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COUNTEREXAMPLES TO THE ZASSENHAUS CONJECTURE ON
SIMPLE MODULAR LIE ALGEBRAS

DIETRICH BURDE, WOLFGANG MOENS†, AND PILAR PÁEZ-GUILLÁN

Abstract. We provide an infinite family of counterexamples to the conjecture of Zassenhaus
on the solvability of the outer derivation algebra of a simple modular Lie algebra. In fact, we
show that the simple modular Lie algebras H(2; (1, n))(2) of dimension 3n+1−2 in characteristic
p = 3 do not have a solvable outer derivation algebra for all n ≥ 1. For n = 1 this recovers the
known counterexample of psl3(F). We show that the outer derivation algebra of H(2; (1, n))(2)

is isomorphic to (sl2(F)nV (2))⊕Fn−1, where V (2) is the natural representation of sl2(F). We
also study other known simple Lie algebras in characteristic three, but they do not yield a new
counterexample.

1. Introduction

We study a conjecture by Hans Zassenhaus, which says that the outer derivation algebra
Out(g) is solvable for all simple modular Lie algebras g, over a field F of characteristic p > 0.
Zassenhaus posed this conjecture in 1939 in his work [22]. We have collected several results
on this conjecture from the literature, and proved some results in [8]. For simple modular Lie
algebras over an algebraically closed field of characteristic p > 3 the Zassenhaus conjecture
is true. The outer derivation algebra Out(g) is solvable of derived length at most three. In
characteristic p = 2 and p = 3, however, there is a counterexample known in each case. For
p = 3 this is a simple constituent of the classical Lie algebra g2, namely psl3(F). For p = 2 it
is a simple constituent of dimension 26 of the classical Lie algebra f4.

One motivation for us to study the Zassenhaus conjecture comes from commutative post-Lie
algebra structures, or CPA-structures, on finite-dimensional Lie algebras over a field F, see
[8]. Indeed, every perfect modular Lie algebra in characteristic p > 2 having a solvable outer
derivation algebra admits only the trivial CPA-structure. Here CPA-structures are a special
case of post-Lie algebra structures on Lie algebras, which have been studied in the context
of geometric structures on Lie groups, étale representations of algebraic groups, deformation
theory, homology of partition posets, Kozul operads, Yang-Baxter equations, and many other
topics. For references see [3, 4, 5, 6, 7, 21].

In this article we provide an infinite family of new counterexamples to the Zassenhaus conjecture
in characteristic 3. We show that the Hamiltonian Lie algebras H(2; (1, n))(2), which are central
simple modular Lie algebras in characteristic 3 of dimension 3n+1−2, are counterexamples for all
n ≥ 1. For n = 1 we have the isomorphism H(2; (1, 1))(2) ∼= psl3(F), which recovers the known
counterexample in characteristic 3. We show that there are no other counterexamples among
the graded Hamiltonian Lie algebras H(2r;n)(2) in characteristic p ≥ 3. We also determine
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the structure of the outer derivation algebra of H(2r;n)(2) in characteristic p = 3. Finally,
we study the Zassenhaus conjecture for known simple Lie algebras of non-standard type over
an algebraically closed field of characteristic three, such as Brown’s algebras Br8 and Br29,
Kostrikin’s series L(ε, δ, ρ) of dimension 10, the Ermolaev algebras R(n), the Brown-Kuznetsov
algebras T (n) and several series of new simple Lie algebras of Skryabin. We do not find new
counterexamples there.

2. Preliminaries

Let g be a finite-dimensional Lie algebra over an arbitrary field F. Denote by Der(g) the
derivation algebra of g and by ad(g) the ideal of inner derivations of the Lie algebra Der(g).
The quotient algebra Out(g) = Der(g)/ad(g) is called the algebra of outer derivations of g.
Hans Zassenhaus posed in 1939 in his work [22] on page 80, between “Satz 7” and “Satz 8”,
the following conjecture.

Conjecture 2.1 (Zassenhaus). The outer derivation algebra Out(g) of a simple Lie algebra g
in prime characteristic is solvable.

For the conjecture we sometimes assume that g is defined over an algebraically closed field
of characteristic p > 0, because then we can apply the classification results. For characteristic
zero, the corresponding conjecture is true, because then Out(g) ∼= H1(g, g) = 0 for a simple Lie
algebra g by the first Whitehead Lemma. Clearly, this need not be true in prime characteristic,
and indeed the outer derivation algebra of a simple modular Lie algebra need not be trivial in
general.

