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Abstract

The purpose of this project is to study the cohomology of groups, in particular the Galois
cohomology. Therefore we will study carefully the �nite and in�nite Galois groups. Those groups
are more or less equivalent to pro�nite groups, i.e. a limit of �nite groups endowed with the
discrete topology. Consequently a big part of this project consists in studying topological and
pro�nite groups. There will also be some topics in Galois theory, in particular about in�nite
Galois extensions. At some point we will de�ne the cohomology of groups using homological
algebra, but we will mostly use an other equivalent de�nition, particularly suitable when dealing
with pro�nite groups. The last chapter will give some elementary results about the cohomology
of groups and will be an approach to Galois cohomology. In particular we will present di�erent
versions of Hilbert's theorem 90.
The most used reference is a book from L.Ribes [Rib99], which is an introduction to Galois
cohomology.
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CHAPTER 1

Topological groups

In this chapter we introduce the notion of topological groups and their basic properties. They
are important to generalize the main theorem of Galois theory in case of in�nite extensions. The
reader shall �nd further information in [Pon66] and [Hus66].

1. De�nition and examples

De�nition 1.1. A set G of elements is called a topological group if

(1) G is a group,
(2) G is a topological space,
(3) the map G × G → G : (a, b) 7→ ab is continuous, where G × G is equipped with the

product topology,
(4) the map g → G : x 7→ x−1 is continuous.

The conditions (3) and (4) formulated in greater details respectively as follows:

• If a, b ∈ G, for every neighborhood W of the element ab there exist neighborhoods U
and V of the elements a and b respectively such that UV ⊂W .
• If a ∈ G, for every neighborhood V of the element a−1 there exist a neighborhood U
of the element a such that U−1 ⊂ V .

Finally the two conditions can be expressed as:

• If a, b ∈ G, for every neighborhood W of the element ab−1 there exist neighborhoods
U and V of the elements a and b respectively such that UV −1 ⊂W .

Notation 1.2. In this project the neutral element of G will be denoted by 1.

Here are some examples of topological groups.

Examples 1.3. Here are some examples of topological groups.

• If G is a group endowed with the discrete topology (every subset of G is open), then G
is a topological group.
• Let us consider the group of the reals numbers R together with addition: (R,+). If we
append the ordinary topology on R, this is a topological group.
• More generally, the additive group of any topological vector space (for example Banach
spaces or Hilbert spaces) is a topological group.
• The linear group GLn(R) of all invertible (n× n) matrices with real entries is a topo-
logical group if endowed with the topology de�ned by viewing GLn(R) as a subset of
Rn×n.

De�nition 1.4. A homomorphism of topological groups is a continuous group-homomorphism.
An isomorphism of topological groups is an group-isomorphism and a homeomorphism.

2. Elementary properties

The topological groups are homogeneous, which will later mean that some properties only
have to be checked around the neutral element

Proposition 2.1. Let G be a topological group. Let a ∈ G and the maps f, g, ϕ : G→ G de�ned
by f(x) = xa, g(x) = ax, ϕ(x) = x−1, then, f ,g and ϕ are homeomorphisms of G.
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Proof. These maps are clearly bijective, and they are continuous because of the axioms of
topological groups. �

Proposition 2.2. Every topological group is homogenous, i.e. ∀p, q ∈ G, there is a homeomor-
phism f a such that f(p) = q.

Proof. Let p, q ∈ G and f : x 7→ qp−1x. By proposition 2.1, it is a homeomorphism. �

Proposition 2.3. Let V be a neighborhood of a. Then there is a neighborhood U of 1 such that
V = aU .

Proof. We de�ne U := a−1V . As a preimage of V with the continuous map g : G → G :
x 7→ ax (see 2.1), U is a neighborhood of 1. And we have V = aU , hence the result. �

De�nition 2.1. LetG be a topological group, a neighborhood V is called symmetric if V = V −1.

Proposition 2.4. Let G be a topological group. Then there is a basis consisting in symmetric
open sets. In particular, there is a fundamental system of symmetric neighborhoods in each point
of G.

Proof. Let U be an open subset of G, then U−1 is open too (because it is a preimage of U
under a continuous map) and so is V := U∩U−1. And we clearly have V ⊆ U and V = V −1. �

Proposition 2.5. Let G be a topological group and U be a neighborhood of x ∈ G. Then we
have:

(1) There is a neighborhood V of x such that V 2 ⊆ U .
(2) There is a neighborhood V of x such that V −1 ⊆ U .
(3) There is a neighborhood V of x such that V V −1 ⊆ U .
(4) There is a neighborhood V of x such that V −1V ⊆ U .

Proof. We only have to prove this proposition for neighborhoods of 1 (because topological
groups are homogeneous).
The four statements are a consequence of the continuity of the following operations:

(1) Consider the map f1 : G → G : x 7→ x2, which is continuous (because the product is
continuous), and de�ne V = f−1

1 (U). As 1 = 12, V is a neighborhood of 1, moreover

V 2 = f1(V ) = f1(f−1
1 (U)) ⊆ U .

(2) Idem, using f2 : G→ G : x 7→ x−1 and 1 = 1−1.
(3) Idem, using f3 : G→ G : x 7→ xx−1 and 1 = 11−1.
(4) Idem, using f4 : G→ G : x 7→ x−1x and 1 = 1−11.

�

Notation 2.2. Let X be a topological space and let A ⊆ X. We denote by Ā the topological
closure of A.

Lemma 2.6. Let X,Y be to topological spaces and f : X → Y a continuous map. Then
f(Ā) ⊆ f(A).

Proof. Suppose y ∈ f(Ā) and W is a neighborhood of y in Y . There is x ∈ Ā such that
f(x) = y. As f is continuous mapping, U := f−1(W ) is a neighborhood of x. Then U ∩ A 6= ∅
(because x ∈ Ā). Hence

∅ 6= f(U ∩A) ⊆ f(U) ∩ f(A) ⊆W ∩ f(A).

So y ∈ f(A). �

Proposition 2.7. Let G be a topological group, V a fundamental system of open neighborhoods
of 1, and D a dense subset in G.
Then B := {Ux | x ∈ D,U ∈ V} is a basis of the topology of G.
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Proof. LetW be an open subset of G, with a ∈W . ThenWa−1 is open (it is the preimage
of W under a continuous map) and 1 ∈ Wa−1. There is then U ∈ V such that UU−1 ⊆ Wa−1

(use the fact that V is a fundamental system and proposition 2.5).
As D is dense, aD−1 is dense too. In fact, if we consider the continuous (and bijective) map

f : G→ G : x 7→ ax−1 we have X = f(X) = f(D) ⊆ f(D) (see lemma 2.6).
Then there is d ∈ U ∩ aD−1 and hence m ∈ D such that d = am−1, which implies m = d−1a.
Then Ud−1a ∈ B.
As d ∈ U , we obtain Ud−1a ⊆ UU−1a ⊆Wa−1a = W ; and this is true for all a ∈W . Thus⋃

a∈W
Ud−1a ⊆W.

Moreover, we have 1 ∈ Ud−1 (because d ∈ U), which implies a ∈ Ud−1a for all a ∈W . Then

W ⊆
⋃
a∈W

Ud−1a.

So W = ∪a∈WUd−1a. �

Proposition 2.8. Let G be a topological group, V a fundamental system of open neighborhoods
of 1. Then

⋂
V ∈V V = {1}.

Proof. Let us show both inclusions:

⊆ : Let x ∈
⋂
V ∈V V and W a neighborhood of x, combining propositions 2.3 and 2.4,

we know there is a symmetric set V ∈ V such that V x ⊆W .
By hypothesis on x, x ∈ V = V −1, which implies x−1 ∈ V . Thus, 1 = x−1x ∈ V x.
Then 1 ∈ U , i.e. U ∩ {1} 6= ∅. Hence x ∈ {1}.
⊇ : Let x ∈ {1} and V ∈ V symmetric (we can suppose V symmetric because of propo-
sition 2.4). Hence, because xV is a neighborhood of x, xV ∩ 1 6= ∅. This implies there
is v ∈ V such that xv = 1 and then x = v−1 ∈ V −1 = V . Thus x ∈

⋂
V ∈V V

�

Proposition 2.9. Let G be a topological group and A,B ⊆ G. Then
(1) ĀB̄ = AB.

(2) Ā−1 = A−1 .
(3) xĀy = xAy for all x, y ∈ G.

Proof. (1) Let x ∈ Ā, x ∈ B̄ and U a neighborhood of 1. There is a neighborhood V
of 1 such that xV yV ⊆ xyU (because of the continuity of the map G→ G : a 7→ ba for
all b ∈ G).
As xV , respectively yV , is a neighborhood of x, respectively y, there is a ∈ A∩xV and
b ∈ B ∩ yV . Hence ab ∈ AB ∩ xyU , which means xy ∈ AB.

(2) We will show both inclusions
⊆ : Use lemma 2.6 with the continuous map i : G→ G : z 7→ z−1.
⊇ : A−1 ⊆ A−1 ⇒ A ⊆ (A−1)−1 = i(A−1) and this last set is closed because i is
homeomorphism.
Hence Ā ⊆ (A−1)−1 ⇒ (Ā)−1 ⊆ A−1.

(3) Idem with homeomorphism G→ G : z 7→ xzy.
�

3. Characterization of the topology

We can use the fact that topological groups are homogeneous to characterize their topology
using a neighborhoods basis of the neutral element of G.

Proposition 3.1. Let G be a topological group, and let V be a neighborhood basis for the neutral
element 1 of G. Then
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(1) For all V1, V2 ∈ V, there is a V ∈ V such that 1 ∈ V ⊆ V1 ∩ V2;
(2) For all V ∈ V, there is a W ∈ V such that W 2 ⊆ V ;
(3) For all V ∈ V, there is a W ∈ V such that W−1 ⊆ V ;
(4) For all V ∈ V and all g ∈ G, there exists a W ∈ V such that W ⊆ gV g−1;
(5) For all g ∈ G, {gV | V ∈ V} is a neighborhood basis of g.

Conversely, if G is a group and V is a nonempty set of subsets of G satisfying (1)-(4), then there
is a (unique) topology on G for which (5) holds.

Proof. Suppose that V is a basis of neighborhoods of 1 in a topological group.
Then (1) is a consequence of the de�nition of a neighborhood basis. And (2), (3) and (4) are
consequences of proposition 2.5. Finely (5) holds because the map f : G → G : x 7→ gx is a
homeomorphism.
Conversely, suppose that G is a group and V is a nonempty set of subsets of G satisfying (1)-(4).
Note that (1) implies that 1 ∈ V for each V ∈ V.
We de�ne

T = {U ⊆ G | ∀g ∈ U ∃V ∈ V such that gV ⊆ U},
and we will show that T is a topology on G. First note that the empty set and G are clearly in
T . Suppose that (Ui)i∈I is a family of elements of T (for I a set of indexes) and let g ∈ ∪i∈IUi.
Hence there is a j ∈ I such that g ∈ Uj , by de�nition there is V ∈ V such that gV ⊆ Uj ,
which implies gV ⊆ ∪i∈IUi. Now let U1, U2 ∈ T , and let g ∈ U1 ∩ U2. By de�nition there are
V1, V2 ∈ V with gV1 ⊆ U1 and gV2 ⊆ U2. We apply then (1) and we obtain a V ∈ V such that
V ⊆ V1 ∩ V2 and this means gV ⊆ U1 ∩ U2. Hence U1 ∩ U2 ∈ T . And thus, we proved that T
de�nes a topology on G. It is then easy to see that (5) holds.
We will now prove that G → G : g 7→ g−1 is continuous. Let g ∈ G and let U be an element
of T (i.e. an open set) such that g−1 ∈ U . We have to �nd a V ∈ V such that gV ⊆ U−1. By
de�nition of T , there is a V ∈ V such that g−1V ⊆ U , which implies V −1g ⊆ U−1. If we use
(3), we obtain a V ′ ∈ V such that gV ′ ⊆ U−1; and now using (4), we have the existence of a
V ′′ ∈ V with gV ′′ ⊆ g(g−1V g) ⊆ U−1.
Let us check that the multiplication G × G → G : (g1, g2) 7→ g1g2 is continuous. Notice that
the sets g1V1 × g2V2 form a neighborhoods basis of (g1, g2) ∈ G × G for all V1, V2 ∈ V. Let
(g1, g2) ∈ G × G and let U be an open such that g1g2 ∈ U . We have to �nd V1, V2 ∈ V such
that g1V1g2V2 ⊆ U . As U is in T , there is a V ∈ V such that g1g2V ⊆ U . We use (2) to
obtain a V ′ ∈ V such that g1g2V

′V ′ ⊆ U . We now apply (4), to obtain a V ′′ ∈ V such that
V ′′ ⊆ g2V ′g−1

2 , which implies g1V
′′g2V

′ ⊆ g1(g2V ′g−1
2 )g2V ′ ⊆ U . This concluded the proof. �

4. Topological subgroups

We brie�y discuss some properties of topological groups, in particular some properties of
their subgroups.

Proposition 4.1. Let G be a topological group and H a subgroup. Then H is a topological
group.

Proof. We only have to prove that the product and the inverse map are continuous, but
this is obvious because they are only restriction on the one of G. �

Proposition 4.2. Let G be a topological group and H a subgroup. Then H is a subgroup of G.
Moreover, if H is normal, than so is H.

Proof. It is enough to prove that H is closed under addition and inversion. Suppose
a, b ∈ H and let us show that ab−1 is in H.
LetW be a neighborhood of ab−1, then there are U and V neighborhoods of a and b respectively
such that, UV −1 ⊆ W (because the map G × G → G : (x, y) 7→ xy−1 is continuous). We have
then U ∩H 6= ∅ and V ∩H 6= ∅ (recall that a, b ∈ H). Which means we can �nd x ∈ U ∩H and
y ∈ V ∩H with xy−1 ∈ UV −1 ∩H ⊆W ∩H. Hence W ∩H 6= ∅ and thus ab−1 ∈ H.
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Suppose now that H is normal. Let a ∈ H and g ∈ G, we are going to show that g−1ag ∈ H
which will imply the result.
Let V be a neighborhood of g−1ag, then there is a neighborhood U of a such that g−1Ug ⊆ V .
But a ∈ H implies U ∩H 6= ∅. Hence there is h ∈ U ∩H, and we have g−1hg ∈ V . But as H is
normal, we have also that g−1hg ∈ H. Then V ∩H 6= ∅. �

De�nition 4.1. A topological space is totally disconnected if its only connected subspaces are
one-point sets.

Examples 4.2.

• All discrete spaces are totally disconnected.
• The rational numbers Q and the irrational numbers R\Q are totally disconnected
spaces.
• The real numbers R (with the usual topology) is not a totally disconnected space.

Lemma 4.3. Let X be a totally disconnected topological space. Then {x} is closed in X for
every x ∈ X.

Proof. Let C be the topological closure of {x}. If we suppose that A|B is a separation
of C, with x ∈ A. A is closed in C and therefore in X. Hence we have A = C. Thus C is
connected, so we must have C = {x} because X is totally disconnected. �

Proposition 4.4. Let G be a topological group

(1) If H is an open (resp. closed) subgroup of G, then every coset Hg or gH is open (resp.
closed).

(2) Every open subgroup of G is closed. If G is compact, then every open subgroup of G
has �nite index.

(3) Every closed subgroup of G of �nite index is open.
(4) If H is a subgroup containing a non-empty open subset U of G, then H is open in G.
(5) G is Hausdor� if and only if {1} is a closed subset of G. And if K is a normal subgroup

of G then G/K is Hausdor� if and only if K is closed in G. If G is totally disconnected,
then G is Hausdor�.

Proof. (1) This follows from proposition 2.2.
(2) We will show that if H is open, we have H ⊆ H. Let a ∈ H. As H is open, aH is an

open neighborhood of a and hence aH∩H 6= ∅. Then, ∃h1, h2 ∈ H such that ah1 = h2,
which means a = h2h

−1
1 ∈ H. To prove that H as �nite index, note that the gH is

open (using (1)), disjoints and their union is G. Thus if G is compact, we must have
that H has �nite index.

