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CHAPTER 1

Introduction

Homology and cohomology has its origins in topology, starting with the work of Riemann
(1857), Betti (1871) and Poincaré (1895) on “homology numbers” of manifolds. Although
Emmy Noether observed in 1925 that homology was an abelian group rather than just Betti
numbers, homology remained a part of the realm of topology until about 1945. During the
period of 1940 − 1955 came the rise of algebraic methods. The homology and cohomology of
several algebraic systems were defined and explored: Tor and Ext for abelian groups, homology
and cohomology of groups and Lie algebras, the cohomology of associative algebras, sheaves,
sheaf cohomology and spectral sequences. At this point the book of Cartan and Eilenberg
(1956) crystallized and redirected the field completely. Their systematic use of derived functors,
defined by projective and injective resolutions of modules, united all the previously disparate
homology theories. Several new fields grew out of this: homological algebra, K-theory, Galois
theory, étale cohomology of schemes and so on. Much could be said also on newer developments
in homological algebra.

Concerning group cohomology, the low dimensional cohomology of a group G was already
classically studied in other guises, long before the formulation of group cohomology in 1943−
1945 by Eilenberg and MacLane. For example, classical objects were

H0(G,A) = AG, H1(G,Z) = G/[G,G]

and for G finite, the character group

H2(G,Z) = H1(G,C×) = Hom(G,C×)

Also the group H1(G,A) of crossed homomorphisms of G into a G-module A is classical as
well: Hilbert’s Theorem 90 from 1897 is actually the calculation that H1(G,L×) = 0 when G is
the Galois group of a cyclic field extension L/K. One should also mention the group H2(G,A)
which classifies extensions over G with normal abelian subgroup A via factor sets. The idea
of factor sets appeared already in Hölders paper in 1893 and again in Schur’s paper in 1904
on projective representations G→ PGLn(C). Schreier’s paper in 1926 was the first systematic
treatment of factor sets, without the assumption that A is abelian.

Lie algebra cohomology was invented by Elie Cartan, Claude Chevalley und Samuel Eilen-
berg around 1950 to compute the de Rham cohomology of a compact Lie group. Cartan had
shown that the computation of the cohomology of Lie groups can be reduced to the coho-
mology of compact Lie groups. Chevalley and Eilenberg defined in [7] first the Lie algebra
cohomology Hn(g,R) with the trivial g-module R, by transfering the de Rham cohomology
Hn
dR(G,R) of a connected compact Lie group to its Lie algebra. This yields an isomorphism

Hn
dR(G,R) ∼= Hn(g,R), where g is the Lie algebra of G. To study the cohomology Hn(G/H,R)

of homogeneous spaces G/H of G, Chevalley und Eilenberg defined the Lie algebra cohomology
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2 1. INTRODUCTION

Hn(g,M) for a general g-Modul M . Furthermore the article [7] already contains the interpre-
tation of H2(g,M) by Lie algebra extensions of g by M , as well as the Whitehead Lemmas in
the form H1(g,M) = H2(g,M) = 0 for finite-dimensional semisimple Lie algebras over a field
of characteristic zero and finite-dimensional g-modules M .



CHAPTER 2

Group extensions

Given a group G and a normal subgroup N of G we may decompose G in a way into N
and G/N . The study of group extensions is related to the converse problem. Given N and
Q, try to understand what different groups G can arise containing a normal subgroup N with
quotient G/N ∼= Q. Such groups are called extensions of N by Q. If N is abelian, then there is
a natural Q-action on N , making N a Q-module. In that case the cohomology group H2(Q,N)
classifies the equivalence classes of such group extensions which give rise to the given Q-module
structure on N .

Group homology and cohomology belongs to the field of homological algebra. This deals with
category theory and in particular with the theory of derived functors. In this chapter however
we will focus most of the time only on group theory.

2.1. Split extensions and semidirect products

We start with the definition of exact sequences.

Definition 2.1.1. A sequence of groups and group homomorphisms

· · · → An−1
αn−→ An

αn+1−−−→ An+1 → · · ·
is called exact at An if imαn = kerαn+1. The sequence is called exact if it is exact at each
group.

Example 2.1.2. The sequence 1
α1−→ A

α2−→ 1 is exact iff A = 1 is the trivial group. The

sequence 1
α−→ A

β−→ B
γ−→ 1 is exact iff A is isomorphic to B.

Indeed, 1 = imα1 = kerα2 = A in the first case, and 1 = imα = ker β, im β = ker γ = B
in the second, so that

A ∼= A/ ker β ∼= im β = B

Example 2.1.3. A short exact sequence is given by

1→ A
′ α−→ A

β−→ A
′′ → 1

From the exactness we conclude that α is injective, β is surjective and

(2.1) A
′ ∼= α(A

′
) = ker β

hence α(A
′
) being a kernel is a normal subgroup of A. Sometimes we will identify A′ with

its image α(A
′
). Furthermore we have

(2.2) A/ ker β ∼= β(A) = A
′′

hence A
′′

is isomorphic to the quotient A/A
′
.

3



4 2. GROUP EXTENSIONS

Definition 2.1.4. Let N and Q be groups. An extension of N by Q is a group G such that

(1) G contains N as a normal subgroup.
(2) The quotient G/N is isomorphic to Q.

An extension of groups defines a short exact sequence and vice versa: if G is an extension
of N by Q then

1→ N
ι−→ G

π−→ Q→ 1

is a short exact sequence where ι : N ↪→ G is the inclusion map and π : G � G/N is the
canonical epimorphism. If

1→ A
′ α−→ A

β−→ A
′′ → 1

is a short exact sequence, then A is an extension of α(A
′
) ∼= A

′
by β(A) ∼= A

′′
, see Example

2.1.3.

Example 2.1.5. Given any two groups N and Q, their direct product G = Q × N is an
extension of N by Q, and also an extension of Q by N .

Example 2.1.6. The cyclic group C6 is an extension of C3 by C2. Hence we obtain the
short exact sequence

1→ C3 → C6 → C2 → 1

The symmetric group respectively the dihedral group S3
∼= D3 is an extension of C3 by C2, but

not of C2 by C3. We obtain the short exact sequence

1→ C3 → D3 → C2 → 1

In the first case, C3 is a normal subgroup of C6 with quotient isomorphic to C2. In the
second case let C3 = 〈(123)〉. This is a normal subgroup of D3 since the index is [D3 : C3] = 2.
The quotient is isomorphic to C2 = 〈(12)〉. Note that C2 is not a normal subgroup of D3.

Let M/L/K be a tower of field extensions such that the field extensions M/K and L/K are
normal. Denote by

Q := Gal(L/K)

N := Gal(M/L)

G := Gal(M/K)

Then G is a group extension of N by Q since N C G and Q ∼= G/N by Galois theory. In
this way be obtain some examples of group extensions.

Example 2.1.7. Let M/L/K be Q(
√

2,
√

3)/Q(
√

2)/Q. Then

Q := Gal(Q(
√

2)/Q) ∼= C2

N := Gal(Q(
√

2,
√

3)/Q(
√

2)) ∼= C2

G := Gal(Q(
√

2,
√

3)/Q) ∼= C2 × C2

This yields the short exact sequence

1→ C2 → C2 × C2 → C2 → 1
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Let us prove that G ∼= C2 × C2. Since [Q(
√

2,
√

3) : Q] = 4 the group G has four elements:
the automorphisms

(
√

2,
√

3) 7→


(
√

2,
√

3)

(−
√

2,
√

3)

(
√

2,−
√

3)

(−
√

2,−
√

3)

Hence all non-trivial elements of G have order 2.

Example 2.1.8. Let M/L/K be Q(
√

2,
√

2 +
√

2)/Q(
√

2)/Q. Then

Q := Gal(Q(
√

2)/Q) ∼= C2

N := Gal(Q(
√

2,
√

2 +
√

2)/Q(
√

2)) ∼= C2

G := Gal(Q(
√

2,
√

2 +
√

2)/Q) ∼= C4

This yields the short exact sequence

1→ C2 → C4 → C2 → 1

To show that the Galois group of Q(
√

2,
√

2 +
√

2) over Q is cyclic of order 4, we will use
the following well known result:

Lemma 2.1.9. Let K be a field of characteristic different from 2 and assume that a is not
a square in K. Let L := K(

√
a). Then there exists a tower of normal field extensions M/L/K

with Gal(M/K) ∼= C4 if and only if a ∈ K2 +K2. In that case there exist s, t ∈ K, t 6= 0 such

that M = L(
√
s+ t

√
a).

In our case K = Q, L = Q(
√

2) and a = 2. Since 2 = 12 + 12 we have Gal(M/K) ∼= C4 and
with s = 2, t = 1,

M = L(
√

2 +
√

2) = Q(
√

2,
√

2 +
√

2)

Definition 2.1.10. Let 1 → N
α−→ G

β−→ Q → 1 be a given group extension. Denote by
τ : Q ∼= G/α(N) → G the map assigning each coset x ∈ G/α(N) a representative τ(x) ∈ G.
Any such function τ : Q→ G is called a transversal function.

By definition we have β(τ(x)) = x, i.e.,

(2.3) βτ = id |Q

In general a transversal function need not be a homomorphism. If it is however we obtain
a special class of extensions.

Definition 2.1.11. An extension 1 → N
α−→ G

β−→ Q → 1 is called split if there is a
transversal function τ : Q → G which is a group homomorphism. In that case τ is called a
section.

Sometimes this is called right-split, whereas left-split means that there exists a homomor-
phism σ : G → N such that σα = id |N . For the category of groups however, the properties
right-split and left-split need not be equivalent.
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Example 2.1.12. The extensions of Example 2.1.6 are both split:

1→ C3 → C6 → C2 → 1

1→ C3 → D3 → C2 → 1

On the other hand the extension

1→ C2 → C4 → C2 → 1

of Example 2.1.8 is not split.

Since a transversal function τ in these examples is given by its values on [0] and [1] in C2,
it is easily seen that we can find a section for the first two examples. As to the last extension
it is clear that C2 does not have a complement in C4. But this implies that the extension is
not splitting as we will see in the following.

Definition 2.1.13. Two subgroups N,Q ≤ G are called complementary if

N ∩Q = 1(2.4)

G = NQ(2.5)

In general, NQ = {nq | n ∈ N, q ∈ Q} is not a subgroup of G. In fact, it is a subgroup if
and only if NQ = QN . Hence in particular it is a subgroup if N CG or QCG.

Example 2.1.14. The subgroups N = 〈(123)〉 and Q = 〈(12)〉 are complementary subgroups
in G = S3. The subgroups N = 〈(12)〉 and Q = 〈(234)〉 of G = S4 are not complementary.

The first case is clear, for the second note that |NQ| = |N | · |Q| · |N ∩ Q|−1 = 6, hence
NQ 6= S4.

Lemma 2.1.15. Let N,Q ≤ G be subgroups. Then N and Q are complementary if and only
if each element g ∈ G has a unique representation g = nq with n ∈ N, q ∈ Q.

Proof. If N and Q are complementary then G = NQ, hence each element g ∈ G has a
representation g = nq. To show the uniqueness assume that g = nq = mp with n,m ∈ N and
p, q ∈ Q. Then n−1gp−1 = qp−1 = n−1m ∈ N ∩Q = 1 and hence m = n and p = q. Conversely
the unique representation implies G = NQ and N ∩Q = 1. �

Definition 2.1.16. A group G is called inner semidirect product of N by Q if the followuing
conditions hold.

(1) N is a normal subgroup of G,
(2) N and Q are complementary in G.

In that case we will write G = QnN .

Example 2.1.17. Both S3 and C6 are inner semidirect products of C3 by C2.

This says that in contrast to direct products, an inner semidirect product G of N by Q
is not determined up to isomorphism by the two subgroups. It will also depend on how N is
normal in G.
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Example 2.1.18. Let Sn denote the symmetric group on n letters and Dn the dihedral group
of order 2n. Both are inner semidirect products as follows:

Sn = C2 n An

Dn = C2 n Cn

Clearly AnCSn and C2, An are complementary subgroups in Sn. Let Dn = 〈s, t | sn = t2 =
1, tst = s−1〉 and Cn = 〈s〉, C2 = 〈t〉. Then Cn CDn and Cn and C2 are complementary in Dn.

An inner semidirect product of N by Q is also an extension of N by Q since Q ∼= G/N . More
precisely we have:

Proposition 2.1.19. For a group extension 1→ N
α−→ G

β−→ Q→ 1 the following assertions
are equivalent:

(1) There is a group homomorphism τ : Q→ G with βτ = id |Q.
(2) α(N) ∼= N has a complement in G, i.e., G ∼= QnN .

Corollary 2.1.20. G is an inner semidirect product of N by Q if and only if G is a split
extension of N by Q.

Proof. Let τ be a section. We will show that τ(Q) then is a complement of α(N) = ker β
in G. So let g ∈ ker β ∩ τ(Q). With g = τ(q) for some q ∈ Q it follows

1 = β(g) = β(τ(q)) = q

Since τ is a homomorphism g = τ(q) = τ(1) = 1. So we have

(2.6) α(N) ∩ τ(Q) = 1

Now let g ∈ G and define x := β(g) ∈ Q. Then τ(x) ∈ G and

β(gτ(x−1)) = β(g) · β(τ(x−1)) = xx−1 = 1

so that gτ(x−1) = α(n) for some n ∈ N since it lies in ker β = α(N). Using τ(x)−1 = τ(x−1)
we obtain g = α(n)τ(x), i.e.,

(2.7) G = α(N)τ(Q)

Since α and τ are monomorphisms we have G ∼= QnN , Q ∼= τ(Q) and N ∼= α(N).

For the converse direction let C be a complement of α(N) in G, i.e.,

C ∩ α(N) = 1(2.8)

C · α(N) = G(2.9)

The homomorphism lemma now says that α(N) ⊂ ker β implies the existence of a unique
homomorphism γ : G/α(N)→ Q such that the following diagram commutes:

G
β //

ϕ

��

Q

G/α(N)

γ

;;

In fact, γ is defined by γ(gα(N)) = β(g). Let us now restrict ϕ to the complement C. We still
denote this map by ϕ. By assumption it is an isomorphism, given by c 7→ cα(N) for c ∈ C.
Hence there exists a unique homomorphism γ : G/α(N)→ Q satisfying

γ(ϕ(c)) = γ(cα(N)) = β(c)
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for all c ∈ C, i.e., γ ◦ ϕ = β. Note that γ is an isomorphism. Hence the map

τ : Q→ C ⊂ G, q 7→ ϕ−1(γ−1(q))

is a homomorphism with

β(τ(q)) = (γ ◦ ϕ)(ϕ−1(γ−1(q))) = q

hence with βτ = id |Q. �

Example 2.1.21. The following exact sequences are both split:

1→ An
ι−→ Sn

sign−−→ {±1} → 1

1→ SLn(k)
ι−→ GLn(k)

det−→ k× → 1

It follows that Sn ∼= C2 n An and GLn(k) ∼= k× n SLn(k).

Since ker sign = An we see that the first sequence is exact. It also splits. Let π ∈ Sn be a
transposition and define τ : {±1} → Sn by τ(1) = id and τ(−1) = π. Then τ is a section. For
the second sequence define τ : k× → GLn(k) by

a 7→


1 . . . 0 0
...

. . .
...

...
0 . . . 1 0
0 . . . 0 a


This is a section since τ(ab) = τ(a)τ(b) and (β ◦ τ)(a) = det τ(a) = a.

Definition 2.1.22. Let N,Q be two groups and ϕ : Q → Aut(N) be a homomorphism.
Define a multiplication on Q×N as follows:

(2.10) (x, a)(y, b) = (xy, ϕ(y)(a) · b)

for x, y ∈ Q and a, b ∈ N . Then Q × N together with this multiplication becomes a group
which is denoted by G = Q nϕ N . It is called the outer semidirect product of N by Q with
respect to ϕ.