Remark 2.2. The Zassenhaus conjecture for Lie algebras can be seen as an analogue of the
Schreier conjecture for finite groups. The Schreier conjecture asserts that the outer automor-
phism group of every finite simple non-abelian group is solvable. It was proposed by Otto
Schreier in 1926 and is known to be true as a result of the classification of finite simple groups.
Up to now no simpler proof is known for it.

What is known about the Zassenhaus conjecture? There are many different results in the
literature, in particular, in the context of the classification of simple modular Lie algebras over
an algebraically closed field of characteristic p > 3. Let us summarize the main results, which
we have collected in [8]. A simple modular Lie algebra in the classification is either of classical
type, Cartan type, or of Melikian type in characteristic p = 5. The results are as follows.

Proposition 2.3. Let g be a classical simple Lie algebra over a field F of characteristic p > 3.
Then Out(g) = 0 unless g = psln+1(F) with p | n + 1 in which case Der(g) ∼= pgln+1(F) and
Out(g) ∼= F.

Proposition 2.4. Let g be a simple Lie algebra of Cartan type over a field of characteristic
p > 3. Then Out(g) is solvable. More precisely, Out(g) is solvable of derived length d ≤ 1 for
type W and type K, of derived length d ≤ 2 for type S and of derived length d ≤ 3 for type H.

Proposition 2.5. LetM =M(n1, n2) be a Melikian algebra of dimension 5n1+n2+1 over a field
of characteristic 5. Then Out(M) is abelian.

So the Zassenhaus conjecture has a positive answer for algebraically closed fields of charac-
teristic p > 3:
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Theorem 2.6. Let g be a simple modular Lie algebra over an algebraically closed field of
characteristic p > 3. Then Out(g) is solvable of derived length at most three.

Recall that a Lie algebra g over K is called central simple if its centroid coincides with K.
Here the centroid is the space of all K-linear maps ϕ : g→ g commuting with all inner deriva-
tions. If g is a central simple Lie algebra over an arbitrary field F of characteristic p > 3, then
g ⊗F F is simple over F. Hence the Zassenhaus conjecture also holds for central simple Lie
algebras over an arbitrary field of characteristic p > 3.

However, in characteristic p = 3 there is one known counterexample to the Zassenhaus conjec-
ture. The same is true for p = 2. We will show in the next section that there exists a whole
family of counterexamples for p = 3 of dimension 3n+1 − 2 for all n ≥ 1.

3. Simple modular Lie algebras in characteristic three

We want to study the Zassenhaus conjecture for simple modular Lie algebras of characteristic
p = 3. For the theory of modular Lie algebras, see for example [18]. First we recall that there
is a counterexample, see [8], Proposition 3.5.

Proposition 3.1. Let F be a field of characteristic p = 3. Then the derivation algebra of
g = psl3(F) is isomorphic to the exceptional Lie algebra g2, and the quotient by ad(g) ∼= g is
given by Out(g) ∼= g. In particular the outer derivation algebra of g is simple and non-solvable.

The next question then is, whether or not there are more counterexamples in characteristic
p = 3. Here we distinguish Lie algebras of standard type (i.e., Lie algebras of classical or Cartan
type) and Lie algebras of non-standard type.

3.1. Classical type. For p > 3 the list of classical simple modular Lie algebras is given by

sln(F), p - n, psln(F), p | n, son(F), sp2n(F), g2, f4, e6, e7, e8.

For p = 3 these Lie algebras are still simple, except for g2 and e6. In fact, g2 has a simple ideal
I ∼= psl3(F), generated by the short roots, with g2/I ∼= I. This leads to the counterexample
mentioned above. The algebra e6 has a 1-dimensional center so that e6/z is a simple modular
Lie algebra of dimension 77 in characteristic 3. Its derivation algebra is abelian, so that we
do not obtain another counterexample. It turns out that for classical simple Lie algebras
in characteristic 3 there are no counterexamples, except for g2/I ∼= psl3(F) discussed above.
Indeed, we have the following results, see [8]:

Proposition 3.2. Let F be a field of characteristic 3 and g be a simple Lie algebra of classical
type different from psl3m(F) and e6/z. Then Out(g) = 0.

Proposition 3.3. Let F be a field of characteristic 3. Then we have Der(psl3m(F)) ∼= pgl3m(F)
for all m ≥ 2. Hence Out(psl3m(F)) ∼= F is abelian for all m ≥ 2. Also Out(e6/z) is abelian.