(3) Suppose H is a closed subgroup of G with �nite index. Then gH is closed for every
g ∈ G. And since we have G\H = ∪g/∈HgH, H having �nite index implies that G\H
is closed (as �nite union of closed spaces), and H is open.

(4) Since each set hU is open (using (1)), and since H =
⋃
h∈H hU , H is open.

(5) We already know (using elementary topology) that every one-element subset in Haus-
dor� spaces are closed. Suppose now that {1} is closed in G. Let a, b be distinct element
of G. Proposition 2.2 implies that the set {ab−1} is closed (as image of {1} under a
homeomorphism). Then there exists an open set U with 1 ∈ U and U ⊆ G\({ab−1}).
From the continuity of the map G → G : (x, y) 7→ xy−1 (trivial), the inverse image of
U is open. Then, there are open sets V,W in G, containing 1, with VW−1 ⊆ U . So
we have that a−1b /∈ VW−1, and hence aV ∩ bW = ∅. Since aV and bW are open, we
have the result.
The next assertions follows from the �rst, the de�nition of the quotient topology and
lemma 4.3.

�
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5. Quotient groups

We will here present a proposition about quotients of topological groups.

Proposition 5.1. Let G be a topological group and N a normal subgroup. Then G/N endowed
with the quotient topology is a topological group. Moreover the canonical projection π : G→ G/N
is a continuous open homomorphism.

Remark 5.1. The quotient topology is given by

T = {U ⊆ X | π−1(U) open in G}.
Proof. We will �rst prove that π is an open map. Let U be open subset of G. Then

π−1(π(U)) = UN and UN is open because so is U , hence the result. Moreover π is trivially
continuous, by de�nition of T .
We will now prove that G/N is a topological group. N being normal implies that G/N is an
abstract group. Let us prove the continuity of the product and of the inverse maps.
LetW be a neighborhood of g1g2N ∈ G/N , then π−1(W ) is a neighborhood of g1g2 because π is
continuous. Using the continuity of the product in G, we know there are U1, U2 neighborhoods
of g1, g2 respectively with U1U2 ⊆ π−1(W ). Then π(U1) and π(U2) are neighborhoods of g1N
and g2N (using the fact that π is open). Moreover we have π(U1)π(U2) = π(U1U2) ⊆W because
π is a homomorphism. Hence the product is a continuous mapping.
Let W be a neighborhood of gN ∈ G/N , then π−1(W ) is a neighborhood of g because π is
continuous. Using the continuity of the inverse map in G, we know there is U a neighborhood
of g, with U−1 ⊆ π−1(W ). Then π(U) is a neighborhood of gN . Moreover we have π(U)−1 =
π(U−1) ⊆W . Hence the inverse map is continuous. �

6. Lie Groups

We brie�y introduce Lie Groups because they provide a lot of examples of topological groups.
One can �nd more information about this subject in ??.

De�nition 6.1. A Lie group is a �nite dimensional smooth manifold G endowed with a group
structure with smooth multiplication. This means that we have a smooth multiplication µG ×
G → G, an inversion i : G → G and a unit element 1 ∈ G such that the group axioms are
satis�ed.

One can �nd the de�nition of a smooth manifold in [Lan02b, Chapter 2].

Remark 6.2. Notice that the Lie groups are topological groups. They provide a lot of examples
of topological groups.

Examples 6.3.

• R and C are Lie groups under addition. Moreover, any �nite dimensional real or
complex vector space is a Lie group under addition.
• R∗(= R\{0}) and C∗ are Lie group under multiplication. S = {z ∈ C | |z| = 1} is also
a Lie group under multiplication.
• If G and H are Lie groups then the product G × H is a Lie group (with the usual
product structure). Then (1) and (2) imply that the torus Tn = Sn is a Lie group.
• The fundamental example of a Lie group is the group GL(V ) of invertible linear maps
on a �nite dimensional real vector space V .
We will prove that in case V = Rn. Let f ∈ L(V, V ) and consider the canonical basis
{e1, . . . , en}. The element f(ei) ∈ Rn is the ith column of the matrix associated to

f . This de�ne a map between L(V, V ) and Mn(R) = Rn2
. The determinant de�nes

a smooth function det : Mn(R) → R. In particular GLn(R) = det−1(R∗n) is an open
subset of R2

n and thus a smooth manifold. Moreover, the entries of the product of two
matrices A and B are polynomials in the entries of A and B, which implies that the
multiplication de�nes a smooth map.
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• The special linear group SLn(R) de�ned to be the kernel of the determinant application
det : GLn(R)→ R∗ is a Lie group as subgroup of GLn(R).
• The classical groups On(R) and SOn(R), de�ne with On(R) = {A ∈ GLn(R) | AAT =
ATA = Idn} and SOn(R) = {A ∈ On(R) | det(A) = 1}, are also Lie groups.

We give now some examples of topological groups which are not Lie groups.

Examples 6.4.

• In�nite dimensional groups, such as the additive group of an in�nite dimensional real
vector space. These are not Lie groups as they are not �nite dimensional manifolds.
• Some totally disconnected groups, such as the Galois group of an in�nite extension of
�elds, or the additive group of the p-adic numbers. These are not Lie groups because
their underlying spaces are not real manifolds.
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CHAPTER 2

Finite and in�nite Galois Theory

In a �rst place we give a summary of classical Galois theory, in particular, we present the
main theorem of Galois theroy for �nite extensions. Next, we endow Galois groups with a speci�c
topology, in order to state and prove the main theorem for in�nite extensions.

1. Review of Galois Theory

In this section, K, L and E denote always �elds.

1.1. Some reminders.

De�nition 1.1. Let L be a �eld extension of a �eld K. We say that L is algebraic over K, if
every element of L is algebraic over K.

Example 1.2. Consider the �nite �eld with q elements Fq, where q = pk with p a prime number.
We recall that all �nite extensions of Fq have an order that is a power of q (see [Lan02a, Thm
5.1] and [Lan02a, Corollary 5.2]).

De�nition 1.3. Let E and L be two extensions of K. A K-homomorphism from L to E is a
homomorphism σ : L→ E such that σ|K = IdK.

De�nition 1.4. Suppose G is a subgroup of the group of all homomorphisms of a �eld L. Then
we de�ne

LG = {α ∈ L | σ(α) = α,∀σ ∈ G}.
This is a sub�eld of L, called the �xed �eld of G.

1.2. Normal and Separable extensions.
1.2.1. Normal extension.

Theorem 1.1. Let L be and algebraic extension of K contained in some algebraic closure K of
K.
The following conditions are equivalent:

(1) L is the splitting �eld of a family of non-constant polynomials of K[X].
(2) For every K-homomorphism σ : L→ K, σ(L) = L.
(3) Every polynomial of K[X] having a root in L has all its roots in L, i.e. it splits into

linear factor in K.

Proof. One can �nd a proof of the theorem in [Lan02a, Chapter 5, �3]. �

De�nition 1.5. We say that an algebraic extension L of K is normal if it satis�es one of the
properties of the preceding theorem.

Examples 1.6.

• If [L : K] = 2, then L is normal over K. In fact, let α ∈ L\K, the minimal polynomial
of α over K can be written f(X) = X2 + cX + d. And so −c+ α ∈ L is the other roof
of f .
• The extension Q ⊂ Q[

√
2] is normal. But the extension Q ⊂ Q[ 3

√
2] is not normal

(X3 − 2 does not split in Q[ 3
√

2]).
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1.2.2. Separable extension.

De�nition 1.7. An irreducible polynomial f ∈ K[X] is separable if it has no multiple roots.

De�nition 1.8. Let L be an extension of K.
We say that α ∈ L is separable over K if α is algebraic over K and if min(α,K) is separable.
We say that L is separable over K if every α ∈ E is separable over K.

Remark 1.9. Here is an explicit characterization of a separable extension:
L is algebraic and separable over K if every irreducible polynomial in K[X] having a root in L
is separable.

Examples 1.10.

• If char(K) = 0, every algebraic extension of K is separable.
• If K is �nite, every algebraic extensions of K is separable.
• Consider Fp for a prime number p and α a root of Xp− t. Then Fp[α] ∼= Fp[X]/(Xp− t)
is not a separable extension of Fp because α is not separable (the minimal polynomial
of α over K is Xp − t = (X − α)p).

De�nition 1.11. Let K be an algebraic closure of K. The separable closure of K inside K is
the smallest sub�eld of K containing every �nite separable extension of K.
We will denote by Ks the separable closure of K in some algebraic closure K of K.

Remark 1.12. In other words the separable closure of K is the union of all �nite separable
extensions of K contained in K.

We will next present the separable and inseparable degrees, which we will use later.

De�nition 1.13. Let L be a �nite extension of K, and let K be an algebraic closure of K.
The separable degree of L over K, denoted by [L : K]s, is the number of extensions to L of the
inclusion homomorphim i : K→ K.

We have to check that this notion is well-de�ned, i.e. that [L : K]s is idependent of the
choice of K. This is done in [Lan02a, �4, Chapter V].

Proposition 1.2. Let E be a �nite extension of K, and L a �nite extension of E. Then
[L : K]s = [L : E]s · [E : K]s

Proof. One can �nd the proof refering to [Lan02a, Theorem 4.1, �1, Chapter V]. �

Proposition 1.3. Let L be a �nite extension of K. Then the separable degree [L : K]s divides
the degree [L : K]. Moreover the quotient is 1 if the characteristic is 0 and a power of p isf the
characteristic is a prime number p > 0.

De�nition 1.14. If L is a �nite extension of K, we call the quotient

[L : K]
[L : K]s

the inseparable degree, denoted by [L : K]i.

1.3. Galois extension.

De�nition 1.15. An extension L of K is a Galois extension if it is an algebraic, normal and
separable extension.

Remarks 1.16.

• We can describe a Galois extension more explicitly :
Let L be a Galois extension of K and let f be an irreducible polynomial of degree m in
K[X]. If f has a root in L, then f has m distinct roots in L. So L is Galois, if and only
if, for each α ∈ L, the minimal polynomial of α over K has [K[α] : K] distinct roots in
L.
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• In our de�nition of Galois extension, we do not require the extension to be of �nite
degree. Later if there is no particular mention, a Galois extension can be �nite or
in�nite.

Example 1.17. We consider the extension Fpn of Fp for any prime number p. By construction
Fpn ∼= Fp/fn(X), where fn(X) = Xpn − X is an irreducible polynomial in Fp (see [Lan02a,
Theorem 5.1, �5, Chaper V]). Then every element of Fpn is a root of the polynomial fn(X), or
in other words Fpn is the splitting �eld of the polynomial fn(X). Thus Fpn is a Galois extension
of Fp.

Here is a proposition we will often use later.

Proposition 1.4. If L is a Galois extension of K (�nite or in�nite), then it is a Galois extension
of any intermediate �eld E, i.e. K ⊆ E ⊆ L.

Proof. Let f be an irreducible polynomial in E[X] having a root α in L. Since the property
of being algebraic is transitive, we can �nd g = min(α,K) ∈ K[X] the minimal polynomial of α
over K. K being normal implies that g splits in L[X] and K being separable implies that g has
distinct roots in L (because g as a root α is L).
As f divides g (in E[X]), f must also be split into distinct factors of degree one in L[X]. �

1.4. Galois group and fundamental theorem of Galois theory.
In this section, we will in particular present the fundamental theorem of Galois theory in the
�nite case.

De�nition 1.18. Let L be an algebraic extension of K, �nite or in�nite. The Galois group of
L over K, written Gal(L,K), is the set of all K-homomorphisms of L.

De�nition 1.19. A Galois extension L of K is said to be abelian (resp. cyclic) if its Galois
group is abelian (resp. cyclic).

The next example is an example of a Galois extension, moreover it provides us an intuition
about the main theorem of the Galois theory.

Example 1.20. Consider the �eld Q and its extension Q[ 3
√

2, ω], where ω = e
2iπ
3 = −1

2 + i

√
(3)

2 .
We de�ne

σ : Q[ 3
√

2, ω] → Q[ 3
√

2, ω]
3
√

2 7→ ω
3
√

2
ω 7→ ω

and

τ : Q[ 3
√

2, ω] → Q[ 3
√

2, ω]
3
√

2 7→ 3
√

2
ω 7→ ω2 = ω.

Then, one can prove that {IdQ[ 3√2,ω], σ, σ
2, τ, τσ, τσ2} = Gal(Q[ 3

√
2, ω],Q). So we have |Gal(Q[ 3

√
2, ω],Q)| =

6 = [Q[ 3
√

2, ω] : Q]. (Note that Q[ 3
√

2, ω] is a normal extension of Q.)

Theorem 1.5. Let L be a �nite Galois extension of K, and let G = Gal(L,K). There is a
bijective correspondence

{H | H ≤ G subgroup } ↔ {E | K ⊆ E ⊆ L intermediate field }.
More precisely, the maps H 7→ LH and E 7→ Gal(L,E) are inverse bijections between the set of
subgroups of G and the set of intermediate �elds between L and K.
Moreover,

(1) Let H1, H2 ≤ G, then H1 ⊇ H2 if and only if LH1 ⊆ LH2;
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(2) Indexes equal degrees: [H1 : H2] = [EH2 : EH1 ].
(3) If H is a subgroup of G and σ ∈ G, then LσHσ−1

= σ(LH).
Conversely, if E is an intermediate �eld, Gal(L, σE) = σGal(L,E)σ−1.

(4) Let E1,E2 be intermediate �elds, then

Gal(L,E1E2) = Gal(L,E1) ∩Gal(L,E2).

(5) E is a Galois extension of K if and only if Gal(L,E) is a normal subgroup of G, and
we have

Gal(E,K) ∼= G/Gal(L,E).

Proof. One can �nd the proof of this theorem in [Mil08, Chapter 3] or in [Lan02a, �1,
Chapter IV] �

Remark 1.21. The theorem is in general false in case of in�nite Galois extensions. We will
therefore provide the Galois groups with a topology in order to get a theorem valid for both
�nite and in�nite Galois extensions.

2. Krull topology on the Galois group

As previously discuss the main theorem of the Galois theory is not valid for in�nite Galois
extensions. However endowing Galois groups with a topology, we will obtain a similar result.
The Krull topology is the most natural (non trivial) topology for a Galois group and it has many
interesting properties.
Notice that in this section, there is no restriction about the degree of the �eld extensions.

2.1. Preliminary propositions.
The point of this section is to de�ne a topology on the Galois groups. We will use therefore
some propositions and lemmas.

Lemma 2.1. Let L be a Galois extension of K and let M be an intermediate �eld, i.e. K ⊆
M ⊆ L. Then every K-homomorphism from M to L can be extended to a K-isomorphism from
L to L.

Proof. See [Mil08, Chapter 7]. �

Lemma 2.2. Let L be a Galois extension of K. For all �nite Galois extension E of K such that
K ⊆ E ⊆ L, the map

Gal(L,K) → Gal(E,K)
σ 7→ σ|E

is surjective.

Proof. Let σ ∈ Gal(E,K), then σ is a K-homomorphism from L to E. Hence using lemma
2.1, σ can be extended to a K-isomorphism from L to L (which is a preimage). �

Notation 2.1. Let L be a Galois extension of K. We denote FL the family of all �nite Galois
extension E of K such that K ⊆ E ⊆ L.

Remark 2.2. Notice that if L is a Galois extension of K, even in�nite, we have that

L =
⋃

E∈FL

E.

Lemma 2.3. Let L be a Galois extension of K and let M be an intermediate �eld. Then
LGal(L,M) = M.
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Proof. Clearly M ⊆ LGal(L,M) because of the de�nition of the �xed �eld.
For the other inclusion:
Suppose α ∈ LGal(L,M). Then the de�nition of Gal(L,M) implies σ(α) = α for all σ ∈ Gal(L,M).
Since L is an union of �nite intermediate Galois extensions, there is one such extension E with
α ∈ E. Then, thanks to lemma 2.2, the map

Gal(L,M)→ Gal(E,M) : σ 7→ σ|E
is surjective. And hence σ(α) = α for all σ ∈ Gal(E,M). Then using the theorem about �nite

extensions 1.5, we get that α ∈ EGal(E,M) = M. �

Proposition 2.4. Let L be a Galois extension of K. Suppose E is an intermediate �nite Galois
extension of K. Then Gal(L,E) is normal in Gal(L,K) and Gal(L,K)/Gal(L,E) = Gal(E,K).