Note that ϕ(xy) = ϕ(y) ◦ ϕ(x) for all x, y ∈ Q. The product on the RHS denotes the
composition of automorphisms in Aut(N). Let us verify the group axioms. The element (1, 1)
is a left unit element in G:

(1, 1)(x, a) = (x, ϕ(x)(1) · a) = (x, a)

A left inverse element to (x, a) is given by (x−1, b−1) where b = ϕ(x−1)(a):

(x−1, b−1)(x, a) = (x−1x, ϕ(x)(b−1) · a) = (1, ϕ(x)(ϕ(x−1)(a−1)) · a)

= (1, a−1a) = (1, 1)
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since b−1 = (ϕ(x−1)(a))−1 = ϕ(x−1)(a−1). Finally the multiplication is associative.

[(x, a)(y, b)](z, c) = (xy, ϕ(y)(a) · b)(z, c) = (xyz, ϕ(z)(ϕ(y)(a) · b) · c)
= (xyz, ((ϕ(z) ◦ ϕ(y))(a) · ϕ(z)(b) · c)

(x, a)[(y, b)(z, c)] = (x, a)(yz, ϕ(z)b · c) = (xyz, ϕ(yz)(a) · ϕ(z)(b) · c)

Since ϕ is a homomorphism both sides coincide. �

We want to explain the relation between an inner and outer semidirect product. If

1→ N
α−→ G

β−→ Q→ 1

is a short exact sequence, then G acts on the normal subgroup α(N)CG by conjugation:

G× α(N)→ α(N), (g, α(a)) 7→ g−1α(a)g

Definition 2.1.23. The assignment γ(g) = g−1α(a)g defines a homomorphism γ : G →
Aut(α(N)). If N is abelian, the restriction on the quotient G/α(N) ∼= Q is also denoted by
γ : Q→ Aut(N).

Proposition 2.1.24. Let G = Qnϕ N be an outer semidirect product of N by Q. Then G
defines a split short exact sequence

1→ N
α−→ G

β
//Q

τoo → 1

where the maps α, β, τ are given by

α(a) = (1, a), β((x, a)) = x, τ(x) = (x, 1)

such that

(2.11) α ◦ ϕ(x) = γ(τ(x)) ◦ α

Proof. We show first that α(N) is normal in G so that γ : Q → Aut(N) is well defined.
Let (x, a) ∈ G and (1, c) ∈ α(N).

(x, a)−1(1, c)(x, a) = (x−1, ϕ(x−1)(a−1)) · (x, ϕ(x)(c) · a)

= (1, a−1 · ϕ(x)(c) · a) ∈ α(N)

Applying this computation we obtain for all a ∈ N

γ(τ(x))[α(a)] = τ(x)−1α(a)τ(x) = (x, 1)−1(1, a)(x, 1)

= (1, ϕ(x)(a)) = α[ϕ(x)(a)]

which gives (2.11). Since obviously α is a monomorphism and β is an epimorphism with
βτ = id we obtain a split short exact sequence. The group G is also an inner semidirect product
of α(N) by τ(Q). �

Conversely the following result holds.
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Proposition 2.1.25. Each split short exact sequence 1 → N
α−→ G

β−→ Q → 1 defines via
(2.11) an outer semidirect product Qnϕ N which is isomorphic to G.

Proof. Since α is a monomorphism (2.11) defines a homomorphism ϕ : Q → Aut(N).
Define the map ψ : Qnϕ N → G by

(2.12) ψ[(x, a)] = τ(x) · α(a)

By Lemma 2.1.15 the map ψ is bijective. Moreover it is a homomorphism. We have

ψ[(x, a)(y, b)] = ψ[(xy, ϕ(y)(a) · b)] = τ(xy) · α(ϕ(y)(a)) · α(b)

= τ(x)τ(y) · α(ϕ(y)(a)) · α(b)

by (2.10) and the fact that τ is a homomorphism. On the other hand

ψ[(x, a)]ψ[(y, b)] = τ(x)α(a) · τ(y)α(b) = τ(x)τ(y) ·
(
τ(y)−1α(a)τ(y)

)
· α(b)

= τ(x)τ(y) · γ(τ(y))(α(a)) · α(b) = τ(x)τ(y) · α(ϕ(y)(a)) · α(b)

�

Example 2.1.26. Let C2 act on Cn by the automorphism x 7→ x−1. Then Dn
∼= C2 nϕ Cn

The homomorphism ϕ : C2 → Aut(Cn) is defined by ϕ(−1)(x) = x−1 and ϕ(1) = id.

The following well known result shows that certain group extensions are always semidirect
products.

Schur-Zassenhaus 2.1.27. Let N and Q be finite groups of coprime order. Then every

short exact sequence 1 → N
α−→ G

β−→ Q → 1 splits. Hence each extension of N by Q is a
semidirect product.

We will prove this theorem later, see proposition 3.5.6. There is a very elegant proof for the
case that N is abelian using the second cohomology group H2(Q,N). The general case can be
proved with an induction over the order of N reducing the problem to a central extension. An
above extension is called central if α(N) ⊂ Z(G) is satisfied. In that case N is abelian. In fact,
the above result has first been proved by Schur in 1902 for central extensions.
Note that the result need not be true if the orders are not coprime. A short exact sequence
1→ C2 → G→ C2 → 1 may split or may not. Take G = C2 × C2 or G = C4 respectively.
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2.2. Equivalent extensions and factor systems

How can we describe all possible extensions G of a group N by another group Q ? We will

view extensions as short exact sequences 1 → N
α−→ G

β−→ Q → 1. There will be a natural
equivalence relation on the set of such extensions. As a preparation we will need the following
lemma.

Lemma 2.2.1. Suppose that we have the following commutative diagram of groups and ho-
momorphisms with exact rows:

1 // A

f
��

α // B

g
��

β // C

h
��

// 1

1 // A
′ γ // B

′ δ // C
′ // 1

If f and h are both injective, respectively surjective, then so is g. In particular, if f and h are
isomorphisms, so is g.

Proof. By assumption we know that α, γ are injective, β, δ are surjective and imα =
ker β, im γ = ker δ. Since the diagram commutes we have

(2.13) γf = gα, hβ = δg

Assume first that f and h are injective. We will show that g then is also injective. Let g(b) = 1
for some b ∈ B. Then by (2.13)

1 = δ(g(b)) = h(β(b)) =⇒ β(b) = 1

since h is injective. It follows b ∈ ker β = imα, hence α(a) = b for some a ∈ A. Then again by
(2.13)

1 = g(b) = g(α(a)) = γ(f(a)) =⇒ f(a) = 1

since γ is injective. But f is also injective hence a = 1 and b = α(1) = 1. This proves the
injectivity of g.
For the second part assume now that f and h are surjective. We will show that g is also
surjective. Let b′ ∈ B′ be given. Since h is surjective there is a c ∈ C such that h(c) = δ(b′) ∈ C ′.
Since β is surjective there is a b ∈ B such that β(b) = c. It follows

δ(g(b)) = h(β(b)) = h(c) = δ(b′)

so that δ (g(b)−1b′) = 1 and g(b)−1b′ ∈ ker δ = im γ. it follows g(b)−1b′ = γ(a′) for some a′ ∈ A′.
Since f is surjective there is an a ∈ A such that f(a) = a′ so that, using (2.13)

g(α(a)) = γ(f(a)) = γ(a′) = g(b)−1b′

which implies b′ = g(b) · g(α(a)) = g(b · α(a)). Hence g is surjective. �

The following result involving 10 groups and 13 group homomorphisms generalizes the above
lemma.

Lemma 2.2.2. Consider the following commutative diagram of groups and homomorphisms
with exact rows.

A1

f1
��

α1 // A2

f2
��

α2 // A3

f3
��

α3 // A4

f4
��

α4 // A5

f5
��

B1
β1 // B2

β2 // B3
β3 // B4

β4 // B5
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Then the following holds.

(a) If f2, f4 are onto and f5 is one-to-one, then f3 is onto.
(b) If f2, f4 are one-to-one and f1 is onto, then f3 is one-to-one.
(c) In particular, if f1, f2 and f4, f5 are isomorphisms, so is f3.

The proof is done in a completely analogous way and is left to the reader.

Definition 2.2.3. Let N and Q be groups. Two extensions G and G′ of N by Q are called
equivalent if there exists a homomorphism ϕ : G → G′ such that the following diagram with
exact rows becomes commutative:

1 // N

id
��

α // G

ϕ

��

β // Q

id
��

// 1

1 // N
γ // G′

δ // Q // 1

If the extensions G and G′ are equivalent then they are automatically isomorphic as groups
since ϕ is then an isomorphism by lemma 2.2.2. The converse however need not be true. There
exist inequivalent extensions G and G′ which are isomorphic as groups. Classifying inequivalent
group extensions is in general much finer than classifying non-isomorphic groups. We will see
that in the next example. Formaly we will write

(G,α, β) ' (G′, γ, δ)

for two equivalent group extensions. In that case there exists a homomorphism ϕ : G → G′

such that γ = ϕα and β = δϕ. This defines an equivalence relation. Clearly the relation is
reflexive since (G,α, β) ' (G,α, β) with ϕ = id. It is symmetric since (G,α, β) ' (G′, γ, δ)
implies (G′, γ, δ) ' (G,α, β) with ϕ−1 : G′ → G. To show transitivity consider the following
diagram:

1 // N

id
��

α // G

ϕ

��

β // Q

id
��

// 1

1 // N

id
��

γ // G′

ϕ′

��

δ // Q

id
��

// 1

1 // N
ε // G′′

κ // Q // 1

Assume that (G,α, β) ' (G′, γ, δ) and (G′, γ, δ) ' (G′′, ε, κ). It follows that there are homo-
morphisms ϕ : G→ G′ and ϕ′ : G′ → G′′ such that

γ = ϕα, β = δϕ, ε = ϕ′γ, δ = κϕ′

Defining ϕ′′ := ϕ′ϕ : G→ G′′ it follows

ε = ϕ′γ = ϕ′ϕα = ϕ′′α

β = δϕ = κϕ′ϕ = κϕ′′

Hence we have (G,α, β) ' (G′′, ε, κ).
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Example 2.2.4. Let p be a prime. Then there are p inequivalent extensions G of Cp by Cp.
Since G has order p2 it is either isomorphic to Cp × Cp or to Cp2.

Besides the split exact sequence 1→ Cp → Cp ×Cp → Cp → 1 consider the following p− 1
short exact sequences

1→ Cp
α−→ Cp2

βi−→ Cp → 1

where Cp = 〈a〉 = {1, a, a2, . . . , ap−1} and Cp2 = 〈g〉 = {1, g, g2, . . . , gp2−1} and the homomor-
phisms α and β are given by

α : Cp → Cp2 , a 7→ gp

βi : Cp2 → Cp, g 7→ ai, i = 1, 2, . . . , p− 1

The sequences are exact since βi(α(a)) = βi(g
p) = api = 1 in Cp, hence imα = ker βi.

We claim that any two extensions βi and βj for i 6= j are inequivalent. Suppose (Cp, α, βi) '
(Cp, α, βj), i.e.,

1 // Cp

id
��

α // Cp2

ϕ

��

βi // Cp

id
��

// 1

1 // Cp
α // Cp2

βj // Cp // 1

and α = ϕα, βi = βjϕ. It follows

gp = α(a) = ϕ(α(a)) = ϕ(gp) = ϕ(g)p

Now ϕ(g) = gr generates Cp2 since ϕ is an isomorphism. Hence p - r and gp = ϕ(gp) = gpr in
Cp2 . This implies r ≡ 1(p). On the other hand we have

ai = βi(g) = βj(ϕ(g)) = βj(g
r) = ajr

in Cp. It follows i ≡ jr(p). Together with r ≡ 1(p) we have i ≡ j(p) or i = j and βi = βj. So
we have proved the claim.

Remark 2.2.5. There are exactly p equivalence classes of extensions of Cp by Cp. We will
see later that they are in bijection with the elements in the group H2(Cp, Cp) ∼= Cp where Cp
acts trivially on Cp.

We will now reduce the classification of group extensions to so called factor systems.
Schreier’s theorem yields a bijection between the equivalence classes of group extensions and
the equivalence classes of the associated parameter systems.

Definition 2.2.6. Let N and Q be two groups. A pair of functions (f, T )

f :Q×Q→ N

T :Q→ Aut(N)

is called a factor system to N and Q if
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f(xy, z)T (z)(f(x, y)) = f(x, yz)f(y, z)(2.14)

T (y) ◦ T (x) = γ (f(x, y)) ◦ T (xy)(2.15)

f(1, 1) = 1(2.16)

for all x, y, z ∈ Q.

The second condition (2.15) means, using the definition of γ

T (y) (T (x)(n)) = f(x, y)−1T (xy)(n)f(x, y)

for all n ∈ N . Sometimes T is referred to as the automorphism system.

Remark 2.2.7. If we choose f(x, y) ≡ 1 then (f, T ) is called the trivial factor system. In
that case T is a homomorphism by (2.15) and (2.14) reduces to 1 = 1.

Condition (2.16) corresponds to a normalization. The first two conditions already imply
the following conditions:

Lemma 2.2.8. Let (f, T ) be a pair of functions as above where only conditions (2.14) and
(2.15) are satisfied. Then it follows

T (1) = γ(f(1, 1))(2.17)

f(x, 1) = f(1, 1)(2.18)

f(1, y) = T (y)(f(1, 1))(2.19)

for all x, y ∈ Q.

Proof. By (2.15) we have T (1)◦T (1) = γ(f(1, 1))T (1) so that T (1) = γ(f(1, 1)). It follows
f(1, 1)−1f(x, 1)f(1, 1) = T (1)(f(x, 1)) and hence

f(x, 1)f(1, 1) = f(1, 1)T (1)(f(x, 1))

= f(x, 1)T (1)(f(x, 1))

where we have used (2.14) with z = y = 1 for the last equation. This shows (2.18).
Setting x = y = 1 in (2.14) we obtain

f(1, z)T (z)(f(1, 1)) = f(1, z)f(1, z)

Multiplying f(1, z)−1 from the left yields (2.19). �

Corollary 2.2.9. Let (f, T ) be a factor system to N and Q. Then

f(x, 1) = f(1, y) = 1(2.20)

T (1) = id |N(2.21)

for all x, y ∈ Q.

Proof. By (2.16) it follows T (1) = γ(f(1, 1)) = γ(1) = id |N . Furthermore f(x, 1) =
f(1, 1) = 1 and f(1, y) = T (y)(1) = 1 since T (y) is an automorphism of N . �

We can associate a factor system with each group extension as follows.

Proposition 2.2.10. Each group extension 1 → N
α−→ G

β−→ Q → 1 together with a
transversal function τ : Q→ G defines a factor system (fτ , Tτ ).
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This associated factor system depends not only on the extension, but also on the choice of
a transversal function τ .