3.2. Cartan type. The list of simple modular Lie algebras of Cartan type for p > 3 is given
by the graded simple Lie algebras of Cartan type

W (m;n), S(m;n)(1), H(2r;n)(2), K(2r + 1;n)(1),

and their filtered deformations. Here m ∈ N, n := (n1, . . . , nm) ∈ Nm and |n| := n1 + · · ·+ nm.

These algebras are called Witt algebras, special algebras, Hamiltonian algebras and contact
algebras. They are the finite-dimensional versions defined over a field F of characteristic p > 0
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of the infinite-dimensional Lie algebras of characteristic zero occurring in E. Cartan’s work of
1909 on pseudogroups in differential geometry. For the precise definition of these algebras see
H. Strade’s book [20]. All these algebras are still simple for characteristic p = 3, where we need
m ≥ 3 for the special algebras. The dimensions of these algebras are given by

dimW (m;n) = m · p|n|,
dimS(m;n)(1) = (m− 1)(p|n| − 1)

dimH(2r;n)(2) = p|n| − 2,

dimK(2r + 1;n)(1) =

{
p|n|, if 2r + 1 6≡ −3 mod p,

p|n| − 1, if 2r + 1 ≡ −3 mod p.

The derivation algebras have been computed for a field F of characteristic p ≥ 3, see Theorem
7.1.2 in [20]. In particular, the result for p > 3 still holds for p = 3, except for the Hamiltonian
algebras. So it follows from the work of Celousov [9], that the Zassenhaus conjecture is true
for Witt algebras, special algebras and contact algebras for an algebraically closed field of
characteristic p ≥ 3. However, there are new counterexamples in the Hamiltonian case for
p = 3. The following table gives a survey.

g conditions dim Der(g) dim Out(g) conjecture

W (m;n) p ≥ 2 m(p|n| − 1) + |n| |n| −m X

S(m;n)(1) p > 0,m ≥ 3 (m− 1)(p|n| − 1) + |n|+ 1 |n|+ 1 X

H(2; (1, 1))(2) p = 3 14 7 −
H(2; (1, n2))

(2) p = 3, n2 > 1 3n2+1 + n2 + 2 n2 + 4 −
H(2r;n)(2) p > 3, or p = 3, r > 1, p|n| + |n| |n|+ 2 X

or p = 3, r = 1, 1 < n1 ≤ n2

K(2r + 1;n)(1) p > 2, p - 2r + 4 p|n| + |n| − 2r − 1 |n| − (2r + 1) X

K(2r + 1;n)(1) p > 2, p | 2r + 4 p|n| + |n| − 2r − 1 |n| − 2r X

Note that we also have

H(2; (1, n2))
(2) ∼= H(2; (n1, 1))(2)

for p ≥ 3, see [20], (3) on page 199.

We have first guessed these results for p = 3 in low dimensions by doing a computation with
GAP. In fact, we computed the dimensions of the derived series of the outer derivation algebras
for the Hamiltonian algebras H(2r;n)(2) in a few cases. The following table shows the results.
The last computation was only possible on the CoCalc server of Anton Mellit, with 192 GB
RAM.
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g dim(g) dim Der(g) dim Out(g)(i) Out(g)

H(2; (1, 1))(2) 7 14 (7, 7, . . .) simple

H(2; (1, 2))(2) 25 31 (6, 5, 5, . . .) non-solvable

H(2; (1, 3))(2) 79 86 (7, 5, 5, . . .) non-solvable

H(2; (2, 2))(2) 79 85 (6, 3, 1, 0) solvable

H(4; (1, 1, 1, 1))(2) 79 85 (6, 4, 0) solvable

H(2; (2, 3))(2) 241 248 (7, 3, 1, 0) solvable

In order to prove our results, let us introduce further notations. Let F be a field of characteristic
p > 2. Denote by O(m) the associative and commutative algebra with unit element over F
defined by generators x

(r)
i for r ≥ 0 and 1 ≤ i ≤ m, and relations

x
(0)
i = 1, x

(r)
i x

(s)
i =

(
r + s

r

)
x
(r+s)
i

for r, s ≥ 0. Put xi := x
(1)
i and x(a) := x

(a1)
1 · · ·x(am)

m for a tuple a = (a1, . . . , am) ∈ Nm. Then
the divided power algebra of dimension p|n| is defined by

O(m;n) := span{x(a) | 0 ≤ ai < pni}.

