Lie Algebren und Darstellunstheorie — Aufgaben —

Blatt 1 SS 2008

1. Die Exponentialfunktion. Für $A \in M_n(\mathbb{C})$ sei

$$\exp(A) := \sum_{k=0}^{\infty} \frac{A^k}{k!}$$

Man zeige die folgenden Aussagen:

- (1) $\exp(0) = I_n$, $\exp(-A) = \exp(A)^{-1}$,
- (2) $\exp(A + B) = \exp(A) \exp(B)$ für [A, B] = 0,
- (3) $\exp(BAB^{-1}) = B \exp(A)B^{-1}$ für alle $B \in GL(n, \mathbb{C})$,
- (4) $\det(\exp(A)) = e^{\operatorname{tr}(A)}$.

Ist exp: $M_n(\mathbb{C}) \to GL(n,\mathbb{C})$ injektiv bzw. surjektiv?

- (5 Punkte)
- 2. Nilpotente Ideale. Sei $\mathfrak g$ eine Lie Algebra und $\mathfrak a$ und $\mathfrak b$ zwei nilpotente Ideale in $\mathfrak g$. Man zeige, daß auch $\mathfrak a+\mathfrak b$ ein nilpotentes Ideal in $\mathfrak g$ ist.
- (4 Punkte)
- 3. Das Nilradikal. Man zeige mit Hilfe von 2., daß es ein größtes nilpotentes Ideal in einer endlich-dimensionalen Lie Algebra gibt. Es wird das Nilradikal von $\mathfrak g$ genannt, und wird mit $nil(\mathfrak g)$ bezeichnet. Man zeige, daß

$$[rad(\mathfrak{g}), \mathfrak{g}] \subseteq nil(\mathfrak{g}),$$

wobei $rad(\mathfrak{g})$ das auflösbare Radikal von \mathfrak{g} bezeichnet.

- (5 Punkte)
- 4. Das Radikal der Killingform. Sei \mathfrak{g} eine Lie Algebra mit Killingform κ , d.h.,

$$\kappa(x, y) = \operatorname{tr}(\operatorname{ad}(x) \operatorname{ad}(y)), \quad x, y \in \mathfrak{g}.$$

Man zeige, daß das orthogonale Komplement von $[\mathfrak{g},\mathfrak{g}]$ bezüglich κ ,

$$[\mathfrak{g},\mathfrak{g}]^{\perp} = \{x \in \mathfrak{g} \mid \kappa(x,y) = 0 \ \forall y \in [\mathfrak{g},\mathfrak{g}]\}$$

genau das Radikal $rad(\mathfrak{g})$ von \mathfrak{g} ist.

(5 Punkte)

4. Beispiele für die Killingform. Berechne die Killingform für die Lie Algebren $\mathfrak{so}_3(\mathbb{R})$ und $\mathfrak{sl}_2(\mathbb{R})$ bezüglich folgender Basen: (x, y, h) mit

$$[x,y] = h, [h,x] = 2x, [h,y] = -2y$$

für $\mathfrak{sl}_2(\mathbb{R})$, und

$$[x, y] = h, [h, x] = y, [y, h] = x$$

für $\mathfrak{so}_3(\mathbb{R})$.

(4 Punkte)

5. Charakteristische Ideale. Sei D eine Derivation von \mathfrak{g} . Man zeige, daß

$$D(\operatorname{rad}(\mathfrak{g})) \subseteq \operatorname{nil}(\mathfrak{g})$$

gilt, d.h., $\operatorname{nil}(\mathfrak{g})$ ein *charakteristisches Ideal* von \mathfrak{g} ist, wie auch $\operatorname{rad}(\mathfrak{g})$.

(6 Punkte)

6. Treue Darstellungen. Finde eine *treue* (d.h. injektive) Darstellung für die Lie Algebra $\mathfrak{so}_3(\mathbb{R})$ aus Aufgabe 4. Sei $\mathfrak{h}_5(\mathbb{R})$ die 5-dimensionale Heisenberg Lie Algebra mit Basis x_1, x_2, y_1, y_2, z und definierenden Lie Klammern $[x_1, y_1] = [x_2, y_2] = z$. Man finde eine treue 4-dimensionale Darstellung

$$\rho \colon \mathfrak{h}_5(\mathbb{R}) \to \mathfrak{gl}_4(\mathbb{R})$$

von \mathfrak{h}_5 .

Zusatz: Gibt es eine treue 3-dimensionale Darstellung von $\mathfrak{h}_5(\mathbb{R})$?

(6 Punkte)