Bzo2y0 � y0 (18)

for all z in the disk fzjz � zpy0 � y0g. These regions can be
replaced by others that are compact and star-shaped. For
instance, if D is a positive definite symmetric matrix, we
will have strict dominance solvability if y0 � Bzo2y0 � y0

for all z in the disk z 2 fzjz �Dzpy0 �Dy0g. Since Eq. (18)
is linear in z, we can restrict to the boundary
fzjz �Dz ¼ y0 �Dy0g. The following theorem then gener-
alizes Theorem 11 to non-symmetric B.
Theorem 12. Suppose there exists a positive definite sym-

metric matrix D such that, for all ya0,

ðy �DyÞðBTy �D�1BTyÞo4ðy � yÞ2. (19)

Then the games restricted to all compact trait spaces S � Rn

that are star-shaped about 0 and sufficiently close to 0 are

strictly dominance solvable and d0 is neighborhood attractive

for Q� in the replicator equation (1). If d0 is neighborhood

attractive in this sense, then 0 is CSS.
Remark. If D is chosen as a (positive) multiple of the
identity matrix in Theorem 12, then Eq. (19) is equivalent
to kBTyko2kyk. Since kBk ¼ kBTk, Theorem 12 shows
that the statement of Theorem 11 is valid when kBko2 and
B is non-symmetric.
Conversely, if B is symmetric with kBk42, then BTy ¼

ly for some y and jlj42. Since ðy �DyÞðy �D�1yÞXðy � yÞ2

for all positive definite symmetric matrices D, we have ðy �
DyÞðBTy �D�1BTyÞ44ðy � yÞ2 and so Theorem 12 does not
expand the set of payoff functions with B symmetric for
which we have a proof that d0 is neighborhood attractive.
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5.3. Two-dimensional trait space

Using Theorems 11 and 12 on dominance solvability, we
are able to determine a large class of 2� 2 matrices B for
which d0 is neighborhood attractive in the replicator
equation (1) for Q�. For this, we use the fact that every
2� 2 matrix is orthogonally similar to a matrix of the form

B ¼
a b

c a

� �
. (20)

That is, there is a rotation O such that OTBO has this form.
Note that such a transformation does not affect the form of
the fitness function (2) nor the symmetry of B.

Theorem 13. If B is given by Eq. (20), then the games

restricted to all compact trait spaces S � R2 that are star-

shaped about 0 and sufficiently close to 0 are strictly

dominance solvable if

jbj þ jcjo2ð2� jajÞ. (21)

In this case, d0 is neighborhood attractive for Q�.

If B is symmetric, Eq. (21) becomes jaj þ jbjo2 which is
the condition of Theorem 11 since kBk ¼ jaj þ jbjo2. On
the other hand, by Theorem 13, there are non-symmetric
B’s for which d0 is neighborhood attractive but kBk42.
For instance, d0 is neighborhood attractive for B ¼ 0

0
b
0

	 

if

jbjo4 but 0
0

b
0

	 
�� �� ¼ jbj. Finally, it is straightforward to
confirm that condition (21) implies the eigenvalues a�

ffiffiffiffiffi
bc
p

of B satisfy ja�
ffiffiffiffiffi
bc
p
jo2. Thus the best reply Cournot

tatonnement process (Moulin, 1984) again converges to
zero although it is no longer true that kxtþ1kokxtk.

5.3.1. Summary for two-dimensional trait space

Take pðx; zÞ ¼ �x � xþ x � Bz and B ¼ a
c

b
a

	 

.