The product is given by

x(a)x(b) :=

(
a+ b

b

)
x(a+b),

where
(
a
b

)
=
∏m

i=1

(
ai
bi

)
and x(c) = 0 if ci ≥ pni for some ci. For each i denote by ∂i the derivation

of the algebra O(m) given by

∂i(x
(r)
j ) = δi,jx

(r−1)
j .

The generalized Jacobson-Witt algebra is defined by

W (m,n) :=
m∑
i=1

O(m;n)∂i,

together with the Lie bracket

[x(a)∂i, x
(b)∂j] =

(
a+ b− εi

a

)
x(a+b−εi)∂j −

(
a+ b− εj

b

)
x(a+b−εj)∂i

where εi = (δi,1, . . . , δi,m) ∈ Nm.

Consider the linear operator DH : O(2r;n)→ W (2r;n) defined by

DH(x(a)) =
2r∑
i=1

σ(i)∂i(x
(a))∂i′ ,

where

σ(i) :=

{
1, if 1 ≤ i ≤ r,

−1, if r + 1 ≤ i ≤ 2r,
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and

i′ :=

{
i+ r, if 1 ≤ i ≤ r,

i− r, if r + 1 ≤ i ≤ 2r.

The Hamiltonian algebra is defined by

H(2r;n)(2) = span{DH(x(a)) | 0 < a < τ(n)},

where τ(n) = (pn1 − 1, . . . , pnm − 1) ∈ Nm. The Lie bracket is given by

[DH(x(a)), DH(x(b))] = DH(DH(x(a))(x(b))).

The main result of this paper is that we obtain an infinite family of counterexamples to the
Zassenhaus conjecture, which contains the known counterexample psl3(F) as the smallest case
n = 1:

Theorem 3.4. For all n ≥ 1 the simple modular Lie algebra H(2; (1, n))(2) of dimension 3n+1−2
in characteristic 3 does not have a solvable outer derivation algebra.

Proof. We will use the basis of g = H(2; (1, n))(2) given above, for the special case of p = 3,
m = 2, and n = (n1, n2) = (1, n). For x(α) we will write xa1x

b
2. Then the explicit Lie brackets

are given by

[DH(xa1x
b
2), DH(xc1x

d
2)] = fa,b,c,d ·DH(xa+c−11 xb+d−12 ),

where

fa,b,c,d := eaed ·
(
a+ c− 1

a− 1

)(
b+ d− 1

d− 1

)
− ebec ·

(
a+ c− 1

c− 1

)(
b+ d− 1

b− 1

)
,

with ek := 1− δk,0.
Let us order the basis elements DH(xa1x

b
2) of g with respect to the formal exponents as follows:

DH(x1) ≺ DH(x21) ≺ DH(x2) ≺ DH(x1x2) ≺ DH(x21x2) ≺ · · · ,

so that we can write a general inner derivation D ∈ Der(g) as

α · ad(DH(x1)) + β · ad(DH(x21)) + γ · ad(DH(x2)) + δ · ad(DH(x1x2)) + ε · ad(DH(x21x2)) + · · ·

Using the Lie brackets, the matrix of D with respect to this ordered basis is of the form

D =



−δ −γ
−ε δ 0

0 δ −γ
ε 0 −γ

ε −δ 0
0 −δ

...
...

...
...

...
...

0
0
0 0 0


.

For n = 1 we have g = H2(2; (1, 1))(2) ∼= psl3(F), where we already know that Out(g) ∼= g is
not solvable, see Proposition 3.1. So we may assume that n > 1. Consider the linear maps
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E,F,H ∈ End(g) defined by

E : g→ g, DH(xa1x
b
2) 7→ δa,2 ·DH(xb+1

2 ),

F : g→ g, DH(xa1x
b
2) 7→ δa,0 ·DH(x21x

b−1
2 ),

H : g→ g, DH(xa1x
b
2) 7→ (1− a) ·DH(xa1x

b
2).