Proof. Let us take E′ ∈ FL with K ⊆ E ⊆ E′ ⊆ L. Using theorem 1.5, we have
that Gal(E′,E) C Gal(E′,K), because E′ is a �nite extension of K. By remark 2.2, we also
have Gal(L,E)CGal(L,K).
Now suppose there exists a ξ ∈ E with σ(ξ) /∈ E for a σ ∈ Gal(L,K). Using lemma 2.3, this
implies the existence of γ ∈ Gal(L,E) such that γσ(ξ) 6= σ(ξ), which means σ−1γσ(ξ) 6= ξ. We
have proven Gal(L,E) C Gal(L,K) and so there is a γ̃ ∈ Gal(L,E) with γ̃ = σ−1γσ. But then
γ̃(ξ) 6= ξ which is a contradiction with the fact that Gal(L,E) �xes E.
This implies that σ(ξ) ∈ E for all ξ ∈ E and for all σ ∈ Gal(L,K). Thus σ|E is an automorphism
of E.
Let [τ ], [η] ∈ Gal(L,K)/Gal(L,E), then

τ ≡ η ⇔ τ Gal(L,E) = ηGal(L,E)
⇔ τ = ηγ with γ ∈ Gal(L,E)
⇔ η−1τ = γ with γ ∈ Gal(L,E)
⇔ η−1τ |E = idE

⇔ η|E = τ |E.
And this proves that Gal(L,K)/Gal(L,E) ∼= {σ|E | ∀σ ∈ Gal(L,K)}. But the right side is the
set of automorphisms of E �xing K, i.e. Gal(E,K). �

2.2. De�nition. Recall that FL the family of all �nite Galois extension E of K such that
K ⊆ E ⊆ L.

De�nition 2.3. Let L be a Galois extension of K and G = Gal(L,K). Consider the set of
normal subgroups of �nite index, S = {Gal(L,E) | E ∈ FL}. The topology de�ned by S, as a
basis of neighborhoods of the neutral element of G, is called the Krull topology of G.

Proposition 2.5. The Krull topology is well-de�ned, i.e. if we consider S as in the de�nition,
there is a unique structure of topological group on G for which the set S forms a basis of neigh-
borhood of the neutral element. HenceG := Gal(L,K) with the Krull topology in a topological
group. Moreover the elements of S are open normal subgroups.

Proof. We show that the collection S satis�es the assertions (1)-(4) of proposition 3.1 in
chapter 1.

(1) Let Gal(L,E) and Gal(L,E′) be elements of S. Using theorem 1.5, we have

Gal(L,EE′) = Gal(L,E) ∩Gal(L,E′).
And Gal(L,EE′) is an element of S because theorem 1.5 assure that the extension EE′
is �nite and Galois over K.

(2) Let Gal(L,E) ∈ S, then Gal(L,E) Gal(L,E) ⊆ Gal(L,E) because it is a group.
(3) Let Gal(L,E) ∈ S, then Gal(L,E)−1 ⊆ Gal(L,E) because it is a group.
(4) Let Gal(L,E) ∈ S and σ ∈ G. We proved in proposition 2.4 that Gal(L,E) C G and

hence Gal(L,E) = σGal(L,E)σ−1.
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�

Remark 2.4. If L is a �nite Galois extension of K, the Krull topology of Gal(L,K) is the
discrete topology.

Remark 2.5. From now on, when there is no speci�c mention, we always consider that a Galois
group is endowed with the Krull topology.

2.3. Properties.

Theorem 2.6. Let L be a Galois extension of K and let G = Gal(L,K). The group G endowed
with the Krull topology is a

(1) Hausdor�,
(2) compact,
(3) totally disconnected

topological group.

Proof. (1) We have to show that for every σ, τ ∈ G with σ 6= τ , there are two
neighborhoods U and V of σ and τ respectively such that σ ∈ U , τ ∈ V and U ∩V = ∅.
First, notice that ⋂

U∈S
U =

⋂
E∈FL

Gal(E,K) = 1

(which is implied by remark 2.2).
Then, if σ, τ ∈ G with σ 6= τ , we have σ−1τ 6= 1, and thus (with the above equation)
∃ U0 ∈ S such that σ−1τ /∈ U0. So τ /∈ σU0, which means τU0 ∩ σU0 = ∅ since G is a
group.

(2) We will prove the compactness using the theorem of Tychono�. We build therefore the
homomorphism

h : G→
∏

E∈FL

Gal(E,K) =: P

de�ned by

h(σ) =
∏

E∈FL

σ|E.

Notice that P is compact. In fact every Gal(E,K) is a discrete �nite group and conse-
quently compact, so using the Theorem of Tychono� (see [Mun75, Theorem 37.3]) we
obtain that P is compact as product of compact spaces. If we show that h is injective,
continuous and an open map into h(G), we will have a homeomorphism between G and
h(G) (see [Mun75, Theorem 26.6]). Moreover, if we show that h(G) is a closed subset
of P (which implies that h(G) is compact), we get that G is compact.
Injectivity: Suppose σ ∈ G is such that h(σ) = 1. This means σ|E is the identity

for every E ∈ FL. But we know that L =
⋃

E∈FL
E, which means σ = 1.

Continuity: We consider the composition

G
h−→ P

πE−→ Gal(E,K),

where πE is the canonical projection. To show that h is continuous, we only need
to prove πE ◦ h is continuous for all E ∈ FL. As we work with topological groups,
we only have to verify this in 1:

(πEh)−1({1}) = Gal(L,E) ∈ S.

Note that {1} is open in P because it is open in each Gal(E,K) (since Gal(E,K)
is �nite).
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Open map: Let be E ∈ FL, then we have

h(Gal(L,E)) = h(G) ∩ (
∏

E′ 6= E
E′ ∈ FL

Gal(E′,K)× {1} ),

which is an open set in h(G).
h(G) closed: We de�ne ME1|E2

:= {Σ ∈ P | πE1(Σ)|E2 = πE2(Σ)} for each pair
E1,E2 ∈ FL with E2 ⊆ E1. We will �rst show that ME1|E2

is closed in P. As E2 is
a �nite extension of K, we can consider Gal(E2,K) = {f1, . . . , fr}. We call Si the
set of extensions of fi to E1. Then we have

ME1|E2
=

r⋃
i=1

(
∏

E 6= E1,E2

E ∈ FL

Gal(E,K)× Si × {fi} ).

As every set in the �nite union is a closed set (as product of closed sets), ME1|E2

is closed.
We have

h(G) ⊆
⋂

E1⊇E2

ME1|E2

and if we prove the other inclusion, we will get that h(G) is closed in P . Now,
if Σ ∈

⋂
E1⊇E2

ME1|E2
, we can de�ne an automorphism σ : L → L with σ(x) =

πE(Σ)(x) if x ∈ E. This σ is well-de�ned since Σ ∈ ∩ME1|E2
(and using remark

2.2). We have h(σ) =
∏

E∈FL
πE(Σ), which implies

h(G) ⊇
⋂

E1⊇E2

ME1|E2
,

and so h(G) is closed.
(3) Since we work with topological groups, we only have to show that the connected com-

ponent H of 1 is {1}.
For each U ∈ S we de�ne UH := U ∩H. As {1} ∈ U , UH 6= ∅, and as U is open, UH is
open in H. We de�ne now

VH =
⋃

x∈H\UH

xUH .

Then, VH is open in H, because all the xUH are open. We also have UH ∩ VH = ∅ and
H = UH ∪ VH . But as H is supposed to be connected, we get that VH = ∅, otherwise,
UH |VH is a separation of H. This means UH = H, hence U ∩ H = H for all U ∈ S.
Therefore

H ⊆
⋂
U∈S

U = {1},

which means H = {1}.
�

3. The fundamental theorem of in�nite Galois theory

In this section we will generalize the main theorem of Galois theory seen in the case of �nite
extensions. Therefore we will also generalize some propositions and lemmas.
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3.1. Some necessary propositions.
The �rst proposition is a generalization of the lemma 2.2, but considering we work with topo-
logical groups.

Proposition 3.1. Let L be a Galois extension of K. For all �nite Galois extension E of K such
that K ⊆ E ⊆ L, the map

r : Gal(L,K) → Gal(E,K)
σ 7→ σ|E

is a continuous surjection.

Proof. We already proved that the map is surjective in lemma 2.2.
We will show that the inverse image of 1Gal(E,K) is open in Gal(L,K) (it is enough since topolog-

ical groups are homogeneous). But r−1({1Gal(E,K)}) = Gal(L,E), which is an open set because
of the de�nition of the Krull topology. �

Proposition 3.2. Let L be a Galois extension of K and write G := Gal(L,K). Then the
following assertions hold.

(1) The �eld L is Galois over every intermediate �eld M (i.e. K ⊆M ⊆ L).
Moreover Gal(L,M) is closed in G and LGal(L,M) = M.

(2) For every subgroup H of G, Gal(L,LH) is the topological closure of H.

Proof. (1) The �rst assertion is implied by lemma 1.4.
Consider FM the family of envery �nite and Galois extensions E of K such that K ⊆
E ⊆M. Then M is the union of all the elements of FM. Which means

Gal(L,M) = ∩E∈FM Gal(L,E).

But the groups Gal(L,E) are all open subgroups of G and therefore they are closed
(see proposition 4.4 (2) and theorem 2.6). Then Gal(L,M) is closed as intersection of
closed sets.
Lemma 2.3 implies the �nal statement.

(2) We have that H ⊆ Gal(L,LH), but because Gal(L,LH) is closed, H ⊆ Gal(L,LH).
Now consider σ ∈ G\H, there is an E ∈ FL such that σGal(L,E) ∩ H = ∅. And so
σ /∈ H Gal(L,E). Since σ can not be writen σ = hτ for some h ∈ H and τ ∈ Gal(L,E)
(which would have implied σ(α) = h(α) for all α ∈ E), we have the existence of an
α ∈ E such that H �xes α (⇒ α ∈ LH) but σ(α) 6= α. This means σ /∈ Gal(L,LH).
Thus Gal(L,LH) ⊆ H.

�

3.2. The main theorem. We will now prove a similar theorem as the main theorem for
�nite Galois extensions (see 1.5).

Theorem 3.3. Let L be Galois over K with Galois group G. There is a bijection between

{H | H closed subgroup of G} ↔ {M intermediate field | K ⊆M ⊆ L}
given by the maps H 7→ LH (sending a closed subgroup on its �xed �eld) and M 7→ Gal(L,M)
(sending an intermediate �eld on its Galois group).
Moreover,

(1) If H1 and H2 are two closed subgroups of G, we have H1 ⊇ H2 if and only if LH1 ⊆ LH2.
(2) A closed subgroup H of G is open if and only if LH has �nite degree over K. In this

case, [G : H] = [LH : K], i.e indexes and degrees coincide.

(3) For every element σ ∈ G, and every subgroup H of G, LσHσ−1
= σ(LH), and if M is

an intermediate �eld Gal(L, σM) = σGal(L,M)σ−1.
(4) If H is a closed subgroup of G, we have the following equivalence:

H is normal if and only if LH is Galois over K. In this case we have Gal(LH ,K) ∼=
G/H.
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Proof. To prove the �rst statement we have to show that the maps H 7→ LH and M 7→
Gal(L,M) are inverse maps. First suppose that H is a closed subgroup of G. Then L is Galois
over LH and Gal(L,LH) = H (see proposition 3.2). Conversely if M is an intermediate �eld, we

have that Gal(L,M) is a closed subgroup of G and LGal(L,M) = M (see proposition 3.2 (1)).

(1) If H1, H2 are closed subgroups of G, using the de�nitions, we have

H2 ⊆ H1 ⇒ LH1 ⊆ LH2 ⇒ Gal(L,LH1) ⊇ Gal(L,LH2)

Hence Gal(L,LHi) = Hi implies the result.
(2) Using proposition 4.4, we obtain that H being a closed subgroup of G with �nite index

implies that H is open. And conversely using the same proposition, if H is an open
subgroup of G, H is closed and has �nite index (recall that G is compact - see theorem
2.6).
Suppose now that H is closed and has �nite index. We consider the continuous map

r : Gal(L,K) → HomK(LH ,K)
σ 7→ σ|LH .

Clearly ker(r) = Gal(L,LH) and im(r) = HomK(LH ,K) (for the last statement apply
lemma 2.1). Then, using the �rst isomorphism theorem for groups, we have

Gal(L,K)/ ker(r) ∼= HomK(LH ,K),

which is equivalent to
G/H ∼= HomK(LH ,K).

(3) Let M be an intermediate �eld and H = Gal(L,M). If σ ∈ G, we want to prove that
σHσ−1 ↔ σM.
Therefore, let τ ∈ G and α ∈ L. We have that τ(α) = α if and only if στσ−1(σ(α)) =
σ(α). Hence Gal(L, σM) = σGal(L,M)σ−1. And σ(LH) = σM = LσHσ−1

.
(4) Suppose that M is an intermediate �eld with H = Gal(L,M). Using (3), we have that

H is normal in G if and only if M is stable under the natural action of G. This last
statement is equivalent to say that M is a union of �nite extensions of K stable under
G. But this, using the point (3) of theorem 1.5, is the same as expecting that all those
�nite extensions are Galois over K. And so M is Galois.
And then the isomorphism follows from (2).

�

Here is an example showing that the main theorem is invalid if we omit the topological
conditions.

Example 3.1. We consider the �nite �eld Fp for a prime number p and its algebraic closure

Fp. Notice that Fp is a Galois extension of Fp. As Fp must contain the roots of all polynomials

of the form Xpn −X for n ≥ 1, Fpn ⊆ Fp. Moreover Fp can be written as union of intermediate

�nite extensions, we must have Fp = ∪n≥1Fnp .
Now consider G = Gal(Fp,Fp). We denote by ϕ the Frobenius automorphism, i.e.

ϕ : Fp → Fp : α 7→ αp.

As F∗p is a cyclic group of order p− 1, for each α ∈ Fp, ϕ(α) = α. Hence ϕ ∈ G.
We de�ne H =< ϕ > the subgroup of G generated by all the powers of ϕ. We will now prove
two remarquable statements about H.

(1) H 6= G
To prove that, we have to �nd an element τ of G such that τ /∈ H.
We �rst show that there is an in�nite intermediate extension M of Fp such that Fp $
M $ Fp. Therefore we consider M = ∪n≥0Fp2n , clearly M is an in�nite extension since
Fp2n ⊆M for all n ≥ 0 and M is Galois over Fp since it is a union of Galois extensions.
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We now show that M 6= Fp. Therefore we consider Fp3 , clearly [Fp3 : Fp] = 3 and

Fp3 ⊆ Fp but Fp3 * M. In fact if we suppose Fp3 = Fp[α] and α ∈M, we have α ∈ Fp2n
for some n ≥ 0, and hence F3 ⊆ Fp2n . But then using the degree formula for the
extensions, we have:

2n = [Fp2n : Fp] = [Fp2n : Fp3 ][Fp3 : Fp] = [Fp2n : Fp3 ] · 3,

which is a contradiction. Thus Fp $ M $ Fp.
Now using proposition 1.4, we know that Fp is Galois over M. Then let τ ∈ Gal(Fp,M)\{Id} ⊆
G. If we suppose H = G, there is a n ≥ 1 such that τ = ϕn. Hence ϕn �xes M, so
M ⊆ Fpn . But this is a contradiction since M is in�nite.

(2) FHp = Fp
By de�nition FHp ⊆ Fp, hence we show the other inclusion. Let α ∈ Fp. Then α ∈ Fpn
for some n ≥ 1. This means αp

n − α = 0 (see example 1.17). But then αp
n

= α, and
so ϕn(α) = α. Hence α ∈ FHp .

We conclude that H and G are two di�erent groups but they have the same �xed �eld, as
Fp = FGp . This contradicts the theorem, unless G is the topological closure of H.
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CHAPTER 3

Pro�nite Groups

In this chapter we de�ne the notion of pro�nite groups. Those are de�ned as limits of
particular systems. They are useful to characterize Galois groups, in fact, every Galois group is
a pro�nite group and every pro�nite group can be realized as a Galois group.