For B symmetric, 0 is
(i)
 NIS if and only if ao1 and jbjoj1� aj,

(ii)
 CSS if and only if ao2 and jbjoj2� aj,

(iii)
 dominance solvable if and only if jaj þ jbjo2.
For B non-symmetric, 0 is
(i)
 NIS if and only if ao1 and jbþ cjo2j1� aj,

(ii)
 CSS if and only if ao2 and jbþ cjo2j2� aj,

(iii)
 dominance solvable if jbj þ jcjo2ð2� jajÞ.
22For technical reasons, this support must also include m�.
Condition (21) is equivalent to strict dominance solva-
bility when B is non-symmetric and bcX0 (i.e. b and c have
the same sign). To see this, Theorem 11 applied to the one-
dimensional trait space S ¼ ftð1; 1Þ : jtjp1g yields the
necessary condition j2aþ bþ cjo4 for strict dominance
solvability and to the one-dimensional trait space
S ¼ ftð1;�1Þ : jtjp1g yields j2a� b� cjo4. Thus, j2ajþ

jbþ cjo4. On the other hand, kBk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p
for B ¼

1
�b

b
1

	 

and so the game is strictly dominance solvable if

jbjo
ffiffiffi
3
p

even though j2aj þ jbj þ jcj may be arbitrarily

close to 2þ 2
ffiffiffi
3
p

44.
In fact, the exact condition for strict dominance
solvability to 0 is unknown for non-symmetric B. It is also
an open question whether the CSS condition is sufficient
for neighborhood attractivity of d0 for Q�.

6. Discussion

As stated in the Introduction, we feel the adaptive
dynamics model to predict stability of monomorphisms by
emphasizing the evolution of the population mean strategy
misses the effects of the spread of the distribution of
individual behaviors. The replicator equation on a
continuous trait space is our preferred method to include
these effects. The basic issue we consider is then whether
the static CSS and NIS concepts for monomorphic stability
of one-dimensional adaptive dynamics predict stability of
the replicator equation when generalized to multi-dimen-
sions. An initial obstacle to analysing this issue is that
universally accepted static extensions are not agreed upon
in the adaptive dynamics approach since stability of the
canonical equation now depends on the relative rates
mutations occur in different directions (in technical terms,
on the mutations’ covariance matrix).
One assumption is that the covariance matrix will evolve

very slowly (if at all) and so can be taken as essentially
constant (Vincent et al., 1993), a method that has also been
used effectively much earlier in the matrix game model
(Hines, 1980a). With arbitrary (but fixed) covariance,
monomorphic stability with respect to both the canonical
equation and to the potential evolution of dimorphisms
leads to the CSS conditions in each direction through the
monomorphism (Meszéna et al., 2001). We take this as our
multi-dimensional CSS concept. On the other hand, if the
relative rates of mutation are not constant but can change
at different points along the evolutionary path to have their
most extreme effect (Leimar, 2001, 2005), much stronger
stability conditions than being a CSS in each direction are
needed in the adaptive dynamics approach (see Section 4).
In light of the above discussion, the analytic results of

Section 3 are quite surprising. By Theorem 3 there, when
individual behaviors are initially normally distributed and
fitnesses are approximated by their second-order Taylor
expansions about a monomorphism, then even the weaker
CSS conditions are too strong (see Theorem 3 for the
precise statement) to characterize stability since the
distribution’s covariance evolves slowly to having equal
effect in all directions. Although this result raises legitimate
concerns about current adaptive dynamics approaches for
multi-dimensional trait space, the presence of strategies at
the tails of the normal distribution does not match the
usual assumption that mutations only occur near the
monomorphic equilibrium.
For this reason, Section 5 concentrates on behavioral

distributions with compact support contained in a small
neighborhood of a monomorphism m�.22 In this setting
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and with no more restrictions on the support of the initial
distribution, we show in Section 5.1 that the multi-
dimensional NIS is the most relevant concept for stability
of dm� under the replicator equation (Theorems 7–9),
generalizing results of Eshel and Sansone (2003); Cressman
(2005). When distributions are restricted to those whose
supports are compact intervals in each direction from m�,
we show in Section 5.2 the relevance of the CSS conditions
by clarifying the relationship between CSS and strategy
dominance in the multi-dimensional model. As explained
there, stability of the measure dynamics via strategy
domination corresponds to stability of the Cournot
tatonnement process with a continuum of strategies
(Moulin, 1984), a discrete-time dynamic whereby rational
decision makers choose the optimal strategy in the next
time period given current population behavior. This
connection continues the long tradition of classical game-
theoretic methods providing valuable insight into the
eventual outcome of behavioral evolution under the
replicator equation (and vice versa).

