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Abstract

The purpose of this project is to study the cohomology of groups, in particular the Galois
cohomology. Therefore we will study carefully the finite and infinite Galois groups. Those groups
are more or less equivalent to profinite groups, i.e. a limit of finite groups endowed with the
discrete topology. Consequently a big part of this project consists in studying topological and
profinite groups. There will also be some topics in Galois theory, in particular about infinite
Galois extensions. At some point we will define the cohomology of groups using homological
algebra, but we will mostly use an other equivalent definition, particularly suitable when dealing
with profinite groups. The last chapter will give some elementary results about the cohomology
of groups and will be an approach to Galois cohomology. In particular we will present different
versions of Hilbert’s theorem 90.

The most used reference is a book from L.Ribes [Rib99], which is an introduction to Galois
cohomology.
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CHAPTER 1
Topological groups

In this chapter we introduce the notion of topological groups and their basic properties. They
are important to generalize the main theorem of Galois theory in case of infinite extensions. The
reader shall find further information in [Pon66| and [Hus66].

1. Definition and examples

Definition 1.1. A set G of elements is called a topological group if
(1) G is a group,
(2) G is a topological space,
(3) the map G x G — G : (a,b) — ab is continuous, where G x G is equipped with the
product topology,

(4) themap g — G : o a7}

is continuous.
The conditions (3) and (4) formulated in greater details respectively as follows:
o If a,b € GG, for every neighborhood W of the element ab there exist neighborhoods U
and V of the elements a and b respectively such that UV C W.
e If a € G, for every neighborhood V of the element a~! there exist a neighborhood U
of the element a such that U=t C V.

Finally the two conditions can be expressed as:

o If a,b € G, for every neighborhood W of the element ab~! there exist neighborhoods
U and V of the elements a and b respectively such that UV~! c W.

Notation 1.2. In this project the neutral element of G will be denoted by 1.
Here are some examples of topological groups.

Examples 1.3. Here are some examples of topological groups.

e If G is a group endowed with the discrete topology (every subset of G is open), then G
is a topological group.

e Let us consider the group of the reals numbers R together with addition: (R, +). If we
append the ordinary topology on R, this is a topological group.

e More generally, the additive group of any topological vector space (for example Banach
spaces or Hilbert spaces) is a topological group.

e The linear group GL,(R) of all invertible (n x n) matrices with real entries is a topo-
logical group if endowed with the topology defined by viewing GL,(R) as a subset of
Rnxn.

Definition 1.4. A homomorphism of topological groups is a continuous group-homomorphism.
An isomorphism of topological groups is an group-isomorphism and a homeomorphism.

2. Elementary properties

The topological groups are homogeneous, which will later mean that some properties only
have to be checked around the neutral element

Proposition 2.1. Let G be a topological group. Let a € G and the maps f,g,p : G — G defined
by f(z) = za, g(x) = ax, p(x) = 7", then, f,g and @ are homeomorphisms of G.
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PROOF. These maps are clearly bijective, and they are continuous because of the axioms of
topological groups. U

Proposition 2.2. Every topological group is homogenous, i.e. ¥p,q € G, there is a homeomor-
phism f a such that f(p) = q.

Proor. Let p,q € G and f : 2 — gp~'a. By proposition 2.1, it is a homeomorphism. O

Proposition 2.3. Let V' be a neighborhood of a. Then there is a neighborhood U of 1 such that
V =aU.

PrOOF. We define U := a~'V. As a preimage of V with the continuous map ¢ : G — G :
x +— ax (see 2.1), U is a neighborhood of 1. And we have V = aU, hence the result. O

Definition 2.1. Let G be a topological group, a neighborhood V is called symmetric if V = V1.

Proposition 2.4. Let G be a topological group. Then there is a basis consisting in symmetric
open sets. In particular, there is a fundamental system of symmetric neighborhoods in each point

of G.

PRrROOF. Let U be an open subset of G, then U~! is open too (because it is a preimage of U
under a continuous map) and so is V := UNU~!. And we clearly have V C Uand V =Vl O

Proposition 2.5. Let G be a topological group and U be a neighborhood of x € G. Then we
have:

(1) There is a neighborhood V of x such that V? C U.
(2) There is a neighborhood V of x such that V=1 C U.
(8) There is a neighborhood V of x such that VV =1 C U.
(4) There is a neighborhood V of x such that V=1V C U,

PROOF. We only have to prove this proposition for neighborhoods of 1 (because topological
groups are homogeneous).
The four statements are a consequence of the continuity of the following operations:

(1) Consider the map f; : G — G : x — z%, which is continuous (because the product is
continuous), and define V = f71(U). As 1 = 12, V is a neighborhood of 1, moreover
VZ=hH(V)=f(f(U) CU.

(2) Idem, using fo: G - G :x+—z tand 1 =171,

(3) Idem, using f3: G — G : o+ zr tand 1 =11"1.

(4) Idem, using f4: G — G :x+— z~ 'z and 1 = 1711.

O

Notation 2.2. Let X be a topological space and let A C X. We denote by A the topological
closure of A.

Lemma 2.6. Let X,Y be to topological spaces and f : X — Y a continuous map. Then
f(A4) C f(A).

PRrROOF. Suppose y € f(A) and W is a neighborhood of 3 in Y. There is # € A such that
f(z) =y. As f is continuous mapping, U := f~1(W) is a neighborhood of . Then U N A # §)
(because z € A). Hence

0#fUNA)CFU)NFA) SWNf(A).
So y € f(A). O

Proposition 2.7. Let G be a topological group, V a fundamental system of open neighborhoods
of 1, and D a dense subset in G.
Then B :={Ux | x € D,U € V} is a basis of the topology of G.
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PROOF. Let W be an open subset of G, with a € W. Then Wa~! is open (it is the preimage
of W under a continuous map) and 1 € Wa~!. There is then U € V such that UU~' C Wa ™!
(use the fact that V is a fundamental system and proposition 2.5).

As D is dense, aD~! is dense too. In fact, if we consider the continuous (and bijective) map
f:G—G:z—az”! wehave X = f(X) = f(D) C f(D) (see lemma 2.6).

Then there is d € U NaD~! and hence m € D such that d = am ™', which implies m = d'a.
Then Ud~'a € B.

As d € U, we obtain Ud~'a C UU 'a C Wa"'a = W; and this is true for all a € W. Thus

| vdatacw.
acW
Moreover, we have 1 € Ud~! (because d € U), which implies a € Ud~'a for all a € W. Then
wc | udla
acW
So W = UpenUda. 0

Proposition 2.8. Let G be a topological group, V a fundamental system of open neighborhoods
of 1. Then (¢, V = {1}.
ProoFr. Let us show both inclusions:

C: Let 2 € [y V and W a neighborhood of =, combining propositions 2.3 and 2.4,
we know there is a symmetric set V' € V such that Va C W.
By hypothesis on z, x € V = V!, which implies 27! € V. Thus, 1 = 27!z € V.
Then 1 € U, i.e. UN{1} # 0. Hence = € {1}.

D : Let x € {1} and V € V symmetric (we can suppose V symmetric because of propo-
sition 2.4). Hence, because xV is a neighborhood of z, xV N1 # (). This implies there
is v € V such that zv = 1 and then z =v~! € V"' = V. Thus z € NveyV

O
Proposition 2.9. Let G be a topological group and A, B C G. Then
(1) AB = AB.
(2) A=1 = A1,
(3) zAy = zAy for all z,y € G.
PROOF. (1) Let x € A, x € B and U a neighborhood of 1. There is a neighborhood V'
of 1 such that zVyV C xyU (because of the continuity of the map G — G : a — ba for
all b € G).

As zV | respectively yV, is a neighborhood of x, respectively y, there is a € ANzV and
b€ BNyV. Hence ab € AB N zyU, which means 2y € AB.
(2) We will show both inclusions
C : Use lemma 2.6 with the continuous map i: G — G : z +— 271
D: A1 CAl=AC (A1)t =i(A1) and this last set is closed because i is
homeomorphism.
Hence A C (A-1)"t = (A)"t C AL
(3) Idem with homeomorphism G — G : z +— zzy.

3. Characterization of the topology

We can use the fact that topological groups are homogeneous to characterize their topology
using a neighborhoods basis of the neutral element of G.

Proposition 3.1. Let G be a topological group, and let V be a neighborhood basis for the neutral
element 1 of G. Then



(1) For all Vi,V €V, there is a V €V such that 1 € V. C Vi N Vy;

(2) For allV €V, there is a W € V such that W2 CV;

(3) For all V €V, there is a W € V such that W1 C V;

(4) For all V €V and all g € G, there evists a W € V such that W C gVg~!;
(5) For all g € G, {gV | V € V} is a neighborhood basis of g.

Conversely, if G is a group and V is a nonempty set of subsets of G satisfying (1)-(4), then there
is a (unique) topology on G for which (5) holds.

PROOF. Suppose that V is a basis of neighborhoods of 1 in a topological group.
Then (1) is a consequence of the definition of a neighborhood basis. And (2), (3) and (4) are
consequences of proposition 2.5. Finely (5) holds because the map f: G — G : 2 +— gz is a
homeomorphism.
Conversely, suppose that G is a group and V is a nonempty set of subsets of G satisfying (1)-(4).
Note that (1) implies that 1 € V for each V € V.
We define

T={UCG|VYgeU3V eV such that gV C U},

and we will show that 7 is a topology on G. First note that the empty set and G are clearly in
7. Suppose that (U;)ier is a family of elements of 7 (for I a set of indexes) and let g € U;erU;.
Hence there is a j € I such that g € Uj;, by definition there is V' € V such that gV C Uj,
which implies gV C U;c;U;. Now let Uy, Us € T, and let g € U; N Us. By definition there are
V1,Va € V with gV C Uy and gVa C Us. We apply then (1) and we obtain a V' € V such that
V C Vi NV, and this means gV C Uy NUs. Hence Uy NUs € 7. And thus, we proved that 7
defines a topology on G. It is then easy to see that (5) holds.

We will now prove that G — G : g — g~ ! is continuous. Let ¢ € G and let U be an element
of T (i.e. an open set) such that g~' € U. We have to find a V € V such that gV C U~!. By
definition of 7, there is a V € V such that ¢~'V C U, which implies V~tg C U~!. If we use
(3), we obtain a V/ € V such that gV’ C U~!; and now using (4), we have the existence of a
V" eV with gV" C g(¢7'Vg) CUL

Let us check that the multiplication G x G — G : (g1,92) — g192 is continuous. Notice that
the sets g1V7 x g2Va form a neighborhoods basis of (g1,92) € G x G for all V1, Vo € V. Let
(g1,92) € G x G and let U be an open such that g1g2 € U. We have to find V;,V5 € V such
that ¢1VigoVo C U. As U is in 7, there is a V € V such that g1goV C U. We use (2) to
obtain a V' € V such that g1g2V'V’ C U. We now apply (4), to obtain a V” € V such that
V" C goV'gy !, which implies g1V"goV’' C g1(g2V"g5 *)gaV’ € U. This concluded the proof. [

4. Topological subgroups

We briefly discuss some properties of topological groups, in particular some properties of
their subgroups.

Proposition 4.1. Let G be a topological group and H a subgroup. Then H is a topological
group.

PrOOF. We only have to prove that the product and the inverse map are continuous, but
this is obvious because they are only restriction on the one of G. (]

Proposition 4.2. Let G be a topological group and H a subgroup. Then H is a subgroup of G.
Moreover, if H is normal, than so is H.

PROOF. It is enough to prove that H is closed under addition and inversion. Suppose
a,b € H and let us show that ab™! is in H.
Let W be a neighborhood of ab™!, then there are U and V neighborhoods of a and b respectively
such that, UV~t C W (because the map G x G — G : (x,y) — xy~ ! is continuous). We have
then UNH # () and VN H # () (recall that a,b € H). Which means we can find z € UN H and
yeVNHwithzy ! eUVINHCWnNH. Hence WN H # () and thus ab~! € H.
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Suppose now that H is normal. Let a € H and g € G, we are going to show that g lag € H
which will imply the result.

Let V be a neighborhood of g~'ag, then there is a neighborhood U of a such that ¢~ 'Ug C V.
But a € H implies U N H # (). Hence there is h € UN H, and we have g~'hg € V. But as H is
normal, we have also that g~ 'hg € H. Then V N H # (. O

Definition 4.1. A topological space is totally disconnected if its only connected subspaces are
one-point sets.

Examples 4.2.

e All discrete spaces are totally disconnected.

e The rational numbers Q and the irrational numbers R\Q are totally disconnected
spaces.

e The real numbers R (with the usual topology) is not a totally disconnected space.

Lemma 4.3. Let X be a totally disconnected topological space. Then {x} is closed in X for
everyz € X.

PRrROOF. Let C be the topological closure of {z}. If we suppose that A|B is a separation
of C, with x € A. A is closed in C' and therefore in X. Hence we have A = C. Thus C is
connected, so we must have C' = {x} because X is totally disconnected. ]

Proposition 4.4. Let G be a topological group

(1) If H is an open (resp. closed) subgroup of G, then every coset Hg or gH is open (resp.
closed).

(2) Every open subgroup of G is closed. If G is compact, then every open subgroup of G
has finite index.

(8) Every closed subgroup of G of finite index is open.

(4) If H is a subgroup containing a non-empty open subset U of G, then H is open in G.

(5) G is Hausdorff if and only if {1} is a closed subset of G. And if K is a normal subgroup
of G then G /K is Hausdorff if and only if K is closed in G. If G is totally disconnected,
then G is Hausdorff.

PROOF. (1) This follows from proposition 2.2.

(2) We will show that if H is open, we have H C H. Let a € H. As H is open, aH is an
open neighborhood of a and hence aHNH # (). Then, 3hy, he € H such that ahy = ho,
which means a = hghfl € H. To prove that H as finite index, note that the gH is
open (using (1)), disjoints and their union is G. Thus if G is compact, we must have
that H has finite index.

(3) Suppose H is a closed subgroup of G with finite index. Then gH is closed for every
g € G. And since we have G\H = UygpgH, H having finite index implies that G\ H
is closed (as finite union of closed spaces), and H is open.