Proof. Let x ∈ Q ' G/α(N) be a coset of α(N) in G and τ a fixed transversal function
x 7→ τ(x). It satisfies βτ = id on Q. Since α(N) is normal in G, the element τ(x)−1α(n)τ(x)
is in α(N). We will denote it by

(2.22) α(Tτ (x)(n)) = τ(x)−1α(n)τ(x)

where Tτ (x)(n) ∈ N . This defines automorphisms Tτ (x) of N and a map Tτ : Q → Aut(N).
Since β is a homomorphism we have

β(τ(xy)−1τ(x)τ(y)) = (βτ)((xy)−1) · (βτ)(x)(βτ)(y) = (xy)−1xy = 1

and hence τ(xy)−1τ(x)τ(y) ∈ ker β = α(N). It follows that there exists a unique element
fτ (x, y) ∈ N such that

(2.23) τ(x)τ(y) = τ(xy)α(fτ (x, y))

Now we have to verify the conditions (2.14),(2.15),(2.16) for the pair (fτ , Tτ ) which we will
denote by (f, T ). We set

(2.24) τ(1) = 1

This condition is not essential, but it helps simplify some of the computations. By (2.23)
we have

τ(1)τ(1) = τ(1)α(f(1, 1))

hence α(f(1, 1)) = 1 and f(1, 1) = 1. Hence (2.16) is satisfied. By using (2.22) and (2.23) we
obtain

(αT (y)T (x)) (n) = τ(y)−1τ(x)−1α(n)τ(x)τ(y)

= (α(f(x, y))−1 · τ(xy)−1α(n)τ(xy) · α(f(x, y))

= (α(f(x, y))−1 · α(T (xy)(n)) · α(f(x, y))

This implies (2.15). Using (2.23) we have

τ((xy)z) = τ(xy)τ(z) (α(f(xy, z))−1

= τ(x)τ(y) (α(f(x, y))−1 · τ(z) (α(f(xy, z))−1

τ(x(yz)) = τ(x)τ(yz) (α(f(x, yz))−1

= τ(x)τ(y)τ(z) (α(f(y, z))−1 (α(f(x, yz))−1

Using the associativity in G both terms must be equal, i.e.,
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α(f(x, yz))α(f(y, z)) = α(f(xy, z)) · τ(z)−1α(f(x, y))τ(z)

= α(f(xy, z) · α(T (z)(f(x, y))

Since α is a monomorphism we obtain (2.14). �

Now we have associated a factor system (Tτ , fτ ) to a group extension and a transversal
function τ . Does every factor system (f, T ) arise in such a way ? The answer is given by the
following proposition.

Proposition 2.2.11. For each factor system (f, T ) to N and Q there is a group extension
G of N by Q such that (f, T ) = (fτ , Tτ ) for a suitable choice of a transversal function τ .

Proof. Given (f, T ) we define a group structure on G = Q×N as follows.

(2.25) (x, a) ◦ (y, b) = (xy, f(x, y)T (y)(a)b)

for x, y ∈ Q and a, b ∈ N . This generalizes the construction of the outer semidirect product.
If we choose the trivial factor system f(x, y) = 1 for all x, y ∈ Q, then T : Q → Aut(N) is a
homomorphism and the above definition coincides with the outer semidirect product QnT N .
We need to show that the group laws are satisfied, that G is a group extension of N by Q and
that (fτ , Tτ ) is exactly (f, T ) with a suitable choice of τ . We start with the associativity.

(x, a) ◦ [(y, b) ◦ (z, c)] = (x, a) ◦ [yz, f(y, z)T (z)(b)c]

= (xyz, f(x, yz)T (yz)(a)f(y, z)T (z)(b)c)

[(x, a) ◦ (y, b)] ◦ (z, c) = [xy, f(x, y)T (y)(a)b] ◦ (z, c)

= (xyz, f(xy, z)T (z)
(
f(x, y)T (y)(a)b

)
c)

= (xyz, f(xy, z)T (z)(f(x, y)) · T (z)(T (y)(a)b)c)

= (xyz, f(xy, z)T (z)(f(x, y)) · γ(f(y, z))(T (yz)(a)) · T (z)(b)c)

= (xyz, f(x, yz) · f(y, z)γ(f(y, z))(T (yz)(a)) · T (z)(b)c)

= (xyz, f(x, yz)T (yz)(a)f(y, z)T (z)(b)c)

In the second computation we have first used that T (z) is an automorphism of N , then
(2.15) and (2.14). Let b := f(x, x−1)T (x−1)(a). Then (x−1, b−1) is the inverse of (x, a).

(x, a) ◦ (x−1, b−1) = (xx−1, f(x, x−1)T (x−1)(a) · b−1) = (1, 1)

Clearly (1, 1) is the unit element

(1, 1) ◦ (y, b) = (y, f(1, y)T (y)(1)b) = (y, b)

Now define β : G→ Q by (x, a) 7→ x. This map is a surjective homomorphism:
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β((x, a)) ◦ β((y, b)) = xy = β
(
(xy, f(x, y)T (y)(a)b

)
= β((x, a) ◦ (y, b))

where we have used (2.25) in the last step. The map (1, a) 7→ a is an isomorphism from
ker β = {(1, a) | a ∈ N} to N :

(1, a) ◦ (1, b) = (1, f(1, 1)T (1)(a)b) = (1, ab)

The map α : N → G defined by a 7→ (1, a) is a monomorphism. We obtain a short exact

sequence 1→ N
α−→ G

β−→ Q→ 1 and hence an extension G of N by Q.

The next step is to choose a transversal function τ : Q → G. The most natural choice is
τ(x) = (x, 1). Since

τ(x) ◦ τ(y) = (x, 1) ◦ (y, 1) = (xy, f(x, y)),

τ(xy)α(f(x, y)) = (xy, 1) ◦ (1, f(x, y)) = (xy, f(xy, 1)T (1)(1)f(x, y)

= (xy, f(x, y))

we have τ(x)τ(y) = τ(xy)α(f(x, y)). Comparing with (2.23), where fτ (x, y) was uniquely
determined, it follows fτ = f . Using (2.14) with y = x−1 and f(1, x) = f(x, 1) = 1 we obtain
T (x)(f(x, x−1) = f(x−1, x). Since T (x) is an automorphism it follows

(2.26) T (x)(f(x, x−1)−1) = f(x−1, x)−1

so that, using the formula for the composition of three elements from above

(x, 1)−1 ◦ (1, a) ◦ (x, 1) = (x−1, f(x−1, x)−1) ◦ (1, a) ◦ (x, 1)

= (x · 1 · x−1, f(x−1, x)T (x)
(
f(x−1, x)−1

)
f(1, x)T (x)(a) · 1)

= (1, T (x)(a))

This is just τ(x)−1α(a)τ(x) = α(T (x)(a)) and a comparison with (2.22) shows Tτ = T . �

Example 2.2.12. Consider the extension 1 → C2
α−→ C4

β−→ C2 → 1 where N = C2 =
〈a〉, C4 = 〈g〉, Q = C2 = 〈x〉 and α(a) = g2, β(g) = x. Determine the associated factor system
(fτ , Tτ ) where τ is given by τ(1) = 1, τ(x) = g.

Tτ : C2 → Aut(C2) is given by Tτ (1) = Tτ (x) = id since α(Tτ (x)(a)) = τ(x)−1α(a)τ(x) =
g−1g2g = g2 and hence Tτ (x)(a) = a. The map fτ : C2 × C2 → C2 is given by

f(1, 1) = f(1, x) = f(x, 1) = 1, f(x, x) = a

We have to show only the last condition. It is g ·g = τ(x)τ(x) = α(f(x, x)) so that f(x, x) = a.
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Example 2.2.13. Determine the group extension 1 → C2
α−→ G

β−→ C2 → 1 to the above
factor system (fτ , Tτ ).

The group G = {(1, 1), (1, a), (x, 1), (x, a)} has the following multiplication

(x, a) ◦ (y, b) = (xy, f(x, y)ab)

Using x2 = a2 = 1 we obtain

(x, a)4 = ((x, a) ◦ (x, a))2 = (x2, f(x, x)a2)2 = ((1, a))2

= (1, a) ◦ (1, a) = (1, f(1, 1)a2) = (1, 1)

Since (x, a)2 = (1, a) 6= (1, 1) the group G is isomorphic to C4.

So far we have constructed a correspondence between factor systems (f, T ) to N and Q and
group extensions G of N by Q. However, the correspondence is not yet one-to-one. There
are many factor systems (fτ , Tτ ) associated with one group extension. We will introduce an
equivalence relation on the set of factor systems.

Lemma 2.2.14. Let 1 → N
α−→ G

β−→ Q → 1 be a group extension and (f, T ), (f ′, T ′) two
associated factor systems. Then there is a map h : Q→ N such that

T ′(x) = γ(h(x)) ◦ T (x)(2.27)

f ′(x, y) = h(xy)−1f(x, y) · T (y)(h(x)) · h(y)(2.28)

Proof. The associated factor systems (f, T ) and f ′, T ′) arise by two transversal functions
τ : Q→ G and τ ′ : Q→ G. They just assign a given coset two representatives. Hence

τ ′(x) = τ(x)`(x)(2.29)

with a map ` : Q→ α(N). Define h : Q→ N by α(h(x)) = `(x). Using (2.22) we obtain

α(T ′(x)(n)) = τ ′(x)−1α(n)τ ′(x) = `(x)−1 · τ(x)−1α(n)τ(x) · `(x)

= α
(
h(x)−1

)
· α (T (x)(n)) · α(h(x))

so that α ◦ T ′(x) = α ◦ γ(h(x)) ◦ T (x) and (2.27) follows. Using (2.23) we obtain

α (f ′(x, y)) = τ ′(xy)−1τ ′(x)τ ′(y) = `(xy)−1 · τ(xy)−1 · τ(x)`(x)τ(y)`(y)

= `(xy)−1α(f(x, y)) · τ(y)−1α(h(x))τ(y) · `(y)

= `(xy)−1α(f(x, y)) · α(T (y))(h(x)) · `(y)

= α
(
h(xy)−1

)
· α(f(x, y)) · α(T (y)(h(x)) · α(h(y))

This implies (2.28). �

The lemma tells us how to define the equivalence relation.
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Definition 2.2.15. Let (f, T ) and (f ′, T ′) be two factor systems to N and Q. They are
called equivalent if there is a map h : Q → N such that (2.27) and (2.28) are satisfied, and
h(1) = 1.

If we take h(x) = 1 for all x ∈ Q then it follows immediately (f, T ) = (f ′, T ′). Different
choices of the transversal function τ lead to equivalent factor systems in our correspondence.
Next we show that the equivalence relation is compatible with equivalent group extensions.

Proposition 2.2.16. Equivalent group extensions

1 // N

id
��

α // G

ϕ

��

β // Q

id
��

// 1

1 // N
γ // G′

δ // Q // 1

define equivalent factor systems.

Proof. Choose any transversal function τ to the extension 1→ N
α−→ G

β−→ Q→ 1 and let
(f, T ) denote the associated factor system. Let (f ′, T ′) the factor system associated with the

extension 1→ N
γ−→ G′

δ−→ Q→ 1 and the following τ ′ : Q→ G′:

τ ′(x) = ϕ(τ(x))(2.30)

Since γ = ϕα and β = δϕ we have δτ ′ = δϕτ = βτ = id. So τ ′ is really a transversal
function. Its choice is such that (f ′, T ′) coincides with (f, T ). Hence the two factor systems
are euqivalent. In fact, by (2.22) we have

γ (T ′(x)(a)) = τ ′(x)−1γ(a)τ ′(x) = τ ′(x)−1ϕ(α(a))τ ′(x)

= ϕ(τ(x)−1) · ϕ(α(a)) · ϕ(τ(x)) = ϕ
(
τ(x)−1α(a)τ(x)

)
= (ϕ ◦ α)(T (x)(a)) = γ(T (x)(a))

Since γ is injective we have T ′ = T . Using (2.23) we have

τ ′(xy)γ(f ′(x, y)) = τ ′(x)τ ′(y) = ϕ(τ(x)) · ϕ(τ(y))

= ϕ(τ(x)τ(y)) = ϕ[τ(xy) · α(f(x, y))]

= (ϕτ)(xy) · (ϕα)(f(x, y)) = τ ′(xy)γ(f(x, y))

This implies f ′(x, y) = f(x, y) or f ′ = f . �

Proposition 2.2.17. Let N,Q be groups and (f, T ), (f ′, T ′) be two factor systems to N
and Q. If the factor systems are equivalent, so are the associated group extensions.

Proof. Assume that (f, T ) and (f ′, T ′) are equivalent, so that there is a map h : Q→ N
satisfying (2.27) and (2.28). Let G,G′ be the group extensions of N by Q as constructed in
proposition 2.2.11. As a set, G = G′ = Q × N . We need to show that both extensions are
equivalent, i.e., that there is a homomorphism ϕ : G→ G′ such that the diagram of proposition
2.2.16 commutes. We define ϕ by
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(2.31) (x, a) 7→ (x, h(x)−1a)

Clearly this map is bijective. It is also a homomorphism with respect to the composition
(2.25).

ϕ(g ◦ h) = ϕ((x, a) ◦ (y, b)) = ϕ
(
(xy, f(x, y)T (y)(a)b)

)
= (xy, h(xy)−1f(x, y)T (y)(a)b)

ϕ(g) ◦ ϕ(h) = (x, h(x)−1a) ◦ (y, h(y)−1b)

= (xy, f ′(x, y) · T ′(y)(h(x)−1a) · h(y)−1b)

= (xy, f ′(x, y) · [γ(h(y)) ◦ T (y)]((h(x)−1a)h(y)−1b))

= (xy, h(xy)−1f(x, y)T (y)(h(x))h(y)·
[γ(h(y)) ◦ T (y)]((h(x)−1a)h(y)−1b))

= (xy, h(xy)−1f(x, y)T (y)(h(x)) · T (y)(h(x)−1a)h(y)h(y)−1b)

= (xy, h(xy)−1f(x, y)T (y)(a)b)

In the second computation we have used also (2.27) and (2.28). It remains to show that the
diagram commutes. Since h(1) = 1 we have h(1)−1 = 1, so that we obtain

(ϕα)(a) = ϕ((1, a)) = (1, h(1)−1a) = (1, a) = γ(a)

(δϕ)((x, a)) = δ((x, h(x)−1a)) = x = β((x, a))

It follows γ = ϕα and β = δϕ. �

Now we can formulate the main result of this section.

Theorem 2.2.18 (Schreier). Let N and Q be two groups. By associating every extension of
N by Q a factor system one obtains a one-to-one correspondence between the set of equivalence
classes of extensions of N by Q and the set of equivalence classes of factor systems to N and
Q.

In particular, if the factor set associated with the extension G of N by Q is equivalent to a
trivial factor set, i.e., with f ≡ 1, then the extension G is equivalent to some semidirect product
of N by Q. Conversely, the factor set associated with a semidirect product is equivalent to the
trivial factor set.



CHAPTER 3

Cohomology of groups

We shall first give the original definition of the cohomology groups which is, unlike the
definition of the derived functors, quite concrete.

3.1. G-modules

If G is a group, we define a G-module M to be an abelian group, written additively, on
which G acts as endomorphisms. That means the following:

Definition 3.1.1. Let G be a group. A left G-module is an abelian group M together with
a map

G×M →M, (g,m) 7→ gm

such that, for all g, h ∈ G and m,n ∈M ,

g(m+ n) = gm+ gn(3.1)

(gh)m = g(hm)(3.2)

1m = m(3.3)

Equivalently a left G-module is an abelian group M together with a group homomorphism

T : G→ Aut(M)

where the correspondence is given by

T (g)(m) = gm ∀ m ∈M(3.4)

As in representation theory, we can transform this to a more familiar concept. Let Z[G]
denote the group ring of G. This is the free Z-module with the elements of G as base and in
which multiplication is defined by

(∑
g

ngg

)(∑
h

mhh

)
=
∑
g,h

ngmh(gh)(3.5)

where ng,mh ∈ Z and the sums are finite. For example, let G = Z = 〈t〉. Then {ti}i∈Z is a
Z-basis of Z[G]. Hence Z[G] = Z[t, t−1] is the ring of Laurent polynomials.

If M is a G-module, then M becomes a Z[G]-module if we define

(∑
g

ngg

)
m =

∑
g

ng(gm)(3.6)

Conversely, if M is a Z[G]-module, then M becomes a G-module if we define gm := (1g)m.

21
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Example 3.1.2. Let M be any abelian group and define

gm = m(3.7)

for all g ∈ G, m ∈M . This action of G is called the trivial action, and M is called a trivial
G-module.

Example 3.1.3. The module M = Z[G] with the action

h

(∑
g

ngg

)
=
∑
g

nghg(3.8)

is called the regular G-module.

Definition 3.1.4. Let M be a G-module. Define

MG = {m ∈M | gm = m for all g ∈ G}(3.9)

Then MG is a submodule of M which is called the module of invariants.