Finally, Section 5.3 summarizes how our results apply to
two-dimensional trait spaces, an important special case
that highlights the added difficulties that arise when trait
space has an extra degree of freedom compared to the
analysis of Cressman and Hofbauer (2005) where trait
space is one dimensional.

Appendix
Proof of Theorem 1. The proof that the class of normal
distributions is invariant under replicator dynamics is in
Oechssler and Riedel (2001) for n ¼ 1. A similar method
works for many dimensions and it establishes the system of
ordinary differential equations (6) and (7) at the same time.
In the following, a different proof by using moment
generating functions is given.

First, we provide some intuition for the proof of Eq. (6).
Assume that all Pt are normally distributed with mean mðtÞ

and diagonal covariance matrix with entries ViðtÞ. Note
that pðx;PtÞ ¼ �x � xþ x � BmðtÞ and pðPt;PtÞ ¼ �mðtÞ�

mðtÞ � V ðtÞ � 1þ x � BmðtÞ, where 1 denotes the summing
vector ð1; 1; . . . ; 1Þ. Then the differential equation for the
ith component of the mean is (omitting the time variable t)

m0i ¼

Z
Rn

xiðpðx;PÞ � pðP;PÞÞPðdxÞ

¼

Z
Rn

�x3
i þ xi

Xn

k¼1

ðxi �miÞBikmkÞ

 ! !
PðdxÞ

þ
X
jai

Z
Rn

�xi x2
j þ

Xn

k¼1

ðxj �mjÞBjkmkÞ

 ! !
PðdxÞ

�mið�m �m� V � 1Þ.

The third moment of a normal random variable isR
x3

i PðdxÞ ¼ m3
i þ 3miV i. The covariance of xi and xi �mi

is equal to the variance Vi. As we have assumed that the
components are uncorrelated,
R

xiðxj �mjÞPðdxÞ ¼ 0 for
iaj. Substitution of these results into the last equation for
m0i yields

m0i ¼ �2miV i þ V i

Xn

k¼1

Bikmk.

That is, in vector notation, we have Eq. (6).
When the covariance matrix is not diagonal, the

following proof uses moment generating functions. As this
method has potential use in other contexts as well, we start
with a general exposition here.
Take a probability measure P with mean m and

covariance matrix C and a vector l 2 Rn. Define the
Laplace transform

Lðl;PÞ ¼
Z

expð�lTxÞPðdxÞ,

and its logarithm

Mðl;PÞ ¼ log Lðl;PÞ.

L can be extended to finite signed measures in a
straightforward way. It is well known (and follows
immediately through differentiation under the integral)
that

q
qli

Mðl;PÞ
����
l¼0
¼ �mi

and

q2

qliqlj

Mðl;PÞ
����
l¼0
¼ Cij .

Thus, M generates the mean through the gradient and the
covariance matrix through its Hessian. Therefore, we can
obtain differential equations for the mean and the
covariance matrix by differentiating the moment generat-
ing function M. Normal distributions Nðm;CÞ are char-
acterized by Mðl;Nðm;CÞÞ ¼ �lTmþ 1

2
lTCl.

Let PðtÞ be a trajectory of replicator dynamics in the
following. It is useful to associate with the measures PðtÞ

the probability measures PlðtÞ as given by

PlðtÞðGÞ ¼
1

Lðl;PðtÞÞ

Z
G
expð�lTxÞPðtÞðdxÞ.

Note that

d

dt
Mðl;PðtÞÞ ¼

Lðl;P0ðtÞÞ
Lðl;PðtÞÞ

.