(4) Since each set hU is open (using (1)), and since H = |J, hU, H is open.

(5) We already know (using elementary topology) that every one-element subset in Haus-
dorff spaces are closed. Suppose now that {1} is closed in G. Let a, b be distinct element
of G. Proposition 2.2 implies that the set {ab~'} is closed (as image of {1} under a
homeomorphism). Then there exists an open set U with 1 € U and U C G\({ab™'}).
From the continuity of the map G — G : (z,y) — xy ! (trivial), the inverse image of
U is open. Then, there are open sets V, W in G, containing 1, with VW ~! C U. So
we have that a=1b ¢ VW~ and hence aV N bW = ). Since aV and bW are open, we
have the result.

The next assertions follows from the first, the definition of the quotient topology and
lemma 4.3.
O



5. Quotient groups
We will here present a proposition about quotients of topological groups.

Proposition 5.1. Let G be a topological group and N a normal subgroup. Then G/N endowed
with the quotient topology is a topological group. Moreover the canonical projection m: G — G /N
s a continuous open homomorphism.

Remark 5.1. The quotient topology is given by
T={UCX |7 YU) open in G}.

Proor. We will first prove that 7 is an open map. Let U be open subset of G. Then
7~ Y7 (U)) = UN and UN is open because so is U, hence the result. Moreover  is trivially
continuous, by definition of 7.

We will now prove that G/N is a topological group. N being normal implies that G/N is an
abstract group. Let us prove the continuity of the product and of the inverse maps.

Let W be a neighborhood of g1go N € G/N, then 7=1(W) is a neighborhood of g1gs because 7 is
continuous. Using the continuity of the product in G, we know there are Uy, Us neighborhoods
of g1, g2 respectively with UjUy € 71 (W). Then n(Uy) and 7(Us) are neighborhoods of g3 N
and go N (using the fact that 7 is open). Moreover we have w(Uy)7(Usz) = w(U1U2) C W because
7 is @ homomorphism. Hence the product is a continuous mapping.

Let W be a neighborhood of gN € G/N, then 7—!(W) is a neighborhood of g because 7 is
continuous. Using the continuity of the inverse map in G, we know there is U a neighborhood
of g, with U~ C #=Y(W). Then 7(U) is a neighborhood of gN. Moreover we have 7(U)~! =
7(U~1) C W. Hence the inverse map is continuous. O

6. Lie Groups

We briefly introduce Lie Groups because they provide a lot of examples of topological groups.
One can find more information about this subject in 77?.

Definition 6.1. A Lie group is a finite dimensional smooth manifold G endowed with a group
structure with smooth multiplication. This means that we have a smooth multiplication pug x
G — G, an inversion ¢ : G — G and a unit element 1 € G such that the group axioms are
satisfied.

One can find the definition of a smooth manifold in [Lan02b, Chapter 2|.

Remark 6.2. Notice that the Lie groups are topological groups. They provide a lot of examples
of topological groups.

Examples 6.3.

e R and C are Lie groups under addition. Moreover, any finite dimensional real or
complex vector space is a Lie group under addition.

e R*(=R\{0}) and C* are Lie group under multiplication. S = {z € C | |z| = 1} is also
a Lie group under multiplication.

e If G and H are Lie groups then the product G x H is a Lie group (with the usual
product structure). Then (1) and (2) imply that the torus T,, = S™ is a Lie group.

e The fundamental example of a Lie group is the group GL(V') of invertible linear maps
on a finite dimensional real vector space V.
We will prove that in case V' = R". Let f € L(V,V) and consider the canonical basis
{e1,...,en}. The element f(e;) € R™ is the ith column of the matrix associated to
f. This define a map between L(V,V) and M, (R) = R"*. The determinant defines
a smooth function det : M,(R) — R. In particular GL,(R) = det~}(R}) is an open
subset of R2 and thus a smooth manifold. Moreover, the entries of the product of two
matrices A and B are polynomials in the entries of A and B, which implies that the
multiplication defines a smooth map.
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e The special linear group SL,(R) defined to be the kernel of the determinant application
det : GL,(R) — R* is a Lie group as subgroup of GL,(R).

e The classical groups O,(R) and SO, (R), define with O, (R) = {A € GL,(R) | AAT =
ATA = Id,} and SO, (R) = {A € O,(R) | det(A) = 1}, are also Lie groups.

We give now some examples of topological groups which are not Lie groups.

Examples 6.4.

e Infinite dimensional groups, such as the additive group of an infinite dimensional real
vector space. These are not Lie groups as they are not finite dimensional manifolds.

e Some totally disconnected groups, such as the Galois group of an infinite extension of
fields, or the additive group of the p-adic numbers. These are not Lie groups because
their underlying spaces are not real manifolds.

11






CHAPTER 2

Finite and infinite Galois Theory

In a first place we give a summary of classical Galois theory, in particular, we present the
main theorem of Galois theroy for finite extensions. Next, we endow Galois groups with a specific
topology, in order to state and prove the main theorem for infinite extensions.

1. Review of Galois Theory
In this section, K, . and E denote always fields.

1.1. Some reminders.

Definition 1.1. Let L be a field extension of a field K. We say that L is algebraic over K, if
every element of L is algebraic over K.

Example 1.2. Consider the finite field with ¢ elements [F, where ¢ = p* with p a prime number.
We recall that all finite extensions of Fy have an order that is a power of ¢ (see [Lan02a, Thm
5.1] and [Lan02a, Corollary 5.2]).

Definition 1.3. Let E and L be two extensions of K. A K-homomorphism from L to E is a
homomorphism o : L — E such that o|g = Idg.

Definition 1.4. Suppose G is a subgroup of the group of all homomorphisms of a field L. Then
we define

LY ={aecL|o(a)=a,Vo G}
This is a subfield of I, called the fized field of G.

1.2. Normal and Separable extensions.
1.2.1. Normal extension.

Theorem 1.1. Let L be and algebraic extension of K contained in some algebraic closure K of
K.
The following conditions are equivalent:
(1) L is the splitting field of a family of non-constant polynomials of K[X].
(2) For every K-homomorphism o : L — K, o(L) = L.
(8) Every polynomial of K[X]| having a root in L has all its roots in L, i.e. it splits into
linear factor in K.

PROOF. One can find a proof of the theorem in [Lan02a, Chapter 5, §3]. O

Definition 1.5. We say that an algebraic extension L of K is normal if it satisfies one of the
properties of the preceding theorem.

Examples 1.6.

e If [L : K] =2, then L is normal over K. In fact, let a € L\K, the minimal polynomial
of a over K can be written f(X) = X2+ cX +d. And so —c+ a € L is the other roof
of f.

e The extension Q C Q[v/2] is normal. But the extension Q C Q[+v/2] is not normal
(X3 — 2 does not split in Q[v/2]).
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1.2.2. Separable extension.
Definition 1.7. An irreducible polynomial f € K[X] is separable if it has no multiple roots.

Definition 1.8. Let L. be an extension of K.
We say that a € L is separable over K if « is algebraic over K and if min(«, K) is separable.
We say that L is separable over K if every o € E is separable over K.

Remark 1.9. Here is an explicit characterization of a separable extension:

L is algebraic and separable over K if every irreducible polynomial in K[X] having a root in L
is separable.

Examples 1.10.

e If char(K) = 0, every algebraic extension of K is separable.

e If K is finite, every algebraic extensions of K is separable.

e Consider F, for a prime number p and o a root of X? —t. Then Fy[a] = F,[X]/(XP —1)
is not a separable extension of [, because « is not separable (the minimal polynomial
of a over Kis XP —t = (X — «)P).

Definition 1.11. Let Kbe an algebraic closure of K. The separable closure of K inside K is
the smallest subfield of K containing every finite separable extension of K.
We will denote by K, the separable closure of K in some algebraic closure K of K.

Remark 1.12. In other words the separable closure of K is the union of all finite separable
extensions of K contained in K.

We will next present the separable and inseparable degrees, which we will use later.

Definition 1.13. Let L be a finite extension of K, and let K be an algebraic closure of K.
The separable degree of L over K, denoted by [L : K], is the number of extensions to L of the
inclusion homomorphim 7 : K — K.

We have to check that this notion is well-defined, i.e. that [L : K]s is idependent of the
choice of K. This is done in [Lan02a, §4, Chapter V].

Proposition 1.2. Let E be a finite extension of K, and L a finite extension of E. Then
L:K]s=[L:E]s-[E:K]s
PROOF. One can find the proof refering to [Lan02a, Theorem 4.1, §1, Chapter V]|. O

Proposition 1.3. Let L be a finite extension of K. Then the separable degree [L : K|y divides
the degree [L : K]. Moreover the quotient is 1 if the characteristic is 0 and a power of p isf the
characteristic is a prime number p > 0.
Definition 1.14. If L is a finite extension of K, we call the quotient

L : K]

L : K],
the inseparable degree, denoted by [L : K.

1.3. Galois extension.

Definition 1.15. An extension L of K is a Galois extension if it is an algebraic, normal and
separable extension.

Remarks 1.16.

e We can describe a Galois extension more explicitly :
Let L be a Galois extension of K and let f be an irreducible polynomial of degree m in
K[X]. If f has a root in L, then f has m distinct roots in L. So L is Galois, if and only
if, for each o € L, the minimal polynomial of o over K has [K[e] : K] distinct roots in
L.
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e In our definition of Galois extension, we do not require the extension to be of finite
degree. Later if there is no particular mention, a Galois extension can be finite or
infinite.

Example 1.17. We consider the extension [Fp» of ), for any prime number p. By construction
Fpn 2 Fp/fn(X), where f,,(X) = XP" — X is an irreducible polynomial in F, (see [Lan02a,
Theorem 5.1, §5, Chaper V|). Then every element of F,;» is a root of the polynomial f,,(X), or
in other words Fy» is the splitting field of the polynomial f,,(X). Thus Fy» is a Galois extension
of ).

Here is a proposition we will often use later.

Proposition 1.4. IfLL is a Galois extension of K (finite or infinite), then it is a Galois extension
of any intermediate field E, i.e. KCE CL.

PROOF. Let f be an irreducible polynomial in E[X] having a root « in L. Since the property
of being algebraic is transitive, we can find ¢ = min(«, K) € K[X] the minimal polynomial of «
over K. K being normal implies that g splits in L[X] and K being separable implies that g has
distinct roots in L. (because g as a root « is L).

As f divides g (in E[X]), f must also be split into distinct factors of degree one in L[X]. O

1.4. Galois group and fundamental theorem of Galois theory.
In this section, we will in particular present the fundamental theorem of Galois theory in the
finite case.

Definition 1.18. Let L be an algebraic extension of K, finite or infinite. The Galois group of
L over K, written Gal(L,K), is the set of all K-homomorphisms of L.

Definition 1.19. A Galois extension L of K is said to be abelian (resp. cyclic) if its Galois
group is abelian (resp. cyclic).

The next example is an example of a Galois extension, moreover it provides us an intuition
about the main theorem of the Galois theory.

Example 1.20. Consider the field Q and its extension Q[v/2,w], where w = e = —% —i—z@
We define
0:Q[V2,w] — Q[V2,u]
V2 - w2
W o= w
and
7:Q[V2,w] — Q[V2,w]
V2 o~ V2
w — W=
Then, one can prove that {IdQ[%,w]’ 0,02, 7,170,702} = Gal(Q[V/2,w], Q). So we have | Gal(Q[v/2, w], Q)| =
6 = [Q[v/2,w] : Q]. (Note that Q[/2,w] is a normal extension of Q.)
Theorem 1.5. Let L be a finite Galois extension of K, and let G = Gal(L,K). There is a
bijective correspondence
{H | H < G subgroup } «< {E | KCE C L intermediate field }.
More precisely, the maps H — LY and E +— Gal(IL,E) are inverse bijections between the set of

subgroups of G and the set of intermediate fields between L and K.
Moreover,

(1) Let Hy, Hy < G, then Hy DO Ho if and only if L't C LH2;
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(2) Indexes equal degrees: [Hy : Ho) = [EH2 : EH1].

(3) If H is a subgroup of G and o € G, then LoH7 " = o(ILH).
Conversely, if E is an intermediate field, Gal(L,oE) = o Gal(L,E)o~!.

(4) Let Eq1,Eq be intermediate fields, then

Gal(L, ElEQ) = Gal(L, El) N Gal(]L, Eg)

(5) E is a Galois extension of K if and only if Gal(L,E) is a normal subgroup of G, and
we have

Gal(E,K) 2 G/ Gal(L,E).
PROOF. One can find the proof of this theorem in [Mil08, Chapter 3] or in [Lan02a, §1,
Chapter IV] O

Remark 1.21. The theorem is in general false in case of infinite Galois extensions. We will
therefore provide the Galois groups with a topology in order to get a theorem valid for both
finite and infinite Galois extensions.

2. Krull topology on the Galois group

As previously discuss the main theorem of the Galois theory is not valid for infinite Galois
extensions. However endowing Galois groups with a topology, we will obtain a similar result.
The Krull topology is the most natural (non trivial) topology for a Galois group and it has many
interesting properties.

Notice that in this section, there is no restriction about the degree of the field extensions.

2.1. Preliminary propositions.
The point of this section is to define a topology on the Galois groups. We will use therefore
some propositions and lemmas.

Lemma 2.1. Let L be a Galois extension of K and let M be an intermediate field, i.e. K C
M C L. Then every K-homomorphism from M to L can be extended to a K-isomorphism from
L to L.

PROOF. See [Mil08, Chapter 7]. O

Lemma 2.2. Let L be a Galois extension of K. For all finite Galois extension E of K such that
KCECL, the map

Gal(L,K) — Gal(E,K)
o — olg
18 surjective.

PRrROOF. Let 0 € Gal(E,K), then o is a K-homomorphism from L to E. Hence using lemma
2.1, o can be extended to a K-isomorphism from L to L (which is a preimage). O

Notation 2.1. Let L. be a Galois extension of K. We denote Fp, the family of all finite Galois
extension E of K such that KCE C L.