We claim that E,F,H ∈ Der(g) are derivations of g. This follows easily from a direct compu-
tation. Indeed, we have

E([DH(xa1x
b
2), DH(xc1x

d
2)]) = fa,b,c,d · E(DH(xa+c−11 xb+d−12 ))

= fa,b,c,d · δa+c−1,2 ·DH(xb+d2 )

=

(
b+ d

b

)
· δ(a,c),(1,2) ·DH(xb+d2 )−

(
b+ d

b

)
· δ(a,c),(2,1) ·DH(xb+d2 )

= −δa,2ec ·
(
b+ d

b

)
DH(xc−11 xb+d2 ) + δc,2ea ·

(
b+ d

b

)
DH(xa−11 xb+d2 )

= δa,2 · f0,b+1,c,d ·DH(xc−11 xb+d2 ) + δc,2 · fa,b,0,d+1 ·DH(xa−11 xb+d2 )

= [δa,2 ·DH(xb+1
2 ), DH(xc1x

d
2)] + [DH(xa1x

b
2), δc,2 ·DH(xd+1

2 )]

= [E(DH(xa1x
b
2)), DH(xc1x

d
2)] + [DH(xa1x

b
2), E(DH(xc1x

d
2))].

Here we have used that 2 = −1 in F and Pascal’s identity(
b+ d− 1

d− 1

)
+

(
b+ d− 1

d

)
=

(
b+ d

d

)
.

A similar computation shows that also F and H are derivations. On the other hand, this
follows anyway, because F coincides with the restriction of the inner derivation ad(DH(x31)) of
the larger Lie algebra H(2; (1, n)), and H coincides with the commutator [E,F ], and hence is
a derivation. It is easy to see that we have

[E,H] = E = −2E, [F,H] = −F = 2F, [E,F ] = H.

Thus (E,F,H) forms an sl2(F)-triple in Der(g), i.e., the subalgebra s of Der(g) generated by
E,F,H is isomorphic to sl2(F). Now the matrix of λE + µF + νH with respect to the ordered
basis of g has the form

D =



0
−ν µ
λ ν

0
−ν µ
λ ν

...
...

...
...

...
...

...
...

...


.

Comparing this with the form for the general inner derivationD we conclude that the subalgebra
s satisfies s ∩ ad(g) = 0. Hence Out(g) contains the subalgebra

(s + ad(g))/ad(g) ∼= s/s ∩ ad(g) ∼= s ∼= sl2(F).
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Thus Out(g) is not solvable. �

So we have obtained an infinite family of counterexamples. In addition, we can be more
precise about the structure of the outer derivation algebra of H(2; (1, n))(2). Denote by V (2)
the natural representation of sl2(F). Then the Lie algebra sl2(F)n V (2) in characteristic 3 has
a basis (e1, . . . , e5) with Lie brackets

[e1, e2] = e3, [e2, e3] = 2e2, [e3, e4] = e4,

[e1, e3] = e1, [e2, e4] = e5, [e3, e5] = 2e5.

[e1, e5] = e4,

Theorem 3.5. Let n > 1. Then the outer derivation algebra of H(2; (1, n))(2) in characteristic
3 is isomorphic to (sl2(F) n V (2))⊕ Fn−1.

Proof. Let g = H(2; (1, n))(2). According to [20], Theorem 7.1.2, (3) part (b) on page 358 we
have

Der(g) ∼= CH(2; (1, n)) +
n−1∑
i=1

F · ∂3i2 + F · d,

where d is the derivation which we called F in the proof of Theorem 3.4, and

CH(2; (1, n)) = H(2; (1, n))⊕ F · (x1∂1 + x2∂2).

We have dimCH(2; (1, n)) = 3n+1 + 2, see [14, page 273], so that we obtain dim Der(g) =
3n+1 + n+ 2 and dim Out(g) = n+ 4. Consider the linear maps given by

V : L→ L, DH(xa1x
b
2) 7→ δb,0 ·DH(xa−11 x3

n−1
2 ),

W : L→ L, DH(xa1x
b
2) 7→ δa+b,1 · (−1)a ·DH(xa+1

1 xb+3n−2
2 ).

They are derivations of g, because each of them is a restriction of inner derivations of the larger
Lie algebra H(2; (1, n)) to g, namely of ad(DH(x3

n

2 )), respectively of ad(DH(x21x
3n−1
2 )). By a

computation we see that

[E,W ] = V, [F, V ] = W, [H,V ] = V, [H,W ] = 2W,

where E,F,H are the derivations of g given in the proof of Theorem 3.4. Hence the subalgebra
t of Der(g) generated by E,F,H, V,W is isomorphic to sl2(F) n V (2).
The matrix of λE + µF + νH + ηV + ξW with respect to the ordered basis of g is of the form

D =



0
−ν µ
λ ν

0
−ν µ
λ ν

...
...

...
...

...
...

...
...

...

−ξ 0 0
. . .

η 0 0
. . .

0 η ξ
. . .