By definition of replicator dynamics

d

dt
Mðl;PðtÞÞ ¼

1

Lðl;PðtÞÞ

Z
expð�lTxÞ½pðx;PðtÞÞ

� pðPðtÞ;PðtÞÞ�PðtÞðdxÞ

¼
1

Lðl;PðtÞÞ

Z
expð�lTxÞpðx;PðtÞÞPðtÞðdxÞ

� pðPðtÞ;PðtÞÞ

¼ pðPlðtÞ;PðtÞÞ � pðPðtÞ;PðtÞÞ.
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From this, we get the following relations for the mean and
the covariance matrix:

m0iðtÞ ¼ �
q
qli

pðPlðtÞ;PðtÞÞ

����
l¼0

,

C0ijðtÞ ¼
q2

qliqlj

pðPlðtÞ;PðtÞÞ

����
l¼0

.

We will now apply these relationships to the case of
normal distributions. As is well known (and can be seen via
completing a square), if P ¼ Nðm;CÞ, then Pl ¼

Nðm� Cl;CÞ. Thus, for the quadratic payoff function
pðx; yÞ ¼ x � Axþ x � By,

pðPl;PÞ ¼ ðm� ClÞTAðm� ClÞ

þ
Xn

i;j¼1

AijCij þ ðm� ClÞTBm.

Since this is quadratic in l, the set of normal distributions
is invariant, and by comparing with ðd=dtÞMðl;PðtÞÞ ¼
�lTm0ðtÞ þ 1

2
lTC0ðtÞl, we get the desired differential

equations

m0ðtÞ ¼ CðtÞð2Aþ BÞmðtÞ, (22)

C0ðtÞ ¼ 2CðtÞACðtÞ (23)

which reduces in the special case A ¼ �I to Eqs. (6) and
(7). &

Proof of Theorem 3. As a first step, we perform an
orthogonal transformation as in the analysis of the
dynamics of the covariance matrix. Let C ¼ Cð0Þ be the
initial covariance matrix, and choose an orthogonal matrix
O and a diagonal matrix D with decreasing entries
D11X � � �Dnn40 such that OCOT ¼ D. We know from
the discussion after Theorem 2 that CðtÞ ¼ OTDðtÞO for
DðtÞ diagonal with DiiðtÞ ¼ 1=ðD�1ii þ 2tÞ. From this, it is
straightforward to show that mini;jDiiðtÞ=DjjðtÞ ¼

DnnðtÞ=D11ðtÞ and that DnnðtÞ=D11ðtÞXDnn=D11. Hence, the
set of covariance matrices with bounded ratios of
eigenvalues mini;jDii=Djj ¼ Dnn=D11X�40 is forward in-
variant under Eq. (7).

Define the transformed mean vectors nðtÞ ¼ OmðtÞ. As O

is orthogonal, nðtÞ and mðtÞ have the same distance to zero
and it suffices to study the stability behavior of nðtÞ. nðtÞ

solves the differential equation

n0ðtÞ ¼ Om0ðtÞ ¼ OCðtÞðB� 2IÞmðtÞ

¼ OOTDðtÞOðB� 2IÞmðtÞ

¼ DðtÞOðB� 2IÞOTnðtÞ .

Let G ¼ OðB� 2IÞOT. G has the same eigenvalues as B�

2I since they are similar matrices.
In the second step, we perform a suitable time change by

setting sðtÞ ¼ ðe2t � 1Þ=2D11 : Let ~nðtÞ ¼ nðsðtÞÞ. Then,

~n0ðtÞ ¼ G ~nðtÞ � ~DðtÞG ~nðtÞ, (24)
where ~DðtÞ is diagonal with entries

~DiiðtÞ ¼
ai

ai þ e2t
and ai ¼

D11

Dii

� 1.