Remark 2.2. Notice that if L is a Galois extension of K, even infinite, we have that
L= [JE.
EeFL,

Lemma 2.3. Let L be a Galois extension of K and let M be an intermediate field. Then
LLGal(l,M) —
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PROOF. Clearly M C LGaLM) hecause of the definition of the fixed field.
For the other inclusion:
Suppose a € LEIEM) - Then the definition of Gal(IL, M) implies o(a) = o for all ¢ € Gal(IL, M).
Since LL is an union of finite intermediate Galois extensions, there is one such extension E with
«a € E. Then, thanks to lemma 2.2, the map

Gal(L,M) — Gal(E,M) : 0 — o|g

is surjective. And hence o(a) = « for all o € Gal(E,M). Then using the theorem about finite
extensions 1.5, we get that o € EGaIEM) — p. O

Proposition 2.4. Let L be a Galois extension of K. Suppose E is an intermediate finite Galois
extension of K. Then Gal(L,E) is normal in Gal(L,K) and Gal(L,K)/ Gal(L,E) = Gal(E, K).

PROOF. Let us take E' € Fi, with K € E C E' € L. Using theorem 1.5, we have
that Gal(E',E) < Gal(E',K), because E’ is a finite extension of K. By remark 2.2, we also
have Gal(L, E) < Gal(L, K).

Now suppose there exists a { € E with o(§) ¢ E for a 0 € Gal(L,K). Using lemma 2.3, this
implies the existence of v € Gal(LL, E) such that yo(§) # o(€), which means o~ 'yo(£) # €. We
have proven Gal(L,E) <t Gal(L,K) and so there is a 7 € Gal(L,E) with ¥ = 0~ 'y0. But then
7(&) # € which is a contradiction with the fact that Gal(LL,E) fixes E.

This implies that o(§) € E for all £ € E and for all o € Gal(LL,K). Thus o|g is an automorphism
of E.

Let [7],[n] € Gal(L,,K)/ Gal(L, E), then

T=n < 71Gal(l,E)=nGal(L,E)
< 17 =nywith v € Gal(L,E)
& nlr =~ with v € Gal(L,E)
& nlrlg =idg
< g =7k

And this proves that Gal(L,K)/ Gal(L,E) = {o|g | Vo € Gal(L,K)}. But the right side is the
set of automorphisms of E fixing K, i.e. Gal(E,K). O

2.2. Definition. Recall that Fp, the family of all finite Galois extension E of K such that
KCECL.

Definition 2.3. Let L be a Galois extension of K and G = Gal(L,K). Consider the set of
normal subgroups of finite index, § = {Gal(L,E) | E € F1}. The topology defined by S, as a
basis of neighborhoods of the neutral element of G, is called the Krull topology of G.

Proposition 2.5. The Krull topology is well-defined, i.e. if we consider S as in the definition,
there is a unique structure of topological group on G for which the set S forms a basis of neigh-
borhood of the neutral element. HenceG := Gal(L,K) with the Krull topology in a topological
group. Moreover the elements of S are open normal subgroups.

PROOF. We show that the collection S satisfies the assertions (1)-(4) of proposition 3.1 in
chapter 1.

(1) Let Gal(L,E) and Gal(L,E’) be elements of S. Using theorem 1.5, we have
Gal(L,EE’) = Gal(L, E) N Gal(L, E).

And Gal(LL, EE’) is an element of S because theorem 1.5 assure that the extension EE’
is finite and Galois over K.

(2) Let Gal(L,E) € S, then Gal(L,E) Gal(L, E) C Gal(L, E) because it is a group.

(3) Let Gal(L,E) € S, then Gal(L,E)~! C Gal(LL, E) because it is a group.

(4) Let Gal(LL,E) € S and 0 € G. We proved in proposition 2.4 that Gal(L,E) < G and
hence Gal(L,E) = o Gal(L, E)o 1.
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O

Remark 2.4. If L is a finite Galois extension of K, the Krull topology of Gal(L,K) is the
discrete topology.

Remark 2.5. From now on, when there is no specific mention, we always consider that a Galois
group is endowed with the Krull topology.

2.3. Properties.

Theorem 2.6. Let L be a Galois extension of K and let G = Gal(L,K). The group G endowed
with the Krull topology is a

(1) Hausdorff,
(2) compact,
(8) totally disconnected

topological group.
PROOF. (1) We have to show that for every o,7 € G with o0 # 7, there are two

neighborhoods U and V of o and 7 respectively such that c € U, 7 € Vand UNV = ().
First, notice that

(U= () Gal(E,K)=1
UeS EeFL,

(which is implied by remark 2.2).
Then, if 0,7 € G with o # 7, we have 0~ '7 # 1, and thus (with the above equation)
3 Uy € S such that o~ '7 ¢ Uy. So 7 ¢ oUy, which means 7Uy N oUy = 0 since G is a

group.
(2) We will prove the compactness using the theorem of Tychonoff. We build therefore the

homomorphism

h:G— ] Gal(E,K)=:P
EeFy
defined by
h(o) = H olg-
EcFL,

Notice that P is compact. In fact every Gal(E, K) is a discrete finite group and conse-
quently compact, so using the Theorem of Tychonoff (see [Mun75, Theorem 37.3]) we
obtain that P is compact as product of compact spaces. If we show that A is injective,
continuous and an open map into h(G), we will have a homeomorphism between G and
h(G) (see [IMun75, Theorem 26.6]). Moreover, if we show that h(G) is a closed subset
of P (which implies that h(G) is compact), we get that G is compact.

Injectivity: Suppose o € G is such that h(c) = 1. This means o|g is the identity

for every E € F1.. But we know that L = Ugc 5 E, which means o = 1.
Continuity: We consider the composition

G P Gal(E,K),

where 7 is the canonical projection. To show that h is continuous, we only need
to prove g o h is continuous for all E € Fr,. As we work with topological groups,
we only have to verify this in 1:

(meh)"1({1}) = Gal(L,E) € S.

Note that {1} is open in P because it is open in each Gal(E,K) (since Gal(E, K)
is finite).
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Open map: Let be E € Fr,, then we have

hGal(L,E) =n(@)n( [ Gal(E,K)x{1}),
E +E
E € FL

which is an open set in h(G).

h(G) closed: We define Mg g, := {X € P | g, (X)|g, = 7g,(2)} for each pair
E1,Ep € Fr with E2 CE;. We will first show that Mg, g, is closed in P. As Ey is
a finite extension of K, we can consider Gal(Eq,K) = {f1,..., fr}. We call S; the
set of extensions of f; to [E;. Then we have

T

My, =JC ] Gal(E,K) x S; x {f;} ).

=l E 7£ E1> IE2
E e f]L
As every set in the finite union is a closed set (as product of closed sets), Mg, g,
is closed.
We have

E1DE2

and if we prove the other inclusion, we will get that A(G) is closed in P. Now,
if ¥ € Ng,5g, ME,E,, We can define an automorphism o : L — L with o(z) =
me(¥)(z) if # € E. This o is well-defined since ¥ € NMg, g, (and using remark
2.2). We have h(o) = [[gec s mr(X), which implies

hG) 2 () M,
E;1DE;

and so h(G) is closed.
(3) Since we work with topological groups, we only have to show that the connected com-
ponent H of 1is {1}.
For each U € S we define Uy :=UNH. As {1} e U, Uy # 0, and as U is open, Uy is
open in H. We define now

IEH\UH

Then, V is open in H, because all the xUg are open. We also have Uy N Vg = 0 and
H = Uy UVy. But as H is supposed to be connected, we get that Vi = (), otherwise,
Ug|Vi is a separation of H. This means Uy = H, hence UNH = H for all U € S.
Therefore

Hc (U={1},

UeS
which means H = {1}.

3. The fundamental theorem of infinite Galois theory

In this section we will generalize the main theorem of Galois theory seen in the case of finite
extensions. Therefore we will also generalize some propositions and lemmas.
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3.1. Some necessary propositions.
The first proposition is a generalization of the lemma 2.2, but considering we work with topo-
logical groups.

Proposition 3.1. Let L be a Galois extension of K. For all finite Galois extension E of K such
that K CE C L, the map

r: Gal(L,K) — Gal(E,K)
o — 0olg
18 a continuous surjection.

Proor. We already proved that the map is surjective in lemma 2.2.
We will show that the inverse image of 1gaig k) is open in Gal(LL, K) (it is enough since topolog-
ical groups are homogeneous). But r~!({lgarkk)}) = Gal(L, E), which is an open set because
of the definition of the Krull topology. O

Proposition 3.2. Let L be a Galois extension of K and write G = Gal(L,K). Then the
following assertions hold.
(1) The field L is Galois over every intermediate field M (i.e. K C M C L).
Moreover Gal(IL,M) is closed in G and LE2/M) — M.
(2) For every subgroup H of G, Gal(IL,IL¥) is the topological closure of H.

PROOF. (1) The first assertion is implied by lemma 1.4.
Consider Fy; the family of envery finite and Galois extensions E of K such that K C
[E C M. Then M is the union of all the elements of Fpy. Which means

Gal(LL,M) = NEcFy Gal(L, E).

But the groups Gal(LL,[E) are all open subgroups of G and therefore they are closed
(see proposition 4.4 (2) and theorem 2.6). Then Gal(LL, M) is closed as intersection of
closed sets.

Lemma 2.3 implies the final statement.

(2) We have that H C Gal(LL, L), but because Gal(L, L¥) is closed, H C Gal(LL, L),
Now consider 0 € G\ H, there is an E € Fy, such that o Gal(L,E) N H = (). And so
o ¢ H Gal(L,E). Since ¢ can not be writen o = h7 for some h € H and 7 € Gal(L, E)
(which would have implied o(a) = h(a) for all a € E), we have the existence of an
a € E such that H fixes a (= a € L) but o(a) # a. This means o ¢ Gal(L, L7).
Thus Gal(L,L7) C H.

U

3.2. The main theorem. We will now prove a similar theorem as the main theorem for
finite Galois extensions (see 1.5).

Theorem 3.3. Let L be Galois over K with Galois group G. There is a bijection between
{H | H closed subgroup of G} < {M intermediate field | K C M C L}

given by the maps H — L (sending a closed subgroup on its fized field) and M — Gal(LL, M)
(sending an intermediate field on its Galois group).
Moreover,
(1) If Hy and Hy are two closed subgroups of G, we have Hy D Hy if and only if L1 C LHz,
(2) A closed subgroup H of G is open if and only if L has finite degree over K. In this
case, [G : H] = [L¥ : K], i.e indezes and degrees coincide.
(8) For every element o € G, and every subgroup H of G, LoHo™ = o(L7), and if M is
an intermediate field Gal(L,ocM) = o Gal(LL, M)o—*.
(4) If H is a closed subgroup of G, we have the following equivalence:
H is normal if and only if LY is Galois over K. In this case we have Gal(L? K) =
G/H.
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PRrROOF. To prove the first statement we have to show that the maps H — L and M —
Gal(L, M) are inverse maps. First suppose that H is a closed subgroup of G. Then L is Galois
over L and Gal(LL, L) = H (see proposition 3.2). Conversely if M is an intermediate field, we
have that Gal(IL, M) is a closed subgroup of G' and LE2M) — M (see proposition 3.2 (1)).

(1) If Hy, Hy are closed subgroups of G, using the definitions, we have
H, C H; = L7 € L2 = Gal(L, L) D Gal(L, L)

Hence Gal(L, L") = H; implies the result.

(2) Using proposition 4.4, we obtain that H being a closed subgroup of G with finite index
implies that H is open. And conversely using the same proposition, if H is an open
subgroup of G, H is closed and has finite index (recall that G is compact - see theorem
2.6).

Suppose now that H is closed and has finite index. We consider the continuous map

r: Gal(L,K) — Homg (L7, K)
o +— o|Lu.

Clearly ker(r) = Gal(L,L¥) and im(r) = Homg (LK) (for the last statement apply
lemma 2.1). Then, using the first isomorphism theorem for groups, we have
Gal(LL, K)/ ker(r) = Homg (L? K),
which is equivalent to
G/H = Homg (LY, K).

(3) Let M be an intermediate field and H = Gal(L,M). If 0 € G, we want to prove that
oHo ' < oM.

Therefore, let 7 € G and o € L. We have that 7(a) = « if and only if o700~ (0()) =
(). Hence Gal(L,oM) = ¢ Gal(L,M)o—*. And o(LH) = oM = LoH7 "

(4) Suppose that M is an intermediate field with H = Gal(IL, M)). Using (3), we have that
H is normal in G if and only if M is stable under the natural action of G. This last
statement is equivalent to say that M is a union of finite extensions of K stable under
G. But this, using the point (3) of theorem 1.5, is the same as expecting that all those
finite extensions are Galois over K. And so M is Galois.

And then the isomorphism follows from (2).
O

Here is an example showing that the main theorem is invalid if we omit the topological
conditions.

Example 3.1. We consider the finite field IF,, for a prime number p and its algebraic closure
Fp. Notice that Fp is a Galois extension of ). As Fp must contain the roots of all polynomials
of the form XP" — X forn > 1, Fpn C Fp. Moreover Fp can be written as union of intermediate
finite extensions, we must have Fp = UnleZ.
Now consider G = Gal(F,,F,). We denote by ¢ the Frobenius automorphism, i.e.
o:F, = F,:a—aP.
As [F} is a cyclic group of order p — 1, for each a € ), p(a) = a. Hence ¢ € G.
We define H =< ¢ > the subgroup of G generated by all the powers of ¢. We will now prove
two remarquable statements about H.
(1) H#G
To prove that, we have to find an element 7 of G such that 7 ¢ H.
We first show that there is an infinite intermediate extension M of IF,, such that IF, ;

M ; Fp. Therefore we consider M = Uy, >0 2n, clearly M is an infinite extension since

Iszn C M for all n > 0 and M is Galois over [, since it is a union of Galois extensions.