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Comparing with the matrix D of inner derivations (see the proof of Theorem 3.4) we obtain
t ∩ ad(g) = 0, so that Out(g) has a subalgebra isomorphic to sln(F) n V (2). We claim that

the derivations ∂3
i

2 belong to the center of Out(g). Indeed, they commute pairwise, and they
commute with E,F,H. Furthermore we have, using also [20, Lemma 2.1.2(1), page 61],

[∂3
i

2 , V ] = ad(D(x3
n−3i

2 )),

[∂3
i

2 ,W ] = ad(D(x21x
3n−3i−1
2 )),

for i = 1, . . . , n− 1. This implies that Out(g) ∼= t⊕ Fn−1, where t ∼= sl2(F) n V (2). �

We will show now that the remaining cases for the Hamiltonian Lie algebras H(2r;n)(2) do
not provide new counterexamples to the Zassenhaus conjecture for p = 3. We have two cases,
namely first r > 1, and secondly r = 1 and 1 < n1 ≤ n2, where n = (n1, n2) ∈ N2. Let h3(F)
be the Heisenberg Lie algebra over F with basis {e1, e2, e3} and Lie bracket [e1, e2] = e3. Recall
that a Lie algebra over a field F is called almost abelian if it is nonabelian and has an ideal of
codimension 1. Hence every almost abelian Lie algebra can be written as Fr oF, and is 2-step
solvable.

Theorem 3.6. Let g be the Hamiltonian Lie algebra H(2r;n)(2) over a field F of characteristic
p = 3. Then, for r > 1 the outer derivation algebra Out(g) is 2-step solvable, and for r = 1,
1 < n1 ≤ n2, it is 3-step solvable. More precisely, we have

Out(g) ∼=


(h3(F) o F)⊕ F|n|−2, if r = 1, 1 < n1 ≤ n2,

(F2r+1 o F)⊕ F|n|−2r, if r > 1, r ≡ 0 mod 3,

(F2r+1 o F)⊕ F|n|−2r, if r > 1, r ≡ 1 mod 3,

(F2r o F)⊕ F|n|−2r+1, if r > 1, r ≡ 2 mod 3.

Here in the first case F acts on h3(F) by the derivation D = diag(1, 1,−1), in the second case
F acts on F2r+1 by the derivation D = id, in the third case F acts on F2r+1 by the derivation
D = diag(1, . . . , 1,−1), and in the last case F acts on F2r by the derivation D = id.

Proof. Let us write xa for x(a) = xa11 · · ·xamm and

τ = (3n1 − 1, . . . , 3nm − 1) ∈ Nm.

By [20, Theorem 7.1.2(3)(b), page 358], the structure of DerH(2r;n)(2) is given by

DerH(2r;n)(2) ∼= CH(2r;n)(2) ⊕
2r∑
i=1

∑
0<ji<ni

F · ∂jii ,

where

CH(2r;n)(2) = H(2r;n)⊕ F ·

(
2r∑
i=1

xi∂i

)
.

So we obtain the following dimensions:

dim DerH(2r;n)(2) = dimH(2r;n) + 1 + |n| − 2r

= (3|n| − 2 + 2r + 1) + 1 + |n| − 2r

= 3|n| + |n|,
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see also [14, page 273]. So we have

dim OutH(2r;n)(2) = dim DerH(2r;n)(2) − dimH(2r;n)(2)

= 3|n| + |n| − (3|n| − 2)

= |n|+ 2.

Consider the restrictions to H(2r;n)(2) of the derivations ad(DH(xp
ni

i )) and ad(DH(xτ )) of the
larger Lie algebra H(2r;n). They are given explicitly as the linear maps

Ai : H(2r;n)(2) → H(2r;n)(2), DH(xa) 7→ δai,0 · σ(i) ·DH(xa+(τi−ai)εi−εi′ )

B : H(2r;n)(2) → H(2r;n)(2), DH(xa) 7→ δ|a|,1 · σ(k) ·DH(xτ−εk)

for i = 1, . . . , 2r, and where k ∈ {1, . . . , 2r} is the only index such that ak′ 6= 0. Recall the
definition of k′ before Theorem 3.4. It is clear that Ai, B ∈ DerH(2r;n)(2). Moreover the
derivations C :=

∑2r
i=1 xi∂i and Di,ji := ∂jii for i = 1, · · · , 2r and 0 < ji < ni for each i are

explicitly given by

C : H(2r;n)(2) → H(2r;n)(2), DH(xa) 7→ (|a| − 2) ·DH(xa)

Di,ji : H(2r;n)(2) → H(2r;n)(2), DH(xa) 7→ DH(xa−p
jiεi).