If M is a trivial G-module then MG = M .

Definition 3.1.5. Let M,N be two G-modules. A homomorphism of G-modules is a map
ϕ : M → N such that

ϕ(m+m′) = ϕ(m) + ϕ(m′)(3.10)

ϕ(gm) = gϕ(m)(3.11)

for all g ∈ G and m,m′ ∈M . We write HomG(M,N) for the set of all G-module homomor-
phisms ϕ : M → N .

3.2. The n-th cohomology group

Let A be a G-module and let Cn(G,A) denote the set of functions of n variables

f : G×G× · · · ×G→ A

into A. For n = 0 let C0(G,A) = Hom(1, A) ∼= A. The elements of Cn(G,A) are called
n-cochains. The set Cn(G,A) is an abelian group with the usual definitions of addition and
the element 0:

(f + g)(x1, . . . , xn) = f(x1, . . . , xn) + g(x1, . . . , xn)

0(x1, . . . , xn) = 0

We now define homomorphisms δ = δn : Cn(G,A)→ Cn+1(G,A).
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Definition 3.2.1. If f ∈ Cn(G,A) then define δn(f) by

δn(f)(x1, . . . , xn+1) = x1f(x2, . . . , xn+1)

+
n∑
i=1

(−1)if(x1, . . . , xi−1, xixi+1, . . . , xn+1)

+ (−1)n+1f(x1, . . . , xn)

For n = 0, 1, 2, 3 we obtain

(δ0f)(x1) = x1f − f(3.12)

(δ1f)(x1, x2) = x1f(x2)− f(x1x2) + f(x1)(3.13)

(δ2f)(x1, x2, x3) = x1f(x2, x3)− f(x1x2, x3) + f(x1, x2x3)− f(x1, x2)(3.14)

(δ3f)(x1, x2, x3, x4) = x1f(x2, x3, x4)− f(x1x2, x3, x4) + f(x1, x2x3, x4)

− f(x1, x2, x3x4) + f(x1, x2, x3)
(3.15)

For n = 0, f is considered as an element of A so that x1f makes sense.
We will show that δ2(f) = 0 for every f ∈ Cn(G,A), i.e., δn+1δn = 0 for all n ∈ N and

hence im δn ⊆ ker δn+1.

Lemma 3.2.2. It holds δn+1δn(Cn(G,A)) = 0 for all n ∈ N. Hence the following sequence
is a complex.

A
δ0−→ C1(G,A)

δ1−→ · · · δn−1−−→ Cn(G,A)
δn−→ Cn+1(G,A)

δn+1−−→ · · ·

Proof. Let f ∈ Cn(G,A). We want to show δ2(f)(x1, . . . , xn+2) = 0. Define gj ∈
Cn+1(G,A) for 0 ≤ j ≤ n+ 1 by

gj(x1, . . . , xn+1) =


x1f(x2, . . . , xn+1), j = 0

(−1)jf(x1, . . . , xjxj+1, . . . , xn+1), 1 ≤ j ≤ n

(−1)n+1f(x1, . . . , xn), j = n+ 1

This means

(δf)(x1, . . . , xn+1) =
n+1∑
j=0

gj(x1, . . . , xn+1)

Then define gji ∈ Cn+2(G,A) for 0 ≤ i ≤ n+ 2 by

gji(x1, . . . , xn+2) =


x1gj(x2, . . . , xn+2), i = 0

(−1)igj(x1, . . . , xixi+1, . . . , xn+2), 1 ≤ i ≤ n+ 1

(−1)n+2gj(x1, . . . , xn+1), i = n+ 2

This means

(δgj)(x1, . . . , xn+2) =
n+2∑
i=0

gij(x1, . . . , xn+2)
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It follows

δ2(f)(x1, . . . , xn+2) =
n+1∑
j=0

(δgj)(x1, . . . , xn+2) =
n+1∑
j=0

n+2∑
i=0

gij(x1, . . . , xn+2)

We will show that for all 0 ≤ j ≤ n+ 1 and all j + 1 ≤ i ≤ n+ 2

(gji + gi−1,j)(x1, . . . , xn+2) = 0(3.16)

This will imply our result as follows. Write down all gji as an (n+ 2)× (n+ 3) array and cancel
out each pair (gji, gi−1,j) starting with j = 0 and i = 1, . . . , n+2, then j = 1 and i = 2, . . . n+2,
until j = n + 1 and i = n + 2. Then all entries of the array are cancelled out and we obtain
δ2(f) =

∑n+1
j=0

∑n+2
i=0 gij = 0.

It remains to show (3.16). Assume first 1 ≤ j ≤ n. If i > j + 1 then

gji(x1, . . . , xn+2) = (−1)igj(x1, . . . , xixi+1, . . . , xn+2)

= (−1)igj(τ1, . . . , τn+1)

= (−1)i+jf(τ1, . . . , τjτj+1, . . . , τn+1)

= (−1)i+jf(x1, . . . , xjxj+1, . . . , xixi+1, . . . , xn+2)

with

(τ1, . . . , τj, τj+1, . . . , τi, τi+1, . . . , τn+1) =

(x1, . . . , xj, xj+1, . . . , xixi+1, xi+2, . . . , xn+2).

On the other hand we have

gi−1,j(x1, . . . , xn+2) = (−1)jgi−1(x1, . . . , xjxj+1, . . . , xn+2)

= (−1)jgi−1(σ1, . . . , σj, . . . , σn+1)

= (−1)i−1+jf(σ1, . . . , σi−1σi, . . . , σn+1)

= (−1)i+j−1f(x1, . . . , xjxj+1, . . . , xixi+1, . . . , xn+2)

with

(σ1, . . . , σj−1, σj, . . . , σi−1, σi, . . . , σn+1) =

(x1, . . . , xj−1, xjxj+1, . . . , xi, xi+1, . . . , xn+2).

It follows gij + gi−1,j = 0. If i = j + 1 we obtain in the same way

gji(x1, . . . , xn+2) = (−1)i+jf(x1, . . . , xi−1xixi+1, . . . , xn+2)

= −gi−1,j(x1, . . . , xn+2)

The remaining cases j = 0 and j = n+ 1 follow similarly. �

Define the subgroups Zn(G,A) = ker δn and Bn(G,A) = im δn−1. For n = 0 let B0(G,A) =
0. Since Bn(G,A) ⊆ Zn(G,A) we can form the factor group:

Definition 3.2.3. The n-th cohomology group of G with coefficients in A is given by the
factor group

Hn(G,A) = Zn(G,A)/Bn(G,A) = ker δn/ im δn−1
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3.3. The zeroth cohomology group

For n = 0 we have

H0(G,A) = Z0(G,A) = {a ∈ A | xa = a ∀x ∈ G} = AG

Hence H0(G,A) = AG is the module of invariants. Let L/K be a finite Galois extension
with Galois group G = Gal(L/K). Then L and L× are G-modules. Here L is regarded as a
group under addition and L× is the multiplicative group of units in L. We have

H0(G,L×) = (L×)G = K×

Let p be a prime and Cp the cyclic group of order p.

Example 3.3.1. Let A = Cp be a G = Cp-module. Then xa = a for all x ∈ Cp, i.e., A is a
trivial Cp-module. We have

H0(Cp, Cp) = Cp

Denote by xa the action of G on A. Let T : Cp → Aut(Cp) ∼= Cp−1 be the homomorphism
defined by xa = T (x)a. Now kerT being a subgroup of Cp must be trivial or equal to Cp, since
p is prime. However kerT = 1 is impossible since T is not injective. In fact, Cp is not contained
in Aut(Cp). Hence it follows kerT = Cp and T (Cp) = {id}. This means xa = T (x)a = a. Since
A is a trivial Cp-module it follows AG = A.

Lemma 3.3.2. Let M be a G-module, and regard Z as a trivial G-module. Then

H0(G,M) = MG ∼= HomG(Z,M)

Proof. A G-module homomorphism ϕ : Z → M is uniquely determined by ϕ(1), and
m ∈M is the image of 1 under ϕ if and only if it is fixed by G, i.e., if m ∈MG.

gm = g(ϕ(1)) = ϕ(g · 1) = ϕ(1) = m

Here g · 1 = 1 since G acts trivially on Z. �

3.4. The first cohomology group

If A is a G-module then

Z1(G,A) = {f : G→ A | f(xy) = xf(y) + f(x)}
B1(G,A) = {f : G→ A | f(x) = xa− a for some a ∈ A}

The 1-cocycles are also called crossed homomorphisms of G into A. A 1-coboundary is
a crossed homomorphism, i.e., δ1δ0 = 0. For the convenience of the reader we repeat the
calculation. Let f = δ0(a)(x1) = x1a− a and compute

(δ1δ0)(a)(x, y) = δ1(f)(x, y) = xf(y)− f(xy) + f(x)

= x(ya− a)− (xy)a+ a+ xa− a
= 0

Hence (δ1δ0)(a) = 0. Let A be a trivial G-module. Then a crossed homomorphism is just a
group homomorphism, i.e., Z1(G,A) = Hom(G,A), B1(G,A) = 0 and

H1(G,A) = Hom(G,A)

is the set of group homomorphisms from G into A.
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Remark 3.4.1. We want to consider sometimes right G-modules instead of left G-modules.
If A is a left Z[G]-module with action (x, a) 7→ xa, then a ∗ x = xa defines a right module
action with multiplication y ∗ x = xy in G: a ∗ (x ∗ y) = (yx)a = y(xa) = (a ∗ x) ∗ y. Then the
definition of 1-cocycles and 1-coboundaries becomes

Z1(G,A) = {f : G→ A | f(x ∗ y) = f(x) ∗ y + f(y)}
B1(G,A) = {f : G→ A | f(x) = a ∗ x− a for some a ∈ A}

Proposition 3.4.2. Let A be a G-module. There exists a bijection between H1(G,A) and
the set of conjugacy classes of subgroups H ≤ GnA complementary to A in which the conjugacy
class of G maps to zero.

Proof. There is a bijection between subgroups H ≤ G n A complementary to A and 1-
cocycles h ∈ Z1(G,A). If H is complementary to A then H = τ(G) for a section τ : G→ GnA
for π : GnA→ G. Writing τ(x) = (x, h(x)) with h : G→ A we have H = {(x, h(x)) | x ∈ G}.
We want to show that h ∈ Z1(G,A). The multiplication in G n A is given by (2.10), with
ϕ(y)a = ay for y ∈ G and a ∈ A. Note that this is a right action. Since we write A additively,
the formula becomes

(x, a)(y, b) = (xy, ay + b)

Since τ(xy) = τ(x)τ(y) we have

(xy, h(xy)) = (x, h(x))(y, h(y)) = (xy, h(x)y + h(y))

so that h(xy) = h(x)y + h(y). The converse is also clear. Moreover two complements are
conjugate precisely when their 1-cocycles differ by a 1-coboundary: for a ∈ A ≤ GnA the set
aHa−1 consists of all elements of the form

(1, a)(x, h(x))(1,−a) = (x, ax− a− h(x))

Hence the cosets of B1(G,A) in Z1(G,A) correspond to the A-conjugacy classes of complements
H in A, or in Gn A since Gn A = HA. �

Corollary 3.4.3. All the complements of A in Gn A are conjugate iff H1(G,A) = 0.

We have the following result on cohomology groups of finite groups.

Proposition 3.4.4. Let G be a finite group and A be a G-module. Then every element of
H1(G,A) has a finite order which divides |G|.

Proof. Let f ∈ Z1(G,A) and a =
∑

y∈G f(y). Then xf(y)− f(xy) + f(x) = 0. Summing
over this formula we obtain

0 = x
∑
y∈G

f(y)−
∑
y∈G

f(xy) + f(x)
∑
y∈G

1

= xa− a+ |G|f(x)

It follows that |G|f(x) ∈ B1(G,A), which implies |G|Z1(G,A) ⊆ B1(G,A). Hence |G|H1(G,A) =
0. �

Corollary 3.4.5. Let G be a finite group and A be a finite G-module such that (|G|, |A|) =
1. Then H1(G,A) = 0.

Proof. We have |A|f = 0 for all f ∈ C1(G,A). Then the order of [f ] ∈ H1(G,A) divides
(|G|, |A|) = 1. Hence the class [f ] is trivial. �
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Remark 3.4.6. We will show later that Hn(G,A) = 0 for all n ∈ N if the conditions of the
corollary are satisfied.

We shall conclude this section by proving the following result which can be found already
in Hilberts book Die Theorie der algebraischen Zahlkörper of 1895. It is called Hilbert’s Satz
90 and we present a generalization of it due to Emmy Noether.

Proposition 3.4.7. Let L/K be a finite Galois extension with Galois group G = Gal(L/K).
Then we have H1(G,L×) = 1 and H1(G,L) = 0.

Proof. We have to show Z1 = B1 in both cases. Let f ∈ Z1(G,L×). This implies
f(σ) 6= 0 for all σ ∈ G since f : G→ L×. The 1-cocycle condition is, written multiplicatively,
f(στ) = f(σ)σf(τ) or σf(τ) = f(σ)−1f(στ). The 1-coboundary condition is g(σ) = σ(a)/a for
a constant a. By a well known result on the linear independence of automorphisms it follows
that there exists a β ∈ L× such that

α : =
∑
τ∈G

f(τ)τ(β) 6= 0

It follows that for all σ ∈ G

σ(α) =
∑
τ∈G

σ(f(τ))σ(τ(β)) =
∑
τ∈G

f(σ)−1f(στ)στ(β) = f(σ)−1
∑
τ∈G

f(τ)τ(β)

= f(σ)−1α

It follows f(σ) = α
σ(α)

= σ(α−1)
α−1 , hence f ∈ B1(G,L×).

For the second part, let f ∈ Z1(G,L). Since L/K is separable there exists a β ∈ L such that

a : =
∑
τ∈G

τ(β) = TrL/K(β) 6= 0

Setting γ = a−1β we obtain
∑

τ∈G τ(γ) = 1 since τ(a) = a and τ(a−1) = a−1. Let

x : =
∑
τ∈G

f(τ)τ(γ)

Hence we obtain for all σ ∈ G

σ(x) =
∑
τ∈G

σ(f(τ))στ(γ) =
∑
τ∈G

f(στ)στ(γ)− f(σ)στ(γ)

= x− f(σ)

It follows f(σ) = x− σ(x) = σ(−x)− (−x), hence f ∈ B1(G,L). �

Remark 3.4.8. We have Hn(G,L) = 0 for all n ∈ N, but not Hn(G,L×) = 1 in general.

3.5. The second cohomology group

Let G be a group and A be an abelian group. We recall the definition of a factor system,
written additively for A. A pair of functions (f, T ), f : G × G → A and T : G → Aut(A) is
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called factor system to A and G if

f(xy, z) + f(x, y)z = f(x, yz) + f(y, z)(3.17)

T (xy) = T (y)T (x)(3.18)

f(1, 1) = 0(3.19)

where f(x, y)z = T (z)(f(x, y)). Now let

0→ A
α−→ E

β−→ G→ 1

be an abelian group extension of A by G. This equippes A with a natural G-module structure.
We obtain T (x)(a) = xa, or T (x)(a) = ax, for x ∈ G and a ∈ A, which is independent of a
transversal function. In fact, the extension induces an (anti)homomorphism Tτ : G→ Aut(A)
with a transversal function τ : G→ E, see chapter 1. Since A is abelian it follows γh(x) = id|A
so that Tτ ′(x) = γh(x)Tτ (x) = Tτ (x). If we fix T and hence the G-module structure on A,
then the set of factor systems f = (f, T ) to A and G forms an abelian group with respect to
addition: (f + g)(x, y) = f(x, y) + g(x, y). It follows from (3.17) that this group is contained
in the group

Z2(G,A) = {f : G×G→ A | f(y, z)− f(xy, z) + f(x, yz)− f(x, y)z = 0}

where we have considered A as a right G-module. One has to rewrite the 2-cocycle condition
from definition (3.2.1) for a right G-module according to remark (3.4.1). Recall that

B2(G,A) = {f : G×G→ A | f(x, y) = h(y)− h(xy) + h(x)y}

is a subgroup of Z2(G,A) and the factor group is H2(G,A). Indeed, a 2-coboundary is a
2-cocycle. The sum of the following terms equals zero.

f(y, z) = h(z)− h(yz) + h(y)z

−f(xy, z) = −h(z) + h(xyz)− h(xy)z

f(x, yz) = h(yz)− h(xyz) + h(x)yz

−f(x, y)z = −h(y)z + h(xy)z − h(x)yz

Theorem 3.5.1. Let G be a group and A be an abelian group, and let M denote the set of
group extensions

0→ A
α−→ E

β−→ G→ 1

with a given G-module structure on A. Then there is a 1− 1 correspondence between the set of
equivalence classes of extensions of A by G contained in M with the elements of H2(G,A). The
class of split extensions in M corresponds to the class [0] ∈ H2(G,A). This class corresponds
to the trivial class represented by the trivial factor system f(x, y) = 0.