The system of differential equations (24) is asymptoti-
cally autonomous with exponentially decreasing remainder
term. Therefore, one can invoke standard results (see, for
example, Coddington and Levinson, 1955, Chapter 3,
Problem 35) to conclude that the eigenvalues of G (i.e.,
those of B� 2I) determine the asymptotic behavior of mðtÞ

if the positive definite covariance matrix Cð0Þ is fixed. In
particular, if one eigenvalue of G has positive real part, the
mean diverges for most initial conditions (Part 2) and m ¼

0 is asymptotically stable if every eigenvalue of G has
negative real part (first statement of Part 1).
For the second statement of Part 1, we do vary Cð0Þ and

so need to work a little more using our uniform estimate in
the initial covariances. By our assumption on the
eigenvalues of Cð0Þ, we have ai=ðai þ e2tÞpb=ðbþ e2tÞ with
b ¼ 1=�� 1. By the variations of constants formula, the
solution of Eq. (24) can be written as

~nðtÞ ¼ expðGtÞ ~nð0Þ �

Z t

0

expðGðt� sÞÞ ~DðsÞG ~nðsÞds.

As G is stable, there exist constants K ; Z40 such that
k expðGtÞkpK expð�ZtÞ for all t. It follows that

k ~nðtÞkpK expð�ZtÞk ~nð0Þk

þ

Z t

0

K expð�Zðt� sÞÞ
b

bþ e2t
kGkk ~nðsÞkds

or

expðZtÞk ~nðtÞkpKk ~nð0Þk þ

Z t

0

K
b

bþ e2t
kGk expðZsÞk ~nðsÞkds.

By applying Gronwall’s lemma (Coddington and Levinson,
1955, Chapter 1, Problem 1) to the function
f ðtÞ ¼ expðZtÞk ~nðtÞk, we obtain

f ðtÞpKk ~nð0Þk exp KkGk
Z t

0

b

bþ e2s
ds

� �

pKk ~nð0Þk exp KkGk
Z 1
0

b

bþ e2s
ds

� �
¼ Kk ~nð0Þkð1þ bÞKkGk=2.

The constant L ¼ Kð1þ bÞKkGk=2 does not depend on the
initial conditions Cð0Þ and mð0Þ. Thus, we get the estimate

k ~nðtÞkpL expð�ZtÞk ~nð0Þk

which establishes asymptotic stability in Part 1.
At the same time, this estimate shows that d0 attracts all

trajectories that start at some Nðm;CÞ with a positive
definite covariance matrix. However, since the number b ¼

1=�� 1 tends to infinity as � tends to zero, our argument
does not establish asymptotic stability for the set of all
positive definite initial covariance matrices (which requires
stronger assumptions on B). &
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Proof of Theorem 4. Let ~B ¼ B� 2I and P ¼ xxT be a
symmetric rank one matrix (which arises from any initial
normal distribution concentrated on the line through the
nonzero vector x 2 Rn, i.e. the kernel of Cð0Þ is perpendi-
cular to x). Then stability of Eq. (12) implies stability of the
matrix P ~B ¼ xxT ~B which in turn implies 0XtrðP ~BÞ ¼
trðxxT ~BÞ ¼ trðxT ~BxÞ ¼ xT ~Bx.23 Since this is true for all x,
~B ¼ B� 2I is negative semidefinite. &

The following Lemma generalizes a familiar statement
from finite games, a part of the folk theorem of evolutionary

game theory, see Cressman (2003); Hofbauer and Sigmund
(1998), to infinite games.

Lemma A.1. For a compact metric space S, let the initial P0

have full support S and Pt ! P in the weak topology. Then P

is a Nash equilibrium.