We claim that

{A1, . . . , A2r, B, C,D1,1, . . . D1,n1−1, . . . , D2r,1, . . . , D2r,n2r−1}

are representatives of a basis of OutH(2r;n)(2). Its cardinality is given by 2r+2+
∑2r

i=1 ni−2r =
|n|+2. The arguments are the same as used in the proofs of Theorem 3.4 and Theorem 3.5, i.e.,
one can easily check that the intersection of the linear span of these derivations and adH(2r;n)(2)

is zero. Indeed, this follows just from comparing the images of DH(xi) for i = 1, . . . , 2r, under
a general inner derivation and

∑2r
i=1 αiAi +βB+γC+

∑2r
i=1

∑
0<ji<ni

δi,jiDi,ji . The projections

onto OutH(2r;n)(2) of Ai, B, C and Di,ji are then |n| + 2 linearly independent derivations
which therefore constitute a basis of OutH(2r;n)(2).

It is straightforward to compute the Lie brackets between the representatives in DerH(2r;n)(2)

of the basis vectors of OutH(2r;n)(2). The nonzero brackets are given as follows, with 1 ≤ i <
i′ ≤ 2r,

[Ai, Ai′ ] =

{
B if r = 1

adDH(xτii x
τi′
i′ ) if r > 1

[Ai, C] = −Ai,

[Ai, Di,ji ] = −adDH(xτi−p
ji+1

i ),

[B,C] = (2r − 1)B,

[B,Di,ji ] = −adDH(xτ−p
jiεi).

Note that [B,C] = 0 for the case r ≡ 2 mod 3. For r > 1, the Lie brackets yield a direct
sum of an almost abelian Lie algebra F2r+1 o F (or F2r o F for r ≡ 2 mod 3), and an abelian
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Lie algebra. Hence Out(g) is 2-step solvable in this case. For r = 1 we have [C,B] = −B,
[C,Ai] = Ai for i = 1, 2, and [A1, A2] = B, so that

OutH(2r;n)(2) ∼= span(A1, A2, B, C)⊕ span(Di,ji)
∼= (h3(F) o F)⊕ F|n|−2.

The ideal a = span(A1, A2, B, C) satisfies a(1) = span(A1, A2, B), a(2) = span(B) and a(3) = 0.
Thus Out(g) is 3-step solvable for r = 1. �

3.3. Non-standard type. There are several simple modular Lie algebras over a field of char-
acteristic 3 that are neither of classical nor Cartan type. For example, the 1-parameter family
of 10-dimensional Kostrikin algebras L(ε), the Ermolaev algebras R(n), the Brown-Kuznetsov
algebras T (n), and the Skryabin algebras X(n) and Y (n). Chan Nam Zung studied their prop-
erties in [10], published in 1993. He computed the outer derivation algebras of these algebras.
It turns out that we do not obtain any new counterexample to the Zassenhaus conjecture. The
following table gives a survey.

g conditions dim(g) dim Out(g) Out(g)

L(ε) ε ∈ F 10 0 abelian

R(n) n = (n1, n2) ∈ N2 3|n|+1 − 1 |n|+ 1 abelian

T (n) n ∈ N 2 · 3n+1 n− 1 abelian

X(n) n = (n1, n2, n3) ∈ N3 3|n|+1 − 4 |n|+ 1 solvable

Y (n) n = (n1, n2, n3) ∈ N3 2 · 3|n|+1 |n| − 3 abelian

However, there are three further infinite families of simple Skryabin algebras in characteristic
three, denoted by Z ′(n), and Xi(n, ω), for i = 1, 2 of type 1 and type 2, see [19]. Zung does
not determine the outer derivation algebras of these families in [10]. He mentions that the
determination for Z ′(n) is still an open problem. However, this was solved 2001 in [15]. The
outer derivation algebra is abelian. Unfortunately we could not find a result for the algebras
Xi(n, ω). But we believe that the outer derivation algebra will be solvable, too. Let us explain
the result of [15] on the derivation algebra of Z ′(n). In the construction of the Lie algebra
Z ′(n), Skryabin introduces a Lie algebra Z(n) of dimension 3|n|+2 + 1 with

Z ′(n) = [Z(n), Z(n)].

Using this notation, the result of [15] is as follows, see Corollary 1 on page 3925.