Proof. By Theorem 2.2.18 the set of equivalence classes of such extensions is in bijective
correspondence with the equivalence classes of factor systems f ∈ Z2(G,A). Two factor systems
are equivalent if and only if they differ by a 2-coboundary in B2(G,A): by (2.28) we have

fτ ′(x, y) = fτ (x, y)− h(xy) + h(x)y + h(y)

Note that there is exactly one normalized 2-cocycle in each cohomology class, i.e., with f(1, 1) =
0. Hence two extensions of A by G contained in M are equivalent if and only if they determine
the same element of H2(G,A). �
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Example 3.5.2. Let A = Z/pZ be a trivial G = Cp-module. Then

H2(G,A) ∼= Z/pZ.

Here p is a prime. There are exactly p equivalence classes of extensions

0→ Z/pZ α−→ E
β−→ Cp → 1

Example 3.5.3. Consider the Galois extension L/K = C/R with Galois group G =
Gal(C/R) ∼= C2. Then we have

H2(G,L×) ∼= Z/2Z.

The proof is left as an exercise. In general we have H2(G,L×) ∼= Br(L/K), where Br(L/K)
is the relative Brauer group. It consists of equivalence classes of central simple K-algebras S
such that S ⊗K L ∼= Mn(L). Two central simple K-algebras are called equivalent if their
skew-symmetric components are isomorphic. For any field K the equivalence classes of finite-
dimensional central simple K-algebras form an abelian group with respect to the multiplication
induced by the tensor product.
The group Br(C/R) consists of two equivalence classes. The matrix algebra M2(R) represents
the class [0] and the real quaternion algebra H represents the class [1].
We will now generalize Proposition 3.4.4.

Proposition 3.5.4. Let G be a finite group and A be a G-module. Then every element of
Hn(G,A), n ∈ N, has a finite order which divides |G|.

Proof. Let f ∈ Cn(G,A) and denote

a(x1, . . . , xn−1) =
∑
y∈G

f(x1, . . . , xn−1, y)

Summing the formula for δf and using∑
y∈G

f(x1, . . . , xn−1, xny) = a(x1, . . . , xn−1)

we obtain

∑
y∈G

(δf)(x1, . . . , xn, y) = x1a(x2, . . . , xn)

+
n−1∑
i=1

(−1)ia(x1, . . . , xixi+1, . . . , xn) + (−1)na(x1, . . . , xn−1)

+ (−1)n+1|G|f(x1, . . . , xn)

= (δa)(x1, . . . , xn) + (−1)n+1|G|f(x1, . . . , xn)

Hence if δf = 0, then |G|f(x1, . . . , xn) = ±(δa)(x1, . . . , xn) is an element of Bn(G,A). Then
|G|Zn(G,A) ⊆ Bn(G,A), so that |G|Hn(G,A) = 0. �

Corollary 3.5.5. Let G be a finite group and A be a finite G-module such that (|G|, |A|) =
1. Then Hn(G,A) = 0 for all n ≥ 1. In particular, H2(G,A) = 0. Hence any extension of A
by G is split.
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The last part is a special case of the Schur-Zassenhaus theorem, see (2.1.27). We will sketch
the proof of the general case.

Schur-Zassenhaus 3.5.6. If n and m are relatively prime, then any extension 1→ A
α−→

E
β−→ G→ 1 of a group A of order n by a group G of order m is split.

Proof. If A is abelian, the extensions are classified by the groups H2(G,A), one group for
every G-module structure on A. These are all zero, hence any extension of A by G is split.
In the general case we use induction on n. It suffices to prove that E contains a subgroup S
of order m. Such a subgroup must be isomorphic to G under β : E → G. For, if S is such a
subgroup, then S ∩A is a subgroup whose order divides |S| = m and |A| = n. Then S ∩A = 1.
Also AS = E since α(A) = A is normal in E so that AS is a subgroup whose order is divided
by |S| = m and |A| = n and so is a multiple of nm = |E|. It follows that E is a semidirect
product and hence the extension of A by G is split.
Choose a prime p dividing n and let P be a p-Sylow subgroup of A, hence of E. Let Z be the
center of P . It is well known that Z 6= 1, see [4], p. 75. Let N be the normalizer of Z in E.
A counting argument shows that AN = E and |N/(A ∩ N)| = m, see [5]. Hence there is an
extension 1→ (A ∩N)→ N → G→ 1. If N 6= E, this extension splits by induction, so there
is a subgroup of N , and hence of E, isomorphic to G. If N = E, then Z CE and the extension
1→ A/Z → E/Z → G→ 1 is split by induction. Let G′ be a subgroup of E/Z isomorphic to
G and let E ′ denote the set of all x ∈ E mapping onto G′. Then E ′ is a subgroup of E, and
0 → Z → E ′ → G′ → 1 is an extension. As Z is abelian, the extension splits and there is a
subgroup of E ′, hence of E, isomorphic to G′ ∼= G. �

3.6. The third cohomology group

We have seen that Hn(G,A) for n = 0, 1, 2 have concrete group-theoretic interpretations.
It turns out that this is also the case for n ≥ 3. We will briefly discuss the case n = 3, which
is connected to so called crossed modules. Such modules arise also naturally in topology.

Definition 3.6.1. Let E and N be groups. A crossed module (N,α) over E is a group
homomorphism α : N → E together with an action of E onN , denoted by (e, n) 7→ en satisfying

α(m)n = mnm−1(3.20)

α(en) = e α(n) e−1(3.21)

for all n,m ∈ N and all e ∈ E.

Example 3.6.2. Let E = Aut(N) and α(n) be the inner automorphism associated to n.
Then (N,α) is a crossed module over E.

By definition we have α(m)n = α(m)(n) = mnm−1 and

α(en)(m) = α(e(n))(m) = e(n)me(n)−1 = e(ne−1(m)n−1) = e(α(n)(e−1(m)))

= (eα(n)e−1)(m)

Example 3.6.3. Any normal subgroup N C E is a crossed module with E acting by conju-
gation and α being the inclusion.

Let (N,α) be a crossed module over E and A := kerα. Then the sequence 0→ A
i−→ N

α−→ E
is exact. Since imα is normal in E by (3.21) G = coker(α) is a group. This means that the
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sequence N
α−→ E

π−→ G→ 1 is exact. Since A is central in N by (3.20), and since the action of
E on N induces an action of G on A, we obtain a 4-term exact sequence

(3.22) 0→ A
i−→ N

α−→ E
π−→ G→ 1

where A is a G-module. It turns out that equivalence classes of exact sequences of this form
are classified by the group H3(G,A). Let us explain the equivalence relation. Let G be an
arbitrary group and A be an arbitrary G-module. Consider all possible exact sequences of the
form (3.22), where N is a crossed module over E such that the action of E on N induces the
given action of G on A. We take on these exact sequences the smallest equivalence relation such
that two exact sequences as shown below are equivalent whenever their diagram is commutative:

1 // A

id
��

// N

f
��

α // E

g
��

// G

id
��

// 1

1 // A // N
′ α′ // E

′ // G // 1

Note that f and g need not be isomorphisms. We then have:

Theorem 3.6.4. There is a 1 − 1 correspondence between equivalence classes of crossed
modules represented by sequences as above and elements of H3(G,A).

We omit the proof, which can be found in [29], Theorem 6.6.13.
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3.7. Categories and functors

We will briefly discuss the language of category theory.

Definition 3.7.1. A category C consists of a class ob(C) of objects and a class mor(C) of
morphisms, together with the following structural maps:

(i) An identity map i : ob(C) → mor(C), which asigns to each object A a morphism idA,
the identity morphism of A.

(ii) Two functions s, t : mor(C) → ob(C), which assign to every morphism its source (or
domain) and target (or codomain),

(iii) A composition map ◦ : mor(C) × mor(C) → mor(C), which assigns to any pair of
morphisms f, g such that t(f) = s(g) their composite morphism g ◦ f ,

such that the following axioms are satisfied:

(1) s(g◦f) = s(f) and t(g◦f) = t(g), i.e., source and target are respected by composition.

(2) s(idA) = A and t(idA) = A, i.e, source and target are respected by identities.

(3) (h ◦ g) ◦ f = h ◦ (g ◦ f) whenever t(f) = s(g) and t(g) = s(h), i.e., composition is
associative whenever defined.

(4) If s(f) = A and t(f) = B, then idB ◦f = f = f ◦ idA, i.e., composition satisfies the
left and right unit laws.

The sets

HomC(A,B) = {f ∈ mor(C) | s(f) = A, t(f) = B}
= {f : A→ B}

are called homsets.

Example 3.7.2. 1. The category Set, with sets as objects and functions as morphisms.

2. The category Grp, with groups as objects and group homomorphisms as morphisms.

3. The category Vect, with vector spaces as objects and linear maps as morphisms.

4. The category Top, with topological spaces as objects and continuous functions as morphisms.

5. The category Diff, with smooth manifolds as objects and smooth maps as morphisms.

6. The category Ring, with rings as objects and ring homomorphisms as morphisms.

7. The category ModR, with R-modules over a ring R as objects and R-module homomorphisms
as morphisms.

8. The category AlgR, with R-algebras as objects and R-algebra homomorphisms as mor-
phisms.
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9. The category CRing, with commutative rings as objects and ring homomorphisms as mor-
phisms.

10. The category Aff, with affine schemes as objects and morphism of locally ringed spaces as
morphisms.

Definition 3.7.3. Let C be a category. A subcategory D consists of a subcollection of the
collection of objects of C and a subcollection of the collection of morphisms of D such that

(1) If the morphism f : A→ B is in D, then so are A and B.

(2) If f : A→ B and g : B → C are in D, then so is the composite g ◦ f : A→ C.

(3) If A is in D then so is the identity morphism idA.

In addition D is a full subcategory if for any A and B in D, every morphism f : A→ B in C is
also in D.

These conditions ensure that D is a category in its own right and the inclusion D ↪→ C is
a functor. For example, the category Ab of abelian groups is a full subcategory of Grp. Here
is a table of some categories related to groups:

C Name
Grp Groups
Ab Abelian groups
Abd Divisible abelian groups
Abf Free abelian groups
Cyc Cyclic groups
Abtf Torsion-free abelian groups
Abfg Finitely generated abelian groups
Abffg Finitely generated free abelian groups
grp Finite groups
ab Finite abelian groups
Abt Torsion abelian groups
Abp Profinite abelian groups

Definition 3.7.4. A functor F from a category C to a category D is a map sending each
object A ∈ C to an object F (A) ∈ D and each morphism f : A → B in C to a morphism
F (f) : F (A)→ F (B) in D, such that

(1) F (idA) = idF (A) for each A ∈ ob(C).
(2) F (g ◦ f) = F (g) ◦ F (f), i.e., F is covariant, or
(3) F (g ◦ f) = F (f) ◦ F (g), i.e., F is contravariant.
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Example 3.7.5. 1. F : ModR → Ab, N 7→ HomR(M,N) is a functor, denoted by F =
HomR(M, ·) for a given R-module M .

2. F : ModR → ModR, N 7→ M ⊗R N is a functor, denoted by F = M ⊗R · for a given
R-module M over a commutative ring R.

3. U : ModR → Ab, N 7→ (N,+) is a functor, mapping N to its underlying abelian group.
Functors of this kind a called forgetful functors.

Proposition 3.7.6. Let R be a ring and M be a left R-module. Then F = HomR(M, ·) is
a covariant functor from ModR to Ab, und F = HomR(·,M) is a contravariant functor from
ModR to Ab.

Proof. Let β : A → B be a morphism in ModR. We need to define F (β). Let M be a

fixed R-module. Consider the sequence M
α−→ A

β−→ B in ModR. Then define a homomorphism
β̃ = F (β) of abelian groups

F (β) : HomR(M,A)→ HomR(M,B)

by F (β)(α) = β̃(α) = β ◦ α. Obviously β = id in ModR implies F (β) = id in Ab. Given a
sequence

M
α−→ A

β−→ B
γ−→ C

in ModR, we obtain

F (γ ◦ β)(α) = (γ ◦ β)(α) = γ ◦ (β ◦ α)(3.23)

= F (γ)(F (β)(α)).(3.24)

Hence the functor F = HomR(M, ·) is covariant. The second claim follows similarly. �

Proposition 3.7.7. Let R be a commutative ring and M,N be two R-modules. Then both
F = M ⊗R · and G = · ⊗R N are covariant functors from ModR to ModR.

Proof. Given A
α−→ B

β−→ C in ModR we put

F (α) = 1M ⊗ α : M ⊗R A→M ⊗R B,

where (1M ⊗ α)(x⊗ y) = x⊗ α(y). Then

F (β ◦ α) = 1M ⊗ (β ◦ α) = (1M ⊗ β) ◦ (1M ⊗ α)(3.25)

= F (β)F (α).(3.26)

Hence F is covariant. The second claim follows similarly. �

Definition 3.7.8. Given categories C and D, and a pair of functors F,G : C → D, a
natural transformation N from F to G is an assigment N , which gives for every object C in C

a morphism N(C) : F (C)→ G(C), so that for every morphism f ∈ HomC(C,C ′) the following
diagram commutes.

F (C)

F (f)
��

N(C)
// G(C)

G(f)
��

F (C ′)
N(C′)

// G(C ′)
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Definition 3.7.9. An equivalence between two categories C and D is a pair of functors
F : C → D and G : D → C together with natural isomorphisms F ◦G ≡ idD and G ◦ F ≡ idC.
Here a natural isomorphism is a a natural transformation with a two-sided inverse.

Definition 3.7.10. For a category C, the opposite category Cop has the same objects as C,
but a morphism f : A→ B in Cop is the same as a morphism f : B → A in C, and a composite
of morphisms g ◦ f in Cop is defined to be the composite f ◦ g in C.

In general, the categories C and Cop need not be equivalent. However, the opposite of an
opposite category is the original category, i.e., (Cop)op = C.

Example 3.7.11. 1. The category of affine schemes is equivalent to the opposite of the
category of commutative rings, i.e., Aff ∼= CRingop.

2. The Pontryagin duality restricts to an equivalence between the category of compact Hausdorff
abelian topological groups and the opposite of the category of abelian groups.

3. The category of profinite abelian groups is equivalent to the opposite of the category of torsion
abelian groups.

4. The category of vector spaces is self-dual, i.e., Vect ∼= Vectop. The same is true for the
category of finite-dimensional representations of a group (or of a Lie algebra).

Definition 3.7.12. Let C be a category, and X1, X2 two objects in C. A product of X1

and X2 is an object X, denoted X1 × X2, together with a pair of morphisms π1 : X → X1,
π2 : X → X2 that satisfy the following universal property. For every object Y and every pair of
morphisms f1 : Y → X1, f2 : Y → X2 there exists a unique morphism f : Y → X1 ×X2 such
that the following diagram commutes:

Y

f
��

f1

zz

f2

$$
X1 X1 ×X2π1
oo

π2
// X2

Example 3.7.13. 1. In the category of groups, the cartesian product X1×X2 with componen-
twise multiplication together with the canonical projections π1 : X1×X2 → X1, π2 : X1×X2 →
X2 is a categorial product for X1 and X2.