21



We now show that M # F,. Therefore we consider Fs, clearly [Fys : Fp] = 3 and
Fps C F, but F,s € M. In fact if we suppose F,3 = Fp[a] and o € M, we have a € Fan
for some n > 0, and hence F3 C Fo». But then using the degree formula for the
extensions, we have:

9" = [F o : F,) = [F

p
which is a contradiction. Thus F, S M G F).
Now using proposition 1.4, we know that I, is Galois over M. Then let 7 € Gal(F,, M)\{Id} C
G. If we suppose H = G, there is a n > 1 such that 7 = ¢™. Hence ¢ fixes M, so
M C F,». But this is a contradiction since M is infinite.
(2) FY =T,
By definition Ff - Fp, hence we show the other inclusion. Let o € Fp. Then a € Fyn
for some n > 1. This means o — a = 0 (see example 1.17). But then o?" = o, and
s0 ¢"(a) = . Hence «a € IF;I.

an B os][F

. :Fpl =[F

p2n :F 5] -3,

p p3 P

We conclude that H and G are two different groups but they have the same fixed field, as
Fp = IF}? . This contradicts the theorem, unless G is the topological closure of H.
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CHAPTER 3

Profinite Groups

In this chapter we define the notion of profinite groups. Those are defined as limits of
particular systems. They are useful to characterize Galois groups, in fact, every Galois group is
a profinite group and every profinite group can be realized as a Galois group.

1. Definition and examples

1.1. The notion of inverse limit.
1.1.1. Definition.

Definition 1.1. A directed set is a nonempty set I together with a reflexive and transitive
binary relation <, with the additional property that every pair of elements has an upper bound.

Definition 1.2. Let I be a directed set. An inverse system (X;, fi;)1 of topological spaces
indexed by I consists of a family {X; | i € I} of topological spaces and of a family {fi; : X; —
Xi | i,7 €1,i<j} of continuous maps such that

(1) fi is the identity over X; for all i € I,
(2) fijofjk:fik forallt <j<kel.

Remark 1.3. The preceding definition is not only available in the category of topological spaces,
it can be generalized to an arbitrary category.

Examples 1.4.

(1) We consider the directed set (Z,>), with m > n if and only if n divides m, for each
m,n € Z. We define G,,, = Z/mZ and consider the natural projections

fom : Z/mZ — Z/nZ : k +mZ — k + nZ,

which are well-defined in case n|m. Then (G,,, fum)z 1S an inverse system.
(2) Let p be a prime number. We consider now I = N provide with the usual order. We
define G,, = Z/p"7Z and consider the natural projections

fon 1 ZJp"7 — Z/p™Z

which are well-defined in case m < n. Then (G, fmn)N IS an inverse system.
(3) Let G be an arbitrary group. Denote S the set of all its normal subgroups of finite
index. We provide § with the order U < V if and only if V C U for U,V € S. Define

fov:G/V — G/U : gV > gU,
in case U < V. Then (G/U, fuy)s is an inverse system.

Definition 1.5. If Y is a topological space, we call a family of continuous maps {1; : Y — X, }ier
compatible, if f;;1); = 1; for every i < j € I, i.e. if the following diagram commutes:

Y
Y\
X i X;.
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Definition 1.6. An inverse limit (X, ;) of an inverse system (Xj, fi;)r of topological spaces
is a topological space X provided with a compatible family {¢; : X — X }ier satisfying the
following universal property:

For every topological space Y and for every compatible family {1; : Y — X, };cr, there exists a
unique continuous map 6 : Y — X such that the following diagram commutes for all ¢ < j € I.

fij

Remark 1.7. An injective limit is also called a projective limit.
1.1.2. Ezistence and uniqueness of the inverse limit.

Proposition 1.1. Let (Xj, fij)1 be an inverse system of topological spaces. If (X, ;)1 and
(Y, )1 are two inverse limits of (X;, fij)1, then, there is a homeomorphism ® : X — Y such
that v; o ® = w; for alli € 1.

PROOF. As (X, ;)7 is an inverse limit and (Y, ;) a compatible family, there exists a unique
®: X — Y such that ;o ® = ; for all 7 € I.
As (Y, ;)1 is an inverse limit and (X, ;) a compatible family, there exists a unique ¥ : Y — X
such that @; o U =1; for all i € I.
Then Vo®: X — X and ;WP = ;@ = ¢; for all ¢ € I, moreover p;idxy = ¢; for all ¢ € I. So
Vo ® =1idx by the uniqueness of the morphism in definition 1.6.
One can show in the same way that ® o ¥ = idy. (]

Proposition 1.2. Let (X;, fij)1 be an inverse system of topological spaces. Denote by X the set
of elements x € [[c; X which make the diagram commute

erl X

J
That means X is the set of all elements x € [],.c; Xy, such that fijmj(x) = mi(x) foralli < j € 1.

Where the m; are the canonical projections.
Define ; := m;|x for alli € I. Then (X, ;)1 is an inverse limit of (X, fi;)r.

Remark 1.8. We endow [ [, .; X with the product topology and X with the subspace topology.

PRrROOF. By definition of the product topology the maps ¢; are continuous, and we have
fijpj = @i because of definition of X. This means {¢; : X — Xj|i € I} is compatible.
Let us consider an other compatible family {¢; : Y — X;|i € I'}. We have to show that there
exists a unique continuous map 6 : Y — X with ¢;0 = ¢; for all © € I. Therefore, we define

0:Y — HXk

y = YY) trer

We have ;0 = 1b; which is continuous for all 7 € I, and this implies the continuity of 6. Moreover
the image of # is in X, in fact

fijomi(0(y)) = fiji(y) = i(y) = m(0(y)) Vi<jelVyeY.
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This means we can define the map

0:Y — X
y = 0(y)
which is continuous. This map satisfies also ;0 = ; for all ¢ € I. Note that the uniqueness of
0 follows from its construction. (]

Notation 1.9. We can now denote by @I X; the inverse limit of an inverse system (Xj, fi;)r-
And let s@ . X, denote the particular above construction.

1.1.3. Properties.
Here are some properties of the inverse limit we will use later.

Proposition 1.3. Let (X;, fij)1 be an inverse system indezed by I, and write X = lim X;.
(1) If each X; is Hausdorff, so is X.
(2) If each X; is totally disconnected, so is X.
(3) If each X; is Hausdorff, then slim X; is closed in P = [];c; X;.
(4) If each X; is compact and Hausdor(f, so is X.

PRrROOF. It is enough to prove the result for X = s @1 X, because of the uniqueness of inverse
limit.
(1) Products and subspaces of Hausdorff spaces are always Hausdorff, hence the result.
(2) Idem.
(3) By a topological result, if f,g: Y — Z are continuous maps and Z is a Hausdorff space,
the set {y | f(y) = g(y)} is closed in Y. Since

slim X, = ({p € P | fimi(p) = mi(p)}
Jj2i
(where 7r; is the canonical projection form P to X;), it follows that if each X; is Haus-
dorff, then slim X is an intersection of closed sets, hence slim X; is closed.
(4) This result follows from the fact that each closed subspace of a compact space is com-
pact, and from the fact that a product of compact spaces is compact.

(]

1.2. Profinite groups. We will now consider the case of inverse limits of topological
groups.

Proposition 1.4. The inverse limit im G; of an inverse system of topological groups (Gi, fij)1
is a topological group.

PROOF. The cartesian product [],.; Gy is a topological group, this means we only have to
show that G :=1im G; is a subgroup.
Clearly G is not empty ( ,.,6. €G ) and closed under multiplication and taking inverse. In
fact G = {g € [[4c; Gk | fimj(g) = mi(g) Vi < j} and all the f;; and 7, (4,7, k € I) are groups
homomorphisms. Then G is a subgroup of [],.; Gx and therefore a topological subgroup for
the induced topology. (]

Definition 1.10. A profinite group G is a topological group isomorphic to an inverse limit of
an inverse system (Gj, fi;)r of finite groups, all of them provided with the discrete topology.

Examples 1.11.
(1) We denote Z := lim . Z/mZ the inverse limit of the inverse system (Z)mZ, frum)z,

(see example 1.4 (2) ).

Zis called the Priifer group. Note that 7 is the set of all equivalence classes of sequences
(am) such that
am = a, mod n Yn|m.
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(2) We define Z, := lim Z/p"Z the inverse limit of the inverse system (Z/p"Z, fumn)N
(see example 1.4 (2) ).
Z,, is the additive group of the p-adic integers.

(3) Every finite group G is in particular a profinite group. In fact it is the limit of the
trivial inverse system (G, Idg){1y-

(4) The group of integers Z is not a profinite group.

Definition 1.12. Let G be an arbitrary group, denote by S the set of all its normal subgroups
of finite index. Then as in example 1.4 (G/U, fyv)s is an inverse system, and we define

G := lim G/U
4
UeS
to be the profinite completion of G.

2. General properties of profinite groups

The goal of this section is to give an particular characterization of the profinite groups, in
fact, we will prove that profinite groups are exactly the compact, totally disconnected, Hausdorff
groups.

2.1. Some lemmas and propositions.

Proposition 2.1. Let (G, fij)1 be an inverse system of finite groups G; (endowed with the
discrete topology). We construct G := S@ie] G; and write ¢; : G — G; the projection ho-

momorphisms. Then {ker(¢;) | i € I} is a fundamental system of open neighborhoods of the
identity element 1 in G.

ProoF. Consider the family of neighborhoods of 1 in [],.; G; of the form

IT G x {1} x...x {1},
i1, i
for any finite collection of indexes i1,...,4; € I and where {1}; denotes the subset of G; con-
taining its identity element. As the G; are discrete, the above family is a fundamental system
of neighborhoods of the identity element of [],.; G; (see definition of the product topology -
[Mun?75, §19]). As I is a directed set and as the collection is finite, there is i9 € I such that
ig > 1, for all 1 < r <t. So we have that

GN[(J] G) x{1}i] =G H Gi) x {1}s, % ... x {1}4]
iio 1701

because f i, (1) =1forall 1 <r <t.
Then a fundamental system of open neighborhoods of 1 in G is given by all the sets G N

[(TLizio Gi) x {1}i]- But we see that ker(pi,) = G0 [(T]ii, Gi) ¥ {1}i] O

Lemma 2.2. Let X be a compact, Hausdorff topological space. Let x € X and let {U; | i € I}
be the family of all compact open sets containing x. Then A = N;crU; is connected.

PRrOOF. Note that X being Hausdorff and U; being compact implies that U; is closed for all
i € I (see [Mun75, Theorem 26.3]).
Suppose there exists a separation of A, i.e. suppose there are U,V closed with A =U UV and
UNV = 0. Since X is normal (X is compact Hausdorff - see [Mun75, Theorem 32.3|), there
are U', V' open such that U CU’, V C V' and U' NV’ = (). So we have:

UuvVCcU uvV = XxX\(UnVvV)CxX\(UnV),
which means [X\(U'NV’)]N A = (. But, as X\(U' NV’) is closed, it is compact too. Having
X\(U'NV") C X\A = U;e X\U; (with X\U; open), there is J C I finite with
[X\U' V)N ((Ui) =0.
ieJ
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We consider B := N;c;U;. B is open because |J| < oo and Uj is open for all i € I, and B is
compact because it is a closed subset of X (B is also an intersection of closed spaces). We have
x € Band B= (BNU')U(BNV’). Suppose z € BNU’. Since BN U’ is open and compact,
BNU =U,, for aig € I. This means A C BNU' C U’, then

ANV CANV' CUNV ==V =10,
hence the result. O

Lemma 2.3. Let G be a compact, Hausdorff, totally disconnected topological group. Then every
neighborhood of 1 contains an open normal subgroup. Moreover this subgroup has finite indez in

G.

PrOOF. We consider {U; | i € I} the family of all compact open sets containing 1. Like in
the preceding lemma, a result of topology implies that U; is closed for each i € I.
Because of lemma 2.2 and because X is totally disconnected, we have {1} = N;erUs;.
Suppose that U is an open neighborhood of {1}. Then G\U is closed, hence compact. We have

(G\U) N ((\U:) =0,
el
this means there is a finite set J C I with

(G\U) N ([ Us)
i€J
Let A := N;csU;, we have that A is open as a finite intersection of open sets and that A is
compact because it is a closed subspace of G (note that A is an intersection of closed sets). This
means that A is a neighborhood of 1. Moreover we have A C U.
We define F := (G\A)NA?. Notice that A? is compact because it is the image of A x A (compact
- see [Mun75, Theorem 26.7]) under the continuous map (z,y) — xy. Then A? is closed, hence
so is F.
Let V be a symmetric open neighborhood of 1 such that AVNF = () and V C A (such
a neighborhood exists because of proposition 2.4, chapter 1). Then we have AV C A% =
AV N (G\A) C A2N (G\A) = F. Which means AV N (G\A) = () because AV N F = (). Hence
AV C A= AV™ C A for all n > 1, which implies V" C A (because 1 € A).
We define K := U,>1 V"™ C A, an open subset of G. As G is compact, K has a finite index
by proposition 4.4. Hence we can write G := U] _ 2z, /. The fact that K as finite index,
implies that there is a finite number of conjugacy classes of K (zK = yK = 3k € K with
r=yk =Kz ' =ykKk 'y~! = yKy~!). Hence
,
H = ﬂ cKz1 = ﬂ T Kzt
zelG =

Because z,, Kz, is open for all 1 < m < r (see proposition 4.4), H is an open normal subgroup
of G. And this means that H has finite index (propostion 4.4). O

Lemma 2.4. Let (Xj, fij)1 be an inverse system of topological spaces. Let (X, ;)icr be a
compatible family with all the h; being surjective maps. Then either lim X 4s empty or the
induced map 0 : X — @Xi sends X onto a dense subset ofliLnXi.

PrOOF. We will prove that for every basic open subset V' of @Xi we can find y € X such
that 6(y) € V.
Let us consider

V=>UmX)n( [J] XixUix...Uy),
i€\{i1,...in}

where U; are non-empty open subsets of X, for each 1 < j <n.
As I is a directed set, we can find ig € I with ig > i; forall 1 < j <n. If we take x = [[;c; X; €
V; we have fiio(zi,) = xi; for all 1 < j <n.
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Because ;, is surjective, there is y € X such that ¢;,(y) = x;,. This means m;,(0(y)) = x4, so
T, (0(Y)) = fizio(T2o(0(y))) = xi;, and hence (y) € V. O

2.2. Other characterization of pro-finite groups.

Theorem 2.5. The profinite groups are exactly the compact, totally disconnected, Hausdorff
groups.