Proof. Denote sðx;PÞ ¼ pðx;PÞ � pðP;PÞ. If Pt ! P, then
sðs;PtÞ ! sðs;PÞ for each s. Suppose that sðs;PÞ40 for
some s 2 S. By continuity, there is a compact set A 	 S

(with nonempty interior, and hence P0ðAÞ40) such that
sðs;PÞX2�40 for all s 2 A. Thus, for each s 2 A, there is a
ts40 such that 1

t

R t

0 sðs;PtÞdtX�40 for all tXts.
By Lemma 2 in Bomze (1991), dPt=dP0ðxÞ ¼

exp
R t

0
sðx;PtÞdt

� �
Xe�t for tXtx. Hence PtðAÞ ¼

R
A
dPt=

dP0ðxÞP0ðdxÞ ! 1 as t!1 by Fatou’s lemma (Royden,
1988). Since PtðAÞp1, this is a contradiction. &

Proof of Theorem 8. The mapping s : ðx;PÞ ! pðx;PÞ �
pðP;PÞ is jointly continuous in x (Euclidean topology) and
P (weak topology). As d0 is neighborhood superior, we
have sð0;PÞ40 for all Pad0 whose support is within an �0
ball of 0. If d0 is not a limit point in the weak topology of
an initial P0 with such support, then there is an open
neighborhood of d0 that includes no Pt for all t sufficiently
large. The set of all P outside this neighborhood with
support within the �0 ball is compact in the weak topology.
By continuity in P, we have sð0;PÞXk40 for all such
P and some k. By continuity in x, we can find some �140
such that we have sðx;PÞXk=240 for all jxjp�1 and all
such P. But this implies

P0ðtÞðUÞ

PðtÞðUÞ
X

k
2
,

for the ball U ¼ fx 2 S : jxjp�1g. Then PðtÞðUÞ " 1,
which is a contradiction. &

Proof of Theorem 9. From Oechssler and Riedel (2002,
Theorem 1), we know that mean fitness pðP;PÞ is a
Lyapunov function, so that t 7!pðPt;PtÞ is monotonically
increasing. For any initial P0 with compact support close to
0 and containing 0, Theorem 8 implies that pðPt;PtÞ !

pð0; 0Þ as t!1. Neighborhood superiority of d0 implies 0
is a local NE and pð0; 0Þ4pðP;PÞ for all Pad0 with
support close to 0 (cf. the remark in Cressman and
23Here trðP ~BÞ is the trace of P ~B.
Hofbauer, 2005, p. 53). Hence d0 is the only o-limit point
of Pt and hence Pt ! d0.
This completes the proof that d0 is neighborhood attractive

if d0 is neighborhood superior. The converse follows from the
stability analysis of Eq. (15) and Theorem 7. &

Proof of Theorem 10. It is sufficient to show by induction
on i that limt!1 PtðSnSiÞ ¼ 0 for all iX1. Given
x0 2 SnS1, there exists a y0 2 S such that pðy0; zÞ4
pðx0; zÞ for all z 2 S. By continuity of p, there are open
neighborhoods Uðx0Þ and Uðy0Þ of x0 and y0, respectively
so that

pðy; zÞ � pðx; zÞXK40

for all x 2 Uðx0Þ; y 2 Uðy0Þ and z 2 S. Since suppðPtÞ ¼ S,
both PtðUðx0ÞÞ and PtðUðy0ÞÞ are positive. From Eq. (1), an
application of the quotient rule yields

d

dt

PtðUðy0ÞÞ

PtðUðx0ÞÞ

� �
¼

1

PtðUðx0ÞÞ
2

Z
S

Z
Uðx0Þ

Z
Uðy0Þ

ðpðy; zÞ

"

� pðx; zÞÞPtðdxÞPtðdyÞ

#
PtðdzÞ

XK
PtðUðy0ÞÞ

PtðUðx0ÞÞ
.