2. The category of cyclic groups does not have a product.

A coproduct in C is the same as a product in the opposite category Cop.

Definition 3.7.14. Let C be a category, and X1, X2 two objects in C. A coproduct of X1

and X2 is an object X, denoted X1qX2, together with a pair of morphisms i1 : X1 → X1qX2,
i2 : X2 → X1 qX2 that satisfy the following universal property. For every object Y and every
pair of morphisms f1 : X1 → Y , f2 : X2 → Y there exists a unique morphism f : X1qX2 → Y
such that the following diagram commutes:

Y

X1

f1

::

i1
// X1 qX2

f

OO

X2i2
oo

f2

dd
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Example 3.7.15. 1. The coproduct in the category of groups is the free product. It is
infinite in general. For example, C2 ∗ C3

∼= PSL2(Z).

2. The coproduct in the category of commutative rings is the tensor product.

3. The category of cyclic groups does not have a coproduct.

Definition 3.7.16. Let C be a category. An initial object in C is an object X such that
for every object Y there is a unique morphism i : X → Y .

Example 3.7.17. 1. In the category of sets, the empty set is initial.

2. In the category of groups, the trivial group is initial.

3. In the category of R-modules, the zero module is initial.

Definition 3.7.18. Let C be a category. An terminal object in C is an object Y such that
for every object X there is a unique morphism t : X → Y .

Example 3.7.19. 1. In the category of sets, any set containg one element is terminal.

2. In the category of groups, the trivial group is terminal.

3. In the category of R-modules, the zero module is terminal.

Definition 3.7.20. Let C be a category. A zero object in C is an object which is both
initial and terminal.

Example 3.7.21. 1. In the category of sets, there is no zero object.

2. In the category of groups, the trivial group is a zero object.

3. In the category of R-modules, the zero module is a zero object.

4. In the category of rings with unity, there is no zero object.

Definition 3.7.22. A category C is called pre-additive, if each homset is an additive abelian
group and composition is bilinear with respect to this addition:

(g + g′) ◦ (f + f ′) = g ◦ f + g ◦ f ′ + g′ ◦ f + g′ ◦ f ′

for all morphisms f, f ′ : A→ B, g, g′ : B → C.

Example 3.7.23. 1. The category of groups is not pre-additive (exercise).

2. The category of R-modules is pre-additive. In particular, for R = Z, the category of abelian
groups is pre-additive.

Definition 3.7.24. An additive category C is a pre-additive category with a zero object
and a product A×B for each pair of objects A,B from C.

One can show that this product is also a coproduct for finitely many objects, i.e., product
and coproduct are isomorphic.

Example 3.7.25. The category ModR ist additive with product and coproduct A1 ⊕ A2.

Here is a table with some examples and non-examples. For the definition of an abelian
category see below.
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C Additive Abelian
Set − −
Ring − −
AlgR − −
Hilb X −
Sh(X) X X
ModR X X
Grp − −
Ab X X
Abd X −
Abf X −
Cyc − −
Abtf X −
Abfg X X
Abffg X −
grp − −
ab X X
Abt X X
Abp X X

Definition 3.7.26. A morphism i : A → B in an additive category C is called monic, if,
whenever g : A′ → A is a morphism satisfying i ◦ g = 0, then g = 0.

Monics can be cancelled from the left In Set, Grp and ModR, monics are just injective
maps.

Definition 3.7.27. A morphism e : C → D in an additive category C is called epi, if,
whenever h : D → D′ is a morphism satisfying h ◦ e = 0, then h = 0.

Epis can be cancelled from the right. In Set, Grp and ModR, epis are just surjective maps.
We define the kernel and the cokernel of a morphism as follows:

Definition 3.7.28. Let C be an additive category. Suppose that f : A→ B is an arbitrary
morphism in C. A kernel of f is a morphism κ : C → A such that

(a) f ◦ κ : C → B is the zero morphism:

A
f

��
C

κ

OO

0
// B
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(b) Given any morphism κ′ : D → A such that f ◦κ′ is the zero morphism, there is a unique
morphism g : D → C such that κ ◦ g = κ′:

A
f

��
C

κ

OO

0 // B

D
0

77κ′

GG

g

>>

Definition 3.7.29. Let C be an additive category. Suppose that f : A→ B is an arbitrary
morphism in C. A cokernel of f is a morphism λ : B → C such that

(a) λ ◦ f : A→ C is the zero morphism:

B

λ
��

A

f
??

0
// C

(b) Given any morphism λ′ : B → D such that λ′ ◦f is the zero morphism, there is a unique
morphism g : C → D such that λ ◦ g = λ′:

B

λ
��

λ′

��

A
0 //

f
??

0
''

C

g

  
D

It is easy to see that kernels and cokernels are universal and hence uniquely determined if
they exist (they need not exist in general).

Example 3.7.30. 1. In Grp, the usual definition of a kernel, with the inclusion map into A
satisfies the above universal property. So kernels always exist in Grp. A cokernel of a morphism
f : G → H in Grp is the quotient of H by the normal closure of the image of f . So cokernels
always exist.

2. In Ring, there is no zero object, so the kernel and the cokernel do not exist.

3. In ModR, kernels and cokernels always exist.

Definition 3.7.31. An abelian category is an additive category C satisfying the following
three conditions:

(AB1) Every morphism in C has a kernel and a cokernel.

(AB2) Every monic morphism in C is the kernel of its cokernel, i.e.,

i = ker(coker(i)).
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(AB3) Every epic morphism in C is the cokernel of its kernel, i.e.,

e = coker(ker(e)).

The notion of abelian category is self-dual, i.e., the opposite category of any abelian category
is abelian.

Example 3.7.32. 1. ModR is an abelian category. In particular, AbR is an abelian cate-
gory.

2. The category Abf of free abelian groups is additive, but not abelian (exercise). In fact, not
every monic morphism is the kernel of its cokernel.

Remark 3.7.33. Not every abelian category is a concrete category such as ModR or Ab.
But for many proofs in homological algebra it is very convenient to have a concrete abelian
category, for that allows one to check the behaviour of morphisms on actual elements of the sets
underlying the objects. However, under good conditions an abelian category can be embedded
into Ab as a full subcategory by an exact functor, and generally can be embedded this way
into ModR, for some ring R. This is the Freyd-Mitchell embedding theorem.

Definition 3.7.34. Let C be an additive category. A sequence 0→ A→ B
α−→ C is called

left-exact if the sequence of abelian groups

0→ Hom(T,A)→ Hom(T,B)→ Hom(T,C)

is exact for all objects T in C. A sequence A
β−→ B → C → 0 is right-exact if the sequence of

abelian groups
0→ Hom(C, T )→ Hom(B, T )→ Hom(A, T )

is exact for all objects T .

Definition 3.7.35. A covariant functor F : C → D of additive categories is called exact, if
it takes short exact sequences in C to short exact sequences in D. That means, given a short
exact sequence

0→M1 →M2 →M3 → 0

in C yields a short exact sequence

0→ F (M1)→ F (M2)→ F (M3)→ 0

in D.
The functor is called left-exact, if

0→ F (M1)→ F (M2)→ F (M3)

is exact. It is called right-exact, if

F (M1)→ F (M2)→ F (M3)→ 0

is exact.

The definition for contravariant functors is analogous. One has to reverse the arrows in D.
Hence a contravariant functor F is left-exact if every exact sequence

0→M1 →M2 →M3

is taken to an exact sequence

0→ F (M3)→ F (M2)→ F (M1).
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Proposition 3.7.36. The contravariant functor HomR(·, V ) from ModR to Ab is left-exact,
as well as the covariant functor HomR(V, ·).

Proof. We only show that HomR(V, ·) is a left-exact functor. In general, it is not an exact
functor. So let

0→M1
ψ−→M2

ϕ−→M3

be a short exact sequence of R-modules. We have to show that the sequence

0→ HomR(V,M1)
ψ̃−→ HomR(V,M2)

ϕ̃−→ HomR(V,M3)

is exact. Let ψ̃σ = 0 for σ ∈ HomR(V,M1). This means ψ(σ(v)) = 0 for all v ∈ V . We have

σ(v) = 0, because ψ is injective, and hence σ = 0. This implies that also ψ̃ is injective.
Now let ϕ̃τ = 0 with τ ∈ HomR(V,M2). Then ϕ(τ(v)) = 0 for all v ∈ V , and τ(v) = ψ(v′) with
some v′ ∈ M1, depending on v. Since ψ is injective, v′ is unique. Define τ ′ ∈ HomR(V,M1) by
this v′, i.e., let τ ′(v) = v′. Then it follows that

τ(v) = ψ(v′) = ψ(τ ′(v)) = (ψ̃τ ′)(v).

Hence τ is contained in the image of ψ̃. �

Remark 3.7.37. Let R be a commutative ring. The covariant functors F = M ⊗R · and
G = · ⊗R N are right-exact, but not exact in general.

3.8. Functorial definition of cohomology groups

Let us first mention the definition of adjoint functors for later.

Definition 3.8.1. A pair of functors F : A → B and G : B → A is called adjoint, if for
every pair of objects (A,B) with A ∈A and B ∈ B there is a functorial bijection

τ = τA,B : HomB(F (A), B)→ HomA(A,G(B)).

This means, there is a bijection such that for all f : A→ A′ in A and all g : B → B′ in B the
following diagram of induced mappings commutes:

HomB(F (A′), B)

��

// HomB(F (A), B)

��

// HomB(F (A), B′)

��
HomA(A′, G(B)) // HomA(A,G(B)) // HomA(A,G(B′))

In this case, F is called the left adjoint of this pair, and G is called the right adjoint of this
pair.

For the definition of homology and cohomology of groups we are not using the category of
groups. Rather we use the category ModR for the group ring R = Z[G].

Definition 3.8.2. Let G be a group. Denote by MG the category of G-modules, i.e., of
Z[G]-modules. This is an abelian category.

For the trivial group G = 1 we obtain the category Ab of Z-modules. We recall the following
result:

Proposition 3.8.3. Let 0 → I
α−→ N

β−→ M → 0 be a short exact sequence of R-modules.
Then the following conditions are equivalent:

(1) There exists a module homomorphism τ : M → N such that βτ = id |M .
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(2) There exists a module homomorphism σ : N → I such that σα = id | I .

In this case, N is isomorphic to the direct sum of I and M , with

N ' im(α)⊕ ker(σ) ' ker(β)⊕ im(τ)

Definition 3.8.4. Let C be an abelian category. An object I of C is injective if Hom(·, I)
is an exact functor, i.e., if 0→ A→ B → C → 0 is exact in C then also

0→ Hom(C, I)→ Hom(B, I)→ Hom(A, I)→ 0

is exact.

This sequence is automatically exact except at Hom(A, I). Hence to say that I is injective
means that every homomorphism A → I extends to B, i.e., for each injection f : A → B and
each α : A→ I there exists at least one map β : B → I such that α = β ◦ f .

Proposition 3.8.5. Let I be an R-module in the category ModR. Then the following
conditions are equivalent:

(1) I is injective, i.e., the functor HomR(·, I) is exact.
(2) Each short exact sequence of R-modules 0→ I → N →M → 0 is split.
(3) Each R-module homomorphism f of a submodule M ′ of M to I can be extended to

a R-module homomorphism h : M → I. In other words, the following diagram is
commutative, h ◦ α = f :

I

0 // M ′ α //

f

OO

M

h

aa

Proof. We just gave a short reasoning why (1) and (3) are equivalent. Now assume (3)
and consider the following diagram:

I

0 // I
α //

id

OO

N

h
__

Then (3) yields a homomorphism h : N → I such that h ◦ α = id |N . Using Proposition 3.8.3 it
follows (2), i.e., the short exact sequence there splits. Conversely, assume (2). To show (3), let

I

0 // M ′ α //

f

OO

M

be an exact diagram. We form the so-called push-out, see [21],

M ′

��

α // M

��
I

α′ // N

where N = I ⊕M ′ M . Since α is a monomorphism, so is α′. By (2) the sequence 0 → I
α−→ N

splits, and composing the splitting map σ : N → I with the push-out map M → N we obtain
the desired homomorphism h : M → I satisfying h ◦ α = f , proving (3). �
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Definition 3.8.6. Let C be an abelian category. We say that C has enough injectives if
for every object A in C there is an injection A→ I where I is injective.

We have the following important theorem.

Theorem 3.8.7. Every R-module can be embedded into an injective R-module. Hence the
category ModR, respectively MG, has enough injectives.

Proof. Here is a very rough outline of the proof. For details see [21]. Let T be a divisible
abelian group. This means, the homomorphism x 7→ mx from T to T is surjective for all m ∈ Z.
The first step in the proof is to show that then HomZ(R, T ) is an injective R-module. If M is
an arbitrary R-module then it is possible to embedd M into some divisible abelian group T .
This will induce an embedding of M into the injective R-module HomZ(R, T ). �

Let C be an abelian category. Then Cop is also abelian and injective objects in C correspond
to so called projective objects in Cop. We have the following dual definition.

Definition 3.8.8. Let C be an abelian category. An object P of C is projective if Hom(P, ·)
is an exact functor, i.e., if 0→ A→ B → C → 0 is exact in C then also

0→ Hom(P,A)→ Hom(P,B)→ Hom(P,C)→ 0

is exact.

Indeed, A is injective in C if and only if A is projective in Cop.

Example 3.8.9. Consider the category of all complex vector spaces. Then each object is
projective and injective.

Indeed, every module in this category is free, since it has a basis, and hence projective.
Also, every short exact sequence splits.

Example 3.8.10. The category of finite abelian groups ab is an example of an abelian
category that has no (nonzero) projective objects. Since ab is equivalent to abop it has also no
(nonzero) injective objects.

Proposition 3.8.11. Let P be an R-module in the category ModR. Then the following
conditions are equivalent:

(1) P is projective, i.e., the functor HomR(P, ·) is exact.
(2) Each short exact sequence of R-modules 0→ N →M → P → 0 is split.
(3) For each surjective R-module homomorphism g : B → C and an R-module homomor-

phism γ : P → C there is at least one R-module homomorphism β : P → B such that
γ = g ◦ β:

P

γ
��

β

��
0 Coo B

goo

Definition 3.8.12. Let C be an abelian category. We say that C has enough projectives if
for every object A in C there is a surjection P → A where P is projective.

Proposition 3.8.13. The category ModR respectively MG has enough projectives.

Indeed, every R-module is the homomorphic image of a free, hence projective R-module.

We could also use projectives for the definition of cohomology, but we will do it with injectives.
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Definition 3.8.14. Let M be an object of a category C. A resolution of M is a long exact
sequence

0→M → I0 → I1 → · · · → Ir → · · ·
We sometimes write this M → I•. If all the Ir are injective objects of C, then it is called an
injective resolution.

Proposition 3.8.15. If the abelian category C has enough injectives, then every object in
C has an injective resolution.

Let F : C → D be a left exact functor from one abelian category to a second one. Let
M → I• be an injective resolution of M . On applying the functor F , we obtain a complex

F (I) : 0
d−1

−−→ F (I0)→ F (I1)→ · · · → F (Ir)
dr−→ F (Ir+1)→ · · ·

which may be no longer exact. Define

(RrF )(M) = Hr(F (I)) := ker(dr)/ im(dr−1)

for all r ≥ 0. One can show that the objects (RrF )(M) are well-defined up to a canoni-
cal isomorphism. Moreover, a morphism α : M → N gives rise to a well-defined morphism
(RrF )(M)→ (RrF )(N). In fact, the RrF are functors.

Definition 3.8.16. The above functors RrF are called the right derived functors of F .

Example 3.8.17. We have R0F = F .