PrOOF. Assume G is a profinite group.
By definition of a profinite group, there are finite groups (G;)ier and maps f;; : X; — X; for all
1,7 € I,7 < j such that G = liﬂlz‘el G;. As all the G; are finite discrete topological groups, they
are Hausdorff, compact and totally disconnected groups. Hence, with proposition 1.3, we have
that G is an Hausdorff compact totally disconnected group.
Conversely, assume G is a Hausdorff, compact and totally disconnected topological group.
We write U <o G when U in an open normal subgroup of G.
Consider the family S = {U | U <o G}. As G is compact, U being open implies that G/U is
finite (proposition 4.4, chapter 1). By lemma 2.3 S is a basis of open neighborhoods of 1 € G.
For each pair U,V € § with U C V, consider the natural map:

fuv :G/U — GJV : gU — gV.

Then it is clear that (G/U, fu,v)s is an inverse system of groups.
If we consider the compatible family of canonical homomorphisms ¢y : G — G/U, U € S, we
get a map
p:G—slimG/UC [] G/U.
S UeS
We will show that ¢ is injective, continuous and surjective. And then, because G is compact,
we will get that ¢ is a topological isomorphism (see [Mun75, Theorem 26.6]).

¢ is injective: Let 0 € G with ¢(o) = 1. Then we have 0 € U for all U € S, which
implies 0 € NyesU = {1}.
p is continuous: We will prove that the composition
G5 slimG/U L G/U
s

is continuous for each U € §. In fact, it is enough because slim  G/U C [[yes G/U
(see [Mun75, Theorem 19.6]). But

(mue) M1} = (' ({1}) =U

is open in G.
(Notice that {1} is a basis of open neighborhood of 1 in G/U for all U € S - because
{1} was already a basis of open neighborhood in G.)

¢ is surjective: By lemma 2.4 ¢(G) is dense in slim  G/U. Let us show that ¢(G)

closed, hence o(G) = slims G/U. ¢(G) is closed because we have p(G) = T (ou(G)) =
71 (G/U) (we use that ¢y is surjective) and 7 is continuous.
U

Remark 2.1. Some authors, considering theorem 2.5, define the profinite groups to be the
Hausdorff, compact, totally disconnected topological groups.

Corollary 2.6. Let G be a profinite group. Then if S := {open, normal subgroups of G}, we
have

G = lim G/U.
—
Ues
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2.3. Consequences of the theorem.

Proposition 2.7. Let G be a profinite group.

(1) Let {H; | i € I} be a collection of closed subgroups of G and let NierH; < U < G where
U is an open subgroup of G.
Then there is a finite subset J of I such that Nje;H; < U.
(2) Let {U; | © € I} be a collection of open subgroups of G such that Nic;U; = 1. Let
V= {ﬂjeJUj | J C I finite}
Then V is a fundamental system of neighborhood of 1 in G.
PROOF. (1) Consider the open covering {G\H; | i € I} of the compact space G\U (note

that G\U is a closed subset of the compact space GG). So there is a finite subcovering
{G\H; | j € J} for a finite subset J of I. This means

G\U C | J G\H;,
jeJ

and so
(VG\H; CU.
JjeJ
(2) Follows from (1).
O
Proposition 2.8. A closed subgroup H of a profinite group G is profinite. Precisely, if G =
lim G/U with S = {open, normal subgroups of G}, then
H2lmHU/U =2limH/HNU.
s s

PROOF. We use the characterization of theorem 2.5. Clearly H is Hausdorff and totally
disconnected because so is G. The theorem [Mun75, Theorem 26.2, Chapter 3| implies that H
is compact (because H is closed).

The second assertion follows from lemma 2.4. In fact, the canonical maps

ey : H— HU/U
mv:H—H/HNU
are surjective for all U in S. O

Proposition 2.9. A quotient group G/H of a profinite group G by a closed subgroup H is a
profinite group. In fact, if S = {open, normal subgroups of G}, then

G/H = 1im G/HU.
S

ProoF. Consider the canonical projection
m:G— G/HU,
which is a surjective map. As w(H) = 0, we can define
7:G/H — G/HU
and use again lemma 2.4. (]

Proposition 2.10. Let I be a set of index, and let (G;)icr be profinite groups. Then G :=
[L;c; Gi is a profinite group.

ProOF. Clear since the product of Hausdorff, compact and totally disconnected groups is
again Hausdorff, compact and totally disconnected. U

Corollary 2.11. Let (G;, fij)1 be an inverse system of profinite groups. Then G = liill G, is
profinite.
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PRrOOF. Use proposition 1.3 to see that G is a closed subgroup of [[;.; G, and use corollary
2.11. O

Example 2.2. Let P be the set of all prime numbers. We will show that

z=1]z,.

peP

We construct the natural projection
oy’ 2 Ly — L[p™ L

where m =[] cpq™.
Then we have the map
a™ Hagl : HZP — HZ/meZ,
p€eP peP peP

which is onto (one can easily build an inverse image).
Note that, using the Chinese reminder theorem (see [Lan02a, Corollary 2.2, §2, Chapter 2|),
we have

[[z/wm™z=2z/mz.
peP
Using lemma 2.4, the maps a™, m € Z, induce a continuous surjection
a:[[2 — Z=1mz/mz.
peP m
On the other hand, let (zp)pep be an element of [ ,cp Z), such that a((zp)p) = 0. This means

a™((xp)p) = 0 for each m € Z (by definition of Z) Consequently ag*((xp)p) = 0 for each m € Z,
and each ¢ € P. So x, =0 for all p € P, i.e. (x,)p = 0. This implies that « is injective.

Since Hpe p Zy is compact, we get that « is a topological isomorphism (see [Mun75, Theorem
26.6, Chapter 3]).

Proposition 2.12. lim 4s an ezact functor from the category of inverse systems, over a directed
indexing set I, of profinite groups to the category of profinite groups.

PROOF. Let

(f:) (9i)
1 —— (Hi, i) —— (G, i) —= (Ki, i) —— 1

be an exact sequence of inverse systems (over I) of profinite groups. We have to show that
1*>lilllHi*f>lilllGi*g>lilllKi*>1

1s exact.

o We first show that f is injective:
Let (z;); € lim H; with f((2;)7) = 0. Then fij(z;) = 0 for each i in I. And as f; is
injective x; = 0, for each i € I. Hence (z;); = 0.

e Next, we prove ker(g) = im(f):
Let (.TZ)[ S liill H;,

(go N(xi)r) = g((fi(zi))1) = ((gi © fi)(@i))r =0

because the sequence of projective systems is exact. This implies im(f) C ker(g).

Let (y;)1 € ker(g). This is equivalent to g((y;)r) = 0 and so (g;(y;))r = 0. Consequently
y; € ker(g;) for all 7 in I. And as the sequence of projective systems is exact, there is
a x; € H; such that f;(z;) = y; for each i € I. Hence ker(g) C im(f).
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e Finally we have to show the surjectivity of g:
Let (zi)r € liLnI K;. Consider the set Y; = gi_l(wi) which is compact in G; as inverse
image of a closed subset. Note that (g;); being a morphism in the category of inverse
system implies if 7 < j
G, —~a,
9j l Lgi
Nij A

i K
So if i < j, we have ;;(Y;) C Y;, in fact
9i(¥ij(y5)) = (9io¥ij)(y;)
= (mij ©9;)(y;)
= nij(e;) = i,
for each y; € Y;. Consequently (Y;,;;) is an inverse system of non-empty compact

sets. Hence lim Y; # 0 (see [Bou71, Proposition 8, §9, Chapter 1]). As for each
(yi)r € lim Y;, we have g((y;)r) = (zi)1, hence the result.

Pij
j ——>

<
~

O

3. Galois groups and profinite groups

We have already seen in chapter 2 (theorem 2.6) that Galois groups are Hausdorff, compact
and totally disconnected. But as seen in theorem 2.5, so are the profinite groups. This section
will make that more clear.

Theorem 3.1. Assume L is a Galois extension of a field K. We fir F = F ={E | KCE C
L, E finite Galois extension of K}. Then Gal(L,K) is the inverse limit of the finite groups
Gal(E, K) with E € F; in particular, Gal(L,K) is a profinite group.

PROOF. From the Galois theory Gal(E, K) is a finite group. If E;,Ey € F with E; C Ey, we
define
YR E, : Gal(Eg, K) —  Gal(E;, K)
o +— o|g,-
Then (Gal(E, K), ¢g, g, ) is an inverse system indexed with F.

Considering the restriction maps Gal(L,K) — Gal(E,K), we get a group homomorphism 6 :
Gal(LL, K) — [[gcr Gal(E,KK). The image of 6 in contained in lim, Gal(E,K), because

PE, B, (T, (0(0))) = ¢E, B, (0]E,) = olE, = 78, (0(0)).
Now given (og)ger € $ lim, Gal(E,K) and z € K, we build

P((or))(2) = om(z)
for M € F an intermediary extension with x € M (which always exists). This construction of
1 is independent of the choice of M because o is in @Eef Gal(E,K). We can easily see that
Y((og)) € Gal(LL, K) and that v is the inverse of §. Then 6 is an isomorphism. And so Gal(LL, K)
is isomorphic to lim, Gal(E,K) as abstract groups.
We will now show that there is an isomorphism between the basis of the topology of 1.
recall that the basis of open neighborhood of 1 in lim, Gal(E, K) is given by

{ker(mg) | E € F}
(see proposition 3.3). But for every F € F, we have

ker(mp) = {(or) € s lim Gal(E,K) | np((og)) = Idr}
EeF
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Note that
0(Gal(L,F)) = [] Gal(E K) x {Idg}
EeF\{F}
and as im(¢) C slim, Gal(E,K), we obtain that

ker(mp) = 0(Gal(L, F))
for all F € F. This proves that we have a homeomorphism, hence

Gal(L, K) = s lim Gal(E, K).
EeF
U

PROOF. You can find a proof of this lemma in [Wil98, Chapter 3.3]. O
Theorem 3.2. Every profinite group G is isomorphic (as a topological group) to a Galois group.

PROOF. Recall that G is a Hausdorfl compact totally disconnected topological group (see
2.5).
Let F be an arbitrary field. We consider S the disjoint union of the sets G/N with N running
through the collection of open normal subgroups of G (we write N <o G). Think of the elements
of S as indeterminates, and build the field L = F(S) (the rationals functions with coefficients in
F with their indeterminates in 5).
The group G operates on S in a natural way: if ¢ € G and ¢'N € G/N, then g(¢'N) = g¢' N
(for any N € S). And so, this induces an action of G on L.
Define K = IL¢ the subfield of L consisting of the elements of K fixed by G.
Our goal is now to show that L is a Galois extension of K with Galois group G.
If @ € L, consider the subgroup of G

Go={0eG|o(a)=a}l

If the indeterminates that appear in the rational expression of «a are {t; € G/N; | i=1,...,n},
then

{1} € (n} N; C Ga.
=1

In fact, if n € N; and gN; € G/N;, we have
n(gN;) = ngN; = g9~ 'ngN; = gN;,

because g~ 'ng € N; (as N; is a normal subgroup of G). This means the action of N; on G/N;
is trivial. As all the IV; are open subgroups of G, NI'_;N; is open. Then using proposition 4.4
part (4) (in Chapter 1) we get that G, is open. And hence, using the same proposition (part
(2)), G, has finite index.
As the index of the isotropy group of an element is equal to the cardinality of its orbit. Then
the orbit of o under the action of G is finite. Suppose that this orbit is Oy = {a1,...,a,} (with
all the «; different) and consider the polynomial

T

£(X) = [T(Xa):

i=1
As G transforms O, into itself (because of the definition of an orbit), we have that «a; is in K
for all 1 <4 < r, which means that f(X) € K[X]. But as a root of f(X), « is then algebraic
over K. Furthermore, notice that all the roots of f(X) are different and this means that « is
separable over K. And so L is a separable extension of K.
Observe that K[aq,...,a,] is a normal extension of K (as splitting field of a non constant
polynomial f(X) € K[X]). And so L is a union of normal extensions of K, hence L is normal
over K.
So we have proved that LL is a Galois extension of K.
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We write H := Gal(L,K). Clearly, as G acts on L and fixes K = L¢, G C H. We will now
prove the equality. Consider i : G — H the inclusion map. The next step will be to show that
this map is continuous.

Let U be a normal open subgroup of H and consider LY. As U have finite index (see proposition
4.4 in Chapter 1), LY is a finite Galois extension of K (use the theorem 3.3 in Chapter 2). Suppose
LY = K(c4,...,a,) for some o) € L. Then

S
GNU2()Ga.
-1
Which implies that G N U is open (because containing an open subgroup - see proposition 4.4
in Chapter 1). Then we have that G is open, and so G is a closed subgroup of H.

To conclude, use the theorem about infinite Galois extensions (theorem 3.3 in Chapter 2) : as
LY =L and G is closed, H = G. O
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CHAPTER 4

Group Cohomology

In the following chapter, we define cohomology groups. This notion come from topology,
they were later used in group theory in order to provide invariants.
Many proofs in this chapter will be left to the reader.

1. Generalities
1.1. (Co)homology modules.

Definition 1.1. A left R-module, where R is a ring, is an abelian group (M, +), having a scalar
multiplication R x M — M : (r,m) — r - m such that for all m,m’ € M and all r,7" € R, we
have

Definition 1.2. Let M and N be two R-modules, a R-map (or a R-homomorphism) is a group
homomorphism f : M — N, such that, for all m € M and r € R,

r-f(m) = f(r-m).

We can define similarly a right R-module, but in the case R is commutative they coincide.
Therefore, to make it easier, we assume from now on that R is a commutative ring.

Notation 1.3.

(1) Often we write m instead of r o m to denote the action of R on a R-module M.
(2) The class of R-modules and R-maps is an abelian category denoted by .#g.

We present here the most general notion of (co)homology.