Thus limt!1 PtðUðy0ÞÞ=PtðUðx0ÞÞ ¼ 1 and, in particular,
PtðUðx0ÞÞ converges to 0. Since SnS1 is compact, it is
covered by finitely many Uðx0Þ and so limt!1

PtðSnS1Þ ¼ 0.
Now assume limt!1 PtðSnSiÞ ¼ 0. As above, for every

x0 2 SinSiþ1, there exists a y0 2 Si such that pðy0; zÞ4
pðx0; zÞ for all z 2 Si. By continuity of p, there are open
neighborhoods Uðx0Þ and Uðy0Þ of x0 and y0, respectively
so that

pðy; zÞ � pðx; zÞXK40

for all x 2 Uðx0Þ; y 2 Uðy0Þ and z 2 Si. Let k � max
fjpðy; zÞ � pðx; zÞj : x; y; z 2 Sg. Then

d

dt

PtðUðy0ÞÞ

PtðUðx0ÞÞ

� �
¼

1

PtðUðx0ÞÞ
2

Z
SnSi

Z
Uðx0Þ

Z
Uðy0Þ

ðpðy; zÞ

"

� pðx; zÞÞPtðdxÞPtðdyÞ

#
PtðdzÞ

þ
1

PtðUðx0ÞÞ
2

Z
Si

Z
Uðx0Þ

Z
Uðy0Þ

ðpðy; zÞ

"

� pðx; zÞÞPtðdxÞPtðdyÞ

�
PtðdzÞ

X½�kPtðSnSiÞ þ KPtðSiÞ�
PtðUðy0ÞÞ

PtðUðx0ÞÞ

40

for t sufficiently large since limt!1 PtðSnSiÞ ¼ 0 and
limt!1 PtðSiÞ ¼ 1. The proof continues as above to yield
limt!1 PtðSinSiþ1Þ ¼ 0 and so limt!1 PtðSnSiþ1Þ ¼ 0 ¼
limt!1 PtðSnSiÞ þ limt!1 PtðSinSiþ1Þ ¼ 0 for all iX1.



ARTICLE IN PRESS

24If jaj þ jcj ¼ 0, then B ¼ 0
0

b
0

	 

. Take D ¼ �

0
0
jbj

h i
for �40. If jbjo4,

there is an �40 such that (19) holds.
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Therefore, limt!1 PtðSnSiÞ ¼ 0 and so Pt converges
weakly to d0. &

Proof of Theorem 11. Suppose that kBk42. By the
symmetry of B, there exists a (nonzero) eigenvector x0

such that its corresponding eigenvalue is �kBk. Consider
the star-shaped compact trait spaces S � Rn of the form
fcx0 : jcjp�g for some �40. That is, S is the line segment
through the origin joining ��x0 to �x0. We claim no x 2 S

can be eliminated through strict domination by another
y 2 S if � is sufficiently small. To see this, we parameterize
our trait space so that it is a subset of R (i.e. parameterized
by a scalar x) with x0 ¼ 1. We then have Bx0 ¼ bx0 where
jbj42. From Eq. (4), we have

pðx; zÞ � pðy; zÞ ¼ ðy� xÞ½xþ y� bzþ h:o:t:�

where the higher-order terms are at least of degree two in
the variables x; y; z. Since jxjp�; jyjp� and jbj42, when �
is sufficiently small the expression xþ y� bzþ h:o:t: is
positive for all x; y 2 S by either choosing z as �� or
� appropriately and negative for all x; y 2 S by choosing
the alternate z. That is, for all x; y 2 S, there is a z 2 S with
pðx; zÞ � pðy; zÞX0 and so x 2 S cannot be strictly domi-
nated by any y 2 S.

Now suppose kBko2. Let d � maxz2Skzk. Suppose x0 2

S and kx0k is close to d. From Eq. (4) with
y0 ¼ ð1� �Þx0 2 S,

pðy0; zÞ � pðx0; zÞ ¼ �½ð2� �Þkx0k
2 � x0 � Bzþ h:o:t:�

4
�

2
½2kx0k

2 � kx0kkBzk�

4
�

4

kx0k
2

2
½2� kBk�40

for all z 2 S. That is, y0 strictly dominates x0. By continuity
of p, y0 strictly dominates x for all x near x0. Define Aða; bÞ
with 0paobod as those elements of S in the annulus
fy 2 S : d � bpkykpd � ag. Each Aða;bÞ is compact and
non-empty by the definition of d and the fact S is star-
shaped. Thus, for some d40, each x 2 Að0; dÞ is strictly
dominated and so we can take S1 ¼ fy 2 S : kykpd � dg.
We now iterate this argument and obtain our sequence Si

of nested sets as the intersection of S with a disk centered at
0 whose radius tends to 0 as i!1.