1. De�nition and examples

1.1. The notion of inverse limit.
1.1.1. De�nition.

De�nition 1.1. A directed set is a nonempty set I together with a re�exive and transitive
binary relation ≤, with the additional property that every pair of elements has an upper bound.

De�nition 1.2. Let I be a directed set. An inverse system (Xi, fij)I of topological spaces
indexed by I consists of a family {Xi | i ∈ I} of topological spaces and of a family {fij : Xj →
Xi | i, j ∈ I, i ≤ j} of continuous maps such that

(1) fii is the identity over Xi for all i ∈ I,
(2) fij ◦ fjk = fik for all i ≤ j ≤ k ∈ I.

Remark 1.3. The preceding de�nition is not only available in the category of topological spaces,
it can be generalized to an arbitrary category.

Examples 1.4.

(1) We consider the directed set (Z, >), with m > n if and only if n divides m, for each
m,n ∈ Z. We de�ne Gm = Z/mZ and consider the natural projections

fnm : Z/mZ→ Z/nZ : k +mZ 7→ k + nZ,

which are well-de�ned in case n|m. Then (Gm, fnm)Z is an inverse system.
(2) Let p be a prime number. We consider now I = N provide with the usual order. We

de�ne Gn = Z/pnZ and consider the natural projections

fmn : Z/pnZ→ Z/pmZ

which are well-de�ned in case m ≤ n. Then (Gn, fmn)N is an inverse system.
(3) Let G be an arbitrary group. Denote S the set of all its normal subgroups of �nite

index. We provide S with the order U < V if and only if V ⊆ U for U, V ∈ S. De�ne

fUV : G/V → G/U : gV 7→ gU,

in case U ≤ V . Then (G/U, fUV )S is an inverse system.

De�nition 1.5. If Y is a topological space, we call a family of continuous maps {ψi : Y → Xi}i∈I
compatible, if fijψj = ψi for every i ≤ j ∈ I, i.e. if the following diagram commutes:

Y
ψj

~~~~~~~~~~~
ψi

  AAAAAAAAAA

Xj
fij

// Xi.
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De�nition 1.6. An inverse limit (X,ϕi) of an inverse system (Xi, fij)I of topological spaces
is a topological space X provided with a compatible family {ϕi : X → Xi}i∈I satisfying the
following universal property:
For every topological space Y and for every compatible family {ψi : Y → Xi}i∈I , there exists a
unique continuous map θ : Y → X such that the following diagram commutes for all i ≤ j ∈ I.

Y

ψj

�������������������

ψi

��1
11111111111111111

∃! θ

��
X

ϕj
~~}}}}}}}}}

ϕi
  AAAAAAAAAA

Xj
fij

// Xi.

Remark 1.7. An injective limit is also called a projective limit.

1.1.2. Existence and uniqueness of the inverse limit.

Proposition 1.1. Let (Xi, fij)I be an inverse system of topological spaces. If (X,ϕi)I and
(Y, ψi)I are two inverse limits of (Xi, fij)I , then, there is a homeomorphism Φ : X → Y such
that ψi ◦ Φ = ϕi for all i ∈ I.

Proof. As (X,ϕi)I is an inverse limit and (Y, ψi)I a compatible family, there exists a unique
Φ : X → Y such that ψi ◦ Φ = ϕi for all i ∈ I.
As (Y, ψi)I is an inverse limit and (X,ϕi)I a compatible family, there exists a unique Ψ : Y → X
such that ϕi ◦Ψ = ψi for all i ∈ I.
Then Ψ ◦Φ : X → X and ϕiΨΦ = ψiΦ = ϕi for all i ∈ I, moreover ϕiidX = ϕi for all i ∈ I. So
Ψ ◦ Φ = idX by the uniqueness of the morphism in de�nition 1.6.
One can show in the same way that Φ ◦Ψ = idY . �

Proposition 1.2. Let (Xi, fij)I be an inverse system of topological spaces. Denote by X the set
of elements x ∈

∏
k∈I Xk which make the diagram commute∏

k∈I Xk

πi

##GGGGGGGGGGG
πj

{{wwwwwwwwwww

Xj
fij

// Xi

That means X is the set of all elements x ∈
∏
k∈I Xk such that fijπj(x) = πi(x) for all i ≤ j ∈ I.

Where the πi are the canonical projections.
De�ne ϕi := πi|X for all i ∈ I. Then (X,ϕi)I is an inverse limit of (Xi, fij)I .

Remark 1.8. We endow
∏
k∈I Xk with the product topology and X with the subspace topology.

Proof. By de�nition of the product topology the maps ϕi are continuous, and we have
fijϕj = ϕi because of de�nition of X. This means {ϕi : X → Xi|i ∈ I} is compatible.
Let us consider an other compatible family {ψi : Y → Xi|i ∈ I}. We have to show that there
exists a unique continuous map θ : Y → X with ϕiθ = ψi for all i ∈ I. Therefore, we de�ne

θ : Y →
∏
k∈I

Xk

y 7→ {ψk(y)}k∈I .
We have πiθ = ψi which is continuous for all i ∈ I, and this implies the continuity of θ. Moreover
the image of θ is in X, in fact

fij ◦ πj(θ(y)) = fijψj(y) = ψi(y) = πi(θ(y)) ∀i ≤ j ∈ I, ∀y ∈ Y.
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This means we can de�ne the map

θ : Y → X

y 7→ θ(y)

which is continuous. This map satis�es also ϕiθ = ψi for all i ∈ I. Note that the uniqueness of
θ follows from its construction. �

Notation 1.9. We can now denote by lim←−I Xi the inverse limit of an inverse system (Xi, fij)I .
And let s lim←−I Xi denote the particular above construction.

1.1.3. Properties.
Here are some properties of the inverse limit we will use later.

Proposition 1.3. Let (Xi, fij)I be an inverse system indexed by I, and write X = lim←−Xi.

(1) If each Xi is Hausdor�, so is X.
(2) If each Xi is totally disconnected, so is X.
(3) If each Xi is Hausdor�, then s lim←−Xi is closed in P =

∏
i∈I Xi.

(4) If each Xi is compact and Hausdor�, so is X.

Proof. It is enough to prove the result for X = s lim←−Xi because of the uniqueness of inverse
limit.

(1) Products and subspaces of Hausdor� spaces are always Hausdor�, hence the result.
(2) Idem.
(3) By a topological result, if f, g : Y → Z are continuous maps and Z is a Hausdor� space,

the set {y | f(y) = g(y)} is closed in Y . Since

s lim←−Xi =
⋂
j≥i
{p ∈ P | fijπj(p) = πi(p)}

(where πi is the canonical projection form P to Xi), it follows that if each Xi is Haus-
dor�, then s lim←−Xi is an intersection of closed sets, hence s lim←−Xi is closed.

(4) This result follows from the fact that each closed subspace of a compact space is com-
pact, and from the fact that a product of compact spaces is compact.

�

1.2. Pro�nite groups. We will now consider the case of inverse limits of topological
groups.

Proposition 1.4. The inverse limit lim←−Gi of an inverse system of topological groups (Gi, fij)I
is a topological group.

Proof. The cartesian product
∏
k∈I Gk is a topological group, this means we only have to

show that G := lim←−Gi is a subgroup.

Clearly G is not empty ( 1∏
k∈I Gk

∈ G ) and closed under multiplication and taking inverse. In

fact G = {g ∈
∏
k∈I Gk | fijπj(g) = πi(g) ∀i ≤ j} and all the fij and πk (i, j, k ∈ I) are groups

homomorphisms. Then G is a subgroup of
∏
k∈I Gk and therefore a topological subgroup for

the induced topology. �

De�nition 1.10. A pro�nite group G is a topological group isomorphic to an inverse limit of
an inverse system (Gi, fij)I of �nite groups, all of them provided with the discrete topology.

Examples 1.11.

(1) We denote Ẑ := lim←−m∈Z Z/mZ the inverse limit of the inverse system (Z/mZ, fnm)Z
(see example 1.4 (2) ).

Ẑ is called the Prüfer group. Note that Ẑ is the set of all equivalence classes of sequences
(am) such that

am ≡ an mod n ∀n|m.
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(2) We de�ne Zp := lim←−n∈N Z/pnZ the inverse limit of the inverse system (Z/pnZ, fmn)N
(see example 1.4 (2) ).
Zp is the additive group of the p-adic integers.

(3) Every �nite group G is in particular a pro�nite group. In fact it is the limit of the
trivial inverse system (G, IdG){1}.

(4) The group of integers Z is not a pro�nite group.

De�nition 1.12. Let G be an arbitrary group, denote by S the set of all its normal subgroups
of �nite index. Then as in example 1.4 (G/U, fUV )S is an inverse system, and we de�ne

Ĝ := lim←−
U∈S

G/U

to be the pro�nite completion of G.

2. General properties of pro�nite groups

The goal of this section is to give an particular characterization of the pro�nite groups, in
fact, we will prove that pro�nite groups are exactly the compact, totally disconnected, Hausdor�
groups.

2.1. Some lemmas and propositions.

Proposition 2.1. Let (Gi, fij)I be an inverse system of �nite groups Gi (endowed with the
discrete topology). We construct G := s lim←−i∈I Gi and write ϕi : G → Gi the projection ho-

momorphisms. Then {ker(ϕi) | i ∈ I} is a fundamental system of open neighborhoods of the
identity element 1 in G.

Proof. Consider the family of neighborhoods of 1 in
∏
i∈I Gi of the form

(
∏

i 6=i1,...it

Gi)× {1}i1 × . . .× {1}it

for any �nite collection of indexes i1, . . . , it ∈ I and where {1}i denotes the subset of Gi con-
taining its identity element. As the Gi are discrete, the above family is a fundamental system
of neighborhoods of the identity element of

∏
i∈I Gi (see de�nition of the product topology -

[Mun75, �19]). As I is a directed set and as the collection is �nite, there is i0 ∈ I such that
i0 ≥ ir for all 1 ≤ r ≤ t. So we have that

G ∩ [(
∏
i 6=i0

Gi)× {1}i0 ] = G ∩ [(
∏

i 6=i1,...it

Gi)× {1}i1 × . . .× {1}it ]

because firi0(1) = 1 for all 1 ≤ r ≤ t.
Then a fundamental system of open neighborhoods of 1 in G is given by all the sets G ∩
[(

∏
i 6=i0 Gi)× {1}i0 ]. But we see that ker(ϕi0) = G ∩ [(

∏
i 6=i0 Gi)× {1}i0 ] �

Lemma 2.2. Let X be a compact, Hausdor� topological space. Let x ∈ X and let {Ui | i ∈ I}
be the family of all compact open sets containing x. Then A = ∩i∈IUi is connected.

Proof. Note that X being Hausdor� and Ui being compact implies that Ui is closed for all
i ∈ I (see [Mun75, Theorem 26.3]).
Suppose there exists a separation of A, i.e. suppose there are U, V closed with A = U ∪ V and
U ∩ V = ∅. Since X is normal (X is compact Hausdor� - see [Mun75, Theorem 32.3]), there
are U ′, V ′ open such that U ⊆ U ′, V ⊆ V ′ and U ′ ∩ V ′ = ∅. So we have:

U ∪ V ⊆ U ′ ∪ V ′ ⇒ X\(U ′ ∩ V ′) ⊆ X\(U ∩ V ),

which means [X\(U ′ ∩ V ′)] ∩ A = ∅. But, as X\(U ′ ∩ V ′) is closed, it is compact too. Having
X\(U ′ ∩ V ′) ⊆ X\A = ∪i∈IX\Ui (with X\Ui open), there is J ⊆ I �nite with

[X\(U ′ ∩ V ′)] ∩ (
⋂
i∈J

Ui) = ∅.
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We consider B := ∩i∈JUi. B is open because |J | < ∞ and Ui is open for all i ∈ I, and B is
compact because it is a closed subset of X (B is also an intersection of closed spaces). We have
x ∈ B and B = (B ∩ U ′) ∪ (B ∩ V ′). Suppose x ∈ B ∩ U ′. Since B ∩ U ′ is open and compact,
B ∩ U ′ = Ui0 for a i0 ∈ I. This means A ⊆ B ∩ U ′ ⊆ U ′, then

A ∩ V ⊆ A ∩ V ′ ⊆ U ′ ∩ V ′ = ∅ ⇒ V = ∅,
hence the result. �

Lemma 2.3. Let G be a compact, Hausdor�, totally disconnected topological group. Then every
neighborhood of 1 contains an open normal subgroup. Moreover this subgroup has �nite index in
G.

Proof. We consider {Ui | i ∈ I} the family of all compact open sets containing 1. Like in
the preceding lemma, a result of topology implies that Ui is closed for each i ∈ I.
Because of lemma 2.2 and because X is totally disconnected, we have {1} = ∩i∈IUi.
Suppose that U is an open neighborhood of {1}. Then G\U is closed, hence compact. We have

(G\U) ∩ (
⋂
i∈I

Ui) = ∅,

this means there is a �nite set J ⊆ I with

(G\U) ∩ (
⋂
i∈J

Ui) = ∅.

Let A := ∩i∈JUi, we have that A is open as a �nite intersection of open sets and that A is
compact because it is a closed subspace of G (note that A is an intersection of closed sets). This
means that A is a neighborhood of 1. Moreover we have A ⊆ U .
We de�ne F := (G\A)∩A2. Notice that A2 is compact because it is the image of A×A (compact
- see [Mun75, Theorem 26.7]) under the continuous map (x, y) 7→ xy. Then A2 is closed, hence
so is F .
Let V be a symmetric open neighborhood of 1 such that AV ∩ F = ∅ and V ⊆ A (such
a neighborhood exists because of proposition 2.4, chapter 1). Then we have AV ⊆ A2 ⇒
AV ∩ (G\A) ⊆ A2 ∩ (G\A) = F . Which means AV ∩ (G\A) = ∅ because AV ∩ F = ∅. Hence
AV ⊆ A⇒ AV n ⊆ A for all n ≥ 1, which implies V n ⊆ A (because 1 ∈ A).
We de�ne K := ∪n≥1V

n ⊆ A, an open subset of G. As G is compact, K has a �nite index
by proposition 4.4. Hence we can write G := ∪rm=1xmK. The fact that K as �nite index,
implies that there is a �nite number of conjugacy classes of K (xK = yK ⇒ ∃k ∈ K with
x = yk ⇒ xKx−1 = ykKk−1y−1 = yKy−1). Hence

H :=
⋂
x∈G

xKx−1 =
r⋂

m=1

xmKx
−1
m .

Because xmKx
−1
m is open for all 1 ≤ m ≤ r (see proposition 4.4), H is an open normal subgroup

of G. And this means that H has �nite index (propostion 4.4). �

Lemma 2.4. Let (Xi, fij)I be an inverse system of topological spaces. Let (X,ϕi)i∈I be a
compatible family with all the hi being surjective maps. Then either lim←−Xi is empty or the
induced map θ : X → lim←−Xi sends X onto a dense subset of lim←−Xi.

Proof. We will prove that for every basic open subset V of lim←−Xi we can �nd y ∈ X such

that θ(y) ∈ V .
Let us consider

V = (lim←−Xi) ∩ (
∏

i∈I\{i1,...in}

Xi × U1 × . . . Un),

where Uj are non-empty open subsets of Xij , for each 1 ≤ j ≤ n.
As I is a directed set, we can �nd i0 ∈ I with i0 > ij for all 1 ≤ j ≤ n. If we take x =

∏
i∈I Xi ∈

V ; we have fiji0(xi0) = xij for all 1 ≤ j ≤ n.
27



Because ϕi0 is surjective, there is y ∈ X such that ϕi0(y) = xi0 . This means πi0(θ(y)) = xi0 , so
πxj (θ(y)) = fiji0(πx0(θ(y))) = xij , and hence θ(y) ∈ V . �

2.2. Other characterization of pro-�nite groups.

Theorem 2.5. The pro�nite groups are exactly the compact, totally disconnected, Hausdor�
groups.

Proof. Assume G is a pro�nite group.
By de�nition of a pro�nite group, there are �nite groups (Gi)i∈I and maps fij : Xj → Xi for all
i, j ∈ I, i ≤ j such that G = lim←−i∈I Gi. As all the Gi are �nite discrete topological groups, they
are Hausdor�, compact and totally disconnected groups. Hence, with proposition 1.3, we have
that G is an Hausdor� compact totally disconnected group.
Conversely, assume G is a Hausdor�, compact and totally disconnected topological group.
We write U <O G when U in an open normal subgroup of G.
Consider the family S = {U | U <O G}. As G is compact, U being open implies that G/U is
�nite (proposition 4.4, chapter 1). By lemma 2.3 S is a basis of open neighborhoods of 1 ∈ G.
For each pair U, V ∈ S with U ⊆ V , consider the natural map:

fU,V : G/U → G/V : gU 7→ gV.

Then it is clear that (G/U, fU,V )S is an inverse system of groups.
If we consider the compatible family of canonical homomorphisms ϕU : G → G/U , U ∈ S, we
get a map

ϕ : G→ s lim←−
S
G/U ⊆

∏
U∈S

G/U.

We will show that ϕ is injective, continuous and surjective. And then, because G is compact,
we will get that ϕ is a topological isomorphism (see [Mun75, Theorem 26.6]).

ϕ is injective: Let σ ∈ G with ϕ(σ) = 1. Then we have σ ∈ U for all U ∈ S, which
implies σ ∈ ∩U∈SU = {1}.

ϕ is continuous: We will prove that the composition

G
ϕ−→ s lim←−

S
G/U

πU−−→ G/U

is continuous for each U ∈ S. In fact, it is enough because s lim←−S G/U ⊆
∏
U∈S G/U

(see [Mun75, Theorem 19.6]). But

(πUϕ)−1{1} = ϕ−1(π−1
U ({1})) = U

is open in G.
(Notice that {1} is a basis of open neighborhood of 1 in G/U for all U ∈ S - because
{1} was already a basis of open neighborhood in G.)

ϕ is surjective: By lemma 2.4 ϕ(G) is dense in s lim←−S G/U . Let us show that ϕ(G)
closed, hence ϕ(G) = s lim←−S G/U . ϕ(G) is closed because we have ϕ(G) = π−1

U (ϕU (G)) =
π−1
U (G/U) (we use that ϕU is surjective) and πU is continuous.

�

Remark 2.1. Some authors, considering theorem 2.5, de�ne the pro�nite groups to be the
Hausdor�, compact, totally disconnected topological groups.

Corollary 2.6. Let G be a pro�nite group. Then if S := {open, normal subgroups of G}, we
have

G ∼= lim←−
U∈S

G/U.
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2.3. Consequences of the theorem.

Proposition 2.7. Let G be a pro�nite group.

(1) Let {Hi | i ∈ I} be a collection of closed subgroups of G and let ∩i∈IHi ≤ U ≤ G where
U is an open subgroup of G.
Then there is a �nite subset J of I such that ∩j∈JHj ≤ U .

(2) Let {Ui | i ∈ I} be a collection of open subgroups of G such that ∩i∈IUi = 1. Let
V = {∩j∈JUj | J ⊆ I finite}
Then V is a fundamental system of neighborhood of 1 in G.

Proof. (1) Consider the open covering {G\Hi | i ∈ I} of the compact spaceG\U (note
that G\U is a closed subset of the compact space G). So there is a �nite subcovering
{G\Hj | j ∈ J} for a �nite subset J of I. This means

G\U ⊆
⋃
j∈J

G\Hj ,

and so ⋂
j∈J

G\Hj ⊆ U.

(2) Follows from (1).
�

Proposition 2.8. A closed subgroup H of a pro�nite group G is pro�nite. Precisely, if G =
lim←−S G/U with S = {open, normal subgroups of G}, then

H ∼= lim←−
S
HU/U ∼= lim←−

S
H/H ∩ U.

Proof. We use the characterization of theorem 2.5. Clearly H is Hausdor� and totally
disconnected because so is G. The theorem [Mun75, Theorem 26.2, Chapter 3] implies that H
is compact (because H is closed).
The second assertion follows from lemma 2.4. In fact, the canonical maps

ϕU : H → HU/U

πU : H → H/H ∩ U
are surjective for all U in S. �

Proposition 2.9. A quotient group G/H of a pro�nite group G by a closed subgroup H is a
pro�nite group. In fact, if S = {open, normal subgroups of G}, then

G/H ∼= lim←−
S
G/HU.

Proof. Consider the canonical projection

π : G→ G/HU,

which is a surjective map. As π(H) = 0, we can de�ne

π̃ : G/H → G/HU

and use again lemma 2.4. �

Proposition 2.10. Let I be a set of index, and let (Gi)i∈I be pro�nite groups. Then G :=∏
i∈I Gi is a pro�nite group.

Proof. Clear since the product of Hausdor�, compact and totally disconnected groups is
again Hausdor�, compact and totally disconnected. �

Corollary 2.11. Let (Gi, fij)I be an inverse system of pro�nite groups. Then G = lim←−I Gi is
pro�nite.
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Proof. Use proposition 1.3 to see that G is a closed subgroup of
∏
i∈I Gi, and use corollary

2.11. �

Example 2.2. Let P be the set of all prime numbers. We will show that

Ẑ ∼=
∏
p∈P

Zp.

We construct the natural projection

αmp : Zp → Z/pmpZ

where m =
∏
q∈P q

mq .
Then we have the map

αm :
∏
p∈P

αmp :
∏
p∈P

Zp →
∏
p∈P

Z/pmpZ,

which is onto (one can easily build an inverse image).