Definition 1.4. A chain complex C over R is a sequence of R-modules (C})nez and R-maps
(dy : Cp — Ch—1)nez, called differentiations,

dni1
C:...—>Chy1 — C, —>Cn 1— ...

such that d, o dy, 41 = 0 for all n € Z.

Definition 1.5. A morphism of chain compleres f : C — C’ is a collection of morphisms of
R-modules (f, : C,, — C!)pez such that the following diagram commutes for all n,

dn
Cn > Cnfl

fnJ Lfn—l
01/1 T 01,7,71

Definition 1.6. Let C' be a chain complex, we define its n-th homology module by
H,(C) :=kerd,/imd, .
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If f:C — C'is a morphism of chain complexes, we define
Hy(f) : Ho(C) — Ha(C")
[2] = [fa(2)].
And here is the definition of cohomology.

Definition 1.7. A cochain complez C over R is a sequence of R-modules (D, )nez and R-maps
(6n : Cp — Cr—1)nez,

D:...HD”_lﬂD”iD”'ﬂ—m..
such that 6"t o 6" =0 for all n € Z.

Definition 1.8. Let D be a cochain complex, we define its n-th cohomology module by
H"(D) :=ker §"/im 6" %,
1.2. Hom Functor.

Definition 1.9. Let ¥ and Z be categories. A covariant functor F from % to & is a mapping
that associates to each object C' € € an object F(C) € & and associates to each morphism
f:Cy — Cyin € a morphism F(f): F(Cy) — F(C3) in Z; such that

e F(idc) = idp (), for every object C' € €;

e F(go f)=F(g)o F(f), for all morphisms f :C; — Cy and g: Co — C5 in €.
A contravariant functor F from € to & is a mapping that associates to each object C' € ¥
an object F(C) € 2 and associates to each morphism f : C; — Co in € a morphism F(f) :
F(C3) — F(Cy) in Z; such that

e I'(idc) = idp(cy, for every object C € €;

e F(go f)=F(f)oF(g), for all morphisms f:C; — Cy and g: Cy — C5 in ¥.
Definition 1.10. Let M be a fixed R-module.
We define the functor Hom(OJ, M) from the category .#r to the category &7, sending each R-

module N to the set of all R-maps from N to M : Hompg(N, M) and sending each R-map
¢ : N1 — Ns to the map

Hom(f, M) : Hom (N2, M) — Hom(Ny, M) : f+— fo.

Next, we define the functor Hom(M, ) from the category .#g to the category <7, sending each
R-module N to the set of all R-maps from M to N : Hompg(M, N) and sending each R-map
¢ : N1 — Ns to the map

Hom(f, M) : Hom(M, N1) — Hom(M, Ny) : f+— ¢o f.

Proposition 1.1.

e Homp (O, M) is a well-defined contravariant functor from Mg to <f. Moreover this
functor is left-exact.

e Homp(M,D) is a well-defined covariant functor from Mr to of . Moreover this functor
is left-exact.

PROOF. One can find the proof in [Rot09, §2.1]. O

Remark 1.11. There are many ways to obtain a cochain complex from a chain complex C.
The most natural is to define C" := C_,, and §,, := d_,,.

But there is another one more interesting: we simply have to apply the functor Hom(O, G).
Precisely, C" := Hompg(Cyp, R) and 0" := dy ,; = Hompg(d,41, R). We will denote this cochain
complex:

Homp(C, R) : ... — Homp(Cn_1, R) 2 Homp(Cyp, R) 2% Homp(Cpsr, R) — ...
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The following theorems are two classical result.

Theorem 1.2. Let 0 — C' 5 C 2 C" — 0 be an evact sequence of chain complexes. Then
there is a long exact sequence of modules

= Hy() Y g o) P g ey o B () -
PROOF. One can find a proof of this theorem in [Rot09, §6.1]. O

Theorem 1.3. Let 0 — C' 5 C 2 C” — 0 be an evact sequence of cochain complexes. Then
there is a long exact sequence of modules

H"(4) H"(p)
_— —_—

. — H™(C') H"(C) H (" 25 (el — ...

2. Projective and injective modules

In this section we will define the notion of projective and injective modules.

Definition 2.1. A R-module P is projective if for any epimorphism of R-modules §: M — N
and any morphism « : P — N there exists a morphism v : P — M such that oy = a, i.e.
such that the following diagram commutes

P
7 a

e
M & N 0.

We present a theorem which will gives us another characterization of projective modules.

Theorem 2.1. Let P be a R-module. Then the following assertions are equivalent:
(1) P is projective,
(2) Hom(P,O) is ezact,
(3) every exact sequence of R-modules 0 — M’ — M — P — 0 splits,
(4) P is a summand of a free module, i.e. there exists a R-module M such that P & M is
free.

Proor. The proof is given in [Rot09, Proposition 3.2, Proposition 3.3 & Theorem 3.5,
Chapter 3|. O

We now define precisely what is a R-module.

Definition 2.2. A R-module M is said to be free if there exists a set X = {m; | i € I} (I can
be any index set), called a basis of M, such that each m € M has a unique expression

m = Z iy
1€l
for some r; € R with r; # 0 only in finite many case.

Proposition 2.2. Let F be a free R-module and M, N be any R-modules. If 3: M — N 1is an
epimorphism, then for every a: F — N, there exists an R-homomorphism v : F — M making
the following diagram commutes

F

y
- «a

.
M ’ N 0.

PROOF. One can find a proof of this proposition in [Rot09, Theorem 3.1, Chapter 3]. O
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Corollary 2.3. Every free module is a projective module.
We define now the dual notion of projective modules, the injective modules.

Definition 2.3. A R-module [ is injective if for any monomorphism § : M — N and any
morphism of R-modules o : M — I there is a morphism v : N — I such that yo 8 = «, i.e. the
following diagram commutes

I

S

v

0 MBN'

Theorem 2.4. Let I be a R-module. Then the following assertions are equivalent:
(1) I is ingective,
(2) Homp(O, I) is an exact functor,
(3) every eract sequence of R-modules 0 — I — M — M' — 0 splits.

PROOF. The proof can be found in [Rot09, Proposition 3.25 & 3.26, §3.2]. O

3. Resolutions and Cohomology of R-modules

3.1. Resolutions.
We now define a resolutions of modules which will provide the chain complexes used to define
cohomology.

Definition 3.1. Let M be a R-module. A projective (resp. free) resolution of M over R is an
exact sequence of R-modules
.—>Pnd—">Pn_1—>...—>P1d—1>POi>M—>0,
where each P, s a projective (resp. free) module.
Notation 3.2. Such a projective resolution is sometimes denoted by P, — M.

Those resolutions are not only useful, we now that one can always find such a resolution for
any R-module.

Theorem 3.1. Every R-module has a free resolution.
PROOF. Refer to [Rot09, Proposition 6.2, §6.1]. O
Corollary 3.2. Every R-module has a projective resolution.

Definition 3.3. Let M be a R-module. A injective resolution of M over R is an exact sequence

of R-modules
671,

0-MEOS S
where each I" is an injective module.
Notation 3.4. Such an injective resolution is sometimes denoted by M — I°.
Theorem 3.3. Every R-module has an injective resolution.
PROOF. Refer to [Rot09, Proposition 6.4, §6.1]. O
Now we define the deleted (co)complexes because they are easier to deal with.
Definition 3.5. Let M be a R-module. If
X:...—>Xnd—">Xn,1—>...—>X1—>X0—>M—>0
is a chain complex, we define the deleted complex of X to be the chain complex
XM:...—>Xnd—”>Xn,1—>...—>X1—>X0—>O.
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Similarly if
YoMy oyl o yn Doyl
is a cochain complex, we define the deleted cocomplex of Y to be the cochain complex

0 n
YM:()—>Y06—>Y1—>...—>Y”6—>Yn+1—>...

3.2. Cohomology of R-modules.
In this section we define the functor Ext, which is a generalisation of the cohomology.

Definition 3.6. Let M, N be R-modules. Let Py; be the deleted complex of a projective
resolution of M. Form the complex Hompg(Pys, N), i.e.

*

d1 d:(H»l
Hompg(Py,N) : 0 — Hompg(FPy, N) — ... — Hompg(P,, N) — Hompg(P,+1,N) — ...
We define the n-th cohomology of M with coefficients in N, Extz(M, N), by taking the n-th
cohomology of the above cochain complex, i.e.
Exts(M,N) := H"(Hom(Pys, N)).

Theorem 3.4. Let M, N be R-modules, and let Pyy and Py, be to projective resolutions of

M. Suppose that Ext'y (M, N), respectively EX’C}Z(M, N), is the cohomology module associated to
Pu, respectively Py,. Then

Ext? (M, N) = Ext 3} (M, N).
PROOF. The proof id given in [Rot09, Proposition 6.40, §6.2]. O

Remark 3.7. Some authors define the cohomology of M with coefficients in N using injective
resolutions.
Let Iy be the deleted complex of an injective resolution of N. Then form the complex Homp (M, In),
i.e.
Homp(M, Ix) : 0 — Homg(M, I°) — ... — Homp(M, I") 25 Homp(M, E"') — ...
Then the n-th cohomology of M with coefficients in IV is
H"(M,N)= H"(Hompg(M, Iy)).

There is no ambiguity with the above definition since in [Rot09, Theorem 6.67, §6.2], it is
proved that
H"(Hom(M, Iy)) = H"(Hom(Pys, N)).

4. Cohomology of groups

We will now define precisely the cohomology of groups. R is always a commutative ring with
identity 1.

Definition 4.1. Let G be a group, the group ring R|G]| is the free abelian group with basis
G, i.e. the group of all formal linear combinations of elements of G with coefficients in R (and
endowed with the multiplication induced by the multiplication of G).

RGI={ >  relrgcR}
ge G
finite
The integral group is the group ring for the ring of integral numbers Z, i.e. Z[G]. This ring is
also written ZG.
Definition 4.2. Let (G,-) be a group. A G-module is an abelian group (M,+) with a map
G XM — M :(g,m)— g-m satisfying:
(1) (9192) - (m) = g1 - (g2 - m);
(2) g-(m+n)=g-m+g-n
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3) 1g-m=m;
for myn € M and ¢g1,92,9 € G.
Remark 4.3. If M is a G-module, then M becomes a ZG-module if we define

( Z ngg) - m = Z ng(g-m).
geqG geqG
finite finite
Conversely, if M is a ZG-module, then M becomes a G-module if we define g - m = (1g) - m.

Definition 4.4. Let G be a group. A G-module M is called trivial if every element of G acts
as the identity on M, i.e. g-m = m.

Definition 4.5. Let G be a group, and M a G-module. Consider the integers Z as a trivial
G-module and define the n-th cohomology group of G with coefficients in M to be

H"(G,N) := Ext;4(Z, N).
5. Shapiro’s Lemma and induced modules

We will present the Lemma of Shapiro and the induced modules. They will be later useful
to study the cohomology of Galois groups.
Let GG be a group.

Definition 5.1. A ZG-module A is G-acyclic if H"(G, A) = {0} for all n > 1.

Definition 5.2. A group homomorphism f : G’ — G induces a ring homomorphism ZG" — ZG,
also denoted by f, precisely, f : > ngg" — > ngf(g). Let A be a ZG-module, it can be
considered as a ZG'-module : if ¢’ € G’ and a € A, then ¢'a = f(¢')a. Denote a G-module A
viewed as a G’-module by UA, and call

Uf : %ZG - %ZGV
a change of groups functor.

Lemma 5.1. Let f : G' — G be a group homomorphism, and let Uy : Myc — Mycr be the
corresponding change of groups functor.
(1) If P is a G-cyclic complex, then UP is a G'-cyclic complez.
(2) Let H C G, and let f : H — G be the inclusion homomorphism. If P is a projective
G-module, then UP is a projective H-module. Moreover, if P is a projective resolution
of a ZG-module A over ZG, then U P is an projective resolution of UA over ZS-

PROOF. (1) Using [Rot09, Proposition 8.3, §8.2]|, we now that U : .#yzc — My is
an exact additive functor. Then UP is a complex, moreover H"(G', A) = {0}.

(2) Consider R a set containing an element (and only one) of each coset of G/H. Then G
is the disjoint union U,cgrH. This implies that for every g € G there are unique r € R
and h € H such that g = rh. And hence, we can write ZG = @, r(ZH) ( a direct
sum is ZS-module), so ZG is a free ZH-module.

Suppose that P is a projective ZG-module. This is equivalent to the existence of a
ZG-module M such that P& M is free. And so UP is a a projective ZH-module.
The second statement follows from (1).

U

Remark 5.3. Suppose H is a subgroup of G and A is an ZH-module. Then Homzy (ZG, A) is
a ZG-module if endowed with the action :

gf 172G — A

x — gf(g!

x)?

for any g € G and any f : ZG — A.
We consider in particular if H = {1} (and then ZH = 7Z).
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Next, we present the Eckman-Shapiro Lemma (known as Shapiro Lemma).

Theorem 5.2. Let G be a group, H be a subgroup, and A be an ZH-module. Then
Hn(H, A) = Hn(G, HomZH(ZG, A))
for allmn > 0.

In this proof, we use the notion of the tensor product, denoted by ®. For further information
about it, see [Rot09, §2.2|.

ProOF. We denote by U : My — Mzy the change of groups functor.
Suppose P =... - P, - Py — Z — 0 is a free resolution of Z over ZG, then

HH(G, HOmZH(ZG, A)) = H"(Hong(P, Hong(ZG, A))),

because it is the definition of the cohomology group. Using the adjunction between the tensor
product and the functor Hom (precisely see [Rot09, Theorem 2.75, §2.2|), we have

Homzq (P;, Homzp (ZG, A)) = Homzp (P (X) ZG, A).
7.G

Next, we use a property of the tensor product (see [Rot09, Proposition 2.58, §2.2]), hence
P,Ryc = P;, and we use the fact that UP; = P;,. And so we obtain

Hong(PZ-, HOII]ZH(ZG, A)) =~ HOmZH(UPZ', A),

for all 4.
By lemma 5.1(2), UP is a projective resolution of Z over ZH, and hence

H"(H, A) = H"(Homzp (UP, A),

see theorem 3.4.
Moreover, there is an isomorphism of complex

(1) Homyzy (UP, A) =2 Homyg(P,Homzy (ZG, A)).
In conclusion we have an isomorphism
H"(H,A) = H"(G,Homzy (ZG, A)).
O

Definition 5.4. Suppose G is a group and A an abelian group. We define the coinduced module
to be the ZG-module Homy(ZG, A).