We next show d0 is attractive if kBko2. By the argument
used in the preceding paragraph, we can apply Theorem 10
and conclude that Pt converges to d0 in the weak topology
whenever P0 has star-shaped support sufficiently close to 0.
That is, d0 is neighborhood attractive for Q�. &

The following lemma is used in the proof of Theorem 12
below.

Lemma A.2. If D is a positive definite symmetric matrix, the

maximum of y0 � Bz subject to fzjz �Dz ¼ y0 �Dy0g isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y0 �Dy0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BTy0 �D

�1BTy0

q
and this occurs at z0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y0 �Dy0

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BTy0 �D

�1BTy0

q
D�1BTy0 if BTy0a0.
Proof. If BTy0 ¼ 0, there is nothing to prove so assume
BTy0a0. The result may be shown by using Lagrange
multipliers or by the following algebraic method. Let

ffiffiffiffi
D
p

be the positive definite square root of D. Then

ðy0 � BzÞ2 ¼ ðy0 � B
ffiffiffiffi
D
p �1 ffiffiffiffi

D
p

zÞ2

¼ ð
ffiffiffiffi
D
p �1

BTy0 �
ffiffiffiffi
D
p

zÞ2

pð
ffiffiffiffi
D
p �1

BTy0 �
ffiffiffiffi
D
p �1

BTy0Þ ð
ffiffiffiffi
D
p

z �
ffiffiffiffi
D
p

zÞ

¼ ðBTy0 �D
�1BTy0Þ ðz �DzÞ

¼ ðBTy0 �D
�1BTy0Þ ðy0 �Dy0Þ.

It is straightforward to verify z0 satisfies the require-
ments. &

Proof of Theorem 12. By Lemma A.2, a straightforward
generalization of the relevant parts of the proof of
Theorem 11 yields the first result. Now suppose 0 is not
CSS. Then B� 2I is not negative definite and so there is a
nonzero x such that x � ðB� 2IÞx40. Take S as the one-
dimensional bounded interval in the direction x that
includes 0 in its interior. Note that S is star-shaped. By
Cressman and Hofbauer (2005), d0 is not neighborhood
attractive for Q�. &

Proof of Theorem 13. Suppose jbj þ jcjo2ð2� jajÞ. Take

the matrix D ¼ jajþjcj
0

0
jajþjbj

h i
in (19).24 The left-hand side

of Eq. (19) is then

ðay1 þ cy2Þ
2

jaj þ jcj
þ
ðby1 þ ay2Þ

2

jaj þ jbj

� �
�½ðjaj þ jcjÞðy1Þ

2
þ ðjaj þ jbjÞðy2Þ

2
�

which is less than or equal to

ðjay1j þ jcy2jÞ
2

jaj þ jcj
þ
ðjby1j þ jay2jÞ

2

jaj þ jbj

� �
�½ðjaj þ jcjÞðy1Þ

2
þ ðjaj þ jbjÞðy2Þ

2
�.

By considering the cases where jy1jpjy2j and jy1jXjy2j

separately, it is straightforward to show that this last
expression is increasing in jcj for fixed y1; y2 and jbj. Thus
we can replace jcj by 2ð2� jajÞ � jbj. Furthermore, for
fixed jbj and y2 ¼ ky1 for k40, the right-hand side of
Eq. (19) minus this last expression has an absolute maximum
when k ¼ 1. For k ¼ 1, the value is zero and so the games
are strictly dominance solvable by Theorem 12. &
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