Note that, using the Chinese reminder theorem (see [Lan02a, Corollary 2.2, �2, Chapter 2]),
we have ∏

p∈P
Z/pmpZ ∼= Z/mZ.

Using lemma 2.4, the maps αm, m ∈ Z, induce a continuous surjection

α :
∏
p∈P

Zp → Ẑ = lim←−
m

Z/mZ.

On the other hand, let (xp)p∈P be an element of
∏
p∈P Zp such that α((xp)P) = 0. This means

αm((xp)P) = 0 for each m ∈ Z (by de�nition of Ẑ). Consequently αmq ((xp)P) = 0 for each m ∈ Z,
and each q ∈ P. So xp = 0 for all p ∈ P, i.e. (xp)P = 0. This implies that α is injective.
Since

∏
p∈P Zp is compact, we get that α is a topological isomorphism (see [Mun75, Theorem

26.6, Chapter 3]).

Proposition 2.12. lim←− is an exact functor from the category of inverse systems, over a directed
indexing set I, of pro�nite groups to the category of pro�nite groups.

Proof. Let

1 // (Hi, ϕij)
(fi)I // (Gi, ψij)

(gi)I // (Ki, ηij) // 1

be an exact sequence of inverse systems (over I) of pro�nite groups. We have to show that

1 // lim←−I Hi
f // lim←−I Gi

g // lim←−I Ki // 1

is exact.

• We �rst show that f is injective:
Let (xi)I ∈ lim←−I Hi with f((xi)I) = 0. Then fi(xi) = 0 for each i in I. And as fi is

injective xi = 0, for each i ∈ I. Hence (xi)I = 0.
• Next, we prove ker(g) = im(f):
Let (xi)I ∈ lim←−I Hi,

(g ◦ f)((xi)I) = g((fi(xi))I) = ((gi ◦ fi)(xi))I = 0

because the sequence of projective systems is exact. This implies im(f) ⊆ ker(g).
Let (yi)I ∈ ker(g). This is equivalent to g((yi)I) = 0 and so (gi(yi))I = 0. Consequently
yi ∈ ker(gi) for all i in I. And as the sequence of projective systems is exact, there is
a xi ∈ Hi such that fi(xi) = yi for each i ∈ I. Hence ker(g) ⊆ im(f).
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• Finally we have to show the surjectivity of g:
Let (zi)I ∈ lim←−I Ki. Consider the set Yi = g−1

i (xi) which is compact in Gi as inverse

image of a closed subset. Note that (gi)I being a morphism in the category of inverse
system implies if i ≤ j

Gj
ϕij //

gj

��

Gi

gi

��
Kj ηij

// Ki

So if i ≤ j, we have ψij(Yj) ⊆ Yi, in fact

gi(ψij(yj)) = (gi ◦ ψij)(yj)
= (ηij ◦ gj)(yj)
= ηij(xj) = xi,

for each yj ∈ Yj . Consequently (Yi, ψij) is an inverse system of non-empty compact
sets. Hence lim←−I Yi 6= ∅ (see [Bou71, Proposition 8, �9, Chapter 1]). As for each

(yi)I ∈ lim←−I Yi, we have g((yi)I) = (xi)I , hence the result.
�

3. Galois groups and pro�nite groups

We have already seen in chapter 2 (theorem 2.6) that Galois groups are Hausdor�, compact
and totally disconnected. But as seen in theorem 2.5, so are the pro�nite groups. This section
will make that more clear.

Theorem 3.1. Assume L is a Galois extension of a �eld K. We �x F = F = {E | K ⊆ E ⊆
L, E finite Galois extension of K}. Then Gal(L,K) is the inverse limit of the �nite groups
Gal(E,K) with E ∈ F ; in particular, Gal(L,K) is a pro�nite group.

Proof. From the Galois theory Gal(E,K) is a �nite group. If E1,E2 ∈ F with E1 ⊆ E2, we
de�ne

ϕE1E2 : Gal(E2,K) → Gal(E1,K)
σ 7→ σ|E1 .

Then (Gal(E,K), ϕE1E2)F is an inverse system indexed with F .
Considering the restriction maps Gal(L,K) → Gal(E,K), we get a group homomorphism θ :
Gal(L,K)→

∏
E∈F Gal(E,K). The image of θ in contained in lim←−E∈F Gal(E,K), because

ϕE1,E2(πE2(θ(σ))) = ϕE1,E2(σ|E2) = σ|E1 = πE1(θ(σ)).

Now given (σE)E∈F ∈ s lim←−E∈F Gal(E,K) and x ∈ K, we build

ψ((σE))(x) = σM(x)

for M ∈ F an intermediary extension with x ∈ M (which always exists). This construction of
ψ is independent of the choice of M because σ is in lim←−E∈F Gal(E,K). We can easily see that

ψ((σE)) ∈ Gal(L,K) and that ψ is the inverse of θ. Then θ is an isomorphism. And so Gal(L,K)
is isomorphic to lim←−E∈F Gal(E,K) as abstract groups.
We will now show that there is an isomorphism between the basis of the topology of 1.
recall that the basis of open neighborhood of 1 in lim←−E∈F Gal(E,K) is given by

{ker(πE) | E ∈ F}
(see proposition 3.3). But for every F ∈ F , we have

ker(πF) = {(σE) ∈ s lim←−
E∈F

Gal(E,K) | πF((σE)) = IdF}

31



Note that
θ(Gal(L,F)) =

∏
E∈F\{F}

Gal(E,K)× {IdF}

and as im(θ) ⊆ s lim←−E∈F Gal(E,K), we obtain that

ker(πF) = θ(Gal(L,F))

for all F ∈ F . This proves that we have a homeomorphism, hence

Gal(L,K) ∼= s lim←−
E∈F

Gal(E,K).

�

Proof. You can �nd a proof of this lemma in [Wil98, Chapter 3.3]. �

Theorem 3.2. Every pro�nite group G is isomorphic (as a topological group) to a Galois group.

Proof. Recall that G is a Hausdor� compact totally disconnected topological group (see
2.5).
Let F be an arbitrary �eld. We consider S the disjoint union of the sets G/N with N running
through the collection of open normal subgroups of G (we write N <O G). Think of the elements
of S as indeterminates, and build the �eld L = F(S) (the rationals functions with coe�cients in
F with their indeterminates in S).
The group G operates on S in a natural way: if g ∈ G and g′N ∈ G/N , then g(g′N) = gg′N
(for any N ∈ S). And so, this induces an action of G on L.
De�ne K = LG the sub�eld of L consisting of the elements of K �xed by G.
Our goal is now to show that L is a Galois extension of K with Galois group G.
If α ∈ L, consider the subgroup of G

Gα = {σ ∈ G | σ(α) = α}.
If the indeterminates that appear in the rational expression of α are {ti ∈ G/Ni | i = 1, . . . , n},
then

{1} ⊆
n⋂
i=1

Ni ⊆ Gα.

In fact, if n ∈ Ni and gNi ∈ G/Ni, we have

n(gNi) = ngNi = gg−1ngNi = gNi,

because g−1ng ∈ Ni (as Ni is a normal subgroup of G). This means the action of Ni on G/Ni

is trivial. As all the Ni are open subgroups of G, ∩ni=1Ni is open. Then using proposition 4.4
part (4) (in Chapter 1) we get that Gα is open. And hence, using the same proposition (part
(2)), Gα has �nite index.
As the index of the isotropy group of an element is equal to the cardinality of its orbit. Then
the orbit of α under the action of G is �nite. Suppose that this orbit is Oα = {α1, . . . , αr} (with
all the αi di�erent) and consider the polynomial

f(X) =
r∏
i=1

(Xαi).

As G transforms Oα into itself (because of the de�nition of an orbit), we have that αi is in K
for all 1 ≤ i ≤ r, which means that f(X) ∈ K[X]. But as a root of f(X), α is then algebraic
over K. Furthermore, notice that all the roots of f(X) are di�erent and this means that α is
separable over K. And so L is a separable extension of K.
Observe that K[α1, . . . , αr] is a normal extension of K (as splitting �eld of a non constant
polynomial f(X) ∈ K[X]). And so L is a union of normal extensions of K, hence L is normal
over K.
So we have proved that L is a Galois extension of K.
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We write H := Gal(L,K). Clearly, as G acts on L and �xes K = LG, G ⊆ H. We will now
prove the equality. Consider i : G ↪→ H the inclusion map. The next step will be to show that
this map is continuous.
Let U be a normal open subgroup of H and consider LU . As U have �nite index (see proposition
4.4 in Chapter 1), LU is a �nite Galois extension of K (use the theorem 3.3 in Chapter 2). Suppose
LU = K(α′1, . . . , α

′
s) for some α′i ∈ L. Then

G ∩ U ⊇
s⋂
i=1

Gα′i .

Which implies that G ∩ U is open (because containing an open subgroup - see proposition 4.4
in Chapter 1). Then we have that G is open, and so G is a closed subgroup of H.
To conclude, use the theorem about in�nite Galois extensions (theorem 3.3 in Chapter 2) : as
LG = LH and G is closed, H = G. �
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CHAPTER 4

Group Cohomology

In the following chapter, we de�ne cohomology groups. This notion come from topology,
they were later used in group theory in order to provide invariants.
Many proofs in this chapter will be left to the reader.

1. Generalities

1.1. (Co)homology modules.

De�nition 1.1. A left R-module, where R is a ring, is an abelian group (M,+), having a scalar
multiplication R ×M → M : (r,m) 7→ r ·m such that for all m,m′ ∈ M and all r, r′ ∈ R, we
have

(1) r · (m+m′) = r ·m+ r ·m′,
(2) (r + r′) ·m = r ·m+ r′ ·m,
(3) (rr′) ·m = r · (r′ ·m),
(4) 1 ·m = m.

De�nition 1.2. Let M and N be two R-modules, a R-map (or a R-homomorphism) is a group
homomorphism f : M → N , such that, for all m ∈M and r ∈ R,

r · f(m) = f(r ·m).

We can de�ne similarly a right R-module, but in the case R is commutative they coincide.
Therefore, to make it easier, we assume from now on that R is a commutative ring.

Notation 1.3.

(1) Often we write rm instead of r ◦m to denote the action of R on a R-module M.
(2) The class of R-modules and R-maps is an abelian category denoted by MR.

We present here the most general notion of (co)homology.

De�nition 1.4. A chain complex C over R is a sequence of R-modules (Cn)n∈Z and R-maps
(dn : Cn → Cn−1)n∈Z, called di�erentiations,

C : . . .→ Cn+1
dn+1−−−→ Cn

dn−→ Cn−1 → . . .

such that dn ◦ dn+1 = 0 for all n ∈ Z.

De�nition 1.5. A morphism of chain complexes f : C → C ′ is a collection of morphisms of
R-modules (fn : Cn → C ′n)n∈Z such that the following diagram commutes for all n,

Cn

fn

��

dn // Cn−1

fn−1

��
C ′n d′n

// C ′n−1.

De�nition 1.6. Let C be a chain complex, we de�ne its n-th homology module by

Hn(C) := ker dn/ im dn+1.
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If f : C → C ′ is a morphism of chain complexes, we de�ne

Hn(f) : Hn(C) → Hn(C ′)
[z] → [fn(z)].

And here is the de�nition of cohomology.

De�nition 1.7. A cochain complex C over R is a sequence of R-modules (Dn)n∈Z and R-maps
(δn : Cn → Cn−1)n∈Z,

D : . . .→ Dn−1 δn−1

−−−→ Dn δn−→ Dn+1 → . . .

such that δn+1 ◦ δn = 0 for all n ∈ Z.

De�nition 1.8. Let D be a cochain complex, we de�ne its n-th cohomology module by

Hn(D) := ker δn/ im δn−1.

1.2. Hom Functor.

De�nition 1.9. Let C and D be categories. A covariant functor F from C to D is a mapping
that associates to each object C ∈ C an object F (C) ∈ D and associates to each morphism
f : C1 → C2 in C a morphism F (f) : F (C1)→ F (C2) in D ; such that

• F (idC) = idF (C), for every object C ∈ C ;
• F (g ◦ f) = F (g) ◦ F (f), for all morphisms f : C1 → C2 and g : C2 → C3 in C .

A contravariant functor F from C to D is a mapping that associates to each object C ∈ C
an object F (C) ∈ D and associates to each morphism f : C1 → C2 in C a morphism F (f) :
F (C2)→ F (C1) in D ; such that

• F (idC) = idF (C), for every object C ∈ C ;
• F (g ◦ f) = F (f) ◦ F (g), for all morphisms f : C1 → C2 and g : C2 → C3 in C .

De�nition 1.10. Let M be a �xed R-module.
We de�ne the functor Hom(�,M) from the category MR to the category A , sending each R-
module N to the set of all R-maps from N to M : HomR(N,M) and sending each R-map
ϕ : N1 → N2 to the map

Hom(f,M) : Hom(N2,M)→ Hom(N1,M) : f 7→ f ◦ ϕ.

Next, we de�ne the functor Hom(M,�) from the category MR to the category A , sending each
R-module N to the set of all R-maps from M to N : HomR(M,N) and sending each R-map
ϕ : N1 → N2 to the map

Hom(f,M) : Hom(M,N1)→ Hom(M,N2) : f 7→ ϕ ◦ f.

Proposition 1.1.

• HomR(�,M) is a well-de�ned contravariant functor from MR to A . Moreover this
functor is left-exact.
• HomR(M,�) is a well-de�ned covariant functor from MR to A . Moreover this functor
is left-exact.

Proof. One can �nd the proof in [Rot09, �2.1]. �

Remark 1.11. There are many ways to obtain a cochain complex from a chain complex C.
The most natural is to de�ne Cn := C−n and δm := d−n.
But there is another one more interesting: we simply have to apply the functor Hom(�, G).
Precisely, Cn := HomR(Cn, R) and δn := d∗n+1 = HomR(dn+1, R). We will denote this cochain
complex:

HomR(C,R) : . . .→ HomR(Cn−1, R) δn−1

−−−→ HomR(Cn, R) δn−→ HomR(Cn+1, R)→ . . .
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The following theorems are two classical result.

Theorem 1.2. Let 0 → C ′
i−→ C

p−→ C ′′ → 0 be an exact sequence of chain complexes. Then
there is a long exact sequence of modules

. . .→ Hn(C ′)
Hn(i)−−−→ Hn(C)

Hn(p)−−−−→ Hn(C ′′) δn−→ Hn−1(C ′)→ . . . .

Proof. One can �nd a proof of this theorem in [Rot09, �6.1]. �

Theorem 1.3. Let 0 → C ′
i−→ C

p−→ C ′′ → 0 be an exact sequence of cochain complexes. Then
there is a long exact sequence of modules

. . .→ Hn(C ′)
Hn(i)−−−→ Hn(C)

Hn(p)−−−−→ Hn(C ′′) δn−→ Hn+1(C ′)→ . . . .

2. Projective and injective modules

In this section we will de�ne the notion of projective and injective modules.

De�nition 2.1. A R-module P is projective if for any epimorphism of R-modules β : M → N
and any morphism α : P → N there exists a morphism γ : P → M such that β ◦ γ = α, i.e.
such that the following diagram commutes

P
γ

~~
α

��
M

β // N // 0.

We present a theorem which will gives us another characterization of projective modules.

Theorem 2.1. Let P be a R-module. Then the following assertions are equivalent:

(1) P is projective,
(2) Hom(P,�) is exact,
(3) every exact sequence of R-modules 0→M ′ →M → P → 0 splits,
(4) P is a summand of a free module, i.e. there exists a R-module M such that P ⊕M is

free.

Proof. The proof is given in [Rot09, Proposition 3.2, Proposition 3.3 & Theorem 3.5,
Chapter 3]. �

We now de�ne precisely what is a R-module.

De�nition 2.2. A R-module M is said to be free if there exists a set X = {mi | i ∈ I} (I can
be any index set), called a basis of M , such that each m ∈M has a unique expression

m =
∑
i∈I

rimi

for some ri ∈ R with ri 6= 0 only in �nite many case.

Proposition 2.2. Let F be a free R-module and M,N be any R-modules. If β : M → N is an
epimorphism, then for every α : F → N , there exists an R-homomorphism γ : F → M making
the following diagram commutes

F
γ

~~
α

��
M

β // N // 0.

Proof. One can �nd a proof of this proposition in [Rot09, Theorem 3.1, Chapter 3]. �
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Corollary 2.3. Every free module is a projective module.

We de�ne now the dual notion of projective modules, the injective modules.

De�nition 2.3. A R-module I is injective if for any monomorphism β : M → N and any
morphism of R-modules α : M → I there is a morphism γ : N → I such that γ ◦ β = α, i.e. the
following diagram commutes

I

0 // M
β
//

α

OO

N.

γ

aa

Theorem 2.4. Let I be a R-module. Then the following assertions are equivalent:

(1) I is injective,
(2) HomR(�, I) is an exact functor,
(3) every exact sequence of R-modules 0→ I →M →M ′ → 0 splits.

Proof. The proof can be found in [Rot09, Proposition 3.25 & 3.26, �3.2]. �

3. Resolutions and Cohomology of R-modules

3.1. Resolutions.
We now de�ne a resolutions of modules which will provide the chain complexes used to de�ne
cohomology.

De�nition 3.1. Let M be a R-module. A projective (resp. free) resolution of M over R is an
exact sequence of R-modules

. . .→ Pn
dn−→ Pn−1 → . . .→ P1

d1−→ P0
ε−→M → 0,

where each Pn s a projective (resp. free) module.

Notation 3.2. Such a projective resolution is sometimes denoted by P• →M .

Those resolutions are not only useful, we now that one can always �nd such a resolution for
any R-module.

Theorem 3.1. Every R-module has a free resolution.

Proof. Refer to [Rot09, Proposition 6.2, �6.1]. �

Corollary 3.2. Every R-module has a projective resolution.

De�nition 3.3. LetM be a R-module. A injective resolution ofM over R is an exact sequence
of R-modules

0→M
ε−→ I0 δ0−→ I1 → . . .→ In

δn−→ In+1 → . . . ,

where each In is an injective module.

Notation 3.4. Such an injective resolution is sometimes denoted by M → I•.

Theorem 3.3. Every R-module has an injective resolution.

Proof. Refer to [Rot09, Proposition 6.4, �6.1]. �

Now we de�ne the deleted (co)complexes because they are easier to deal with.

De�nition 3.5. Let M be a R-module. If

X : . . .→ Xn
dn−→ Xn−1 → . . .→ X1 → X0 →M → 0

is a chain complex, we de�ne the deleted complex of X to be the chain complex

XM : . . .→ Xn
dn−→ Xn−1 → . . .→ X1 → X0 → 0.
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Similarly if

Y : 0→M → Y 0 δ0−→ Y 1 → . . .→ Y n δn−→ Y n+1 → . . .

is a cochain complex, we de�ne the deleted cocomplex of Y to be the cochain complex

YM : 0→ Y 0 δ0−→ Y 1 → . . .→ Y n δn−→ Y n+1 → . . .

3.2. Cohomology of R-modules.
In this section we de�ne the functor Ext, which is a generalisation of the cohomology.