Because F is left exact, 0→ F (M)→ F (I0)
d0−→ F (I1) is exact. Therefore

(R0F )(M) = ker(d0) = F (M)

Theorem 3.8.18. A short exact sequence 0→ A→ B → C → 0 gives rise to a long exact
sequence

0→ F (A)→ F (B)→ F (C)→ R1F (A)→ R1F (B)→ R1F (C)→ · · ·
→ RrF (A)→ RrF (B)→ RrF (C)→ · · ·

and the association of the long exact sequence to the short exact sequence is functorial.

The last condition means that a commutative diagram

0 // A

��

// B

��

// C

��

// 0

0 // A′ // B′ // C ′ // 0

gives rise to a commutative diagram

· · · // Rr−1F (C)

��

// RrF (A)

��

// RrF (B)

��

// RrF (C)

��

// · · ·

· · · // Rr−1F (C ′) // RrF (A′) // RrF (B′) // RrF (C ′) // · · ·

Now we turn to the functorial definition of cohomology groups.

Lemma 3.8.19. The functor F : MG → Ab, F (M) = MG from the category of G-modules
to the category of abelian groups is left exact.
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Proof. This follows from the fact that MG = HomG(Z,M) for any G-module, see (3.3.2).
Here Z is regarded as trivial G-module. �

Hence, if 0 → N → M → V → 0 is exact then 0 → NG → MG → V G is exact. Since the
category of G-modules has enough injectives, every G-module has an injective resolution and
we can form the right derived functors of F .

Definition 3.8.20. Let G be a group and M be a G-module. Define the rth cohomology
group of G with coefficients in M to be

Hr(G,M) = RrF (M)

That means, if we choose an injective resolution

0→M → I0
d0−→ I1

d1−→ I2
d2−→ · · ·

of M , then the complex

0
d−1

−−→ (I0)G
d0−→ (I1)G → · · · d

r−1

−−→ (Ir)G
dr−→ (Ir+1)G → · · ·

need no longer be exact, and we have Hr(G,M) ∼= ker(dr)/ im(dr−1). For any homomorphism
α : M → N of G-modules and any injective resolutions M → I• and N → J•, α extends to a
map of complexes α̃ : I• → J•,

0 // M

α
��

// I0

��

// I1

��

// · · ·

0 // N // J0 // J1 // · · ·

and the homomorphisms Hr(α̃) : Hr(I•G) → Hr(J•G) are independent of the choice of α̃. On
applying this statement to the identity map id: M →M , we see that the groups Hr(G,M) are
well defined up to a canonical isomorphism. These groups have the following basic properties.

(1) We have H0(G,M) = F (M) = MG.

(2) If I is an injective G-module, then Hr(G, I) = 0 for all r > 0, because 0 → I → I →
0→ 0→ · · · is an injective resolution of I.

(3) A short exact sequence 0→ N →M → V → 0 of G-modules gives rise to a long exact
sequence

0→ H0(G,N)→ H0(G,M)→ H0(G, V )→ H1(G,N)→ H1(G,M)→ · · ·
→ Hr(G,N)→ Hr(G,M)→ Hr(G, V )→ Hr+1(G,N)→ · · ·

We have finally obtained two different definitions of cohomology groups. One by means
of cochains and explicit formulas of the coboundary operators, the other by means of derived
functors. One can show that there is a canonical isomorphism between the two cohomology
groups.



CHAPTER 4

Cohomology of Lie algebras

Lie algebra cohomology was first defined in [7] by an explicit formula for the coboundary
operator. For a textbook reference see also the books of A. Knapp [19] and Weibel [29]. As in
the group case, there is the general definition, which defines Lie algebra cohomology as right
derived functor of the left exact invariant funtor M → M g. Here M is a g-module and M g is
the module of invariants, see below.

4.1. The n-th cohomology group

Given a Lie algebra g we define a g-module to be a vector space V equipped with a bilinear
function g× V → V , often written (x, v) 7→ x · v, satisfying the relation

[x, y] · v = x · (y · v)− y · (x · v)

A g-module V is just the same as a representation ϕ : g→ gl(V ). Indeed, given a representation
ϕ we can define x·v = [ϕ(x)](v). Given an action we can define a representation ϕ(x) ∈ gl(V ) by
[ϕ(x)](v) = x · v. The above relation is exactly the statement that the bracket in g corresponds
to the bracket in gl(V ).

Modules of a Lie algebra form a category. A homomorphism of g-modules is a linear map
ψ : V → W satisfying

ψ(x · v) = x · ϕ(v).

Definition 4.1.1. Let M be a g-Modul. Then

M g = {m ∈M | x •m = 0 ∀x ∈ g}
= H0(g,M)

is called the module of invariants of M , or H0(g,M), the zeroth cohomology group of g with
coefficients in M .

Let V and W be vector spaces. A multilinear map f : V p → W is called alternating if
f(v1, . . . vp) = 0 as soon as vi = vj for an index pair (i, j) with i < j. For σ ∈ Sp we have

f(vσ1 , . . . , vσp) = sgn(σ) · f(v1, . . . , vp)

Let Alt(V n,W ) denote the vector space of all alternating maps f : V n → W . We have

Hom(Λn(V ),W ) ∼= Alt(V n,W ).

Definition 4.1.2. Let g be a Lie algebra of dimension n over a field K. Let M be a
g-module with the action g×M →M , (x,m) 7→ x •m. The the space of p-cochains is defined
by

Cp(g,M) =

{
HomK(Λpg,M) if p > 0,

0 if p < 0.

45
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Moreover we define

C0(g,M) = M,

C(g,M) =
∞⊕
k=0

Ck(g,M).

We also may view the space of p-cochains as Alt(gp,M).

Definition 4.1.3. The coboundary operators dp : Cp(g,M)→ Cp+1(g,M) are linear maps
given by

(dpω)(x0 ∧ · · · ∧ xp) =
∑

0≤r<s≤p

(−1)r+sω([xr, xs] ∧ x0 ∧ · · · ∧ x̂r ∧ · · · ∧ x̂s ∧ · · · ∧ xp)

+

p∑
t=0

(−1)txt • ω(x0 ∧ · · · ∧ x̂t ∧ · · · ∧ xp),

for p ≥ 0 and ω ∈ Cp(g,M). For p < 0 we set dp = 0. The maps dp also induce a linear map

d : C(g,M)→ C(g,M).

Note that dp(ω) is indeed an element of Cp+1(g,M).

Definition 4.1.4. The elements of the subspace Zp(g,M) = ker dp are called p-cocycles,
and the elements of the subspace Bp(g,M) = im dp−1 are called p-coboundaries.

We will show later that dp ◦ dp−1 = 0, i.e., that we have Bp(g,M) ⊆ Zp(g,M). Hence the
following definition makes sense.

Definition 4.1.5. The quotient space

Hp(g,M) = Zp(g,M)/Bp(g,M)

is called the p-th cohomology group of g with coefficients in the g-module M .

Remark 4.1.6. The sequence

0→ C0(g,M)
d0−→ C1(g,M)

d1−→ C2(g,M)→ · · ·

forms a complex since d2 = 0. It is called the standard cochain complex and is denoted by
{C•(g,M), d}, see [19].

Let us state the coboundary formulas explicitly for n = 0, 1, 2, 3, in terms of alternating
maps:
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(d0ω)(x0) = x0 • ω

(d1ω)(x0, x1) = x0 • ω(x1)− x1 • ω(x0)− ω([x0, x1])

(d2ω)(x0, x1, x2) = x0 • ω(x1, x2)− x1 • ω(x0, x2) + x2 • ω(x0, x1)

− ω([x0, x1], x2) + ω([x0, x2], x1)− ω([x1, x2], x0)

(d3ω)(x0, x1, x2, x3) = x0 • ω(x1, x2, x3)− x1 • ω(x0, x2, x3)

+ x2 • ω(x0, x1, x3)− x3 • ω(x0, x1, x2)

− ω([x0, x1], x2, x3) + ω([x0, x2], x1, x3)

− ω([x0, x3], x1, x2)− ω([x1, x2], x0, x3)

+ ω([x1, x3], x0, x2)− ω([x2, x3], x0, x1)

We can write down the definition of Hn(g,M) then in explicit terms. Let us do this for
n = 0, 1, 2.

Case 1: n = 0. We have B0(g,M) = 0. Hence

H0(g,M) = Z0(g,M) = {m ∈M | x •m = 0 ∀x ∈ g}
= M g

is indeed the module of invariants, as said earlier.

Case 2: n = 1. The space of 1-cocycles and 1-coboundaries is given by

Z1(g,M) = {ω ∈ Hom(g,M) | ω([x, y]) = x • ω(y)− y • ω(x)}
B1(g,M) = {ω ∈ Hom(g,M) | ω(x) = x •m für ein m ∈M}

Suppose that M is the trivial g-module K. Then d0 = 0 and (d1ω)(x, y) = ω([y, x]). This
yields

H1(g, K) = {ω ∈ g∗ | ω([g, g]) = 0}
∼= (g/[g, g])∗

More generally, for a trivial g-module M , we have

H1(g,M) ∼= Hom(g/[g, g]),M).

In case that M = g is the adjoint g-module we have H1(g, g) = Der(g)/ ad(g). This equals the
space of outer derivations of g. The space of inner derivations of g is given by ad(g) = {adx |
x ∈ g}.
Case 3: n = 2. The space of 2-cocycles and 2-coboundaries is given by

Z2(g,M) = {ω ∈ Alt(g2,M) | x1 • ω(x2, x3)− x2 • ω(x1, x3) + x3 • ω(x1, x2)

− ω([x1, x2], x3) + ω([x1, x3], x2)− ω([x2, x3], x1) = 0}
B2(g,M) = {ω ∈ Alt(g2,M) | ω(x1, x2) = x1 • f(x2)− x2 • f(x1)− f([x1, x2])

for some f ∈ Hom(g,M)}.
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For M = K the trivial g-module we obtain

Z2(g, K) = {ω ∈ Alt(g2, K) | ω([x1, x2], x3)− ω([x1, x3], x2)

+ ω([x2, x3], x1) = 0}
B2(g, K) = {ω ∈ Alt(g2, K) | ω(x1, x2) = f([x1, x2])

for some f ∈ Hom(g, K)}.

Definition 4.1.7. Let i(x) : Cp(g,M) → Cp−1(g,M) be the linear map, which is defined
for x ∈ g by

(i(x)ω)(x1, . . . , xp−1) = ω(x, x1, . . . , xp−1).

This map is called the insertion map. We define i(x) as zero on C0(g,M).

Definition 4.1.8. Let ρ : g→ gl(Cp(g,M)), x 7→ ρ(x) be the linear map, which is defined
for x ∈ g by

(ρ(x)ω)(x1, . . . , xp) = −
p∑
i=1

ω(x1, . . . , [x, xi], . . . , xp)

+ x • ω(x1, . . . , xp)

=

p∑
i=1

(−1)iω([x, xi], x1, . . . , x̂i, . . . , xp)

+ x • ω(x1, . . . , xp)

These two maps satisfy the so-called Cartan formula:

Proposition 4.1.9. The map ρ : g → gl(C(g,M)) is a Lie algebra representation, which
satifies the Cartan formula

ρ(x) = dp−1 ◦ i(x) + i(x) ◦ dp.(4.1)

Remark 4.1.10. It is sometimes convenient to drop the indices for the maps dp. So we just
write ρ(x) = d ◦ i(x) + i(x) ◦ d.

Proof. We first show that ρ is a representation, i.e., that we have

ρ([x, y]) = [ρ(x), ρ(y)].

For this we compute

ρ(x)ρ(y)ω(x1, . . . , xp) = x • (y • ω(x1, . . . , xp))

−
p∑
i=1

y • ω(x1, . . . , [x, xi], . . . , xp)

−
p∑
i=1

x • ω(x1, . . . , [y, xi], . . . , xp)

+

p∑
i,j=1, i 6=j

ω(x1, . . . , [y, xi], . . . , [x, xj], . . . , xp)

+

p∑
i=1

ω(x1, . . . , [y, [x, xi]], . . . , xp)
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This implies, together with the Jacobi identity,

[ρ(x), ρ(y)]ω(x1, . . . , xp) = [x, y] • ω(x1, . . . , xp)

−
p∑
i=1

ω(x1, . . . , [[x, y], xi], . . . , xp)

= ρ([x, y])ω(x1, . . . , xp).

Secondly, we show the Cartan formula. For this we rewrite the formula for the coboundary
operator using the map i(x0) as follows:

d(i(x0)ω)(x1, . . . , xp) =

p−1∑
`=0

x` • (i(x0)ω)(x1, . . . , x̂`, . . . , xp)

+
∑

0≤`<k≤p−1

(−1)`+k(i(x0)ω)([x`, xk], x1, . . . , x̂`, . . . , x̂k, . . . , xp).

With ω(x0, [xi, xj], . . . , xp) = −ω([xi, xj], x0, . . . xp) we obtain

(i(x0)dω)(x1, . . . , xp) = (dω)(x0, x1, . . . , xp)

= (−1)0x0 • ω(x1, . . . , xp)

+

p∑
j=1

(−1)jxj • ω(x0, . . . , x̂j, . . . , xp)

+ (−1)0+jω([x0, xj], x1, . . . , x̂j, . . . , xp)

+
∑

1≤i<j≤p

(−1)i+jω([xi, xj], x0, . . . , x̂i, . . . , x̂j, . . . , xp)

= (ρ(x0)ω)(x1, . . . , xp)

−
p∑
j=1

(−1)j−1xj • (i(x0)ω)(x0, . . . , x̂j, . . . , xp)

−
∑

1≤i<j≤p

(−1)i+j(i(x0)ω)([xi, xj], x1, . . . , x̂i, . . . , x̂j, . . . , xp)

= (ρ(x0)ω)(x1, . . . , xp)− d(i(x0)ω)(x1, . . . , xp),

and this finishes the proof. �

Proposition 4.1.11. We have the following formulas, for all x, y ∈ g:

i([x, y]) = [i(x), ρ(y)](4.2)

[ρ(x), d] = 0(4.3)

Proof. We first show (4.2). We have

(i(x1)ρ(y)ω)(x2, . . . , xp) = (ρ(y)ω)(x1, . . . , xp)

= y • ω(x1, . . . , xp)−
p∑
j=1

ω(x1, . . . , [y, xj], . . . , xp).
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On the other hand we have

ρ(y)(i(x1)ω)(x2, . . . , xp) = y • (i(x1)ω)(x2, . . . , xp)

−
p∑
j=2

(i(x1)ω)(x2, . . . , [y, xj], . . . , xp)

= y • ω(x1, . . . , xp)−
p∑
j=2

ω(x1, x2, . . . , [y, xj], . . . , xp).

The difference of these two terms, i.e., i(x1)ρ(y)ω − ρ(y)i(x1)ω, corresponds to the RHS of
(4.2): it is equal to the summand for j = 1 in the first sum, namely to

−ω([y, x1], x2, . . . , xp) = (i([x1, y])ω)(x2, . . . , xp).

Hence we have i(x)ρ(y)− ρ(y)i(x) = i([x, y]).

Secondly we show (4.3). Here we compute with (4.1) and (4.2):

[ρ(x), ρ(y)] = [d ◦ i(x) + i(x) ◦ d, ρ(y)]

= d ◦ i(x) ◦ ρ(y) + i(x) ◦ d ◦ ρ(y)− ρ(y) ◦ d ◦ i(x)− ρ(y) ◦ i(x) ◦ d

= d ◦ ρ(y) ◦ i(x) + i(x) ◦ d ◦ ρ(y) + d ◦ i(x) ◦ ρ(y) + i(x) ◦ ρ(y) ◦ d

− ρ(y) ◦ d ◦ i(x)− i(x) ◦ ρ(y) ◦ d− d ◦ ρ(y) ◦ i(x)− ρ(y) ◦ i(x) ◦ d

= [d, ρ(y)] ◦ i(x) + i(x) ◦ [d, ρ(y)] + d ◦ [i(x), ρ(y)] + [i(x), ρ(y)] ◦ d

= [d, ρ(y)] ◦ i(x) + i(x) ◦ [d, ρ(y)] + d ◦ i([x, y]) + i([x, y]) ◦ d

= [d, ρ(y)] ◦ i(x) + i(x) ◦ [d, ρ(y)] + ρ([x, y])

Since ρ is a representation, this implies

[d, ρ(y)] ◦ i(x) + i(x) ◦ [d, ρ(y)] = 0.(4.4)

Now we can use induction on the degree k of Ck(g,M), to show that we have [d, ρ(y)] = 0.