Remark 5.5. The above construction is the same as in remark 5.3 using H = {1}, and noticing
that every abelian group can be viewed as a trivial Z-module.

Proposition 5.3. Fvery coinduced ZG-module A is G-cyclic : H"(G, A) = {0}, for alln > 1.

PrOOF. Consider the subgroup H = {1} and apply theorem 5.2, then
H"(G,Homy(ZG,A)) = H"(H, A).
But this cohomology group is trivial (see [Rot09, Corollary 9.28, §9.2]). O

41






CHAPTER 5

Galois Cohomology

We define cohomology groups for profinite groups, note that we will use a slightly different
definition as in previous chapter. We will finally state and prove different versions of Hilbert’s
Theorem 90.

1. Cohomology groups

Working with profinite groups implies we have to consider the topology. We therefore define
discrete modules and particular cohomology groups.

1.1. Discrete G-modules.

Definition 1.1. Let (G, -) be a profinite group. A discrete G-module (or G-module, if there is
no confusion) is an abelian group (A4, +) endowed with the discrete topology and on which G
operates continuously. This means a G-module is an abelian group A with a continuous map
GxA— A:(g,a) — g-a (where G x A is seen with the product topology) satisfying:

(1) (9192) - (a) = g1 - (g2 - a);

(2) g-(a+b)=g-a+tg-b

3) lg-a=gq;
for a,b € A and g1,92,9 € G.

Remark 1.2. If G is a finite group, then all G-modules are discrete G-modules.

Proposition 1.1. Let G be a profinite group and A an abelian group. Let G x A — A be an
action of G on A satisfying the conditions (1), (2) and (3) of definition 1.1. Then, the following
are equivalent:

(1) G x A — A is continuous;

(2) For each a € A, the stabilizer of a, Uy, ={g € G | g-a = a} is an open subgroup of G;

(3) A=y AY where U runs trough the set of all open subgroups of G, and where

AV ={acA|g-a=aV geU}.

PrOOF. We denote f: G x A — A the action of G on A.

(1) = (2): Consider the restriction f, : G x {a} — A which is a continuous map because
f is continuous. Then U, = f, }({a}) is open as a preimage of an open set (recall that
A is provided with the discrete topology).

(2) = (3): Clearly J,; AY C A.

Let a € A, then a is in AYs. And as U, is an open subgroup of G, we obtain the result.

(3) = (1): We will show that f~({a}) is a open subgroup of G for each a € A. Hence
if a € A, ais in AY for some open subgroup U of G. Which implies ¢ - a = a for all
g € U. And so

1o x {a} € U x {a} € £~ ({a)).
Consequently, f~1({a}) is open, because G' x A is a topological group and U x {a} is
open (see 4.4 in chapter 1).

O

Here are some examples of discrete G-modules.
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Examples 1.3.
e For any profinite group G and any abelian group A we can define the action
GxA—A:(g,a)— a.
This action is called the {rivial action on A. And A is a G-module, called a {rivial
G-module.

e Let L and K be fields such that L is a Galois extension of K. Recall that Gal(L, K) is
a profinite group. Consider the abelian group (L, +) and the action

GxL—-L:(0,a)od(a).
Then (L, +) (sometimes denoted L) is a discrete G-module.

Endowed with the same action (L*,-) and the group of all roots of unity in I (under
multiplication) are also discrete G-modules.

Definition 1.4. Let G be a profinite group and A, B be two discrete G-modules. A G-
homomorphism or a G-map @ : A — B is a group homomorphism for which

p(g-a)=g-p(a),
for all g € G and all a € A.

Remark 1.5. The class of discrete G-modules and G-maps is an abelian category denoted by

M.

1.2. Definition of cohomology groups.
Let G be a profinite group. For each n € N we denote by G™ the cartesian product of n copies
of G.

Consider a discrete G-module A. We set

CHMG,A):={f:G" — A f is continuous}.

Note that C?(G, A) is an abelian group under addition (because A is an abelian group). It is
called the group of the n-cochains. Moreover C%(G, A) is isomorphic to A (as group of the maps
from 0 to A).

For each n > 1 define a group homomorphism

dny1 : C(G,A) — CHG, A),
through
(dnt1 /)91, gnt1) = g1+ f(92,-- -, gnt1)

n

=+ Z(_l)if(glan'7gigi+17"‘7gn+1)
i=1

+ (1" f g1, 00),
for all f € C(G, A) and all (g1,...9gn+1) € G"L. For n = 0, we define the homomorphism
do : CY(G,A) — CLG, A),
through
(doa)(g) =g-a—a,
for all @ € A and all g € G. The maps d,, are called the coboundary operators.

Lemma 1.2. For eachn > 0, dy is a group homomorphism and moreover dpy1 o d, = 0.
PROOF. One can find a proof in [Bur04, Chapter 2, §2.2]. O

Remark 1.6. This lemma implies that the maps d,, are the differentials of a cochain complex

C.(G,A) = (CG, A),dy,).
Definition 1.7. Let G be a profinite group and A be a discrete G-module.
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e We call the group of the n-cocycles of G, the group Z7' := ker(d,,), and we call the
group of the n-coboundaries of G, the group B} (G, A) :=imd,_;.
The lemma 1.2 implies that BJ'(G, A) is a subgroup of Z7(G, A).

o We define the n-th cohomology group of G with coefficients in A to be the group

H!(G,A):=Z"(G,A)/B}G,A).

Remark 1.8. We can built the cohomology in case A is simply a G-module and not expecting
the cochains to be continuous. The construction is the same. In that case the cohomology group
of G with coefficients in A is denote by H(G, A). One can prove that this definition of the co-
homology groups coincide with the one of chapter 4, i.e. there is no ambiguity with the notations.
In case G is a discrete group, the continuity hypothesis is trivially verified. This means H(G, A) =
H"™(G, A). Then we can also use properties presented in chapter 4.

2. Interpretation of cohomology groups in low dimension

Let G be a profinite group and A a discrete G-module. We will study the cohomology groups
H!(G, A) for small n € N.

2.1. Trivial case.
For n =0, we have

HY(G,A) 272G, A)={ac A|dy(a) =0} ={a€A|g-a—a=0VYgcG}
And hence, H?(G, A) is isomorphic to A%, the set of the invariant points of A under the action
of G.

2.2. First cohomology group.
We consider now n = 1. As previously defined H!(G, A) = Z}(G, A)/BL(G, A).
The group of 1-cocycle can be explicitly described as

ZNG,A) = {f:G — A continuous | di(f) =0}
{f: G — A continuous | f(g192) = g1 - f(92) + f(91), ¥V 91,92 € G}.
And the group of 1-coboundaries is
BXG,A) = {f:G — A continuous | Ja € A s.t. do(a) = f}
= {f:G — A continuous | Ja € A s.t. f(g9)=9g-a—a, VgeG}.

The elements of Z!(G, A) and Bl(G, A) are called continuous crossed homomorphisms and
principal crossed homomorphisms respectively.

Example 2.1. If G operates trivially on A, H!(G, A) is the group of all continuous group
homomorphisms from G to A.

2.3. The second cohomology group.
For n =2, HX(G,A) = Z*(G, A)/B2(G, A), with

Z2(G,A) = {f:GxG — A continuous | da(f) = 0}

{f:Gx G — A continuous | g1f(g2,93) + [(91,9293) = [(9192, 93) + [ (91, 92),

V 91,9293 € G},
and

BXG,A) = {f:GxG — A continuous | Ip € CH(G, A) s.t. f=di(p)}
= {f:G x G — A continuous | Ip € C1(G, A)
s.t. f(g1,92) = 910(92) — p(9192) + 9(91), V 91,92 € G}

The elements of Z2(G, A) are called continuous factor systems.
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3. Functorially properties of the cohomology groups

3.1. Compatible maps.
3.1.1. Definition.

Definition 3.1. Let G and G’ be two profinite groups. Let A € .#g and A’ € .# . Consider ¢ :
G — G’ a continuous homomorphism of profinite groups and ¢ : A’ — A a group homomorphism.
We say that ¢ and ¢ are compatible maps if

P(plg)-a') =g- f(d),

for all g € G and all ' € A'.
This is equivalent as asking that v is a G-map when A’ is considered as a G-module with the
action

for each o’ € A’ and g € G.
Example 3.2. Let L and E be Galois extensions of K, with K C E C .. We consider the

restriction
7 : Gal(L,K) — Gal(E,K),
and the injection
1 EY — L*
Then those mappings are compatible.

Lemma 3.1. Let ¢ and i be compatible maps as in definition 3.1. They induce a homomorphism
on the groups of n-cochains (for n >0)

(0, 0) : C2(G", A) — CU(G, A)
defined by
[0, ) (g1, - - 9n) = V[ (0(g1), - - - 0(gn))]-

In particular, (p,v) is a map of cochain complexes, i.e. the diagram

s on(@, A S e (G A

L(Wﬂ) L(%ﬁﬂﬁ)
d

dn n
CH(G, A) —= CI+(G, A)
cominutes for n > 0.
PROOF. One can easily check this lemma with a straightforward computation. U

Corollary 3.2. If p, ¥ are compatible maps as in definition 3.1, (v, ) induces a homomorphism
of the cohomology groups, written

(0, ) « HI (G, AT) — HZ(G, A).
Proor. Use the commutativity of the above diagram. (]

3.1.2. Functorially properties of compatible maps.
Let G;, ¢ = 1,2, 3, be profinite groups and A; € .#¢,. Consider the continuous group homomor-
phisms
P2

Ga G3

and the group homomorphisms

4 1 42 P2 As.
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with o1, 91 being compatible maps and @2, 2 too. They induce two group homomorphisms
(p1,91) + H (G2, A2) —  H(G1, A1)
(p2,92) : H' (G, A3) —  H. (G2, A2).

Then we have that (g o o is compatible with 5 o ¥ and
(1,¥1) 0 (p2,%2) = (2 0 1,91 0 P2).

Moreover, if ¢ is the identity map of G' and 1 the identity map of A, then (¢, 1)) is the identity
map of H'(G, A).

Consequently, for each profinite group G and for each n > 0, H*(G, —) is a covariant functor
from A q to <.

3.2. Direct limit. We define the direct limit in order to consider a direct limit of G-
modules. This will be useful to describe limits of cohomology groups.

Definition 3.3. Let I be a directed set. And let € be a category. A direct system (X, fij)1
of objects of ¢ indexed by I consists of a family {X; | i« € I} of objects and of a family
{fij : Xi = Xj | 4,5 € I,i <j} of morphisms of ¢ such that

(1) fi is the identity over X; for all i € I,

(2) fjkofij =firforallt <j<kel

Definition 3.4. If Y is an object of ¢, we call a family of morphisms of € {¢; : X; — Y }ier
compatible, if 1; o f;; = 1; for every i < j € I, i.e. if the following diagram commutes:

Y
Xi £ Xi-

Definition 3.5. An colimit (X, ;) of a direct system (Xj, fij)r of objects of € is an object X
provided with a compatible family {¢; : X; — X };cs satisfying the following universal property:
For every object Y and for every compatible family {v; : X; — Y}ier, there exists a unique
morphism of ¢ 6 : Y — X such that the following diagram commutes for all i < j € I.

Proposition 3.3. The direct limit is unique up to isomorphism.
PROOF. Similar as the proof of proposition 1.1 in chapter 3. U

Notation 3.6. As there is no ambiguity anymore, we will denote by MLQI X; the direct limit of
(X, fij)r-

We have seen in chapter 3, that there is a special characterization of a limit (or inverse limit)
in case we were in the category of topological spaces. We will now give such a characterization
of the direct limit in the category of groups (and group homomorphisms).
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Proposition 3.4. Let (X, fij)1 be a direct system of groups. Consider the set Z = [[; X; (the
disjoint union of the X;) and define an equivalence relation ~, with (z;,1) ~ (x5, ) if and only
if i,j € I with x; € X;, xj € X; and there is a k € I with i,j <k and fip(x;) = fjr(x;). Then
lim X; & Z/ ~.

PROOF. It is trivial to see that ~ is an equivalence relation.
We define the morphisms
i Xi — Z] ~,
induced by the inclusion i : X; — Z : z; — (x;,7). By construction {p; : X; — Z/ ~} is a
compatible system.
Consider an other group Y and a compatible family {¢; : X; — Y };c7. We define
0:7Z =Y :(x5,1) = i(xy).

Let (x;,1),(xj,7) be in Z with (x;,1) ~ (xj,7). We want to show that 0((z;,i)) = 6((x;,7)).
But (x,1) ~ (x;,j) implies there is a k € I with 7,7 <k and fir(z;) = fjr(z;). Then

0((i,i)) = %(%)

= Yi(fir(xi))
= Yr(fin(x)))
= ¥j(x;) = 0((x5,7))-

Hence, we can define 6 : Z| ~— Y. Moreover we have trivially that 0o w; = ; for each i € I,
and also that 6 is unique. And so Z/ ~ is a direct limit of (X, fi;)r. O

3.3. Properties of the cohomology group of a limit.
We consider now a directed index set (I, <) and two systems; a inverse system of profinite groups
(Gi,@ij)r and a direct system of abelian groups (A;, Aj;) (for definition see section 3.2), such
that A; € #q, for each i € I and such that ¢;; and \;; are compatible maps for ¢ < j.
This induces a direct system (H} (G, As), (@i, Nij))1-
We denote G :=lim G; and A :=lim_G;, and the canonical morphisms
—1I —1
G — G
N A — Al
Lemma 3.5. A can be viewed as a G-module with the following action:
Fora€ A and g € G, choose i € I and a; € A; such that \i(a;) = a. Then define

g-a=Ai((mi(g)) - ai).
This action is well-defined and continuous.