De�nition 3.6. Let M , N be R-modules. Let PM be the deleted complex of a projective
resolution of M . Form the complex HomR(PM , N), i.e.

HomR(PM , N) : 0→ HomR(P0, N)
d∗1−→ . . .→ HomR(Pn, N)

d∗n+1−−−→ HomR(Pn+1, N)→ . . .

We de�ne the n-th cohomology of M with coe�cients in N , ExtnR(M,N), by taking the n-th
cohomology of the above cochain complex, i.e.

ExtnR(M,N) := Hn(Hom(PM , N)).

Theorem 3.4. Let M , N be R-modules, and let PM and P ′M be to projective resolutions of

M. Suppose that ExtnR(M,N), respectively Ext
′n
R (M,N), is the cohomology module associated to

PM , respectively P ′M . Then

ExtnR(M,N) ∼= Ext
′n
R (M,N).

Proof. The proof id given in [Rot09, Proposition 6.40, �6.2]. �

Remark 3.7. Some authors de�ne the cohomology of M with coe�cients in N using injective
resolutions.
Let IN be the deleted complex of an injective resolution ofN . Then form the complex HomR(M, IN ),
i.e.

HomR(M, IN ) : 0→ HomR(M, I0)→ . . .→ HomR(M, In)
δn∗−→ HomR(M,En+1)→ . . .

Then the n-th cohomology of M with coe�cients in N is

Hn(M,N) = Hn(HomR(M, IN )).

There is no ambiguity with the above de�nition since in [Rot09, Theorem 6.67, �6.2], it is
proved that

Hn(Hom(M, IN )) = Hn(Hom(PM , N)).

4. Cohomology of groups

We will now de�ne precisely the cohomology of groups. R is always a commutative ring with
identity 1.

De�nition 4.1. Let G be a group, the group ring R[G] is the free abelian group with basis
G, i.e. the group of all formal linear combinations of elements of G with coe�cients in R (and
endowed with the multiplication induced by the multiplication of G).

R[G] = {
∑
g ∈ G
finite

rgg | rg ∈ R}.

The integral group is the group ring for the ring of integral numbers Z, i.e. Z[G]. This ring is
also written ZG.

De�nition 4.2. Let (G, ·) be a group. A G-module is an abelian group (M,+) with a map
G×M →M : (g,m) 7→ g ·m satisfying:

(1) (g1g2) · (m) = g1 · (g2 ·m);
(2) g · (m+ n) = g ·m+ g · n;
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(3) 1G ·m = m;

for m,n ∈M and g1, g2, g ∈ G.
Remark 4.3. If M is a G-module, then M becomes a ZG-module if we de�ne

(
∑
g ∈ G
finite

ngg) ·m =
∑
g ∈ G
finite

ng(g ·m).

Conversely, if M is a ZG-module, then M becomes a G-module if we de�ne g ·m = (1g) ·m.

De�nition 4.4. Let G be a group. A G-module M is called trivial if every element of G acts
as the identity on M , i.e. g ·m = m.

De�nition 4.5. Let G be a group, and M a G-module. Consider the integers Z as a trivial
G-module and de�ne the n-th cohomology group of G with coe�cients in M to be

Hn(G,N) := ExtnZG(Z, N).

5. Shapiro's Lemma and induced modules

We will present the Lemma of Shapiro and the induced modules. They will be later useful
to study the cohomology of Galois groups.
Let G be a group.

De�nition 5.1. A ZG-module A is G-acyclic if Hn(G,A) = {0} for all n ≥ 1.

De�nition 5.2. A group homomorphism f : G′ → G induces a ring homomorphism ZG′ → ZG,
also denoted by f , precisely, f :

∑
ng′g

′ 7→
∑
ng′f(g′). Let A be a ZG-module, it can be

considered as a ZG′-module : if g′ ∈ G′ and a ∈ A, then g′a = f(g′)a. Denote a G-module A
viewed as a G′-module by UA, and call

Uf : MZG →MZG′

a change of groups functor.

Lemma 5.1. Let f : G′ → G be a group homomorphism, and let Uf : MZG → MZG′ be the
corresponding change of groups functor.

(1) If P is a G-cyclic complex, then UP is a G′-cyclic complex.
(2) Let H ⊆ G, and let f : H → G be the inclusion homomorphism. If P is a projective

G-module, then UP is a projective H-module. Moreover, if P is a projective resolution
of a ZG-module A over ZG, then U P is an projective resolution of UA over ZS-

Proof. (1) Using [Rot09, Proposition 8.3, �8.2], we now that U : MZG → MZG′ is
an exact additive functor. Then UP is a complex, moreover Hn(G′, A) = {0}.

(2) Consider R a set containing an element (and only one) of each coset of G/H. Then G
is the disjoint union ∪r∈RrH. This implies that for every g ∈ G there are unique r ∈ R
and h ∈ H such that g = rh. And hence, we can write ZG =

⊕
r∈R r(ZH) ( a direct

sum is ZS-module), so ZG is a free ZH-module.
Suppose that P is a projective ZG-module. This is equivalent to the existence of a
ZG-module M such that P ⊕M is free. And so UP is a a projective ZH-module.
The second statement follows from (1).

�

Remark 5.3. Suppose H is a subgroup of G and A is an ZH-module. Then HomZH(ZG,A) is
a ZG-module if endowed with the action :

gf : ZG → A

x 7→ gf(g−1x),

for any g ∈ G and any f : ZG→ A.
We consider in particular if H = {1} (and then ZH = Z).
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Next, we present the Eckman-Shapiro Lemma (known as Shapiro Lemma).

Theorem 5.2. Let G be a group, H be a subgroup, and A be an ZH-module. Then

Hn(H,A) ∼= Hn(G,HomZH(ZG,A))

for all n ≥ 0.

In this proof, we use the notion of the tensor product, denoted by ⊗. For further information
about it, see [Rot09, �2.2].

Proof. We denote by U : MZG →MZH the change of groups functor.
Suppose P = . . .→ P1 → P0 → Z→ 0 is a free resolution of Z over ZG, then

Hn(G,HomZH(ZG,A)) = Hn(HomZG(P,HomZG(ZG,A))),

because it is the de�nition of the cohomology group. Using the adjunction between the tensor
product and the functor Hom (precisely see [Rot09, Theorem 2.75, �2.2]), we have

HomZG(Pi,HomZH(ZG,A)) ∼= HomZH(Pi
⊗
ZG

ZG,A).

Next, we use a property of the tensor product (see [Rot09, Proposition 2.58, �2.2]), hence
Pi⊗ZG ∼= Pi, and we use the fact that UPi ∼= Pi. And so we obtain

HomZG(Pi,HomZH(ZG,A)) ∼= HomZH(UPi, A),

for all i.
By lemma 5.1(2), UP is a projective resolution of Z over ZH, and hence

Hn(H,A) ∼= Hn(HomZH(UP, A),

see theorem 3.4.
Moreover, there is an isomorphism of complex

(1) HomZH(UP, A) ∼= HomZG(P,HomZH(ZG,A)).

In conclusion we have an isomorphism

Hn(H,A) ∼= Hn(G,HomZH(ZG,A)).

�

De�nition 5.4. Suppose G is a group and A an abelian group. We de�ne the coinduced module
to be the ZG-module HomZ(ZG,A).

Remark 5.5. The above construction is the same as in remark 5.3 using H = {1}, and noticing
that every abelian group can be viewed as a trivial Z-module.

Proposition 5.3. Every coinduced ZG-module A is G-cyclic : Hn(G,A) = {0}, for all n ≥ 1.

Proof. Consider the subgroup H = {1} and apply theorem 5.2, then

Hn(G,HomZ(ZG,A)) ∼= Hn(H,A).

But this cohomology group is trivial (see [Rot09, Corollary 9.28, �9.2]). �
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CHAPTER 5

Galois Cohomology

We de�ne cohomology groups for pro�nite groups, note that we will use a slightly di�erent
de�nition as in previous chapter. We will �nally state and prove di�erent versions of Hilbert's
Theorem 90.

1. Cohomology groups

Working with pro�nite groups implies we have to consider the topology. We therefore de�ne
discrete modules and particular cohomology groups.

1.1. Discrete G-modules.

De�nition 1.1. Let (G, ·) be a pro�nite group. A discrete G-module (or G-module, if there is
no confusion) is an abelian group (A,+) endowed with the discrete topology and on which G
operates continuously. This means a G-module is an abelian group A with a continuous map
G×A→ A : (g, a) 7→ g · a (where G×A is seen with the product topology) satisfying:

(1) (g1g2) · (a) = g1 · (g2 · a);
(2) g · (a+ b) = g · a+ g · b;
(3) 1G · a = a;

for a, b ∈ A and g1, g2, g ∈ G.

Remark 1.2. If G is a �nite group, then all G-modules are discrete G-modules.

Proposition 1.1. Let G be a pro�nite group and A an abelian group. Let G × A → A be an
action of G on A satisfying the conditions (1), (2) and (3) of de�nition 1.1. Then, the following
are equivalent:

(1) G×A→ A is continuous;
(2) For each a ∈ A, the stabilizer of a, Ua = {g ∈ G | g · a = a} is an open subgroup of G;
(3) A =

⋃
U A

U where U runs trough the set of all open subgroups of G, and where

AU = {a ∈ A | g · a = a ∀ g ∈ U}.

Proof. We denote f : G×A→ A the action of G on A.

(1) ⇒ (2): Consider the restriction fa : G×{a} → A which is a continuous map because
f is continuous. Then Ua = f−1

a ({a}) is open as a preimage of an open set (recall that
A is provided with the discrete topology).

(2) ⇒ (3): Clearly
⋃
U A

U ⊆ A.
Let a ∈ A, then a is in AUa . And as Ua is an open subgroup of G, we obtain the result.

(3) ⇒ (1): We will show that f−1({a}) is a open subgroup of G for each a ∈ A. Hence
if a ∈ A, a is in AU for some open subgroup U of G. Which implies g · a = a for all
g ∈ U . And so

1G × {a} ∈ U × {a} ⊆ f−1({a}).
Consequently, f−1({a}) is open, because G× A is a topological group and U × {a} is
open (see 4.4 in chapter 1).

�

Here are some examples of discrete G-modules.
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Examples 1.3.

• For any pro�nite group G and any abelian group A we can de�ne the action

G×A→ A : (g, a) 7→ a.

This action is called the trivial action on A. And A is a G-module, called a trivial
G-module.
• Let L and K be �elds such that L is a Galois extension of K. Recall that Gal(L,K) is
a pro�nite group. Consider the abelian group (L,+) and the action

G× L→ L : (σ, α) 7→ σ(α).

Then (L,+) (sometimes denoted L+) is a discrete G-module.
Endowed with the same action (L∗, ·) and the group of all roots of unity in L (under
multiplication) are also discrete G-modules.

De�nition 1.4. Let G be a pro�nite group and A, B be two discrete G-modules. A G-
homomorphism or a G-map ϕ : A→ B is a group homomorphism for which

ϕ(g · a) = g · ϕ(a),

for all g ∈ G and all a ∈ A.

Remark 1.5. The class of discrete G-modules and G-maps is an abelian category denoted by
MG.

1.2. De�nition of cohomology groups.
Let G be a pro�nite group. For each n ∈ N we denote by Gn the cartesian product of n copies
of G.

Consider a discrete G-module A. We set

Cnc (G,A) := {f : Gn → A | f is continuous}.
Note that Cnc (G,A) is an abelian group under addition (because A is an abelian group). It is
called the group of the n-cochains. Moreover C0

c (G,A) is isomorphic to A (as group of the maps
from 0 to A).
For each n ≥ 1 de�ne a group homomorphism

dn+1 : Cnc (G,A)→ Cn+1
c (G,A),

through

(dn+1f)(g1, . . . , gn+1) = g1 · f(g2, . . . , gn+1)

+
n∑
i=1

(−1)if(g1, . . . , gigi+1, . . . , gn+1)

+ (−1)n+1f(g1, . . . , gn),

for all f ∈ Cnc (G,A) and all (g1, . . . gn+1) ∈ Gn+1. For n = 0, we de�ne the homomorphism

d0 : C0
c (G,A)→ C1

c (G,A),

through
(d0a)(g) = g · a− a,

for all a ∈ A and all g ∈ G. The maps dn are called the coboundary operators.

Lemma 1.2. For each n ≥ 0, dn is a group homomorphism and moreover dn+1 ◦ dn = 0.

Proof. One can �nd a proof in [Bur04, Chapter 2, �2.2]. �

Remark 1.6. This lemma implies that the maps dn are the di�erentials of a cochain complex
Cc(G,A) := (Cnc (G,A), dn).

De�nition 1.7. Let G be a pro�nite group and A be a discrete G-module.
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• We call the group of the n-cocycles of G, the group Znc := ker(dn), and we call the
group of the n-coboundaries of G, the group Bn

c (G,A) := im dn−1.
The lemma 1.2 implies that Bn

c (G,A) is a subgroup of Znc (G,A).
• We de�ne the n-th cohomology group of G with coe�cients in A to be the group

Hn
c (G,A) := Znc (G,A)/Bn

c (G,A).

Remark 1.8. We can built the cohomology in case A is simply a G-module and not expecting
the cochains to be continuous. The construction is the same. In that case the cohomology group
of G with coe�cients in A is denote by Hn

c (G,A). One can prove that this de�nition of the co-
homology groups coincide with the one of chapter 4, i.e. there is no ambiguity with the notations.
In caseG is a discrete group, the continuity hypothesis is trivially veri�ed. This meansHn

c (G,A) =
Hn(G,A). Then we can also use properties presented in chapter 4.

2. Interpretation of cohomology groups in low dimension

Let G be a pro�nite group and A a discrete G-module. We will study the cohomology groups
Hn
c (G,A) for small n ∈ N.

2.1. Trivial case.
For n = 0, we have

H0
c (G,A) ∼= Z0

c (G,A) = {a ∈ A | d0(a) = 0} = {a ∈ A | g · a− a = 0 ∀ g ∈ G}.

And hence, H0
c (G,A) is isomorphic to AG, the set of the invariant points of A under the action

of G.

2.2. First cohomology group.
We consider now n = 1. As previously de�ned H1

c (G,A) = Z1
c (G,A)/B1

c (G,A).
The group of 1-cocycle can be explicitly described as

Z1
c (G,A) = {f : G→ A continuous | d1(f) = 0}

= {f : G→ A continuous | f(g1g2) = g1 · f(g2) + f(g1), ∀ g1, g2 ∈ G}.

And the group of 1-coboundaries is

B1
c (G,A) = {f : G→ A continuous | ∃a ∈ A s.t. d0(a) = f}

= {f : G→ A continuous | ∃a ∈ A s.t. f(g) = g · a− a, ∀ g ∈ G}.

The elements of Z1
c (G,A) and B1

c (G,A) are called continuous crossed homomorphisms and
principal crossed homomorphisms respectively.

Example 2.1. If G operates trivially on A, H1
c (G,A) is the group of all continuous group

homomorphisms from G to A.

2.3. The second cohomology group.
For n = 2, H2

c (G,A) = Z2
c (G,A)/B2

c (G,A), with

Z2
c (G,A) = {f : G×G→ A continuous | d2(f) = 0}

= {f : G×G→ A continuous | g1f(g2, g3) + f(g1, g2g3) = f(g1g2, g3) + f(g1, g2),
∀ g1, g2, g3 ∈ G},

and

B2
c (G,A) = {f : G×G→ A continuous | ∃ϕ ∈ C1

c (G,A) s.t. f = d1(ϕ)}
= {f : G×G→ A continuous | ∃ϕ ∈ C1

c (G,A)
s.t. f(g1, g2) = g1ϕ(g2)− ϕ(g1g2) + ϕ(g1), ∀ g1, g2 ∈ G}.

The elements of Z2
c (G,A) are called continuous factor systems.
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3. Functorially properties of the cohomology groups

3.1. Compatible maps.
3.1.1. De�nition.

De�nition 3.1. Let G and G′ be two pro�nite groups. Let A ∈MG and A′ ∈MG′ . Consider ϕ :
G→ G′ a continuous homomorphism of pro�nite groups and ψ : A′ → A a group homomorphism.
We say that ψ and ϕ are compatible maps if

ψ(ϕ(g) · a′) = g · f(a′),

for all g ∈ G and all a′ ∈ A′.
This is equivalent as asking that ψ is a G-map when A′ is considered as a G-module with the
action

g · a′ = ϕ(g) · a′,
for each a′ ∈ A′ and g ∈ G.

Example 3.2. Let L and E be Galois extensions of K, with K ⊆ E ⊆ L. We consider the
restriction

π : Gal(L,K)→ Gal(E,K),

and the injection

i : E∗ ↪→ L∗.
Then those mappings are compatible.

Lemma 3.1. Let ϕ and ψ be compatible maps as in de�nition 3.1. They induce a homomorphism
on the groups of n-cochains (for n ≥ 0)

(ϕ,ψ) : Cnc (G′, A′)→ Cnc (G,A)

de�ned by

[(ϕ,ψ)(f)](g1, . . . , gn) = ψ[f(ϕ(g1), . . . , ϕ(gn))].

In particular, (ϕ,ψ) is a map of cochain complexes, i.e. the diagram

dn // Cnc (G′, A′)
dn+1 //

(ϕ,ψ)

��

Cn+1
c (G′, A′)

(ϕ,ψ)

��

//

dn // Cnc (G,A)
dn+1 // Cn+1

c (G,A) //

commutes for n ≥ 0.

Proof. One can easily check this lemma with a straightforward computation. �

Corollary 3.2. If ϕ, ψ are compatible maps as in de�nition 3.1, (ϕ,ψ) induces a homomorphism
of the cohomology groups, written

(ϕ,ψ) : Hn
c (G′, A′)→ Hn

c (G,A).

Proof. Use the commutativity of the above diagram. �

3.1.2. Functorially properties of compatible maps.
Let Gi, i = 1, 2, 3, be pro�nite groups and Ai ∈MGi . Consider the continuous group homomor-
phisms

G1
ϕ1 // G2

ϕ2 // G3

and the group homomorphisms

A1 A2
ψ1

oo A3.
ψ2

oo
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with ϕ1, ψ1 being compatible maps and ϕ2, ψ2 too. They induce two group homomorphisms

(ϕ1, ψ1) : Hn
c (G2, A2) → Hn

c (G1, A1)
(ϕ2, ψ2) : Hn

c (G3, A3) → Hn
c (G2, A2).

Then we have that ϕ1 ◦ ϕ2 is compatible with ψ2 ◦ ψ1 and

(ϕ1, ψ1) ◦ (ϕ2, ψ2) = (ϕ2 ◦ ϕ1, ψ1 ◦ ψ2).

Moreover, if ϕ is the identity map of G and ψ the identity map of A, then (ϕ,ψ) is the identity
map of Hn

c (G,A).
Consequently, for each pro�nite group G and for each n ≥ 0, Hn

c (G,−) is a covariant functor
from MG to A .

3.2. Direct limit. We de�ne the direct limit in order to consider a direct limit of G-
modules. This will be useful to describe limits of cohomology groups.

De�nition 3.3. Let I be a directed set. And let C be a category. A direct system (Xi, fij)I
of objects of C indexed by I consists of a family {Xi | i ∈ I} of objects and of a family
{fij : Xi → Xj | i, j ∈ I, i ≤ j} of morphisms of C such that

(1) fii is the identity over Xi for all i ∈ I,
(2) fjk ◦ fij = fik for all i ≤ j ≤ k ∈ I.