Proposition 3.7. Let g = Z ′(n), with n = (n1, n2, n3) ∈ N. Then we have

Der(g) ∼= g0 + Z(n).

Here g0
∼= W (3, n) and g0 denotes the p-closure of ad(g0) in Der(g). This implies that Out(g)

is abelian, since
[Der(g),Der(g)] ⊆ [Z(n), Z(n)] = Z ′(n) ∼= ad(g).

Furthermore we have the 10-dimensional simple Lie algebras L(ε, δ, ρ) in characteristic three of
Kostrikin [13], which are deformations of the algebras L(ε). Here it is known that all derivations
are inner. All known simple Lie algebras of dimension 10 for p = 3 can be realized within the
family L(ε, δ, ρ), see [13], but a classification up to isomorphism is still not known.

Finally we have the 8-dimensional and the 29-dimensional simple Lie algebras Br8 and Br29 of
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Brown [2, 1]. Both Lie algebras are central simple. A direct computation shows that the outer
derivation algebra is abelian in each case. Surprisingly, Br8 is not mentioned in later works on
simple Lie algebras of characteristic three. Thus, for the convenience of the reader, let us give
all Lie brackets of Br8 explicitly, with respect to the basis

(x1, . . . , x8) = (K12, K21, K13, K31, K23, K32, H,K)

introduced in [2] on page 440:

[x1, x2] = x7, [x2, x6] = 2x4, [x4, x5] = 2x2,

[x1, x4] = 2x6, [x2, x7] = 2x2, [x4, x7] = x4,

[x1, x5] = x3, [x2, x8] = 2x6, [x5, x6] = x7,

[x1, x7] = x1, [x3, x4] = 2x7, [x5, x7] = x5,

[x2, x3] = x5, [x3, x6] = x1, [x5, x8] = x1,

[x2, x5] = x8, [x3, x7] = 2x3, [x6, x7] = 2x6.

This algebra is central simple and non-restricted. Its outer derivation algebra is 2-dimensional
and abelian. Note that Br8 is isomorphic to a deformed Hamiltonian algebra H(2; (1, 1), ω),

where ω = (1 + x
(2)
1 x

(2)
2 )(dx1 ∧ dx2). For the family of simple deformed Hamiltonian algebras

H(2r;n, ω) of dimension p|n| − 1 see [20], pp. 340− 341. The following table gives a survey of
the preceding discussion.

g conditions dim(g) dim Out(g) Out(g)

Br8 − 8 2 abelian

L(ε, δ, ρ) ε, δ, ρ ∈ F 10 0 abelian

Br29 − 29 0 abelian

Z ′(n) n = (n1, n2, n3) ∈ N3 3|n|+2 − 2 |n| abelian

X1(n, ω) n = (n1, n2, n3) ∈ N3 3|n|+1 − 3 ? ?

X2(n, ω) n = (n1, n2, n3) ∈ N3 3|n|+1 − 1 ? ?

There are other simple Lie algebras for p = 3, which we have not studied here, e.g., deformed
Hamiltonian and special Lie algebras of Cartan type for p = 3, or other families, where no
explicit realization is known.

Remark 3.8. We also studied the Zassenhaus conjecture for simple Lie algebras over a field
of characteristic p = 2. Here it was already known since 1955 that a simple constituent J of
dimension 26 of the Lie algebra f4 provides a counterexample, see [17], and [8] for references.
Note that J is given as the simple ideal in f4 generated by the short roots. We tried to find an
infinite family of simple Lie algebras such that the algebra J is the lowest-dimensional member.
One possibility is the family of simple Lie algebras si(sle(n)) of dimension 22n−1 − 2n−1 − 2 for
n ≥ 3, see [12], Lemma 2.2.2. This algebra is denoted by sh(2n;m) in Purslow’s thesis [16],
Theorem 5.4.3. We used Purslow’s construction for n = 4, see [16] pp. 138− 141, to compute
the outer derivation algebra of this 118-dimensional algebra. It is a solvable Lie algebra of
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derived length 5. So it is not a counterexample, but the derived length is higher than in all
other known cases. For n = 5 the algebra has dimension 494, but we could not compute the
derivation algebra so far.

We also tested the table of B. Eick in [11] with known simple Lie algebras up to dimension
20, but found no counterexample there. There are various families of simple Lie algebras of
non-standard type, and it seems to be very complicated to obtain an overview on the Zassen-
haus conjecture here. So far, all families we have been able to study did not yield a new
counterexample.
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