ProOF. We will first show that the action is independent of the choice of ¢ € I. recall that
I

with o; ~ oj & o € A;, aj € Aj and there is a k € I with ¢, j < k and A\jp(ow) = \jr(ay).
Therefore let 4, j be in I and a;, a;j be in A;, A; respectively, such that \j(a;) = a and \;(a;) = a.
As [ is a directed set, there is a k € I with 4,7 < k. Then, using the property of the inverse
limit and the compatibility of m;; and A,

Airl(mi(9)) - ail = Aarl(min(mi(9))) - ail
= m(g) - Ai(ai).
In the same way \jx[(7;(9)) - a;] = mx(g) - A\jr(a;). But one as (because of the definition of an
direct limit)

Me(Ai(ai)) = Niai) = a = Aj(az) = A(Ajr(ay)).
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As )\ is injective, Aix(a;) = Ajr(a;). Which implies
Aikl(mi(9)) - ai] = Ajl(m5(9)) - aj].
And hence
Ail(mi(g)) - ai] = Ajl(m;(9)) - as].
Now it is easy to see that the action is continuous as composition of continuous maps. U

Theorem 3.6. If the G; and the A; are as above, for each n > 0,

I
PROOF. One can prove that lim is an exact functor in the category of abelian groups o (as
in proposition 2.12 - chapter 3). This implies
lim H7'(G;, A;) = H,! (lim C(G, Ai))
I I

where the cochain complexes C(G;, A;) form a direct system with the induced maps
Aij = (mij, Aij) = C(Gi, Ai) — C(Gy, A;)
for each ¢ < j (see part 3.1). Then, to prove the proposition, we only have to find an isomorphism
from lim, CZ(G;, A;) to CZ (G, A) commuting with the dy,.
Define
pi: C(Gi, A)) — CU(G,A)
f = wi(f):=Xofom.
Notice that ¢; oXij = ; for each i,j € I with ¢ < j, in fact
pioXij(f) = ¢j(Nijofomy)
= )\jo)\ijofoﬂ_ijoﬂ—j
= MNofom
for each f € C(Gi, A;). Then ¢; induces a morphism
ol C7(Gy, As) — CP(G, A),
1
because {p; : CI'(G;, Ai) — CI(G, A)}1 is a compatible family (see definition of the direct limit
in section 3.2).
It is easy to see that ¢ commutes with the coboundary operators dg, k > 0.
¢ is injective: Let f be in lim C¢(Gi, 4;) such that ¢(f) = 0. Consider a ig € I and a
fio € C™(G;, A;) such that A, (fi,) = f- Now denote

(2) fj = Xioj(fio)a
for all j < ig, this implies in particular
(3) (i) =1,

and one can deduce 0 = ¢(f) = Aj o fjom;, for all j <ig. We define

Xj =19 = (9j1>---+95.) € G} | fj(g;) # 0}

Yet, we only need to show that X; = ) for some j > ip (= f; = 0) and this will imply
f =0 (because of 2 and 3 - see section 3.2).
Clearly one has

&< | 7' {ad),

dGA‘]‘
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but as f; is a continuous map, A; a discrete G-module and G’ a compact group (as
product of compact), f; takes only a finite number of values. Then X is closed (as a
finite union of closed space) and hence compact (as subgroup of G7).

Consider ig <7 < j and let g; € X, then

0 # fi(g;)
(Nij (fi))(95)
= Njjo fiomij(g;),

and we have f; o m;;(g;) # 0. Which means m;;(g;) € X;. Consequently m;;(X;) C X;
for each ig < i < j, furthermore, {X;, 7;; }i<i, is an inverse system of compact spaces.
Clearly for g = (g1...,9n) € lim, . X; C G™, one has ¢(f)(g) # 0. So lim, . X = 0.
Now using [Bou71, Proposition 8, §9, Chapter 1], we obtain X; = () for some i > iy.
is surjective: Let f € C7(G, A). We have to find a continuous map f; : GI' such that
f=wil(fi) = Xio fiom; for ai € I. As previously, f being continuous, A being discrete
and G™ being compact implies that f takes only a finite number of values. Suppose
f(G™) ={a1,...,a4} € A. Hence there is a ig € I such that \;; A;, 2 f(G™).
Consider Uy a normal subgroup of G such that f is constant on the cosets of U* in G".
Since {m; '(U}) | U, normal subgroup of G} is a basis of open neighborhood of 1 in G
(see proposition and corollary 2.6 in chapter 3), there is a normal subgroup U; of G;
such that U; D U := w;l(Ui) for some i > ig. Note that i > iy implies

F(G™) C Nig(Aig) = Ai 0 Nigi(Adg) € Ai(Ag).
Then
f="Ffop,
where p : G™ — G™/U™ is the natural projection, and f : G* /U™ — A is defined by
f(gU™) = f(g) (well-defined thanks to the construction of U). Note that

im(f) € im(f).

Conversely m; induces an injective map =« : G" /U™ — GI'/U}*, (the injectivity comes
from m;(U™) C U"). Precisely for each g € G™, w}(gU") = p; o m;(g), and this implies
T op =p;om,.

Let f; : G?/U — A; be any map such that \;o f;on} = f, i.e. such that the following
diagram commutes

GTL/U'!L ; A

/
ﬂ—il

Gl /U - Ay
fi
Such a map always exists because of 4, 5 and the definition of the inverse limit. Moreover
fi is continuous because A is discrete, f is continuous and 7} is an open map.
Now define f; = f; o p;, where p; : GI' — G}'/U"* is the natural projection. f; is clearly
continuous as composition of continuous maps and moreover

A

Niofiomi = XNof;opiom
= /\io?io7r£op

= fop=1/
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Example 3.7. Consider L. a Galois extension of K. And recall that F is the set of all interme-
diate fields K C E C IL, with E being a finite Galois extension of K. Recall that

Gal(L,K) = lim Gal(E, K).
f

We define a direct system (E, f)r, by endowing F with the partial order of inclusion and
considering the trivial inclusions

for Ef C EJ. Then we have to show that L* = lim  E* = [[gczE*/ ~ (see section 3.2). We
define

p: [[EX — L*

(@E) — a

where (o, E) denote the equivalence class of («, E) for the relation ~. It is trivial to check that
this map is well-define, injective and surjective (use L = UzE).
Then, using the preceding theorem (3.6), we have
H (Gal(L, K), L+) & lim H?(Gal(E, K), E*).
f

One can prove the same statement for the multiplicative group L* instead of LT.

4. Hilbert’s Theorem 90

Hilbert’s Theorem 90 was originally a theorem about cyclic extensions of number fields, but
there are many generalization of it. The theorem has its name because it is the 90th theorem
of a famous book of David Hilbert: "Zahlbericht", published in 1897, although the theorem is
sometimes attribute to Kummer. It was later generalized by Andreas Speiser in 1919. However
the result is also know to be from Emmy Noether. We will discuss the different versions of this
theorem. Our reference will be [Lor98|.

In this section we write H"(G, A) instead of H(G, A) to simplify the notations.

4.1. Original Hilbert’s Theorem 90.
To present Hilbert’s Theorem, we have to define the norm of a field extension. This is discussed
in detail in [Lan02a, §5, Chapter VIJ.

Definition 4.1. Let L be a finite extension of K. Suppose [L : K]; = 7, and that [L : K]; = p#
if the characteristic is a prime number p > 0, and 1 otherwise.

Let o1,...0, be the distinct embeddings of L in an algebraic closure K of K.

If « is an element of L., we define its norm from E to K to be

NL‘K( HO’n Oép HO' []LK

We present some properties without proving them.

Proposition 4.1. If L is separable over K, we have
=[[o(

where the product is taken over the distinct embeddings of L in K over K.

Proposition 4.2. Let L be a finite extension of K. Then the norm is a multiplicative homo-
morphism of L* into K*.
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Theorem 4.3. Let L be a cyclic Galois extension of K, with Galois group G = Gal(L,K) and
with [L : K] = n. Suppose o is a generator of G, i.e. G =< o >. Let f € L. The norm
Ng(B) = N(B) is equal to 1, if and only if, there is a o € L* such that

PR

o)

PROOF. Suppose first that such such an a exists. Then N(5) = % But as N(.) is

a product over all automorphisms in G, applying o simply permutes those. Hence N(o(«a)) =
N(a), i.e. N(B) =1.
Next suppose N () = 1. We consider the map

id 4 Bo + Bo(B)o? + ... 4 Bo(B)...c"2(B)o™ L.

Each terms are distinct and so we can apply Artin’s theorem (see [Lan02a, Theorem 4.1, §4,
Chapter VI]). Hence the above map is not identical null on L, i.e. thereis a # € L and a o € L*
such that

o =04 00(0) + Bo(B)0%(0) + ... + Bo(B) ... 2(B)a"(8).
Then
Bo(a) = o (8) + Bo(B)o*(0) + ...+ Ba(B)...a" " (B)a"(8),
but as 1 = N(B) = Bo(B)...0" 1(B3), and ¢™() = 6, we have
Bo(a) = a.
And this concludes the proof. O

This is the "Theorem 90" of Hilbert. However Hilbert had some restrictions: The field K
was supposed to be a number field and the degree of the extension was a prime number.

4.2. Other formulation.
Let us consider L a Galois extension of a field K and its Galois group (G. We use the notation
a’ = o(a) for « € L and o € G, and also the power notation, i.e. o™ = 7(a)oo(a) fora € L
and 7,0 € G.
Let A be the G-module L*. We denote by A~ the subgroup of A generated by the element
of the form o'~ (or a/o(a)) for @ € A and o € G. And we write yA the kernel of the norm
map N : L* — L*. We have then

A C A,
because N(a”) = N(«) (see the definition of the norm). Next we can define the quotient
HYG,A) = yAJAC.
For any 0,7 € A and each o € A, we have
al=0T = glmoHo—oT — gl=0(go)1=T ¢ gl-o gl-T
And hence, in case G is a cyclic group with generator o, we have
ACG = Al
And so the Hilbert’s Theorem 90 can be formulated as

Theorem 4.4. Let IL be a cyclic finite extension of K, with Galois group G.
Then H-Y(G,K*) = 1.

We will now look for a similitude between this formulation and the cohomology groups
presented earlier. Recall that the group of 1-cycles Z1(G,K*) can be explicitly described as the
set of the maps f : G — K* satisfying

flro) =7(f(0)f() = f(o)" f(7).
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If we suppose that G is cyclic with generator o, f can be defined by the image of o. In fact,
write £ = f(o), then
(6) fa') = flo)”

for each i € N. In addition, N(§) = £-to+-e""" = f(s") = 1. Notice that the morphisms
f: G — Awith f(o) = a'=7 are precisely the elements of B!(G, A). And so, if we consider the
map

i_lf(o_i—l) _ 51-1—0—&—02—1—...0"’_1

)

W:HI(G7A) _>H_1<GaA) : f'_>£:f(o-)>

we get an injective group homomorphism (first theorem of isomorphism for groups).
Now suppose £ € A with N(§) = 1, we construct an map f : G — A using the equation 6. Then
this map is well-defined and belongs to Z'(G, A). This means we have the isomorphism

HY(G, A) = H™\(G, A),

in case G is cyclic.
Hence the above theorem is equivalent to

Theorem 4.5. Let L be a cyclic finite extension of K, with Galois group G.
Then HY(G,K*) = 1.

4.3. Generalizations of Hilbert’s theorem 90.
We present here one of the most general versions of the Hilbert’s Theorem 90. However, there
are some other versions of this theorem, one can find one of them in [Sch02]. We do not present
this version in this project because we need a lot of new notions.

Theorem 4.6. Let L be a Galois extension of a field K, then H'(Gal(L,K),L*) = 0.

ProoFr. Using theorem 3.6, it is enough to prove the theorem in case that L is a finite
extension of K. In this case Gal(L,K) is a discrete group, hence there is no ambiguity about
the cohomology groups.

Recall that H'(Gal(L, K),L*) = Z!(Gal(L, K),L*)/B*(Gal(L, K),L*), and this implies we only
have to show
Z'(Gal(L, K),L*) € B} (Gal(L,K), L*).

Note that for each f € B!(Gal(L,K),L*) there is a € L* such that f = do(a). And so f is a
morphism between Gal(L,K) and L* such that
f(0) = o(a)a”!

for each o € Gal(IL,K) (notice that is equivalent to the expression in section 2.2 but with the
multiplicative notation).
Let g be in Z1(Gal(LL,K),L*). This means d;(g) = 0, then for each 0,7 € Gal(L, K)

1

Iy = di(g)(o,7) = 0g(7) - g(o7)"" - g(0),

and hence

(7) g(o) =0g(7) - g(0).
For o € IL* define

oE€Gal(L,K)

As all he automorphisms of Gal(L,K) are distinct, they are independent (result of the Galois
theory). And so there is a a € L* such that A(«) # 0, denote A(«) = (.
For each o € Gal(L, K) we have

o@)= Y  alg(r)or(a)
TeGal(L,K)
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and multiplying by g(o) € L*:
glo)-o(®) = Y glo)a(g(r)or(a)

T€CGal(L,K)
L Y glonor(a)
reGal(L,K)

Now this last sum is equal to § because o7 runs through Gal(L,K). Rewriting the above
equation, we have

glo) =a(B~H (B~
for each o € Gal(LL,K). And hence g € B!(Gal(L, K),L*). O

Next, a theorem linked to the above one.

Theorem 4.7. Let L be a Galois extension of a field K, then H"(Gal(LL,K),L*) = 0 for each
n > 1.

Proor. Using theorem 3.6, it is enough to prove the theorem in case L is a finite extension
of K. Next, we recall the normal basis theorem (see [Lan02a, Theorem 13.1, §13, Chapter VI]),
i.e. there is a § € L such that
{c(8) | 0 € Gal(L,K)}

is a basis of the L™ as a K vector space. This is equivalent to

LY =P K" a(0).

oeG
But this direct sum is isomorphic to K[G] = Homz(ZG, K1), i.e. LT is an induced ZG-module.
Thus H"(G,L*) = {0}, for all n > 0, by proposition 5.3 in chapter 4. O
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