De�nition 3.4. If Y is an object of C , we call a family of morphisms of C {ψi : Xi → Y }i∈I
compatible, if ψj ◦ fij = ψi for every i ≤ j ∈ I, i.e. if the following diagram commutes:

Y

Xi
fij

//

ψi

>>~~~~~~~~~
Xj .

ψj

``AAAAAAAAA

De�nition 3.5. An colimit (X,ϕi) of a direct system (Xi, fij)I of objects of C is an object X
provided with a compatible family {ϕi : Xi → X}i∈I satisfying the following universal property:
For every object Y and for every compatible family {ψi : Xi → Y }i∈I , there exists a unique
morphism of C θ : Y → X such that the following diagram commutes for all i ≤ j ∈ I.

Y

X

∃! θ

OO

Xi

ψi

FF�����������������
ϕi

>>~~~~~~~~~

fij

// Xj .

ψj

XX11111111111111111ϕj

``BBBBBBBBB

Proposition 3.3. The direct limit is unique up to isomorphism.

Proof. Similar as the proof of proposition 1.1 in chapter 3. �

Notation 3.6. As there is no ambiguity anymore, we will denote by lim−→I
Xi the direct limit of

(Xi, fij)I .

We have seen in chapter 3, that there is a special characterization of a limit (or inverse limit)
in case we were in the category of topological spaces. We will now give such a characterization
of the direct limit in the category of groups (and group homomorphisms).
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Proposition 3.4. Let (Xi, fij)I be a direct system of groups. Consider the set Z =
∐
I Xi (the

disjoint union of the Xi) and de�ne an equivalence relation ∼, with (xi, i) ∼ (xj , j) if and only
if i, j ∈ I with xi ∈ Xi, xj ∈ Xj and there is a k ∈ I with i, j ≤ k and fik(xi) = fjk(xj). Then
lim−→I

Xi
∼= Z/ ∼.

Proof. It is trivial to see that ∼ is an equivalence relation.
We de�ne the morphisms

ϕi : Xi → Z/ ∼,
induced by the inclusion i : Xi → Z : xi 7→ (xi, i). By construction {ϕi : Xi → Z/ ∼} is a
compatible system.
Consider an other group Y and a compatible family {ψi : Xi → Y }i∈I . We de�ne

θ : Z → Y : (xi, i)→ ψi(xi).

Let (xi, i), (xj , j) be in Z with (xi, i) ∼ (xj , j). We want to show that θ((xi, i)) = θ((xj , j)).
But (xi, i) ∼ (xj , j) implies there is a k ∈ I with i, j ≤ k and fik(xi) = fjk(xj). Then

θ((xi, i)) = ψi(xi)
= ψk(fik(xi))
= ψk(fjk(xj))
= ψj(xj) = θ((xj , j)).

Hence, we can de�ne θ̃ : Z/ ∼→ Y . Moreover we have trivially that θ̃ ◦ ϕi = ψi for each i ∈ I,
and also that θ̃ is unique. And so Z/ ∼ is a direct limit of (Xi, fij)I . �

3.3. Properties of the cohomology group of a limit.
We consider now a directed index set (I,≤) and two systems; a inverse system of pro�nite groups
(Gi, ϕij)I and a direct system of abelian groups (Ai, λij) (for de�nition see section 3.2), such
that Ai ∈MGi for each i ∈ I and such that ϕij and λij are compatible maps for i ≤ j.
This induces a direct system (Hn

c (Gi, Ai), (ϕij , λij))I .
We denote G := lim←−I Gi and A := lim−→I

Gi, and the canonical morphisms

πi : G → Gi

λi : Ai → A.

Lemma 3.5. A can be viewed as a G-module with the following action:
For a ∈ A and g ∈ G, choose i ∈ I and ai ∈ Ai such that λi(ai) = a. Then de�ne

g · a = λi((πi(g)) · ai).

This action is well-de�ned and continuous.

Proof. We will �rst show that the action is independent of the choice of i ∈ I. recall that

A ∼=
∐
I

Ai/ ∼,

with αi ∼ αj ⇔ αi ∈ Ai, αj ∈ Aj and there is a k ∈ I with i, j ≤ k and λik(αi) = λjk(αj).
Therefore let i, j be in I and ai, aj be in Ai, Aj respectively, such that λj(aj) = a and λi(ai) = a.
As I is a directed set, there is a k ∈ I with i, j ≤ k. Then, using the property of the inverse
limit and the compatibility of πik and λik,

λik[(πi(g)) · ai] = λik[(πik(πk(g))) · ai]
= πk(g) · λik(ai).

In the same way λjk[(πj(g)) · aj ] = πk(g) · λjk(aj). But one as (because of the de�nition of an
direct limit)

λk(λik(ai)) = λi(ai) = a = λj(aj) = λk(λjk(aj)).
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As λk is injective, λik(ai) = λjk(aj). Which implies

λik[(πi(g)) · ai] = λjk[(πj(g)) · aj ].
And hence

λi[(πi(g)) · ai] = λj [(πj(g)) · aj ].
Now it is easy to see that the action is continuous as composition of continuous maps. �

Theorem 3.6. If the Gi and the Ai are as above, for each n ≥ 0,

Hn
c (G,A) ∼= lim−→

I

Hn
c (Gi, Ai).

Proof. One can prove that lim−→ is an exact functor in the category of abelian groups A (as

in proposition 2.12 - chapter 3). This implies

lim−→
I

Hn
c (Gi, Ai) ∼= Hn

c (lim−→
I

C(Gi, Ai))

where the cochain complexes C(Gi, Ai) form a direct system with the induced maps

λij = (πij , λij) : C(Gi, Ai)→ C(Gj , Aj)

for each i ≤ j (see part 3.1). Then, to prove the proposition, we only have to �nd an isomorphism
from lim−→I

Cnc (Gi, Ai) to Cnc (G,A) commuting with the dn.
De�ne

ϕi : Cnc (Gi, Ai) → Cnc (G,A)
f 7→ ϕi(f) := λi ◦ f ◦ πi.

Notice that ϕj ◦ λij = ϕi for each i, j ∈ I with i ≤ j, in fact

ϕj ◦ λij(f) = ϕj(λij ◦ f ◦ πij)
= λj ◦ λij ◦ f ◦ πij ◦ πj
= λi ◦ f ◦ πi
= ϕi(f),

for each f ∈ Cnc (Gi, Ai). Then ϕi induces a morphism

ϕ : lim−→
I

Cnc (Gi, Ai)→ Cnc (G,A),

because {ϕi : Cnc (Gi, Ai)→ Cnc (G,A)}I is a compatible family (see de�nition of the direct limit
in section 3.2).
It is easy to see that ϕ commutes with the coboundary operators dk, k ≥ 0.

ϕ is injective: Let f be in lim−→I
Cnc (Gi, Ai) such that ϕ(f) = 0. Consider a i0 ∈ I and a

fi0 ∈ Cnc (Gi, Ai) such that λi0(fi0) = f . Now denote

(2) fj := λi0j(fi0),

for all j ≤ i0, this implies in particular

(3) λj(fj) = f,

and one can deduce 0 = ϕ(f) = λj ◦ fj ◦ πj , for all j ≤ i0. We de�ne

Xj := {gj = (gj1 , . . . , gjn) ∈ Gnj | fj(gj) 6= 0}.

Yet, we only need to show that Xj = ∅ for some j ≥ i0 (⇒ fj = 0) and this will imply
f = 0 (because of 2 and 3 - see section 3.2).
Clearly one has

Gnj ⊆
⋃
a∈Aj

f−1
j ({a}),
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but as fj is a continuous map, Aj a discrete G-module and Gnj a compact group (as

product of compact), fj takes only a �nite number of values. Then Xj is closed (as a
�nite union of closed space) and hence compact (as subgroup of Gnj ).
Consider i0 ≤ i ≤ j and let gj ∈ Xj , then

0 6= fj(gj)

= (λij(fi))(gj)
= λij ◦ fi ◦ πij(gj),

and we have fi ◦ πij(gj) 6= 0. Which means πij(gj) ∈ Xi. Consequently πij(Xj) ⊆ Xi

for each i0 ≤ i ≤ j, furthermore, {Xi, πij}i≤i0 is an inverse system of compact spaces.
Clearly for g = (g1 . . . , gn) ∈ lim←−i≤i0 Xi ⊆ Gn, one has ϕ(f)(g) 6= 0. So lim←−i≤i0 Xi = ∅.
Now using [Bou71, Proposition 8, �9, Chapter 1], we obtain Xi = ∅ for some i ≥ i0.

ϕ is surjective: Let f ∈ Cnc (G,A). We have to �nd a continuous map fi : Gni such that
f = ϕi(fi) = λi ◦ fi ◦πi for a i ∈ I. As previously, f being continuous, A being discrete
and Gn being compact implies that f takes only a �nite number of values. Suppose
f(Gn) = {a1, . . . , aq} ⊆ A. Hence there is a i0 ∈ I such that λi0Ai0 ⊇ f(Gn).
Consider U1 a normal subgroup of G such that f is constant on the cosets of Un1 in Gn.
Since {π−1

l (Ul) | Ul normal subgroup of G} is a basis of open neighborhood of 1 in G
(see proposition and corollary 2.6 in chapter 3), there is a normal subgroup Ui of Gi
such that U1 ⊇ U := π−1

i (Ui) for some i ≥ i0. Note that i ≥ i0 implies

(4) f(Gn) ⊆ λi0(Ai0) = λi ◦ λi0i(Ai0) ⊆ λi(Ai).

Then

f = f ◦ p,
where p : Gn → Gn/Un is the natural projection, and f : Gn/Un → A is de�ned by
f(gUn) = f(g) (well-de�ned thanks to the construction of U). Note that

(5) im(f) ⊆ im(f).

Conversely πi induces an injective map π′i : Gn/Un → Gni /U
n
i , (the injectivity comes

from πi(Un) ⊆ Uni ). Precisely for each g̃ ∈ Gn, π′i(g̃Un) = pi ◦ πi(g̃), and this implies
π′i ◦ p = pi ◦ πi.
Let f i : Gni /U

n
i → Ai be any map such that λi ◦f i ◦π′i = f , i.e. such that the following

diagram commutes

Gn/Un

π′i

��

f // A

Gni /U
n
i

f i

// Ai.

λi

OO

Such a map always exists because of 4, 5 and the de�nition of the inverse limit. Moreover
f i is continuous because A is discrete, f is continuous and π′i is an open map.

Now de�ne fi = f i ◦ pi, where pi : Gni → Gni /U
n
i is the natural projection. fi is clearly

continuous as composition of continuous maps and moreover

λi ◦ fi ◦ πi = λi ◦ f i ◦ pi ◦ πi
= λi ◦ f i ◦ π′i ◦ p
= f ◦ p = f.

�
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Example 3.7. Consider L a Galois extension of K. And recall that F is the set of all interme-
diate �elds K ⊆ E ⊆ L, with E being a �nite Galois extension of K. Recall that

Gal(L,K) = lim←−
F

Gal(E,K).

We de�ne a direct system (E, f)F , by endowing F with the partial order of inclusion and
considering the trivial inclusions

fij : E+
i ↪→ E+

j

for E+
i ⊆ E+

j . Then we have to show that L+ ∼= lim−→F E+ ∼=
∐

E∈F E+/ ∼ (see section 3.2). We
de�ne

ϕ :
∐
E∈F

E+ → L+

(α,E) 7→ α,

where (α,E) denote the equivalence class of (α,E) for the relation ∼. It is trivial to check that
this map is well-de�ne, injective and surjective (use L = ∪FE).
Then, using the preceding theorem (3.6), we have

Hn
c (Gal(L,K),L+) ∼= lim−→

F
Hn
c (Gal(E,K),E+).

One can prove the same statement for the multiplicative group L∗ instead of L+.

4. Hilbert's Theorem 90

Hilbert's Theorem 90 was originally a theorem about cyclic extensions of number �elds, but
there are many generalization of it. The theorem has its name because it is the 90th theorem
of a famous book of David Hilbert: "Zahlbericht", published in 1897, although the theorem is
sometimes attribute to Kummer. It was later generalized by Andreas Speiser in 1919. However
the result is also know to be from Emmy Noether. We will discuss the di�erent versions of this
theorem. Our reference will be [Lor98].
In this section we write Hn(G,A) instead of Hn

c (G,A) to simplify the notations.

4.1. Original Hilbert's Theorem 90.
To present Hilbert's Theorem, we have to de�ne the norm of a �eld extension. This is discussed
in detail in [Lan02a, �5, Chapter VI].

De�nition 4.1. Let L be a �nite extension of K. Suppose [L : K]s = r, and that [L : K]i = pµ

if the characteristic is a prime number p > 0, and 1 otherwise.
Let σ1, . . . σr be the distinct embeddings of L in an algebraic closure K of K.
If α is an element of L, we de�ne its norm from E to K to be

NL|K(α) = NL
K(α) =

r∏
n=1

σn(αp
µ
) = (

r∏
n=1

σn(α))[L:K]i .

We present some properties without proving them.

Proposition 4.1. If L is separable over K, we have

NL
K(α) =

∏
σ

σ(α)

where the product is taken over the distinct embeddings of L in K over K.

Proposition 4.2. Let L be a �nite extension of K. Then the norm is a multiplicative homo-
morphism of L∗ into K∗.
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Theorem 4.3. Let L be a cyclic Galois extension of K, with Galois group G = Gal(L,K) and
with [L : K] = n. Suppose σ is a generator of G, i.e. G =< σ >. Let β ∈ L. The norm
NL

K(β) = N(β) is equal to 1, if and only if, there is a α ∈ L∗ such that

β =
α

σ(α)
.

Proof. Suppose �rst that such such an α exists. Then N(β) = N(α)
N(σ(α)) . But as N(.) is

a product over all automorphisms in G, applying σ simply permutes those. Hence N(σ(α)) =
N(α), i.e. N(β) = 1.
Next suppose N(β) = 1. We consider the map

id+ βσ + βσ(β)σ2 + . . .+ βσ(β) . . . σn−2(β)σn−1.

Each terms are distinct and so we can apply Artin's theorem (see [Lan02a, Theorem 4.1, �4,
Chapter VI]). Hence the above map is not identical null on L, i.e. there is a θ ∈ L and a α ∈ L∗
such that

α = θ + βσ(θ) + βσ(β)σ2(θ) + . . .+ βσ(β) . . . σn−2(β)σn−1(θ).

Then

βσ(α) = βσ(θ) + βσ(β)σ2(θ) + . . .+ βσ(β) . . . σn−1(β)σn(θ),

but as 1 = N(β) = βσ(β) . . . σn−1(β), and σn(θ) = θ, we have

βσ(α) = α.

And this concludes the proof. �

This is the "Theorem 90" of Hilbert. However Hilbert had some restrictions: The �eld K
was supposed to be a number �eld and the degree of the extension was a prime number.

4.2. Other formulation.
Let us consider L a Galois extension of a �eld K and its Galois group G. We use the notation
ασ = σ(α) for α ∈ L and σ ∈ G, and also the power notation, i.e. ατ+σ = τ(α) ◦ σ(α) for α ∈ L
and τ, σ ∈ G.
Let A be the G-module L∗. We denote by A1−G the subgroup of A generated by the element
of the form α1−σ (or α/σ(α)) for α ∈ A and σ ∈ G. And we write NA the kernel of the norm
map N : L∗ → L∗. We have then

A1−G ⊆ NA,

because N(ασ) = N(α) (see the de�nition of the norm). Next we can de�ne the quotient

H−1(G,A) = NA/A
1−G.

For any σ, τ ∈ A and each α ∈ A, we have

a1−στ = a1−σ+σ−στ = a1−σ(aσ)1−τ ∈ A1−σA1−τ .

And hence, in case G is a cyclic group with generator σ, we have

A1−G = A1−σ.

And so the Hilbert's Theorem 90 can be formulated as

Theorem 4.4. Let L be a cyclic �nite extension of K, with Galois group G.
Then H−1(G,K∗) = 1.

We will now look for a similitude between this formulation and the cohomology groups
presented earlier. Recall that the group of 1-cycles Z1(G,K∗) can be explicitly described as the
set of the maps f : G→ K∗ satisfying

f(τσ) = τ(f(σ))f(τ) = f(σ)τf(τ).
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If we suppose that G is cyclic with generator σ, f can be de�ned by the image of σ. In fact,
write ξ = f(σ), then

(6) f(σi) = f(σ)σ
i−1
f(σi−1) = ξ1+σ+σ2+...σi−1

,

for each i ∈ N. In addition, N(ξ) = ξ1+σ+...σn−1
= f(σn) = 1. Notice that the morphisms

f : G→ A with f(σ) = α1−σ are precisely the elements of B1(G,A). And so, if we consider the
map

ϕ : H1(G,A)→ H−1(G,A) : f 7→ ξ = f(σ),

we get an injective group homomorphism (�rst theorem of isomorphism for groups).
Now suppose ξ ∈ A with N(ξ) = 1, we construct an map f : G→ A using the equation 6. Then
this map is well-de�ned and belongs to Z1(G,A). This means we have the isomorphism

H1(G,A) ∼= H−1(G,A),

in case G is cyclic.
Hence the above theorem is equivalent to

Theorem 4.5. Let L be a cyclic �nite extension of K, with Galois group G.
Then H1(G,K∗) = 1.

4.3. Generalizations of Hilbert's theorem 90.
We present here one of the most general versions of the Hilbert's Theorem 90. However, there
are some other versions of this theorem, one can �nd one of them in [Sch02]. We do not present
this version in this project because we need a lot of new notions.

Theorem 4.6. Let L be a Galois extension of a �eld K, then H1(Gal(L,K),L∗) = 0.

Proof. Using theorem 3.6, it is enough to prove the theorem in case that L is a �nite
extension of K. In this case Gal(L,K) is a discrete group, hence there is no ambiguity about
the cohomology groups.
Recall that H1(Gal(L,K),L∗) = Z1(Gal(L,K),L∗)/B1(Gal(L,K),L∗), and this implies we only
have to show

Z1(Gal(L,K),L∗) ⊆ B1(Gal(L,K),L∗).
Note that for each f ∈ B1(Gal(L,K),L∗) there is α ∈ L∗ such that f = d0(α). And so f is a
morphism between Gal(L,K) and L∗ such that

f(σ) = σ(α)α−1

for each σ ∈ Gal(L,K) (notice that is equivalent to the expression in section 2.2 but with the
multiplicative notation).
Let g be in Z1(Gal(L,K),L∗). This means d1(g) = 0, then for each σ, τ ∈ Gal(L,K)

1L = d1(g)(σ, τ) = σg(τ) · g(στ)−1 · g(σ),

and hence

(7) g(στ) = σg(τ) · g(σ).

For α ∈ L∗ de�ne
A(α) =

∑
σ∈Gal(L,K)

g(σ)σ(α).

As all he automorphisms of Gal(L,K) are distinct, they are independent (result of the Galois
theory). And so there is a α ∈ L∗ such that A(α) 6= 0, denote A(α) = β.
For each σ ∈ Gal(L,K) we have

σ(β) =
∑

τ∈Gal(L,K)

σ(g(τ))στ(α)

53



and multiplying by g(σ) ∈ L∗:

g(σ) · σ(β) =
∑

τ∈Gal(L,K)

g(σ)σ(g(τ))στ(α)

7=
∑

τ∈Gal(L,K)

g(στ)στ(α)

Now this last sum is equal to β because στ runs through Gal(L,K). Rewriting the above
equation, we have

g(σ) = σ(β−1)(β−1)−1

for each σ ∈ Gal(L,K). And hence g ∈ B1(Gal(L,K),L∗). �

Next, a theorem linked to the above one.

Theorem 4.7. Let L be a Galois extension of a �eld K, then Hn(Gal(L,K),L+) = 0 for each
n ≥ 1.

Proof. Using theorem 3.6, it is enough to prove the theorem in case L is a �nite extension
of K. Next, we recall the normal basis theorem (see [Lan02a, Theorem 13.1, �13, Chapter VI]),
i.e. there is a θ ∈ L such that

{σ(θ) | σ ∈ Gal(L,K)}
is a basis of the L+ as a K vector space. This is equivalent to

L+ =
⊕
σ∈G

K+σ(θ).

But this direct sum is isomorphic to K[G] ∼= HomZ(ZG,K+), i.e. L+ is an induced ZG-module.
Thus Hn(G,L+) = {0}, for all n ≥ 0, by proposition 5.3 in chapter 4. �
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