Case 1: k = 0. For ω ∈ C0(g,M) = M we have

([d, ρ(y)]ω)(x) = (dρ(y)ω)(x)− (ρ(y)dω)(x)

= d(y • ω)(x)− (y • (dω))(x)

= x • (y • ω)− y • (x • ω)− dω([y, x])

= [x, y] • ω + [y, x] • ω

= 0

Case 2: k 7→ k + 1: we have [d, ρ(y)]Ck(g,M) = 0 by induction hypothesis. Using (4.4) we
have

i(x) ◦ [d, ρ(y)]Ck+1(g,M) = −[d, ρ(y)]i(x)Ck+1(g,M)

⊆ [d, ρ(y)]Ck(g,M)

= {0}

for all x ∈ g. This implies [d, ρ(y)]Ck+1(g,M) = 0. �

Now we can finally prove the following result, which we have used for Definition 4.1.5.
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Proposition 4.1.12. The coboundary operator dp satisfies dp ◦ dp−1 = 0 for all p ≥ 1, i.e.,
we have d2 = 0.

Proof. By (4.1) and (4.3) we have

0 = [ρ(x), d]

= [d ◦ i(x), d] + [i(x) ◦ d, d]

= d2 ◦ i(x)− i(x) ◦ d2.

With this formula we will show that d2 = 0.

Case 1: k = 0. For ω ∈ C0(g,M) = M we have (dω)(x) = x • ω. Thus we have

(d2ω)(x, y) = x • dω(y)− y • dω(x)− dω([x, y])

= x • (y • ω)− y • (x • ω)− [x, y] • ω

= 0.

Case 2: k 7→ k + 1: Suppose that d2(Ck(g,M)) = {0}. Then

i(x) ◦ d2(Ck+1(g,M)) = d2 ◦ i(x)(Ck+1(g,M))

⊆ d2(Ck(g,M)) = {0},

so that d2(Ck+1(g,M)) = {0}. �

The Lie algebra g acts on the graded vector space C(g,M) by x•ω = ρ(x)ω. The coboundary
operatorr d commutes with this action, as we have seen in (4.3). Hence the spaces Zp(g,M)
and Bp(g,M) are both g-invariant and we obtain an action on the quotient Hp(g,M). This
way Hp(g,M) becomes a g-module, which however is trivial:

Lemma 4.1.13. The action of g on Hp(g,M) is trivial, i.e., we have

g • Zp(g,M) ⊆ Bp(g,M).

Proof. Let ω ∈ Zp(g,M), so that dpω = 0. Because of (4.1) we have

ρ(x)ω = i(x) ◦ dpω + dp−1 ◦ i(x)ω

= dp−1 ◦ i(x)ω,

which lies in Bp(g,M). Hence the induced action on Hp(g,M) is trivial. �

Let M be a trivial g-Modul. Then it is also possible to equip Hp(g,M) with a Der(g)-
module structure. We define a representation π : Der(g) → gl(C(g,M)) by endomorphisms
π(D) ∈ End(Cp(g,M)) for D ∈ Der(g) as follows. For ω ∈ Cp(g,M) we put π(D)(ω) = D • ω
with

(D • ω)(x1, . . . , xp) = −
p∑
j=1

ω(x1, . . . , D(xj), . . . , xp)(4.5)

Proposition 4.1.14. We have the following formulas:

[π(D), i(x)] = i(D(x))(4.6)

[π(D), ρ(x)] = ρ(D(x))(4.7)

[π(D), d] = 0(4.8)
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Proof. Let ω ∈ Cp+1(g,M), D ∈ Der(g) and x ∈ g. Then we have, using (4.5),

D(i(x)ω)(x1, . . . , xp) = −
p∑
j=1

(i(x)ω)(x1, . . . , D(xj), . . . , xp)

= −
p∑
j=1

ω(x, x1, . . . , D(xj), . . . , xp)

= (π(D)(ω))(x, x1, . . . , xp) + ω(D(x), x1, . . . , xp)

This implies (π(D)i(x))(ω) = (i(x)π(D))(ω) + (i(D(x))(ω), so we have (4.6).

It is easy to see that the relation

[D, adx] = adD(x)

on g implies (4.7) for the representation ρ on C(g,M). Now we can apply the Cartan formula
(4.1), as well as (4.6) and (4.7), to conclude the relation

i(x)[π(D), d] + [π(D), d]i(x) = 0(4.9)

We have

i(D(x))d+ di(D(x)) = ρ(D(x))

= [π(D), i(x)d+ di(x)]

= π(D)i(x)d− di(x)π(D) + π(D)di(x)− i(x)dπ(D)

= (i(D(x))d+ i(x)π(D)d) + (di(D(x))− dπ(D)i(x))

+ π(D)di(x)− i(x)dπ(D)

= i(D(x))d+ i(x)[π(D), d] + [π(D), d]i(x) + di(D(x))

The relation (4.9) is used, to show (4.8) by induction. For ω ∈ C0(g,M) = M we have dω = 0
and π(D)ω = D • ω = 0, hence also [π(D), d]ω = 0. Assuming [π(D), d]Ck(g,M) = {0}, it
follows by (4.9) then [π(D), d]Ck+1(g,M) = {0}. �

Hence the action of π(D) on Cp(g,M) preserves the spaces Zp(g,M) and Bp(g,M), since
it commutes with d. So we obtain the following result.

Proposition 4.1.15. Let M be a trivial g-module. Then the representation π : Der(g) →
gl(C(g,M)) induces a module action of Der(g) on Hp(g,M).

4.2. The first cohomology group

In this section we will show that the first cohomology group describes equivalence classes
of certain extensions of g-modules.

Definition 4.2.1. Let V,W be g-modules. A g-module U is called an extension of V by
W , if

0→ W
α−→ U

β−→ V → 0(4.10)

is a short exact sequence of g-modules.

Definition 4.2.2. An extension U of V by W is called trivial, or split, if in (4.10) there
exists a g-module homomorphism τ : V → U with β ◦ τ = id|V .
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If the extension (4.10) is split, then the map V ⊕W → U , (x, a) 7→ a+ τ(x) is a g-module
isomorphism.

Definition 4.2.3. Let U1, U2 be extensions of V by W . They are called equivalent, if there
exists a g-module homomorphism ϕ : U1 → U2, such that the following diagram commutes:

0 // W

id
��

α // U1

ϕ

��

β // V

id
��

// 0

0 // W
γ // U2

δ // V // 0

Denote by Ext(V,W ) dthe set of equivalence classes of all g-module extensions (4.10) of V by
W .

Every two equivalent extensions U1 and U2 are isomorphic as g-modules by the five-lemma.
The converse is not true in general.

The aim of this section is to show that the equivalence classes of extensions

0→ W
α−→ U

β−→ K → 0,

where K is the 1-dimensional trivial g-module, are classified by H1(g,W ). First we show that
every ω ∈ Z1(g,W ) induces an extension of K by W .

Lemma 4.2.4. Let W be a g-module and ω ∈ Z1(g,W ). Define on Wω := K×W an action
of g by

x • (t, w) = (0, x.w + tω(x))(4.11)

for x ∈ g, w ∈ W and t ∈ K. Then Wω becomes a g-module of dimension dimW + 1.

Proof. We have

x • (y • (t, w))− y • (x • (t, w)) = x • (0, y.w + tω(y))− y • (0, x.w + tω(x))

= (0, x.(y.w) + tx.ω(y))− (0, y.(x.w) + ty.ω(x))

= (0, [x, y].w + t(x.ω(y)− y.ω(x)))

= (0, [x, y].w + tω([x, y])

= [x, y] • (t, w)

�

Clearly Wω is an extension of K by W . So we have the following corollary.

Corollary 4.2.5. 0→ W
α−→ Wω

β−→ K → 0 is a short exact sequence of g-modules.

Given two g-modules A and B, with actions x.a and x ◦ b for x ∈ g, a ∈ A, b ∈ B, we can
equip Hom(B,A) with a g-module structure by

(x • ϕ)(b) = x.ϕ(b)− ϕ(x ◦ b)(4.12)

for x ∈ g und ϕ ∈ Hom(B,A). Then we have the following result.

Theorem 4.2.6. Let A and B be g-modules. Then we have the isomorphism

Ext(B,A) ∼= H1(g,Hom(B,A)).(4.13)

In particular we have Ext(K,A) ∼= H1(g, A) for the trivial module B = K.
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Proof. The last part follows from the first part. Indeed, let

0→ A→ C
β−→ B → 0

be an extension of B by A. For B = K the g-modules A and Hom(K,A) are isomorphic. Hence
we have Ext(K,A) ∼= H1(g, A) by (4.13). In other words, H1(g, A) classifies the equivalence
classes of extensions 0→ A→ C → K → 0.

Let C be an extension of A by B. We may write C as B × A, together with the action

x • (b, a) = (x.b, x.a+ ω(x)(b)),(4.14)

for x ∈ g, a ∈ A, b ∈ B and ω ∈ Hom(g,Hom(B,A)) = C1(g,Hom(B,A)). To see this, choose
a transversal function τ , that is, a linear map τ : B → C with τ ◦ β = id|B and define

ωτ (x)(b) = ω(x)(b) := x.τ(b)− τ(x.b).

Then the map
ψ : B × A→ C, (b, a) 7→ τ(b) + a

is a g-module isomorphism. Note that (4.14) defines a g-module structure on B × A, if and
only if ω ∈ Z1(g,Hom(B,A)): on one hand we have

[y, x] • (b, a) = ([y, x].b, [y, x].a+ ω([y, x])(b)),

and on the other hand we have

y • (x • (b, a))− x • (y • (b, a)) = (y.(x.b), y.(x.a) + y.ω(x)(b) + ω(y)(x.b))

− (x.(y.b), x.(y.a) + x.ω(y)(b) + ω(x)(y.b))

= ([y, x].b, [y, x].a+ y.ω(x)(b) + ω(y)(x.b)

− x.ω(y)(b)− ω(x)(y.b))

= ([y, x].b, [y, x].a+ (y · ω(x))(b)− (x · ω(y))(b))

So these terms are equal if and only if we have

ω([y, x]) = y.ω(x)− x.ω(y),

i.e., if ω ∈ Z1(g,Hom(B,A)). This gives us a correspondence between extensions of B by A
and the space Z1(g,Hom(B,A)).

However, we still have different parametrizations of C as B×A, by choosing different transversal
functions τ . For a linear map γ ∈ Hom(B,A) we have

ωτ+γ(x)(b) = x.((τ + γ)(b))− (τ + γ)(x.b)

= x.τ(b)− τ(x.b) + x.γ(b)− γ(x.b)

= ωτ (x)(b) + (x.γ)(b).

Hence we have ωτ+γ = ωτ + dγ, and ωτ+γ and ωτ just differ by a 1-coboundary. Hence different
choices of τ lead to cohomologous cocycles. Consequently equivalent extensions of B by A
correspond to classes [ωτ ] in H1(g,Hom(B,A)). This yields the desired bijection between
Ext(B,A) and H1(g,Hom(B,A)). �

We also want to state an important result concerning the first cohomology group of semisim-
ple Lie algebras. It is called the first Whitehead Lemma. If we assume Weyl’s theorem, which is
a standard result in a course on Lie algebras and its representations, then we can give a rather
short proof of it.



4.2. THE FIRST COHOMOLOGY GROUP 55

Theorem 4.2.7 (First Whitehead Lemma). Let g be a finite-dimensional semisimple Lie
algebra over a field K of characteristic zero, and let M be a finite-dimensional g-module. Then
we have H1(g,M) = 0.

Proof. By Weyl’s Theorem, every finite-dimensional g-module of g is semisimple. This
says that every submodule has a module complement. Therefore all module extensions are
trivial, and by Theorem 4.2.6 we obtain

0 = Ext(B,A) = H1(g,Hom(B,A))

for each pair of finite-dimensional g-modules A,B. For B = K we obtain H1(g, A) = 0 for all
finite-dimensional g-modules A. �

Remark 4.2.8. There are several different proofs of Whitehead’s First Lemma. For a proof
using Casimir operators see [15]. Conversely Weyl’s theorem has a short proof using the First
Whitehead Lemma. Note that the First Whitehead Lemma does not hold for characteristic p >
0. There are even simple Lie algebras g in characteristic p having non-trivial outer derivations,
i.e., with H1(g, g) 6= 0.

We note that the converse of the First Whitehead Lemma is also true.

Proposition 4.2.9. A finite-dimensional Lie algebra g over a field of characteristic zero is
semisimple if and only if H1(g,M) = 0 for all finite-dimensional g-modules M .

The case of the adjoint g-module g is of particular interest. We have

H1(g, g) = Der(g)/ ad(g),

because we have

Z1(g, g) = {D ∈ End(g) | D([x, y]) = [x,D(y)] + [D(x), y]} = Der(g),

B1(g, g) = {D ∈ End(g) | D = ad(x)} = ad(g).

Let us do an explicit computation for some easy examples.

Example 4.2.10. Sei g = sl2(K). Then we have

dimH1(g, g) =

{
0 for char(K) 6= 2,

4 otherwise

Here is the proof. For char(K) = 0 we do not need to do a calculation, because it follows from
the First Whitehead Lemma, or even from the fact that semisimple Lie algebras in characteristic
zero only have inner derivations, i.e., that Der(g) = ad(g). Note that in characteristic 2, the Lie
algebra sl2(K) is no longer semisimple, but rather coincides with the Heisenberg Lie algebra
n3(K).

Let (e1, e2, e3) be a basis of sl2(K) with

[e1, e2] = e3

[e1, e3] = −2e1

[e2, e3] = 2e2

Represent D ∈ End(g) by

D =

α1 α4 α7

α2 α5 α8

α3 α6 α9


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The condition

D(e3) = D([e1, e2]) = [e1, D(e2)] + [D(e1), e2]

means

α7e1 + α8e2 + α9e3 = [e1, α4e1 + α5e2 + α6e3] + [α1e1 + α2e2 + α3e3, e2]

= (α5e3 − 2α6e1) + (α1e3 − 2α3e2).

We obtain the linear equations

α7 + 2α6 = 0,

α8 + 2α3 = 0,

α9 − α5 − α1 = 0.

In the same way the derivation conditions for D([e1, e3]) and D([e2, e3]) imply

2α9 = 0,

−4α2 = 0,

4α4 = 0.

Hence for 2 6= 0 every derivation is of the form

D =

α1 0 −2α6

0 −α1 −2α3

α3 α6 0

 = α6 ad e1 − α3 ad e2 +
1

2
ad e3

So we have Z1(g, g) = Der(g) = ad(g) und H1(g, g) = 0.

However, for 2 = 0 we have

D =

α1 α4 0
α2 α5 0
α3 α6 α1 + α5


Then dimZ1(g, g) = 6 and dimB1(g, g) = dim ad(g) = 2. This says

dimH1(g, g) = 4.

Example 4.2.11. Let g = n4(K) be the filiform nilpotent Lie algebra of dimension 4 over
an arbitrary field K. Then we have dimH1(g, g) = 4.

Let (e1, e2, e3, e4) be a basis of n4(K) with

[e1, e2] = e3

[e1, e3] = e4

Now let

D =

α1 · · · α13
...

. . .
...

α4 · · · α16


Evaluating the derivation conditions gives us linear equations. For example,

D(e3) = D([e1, e2]) = [e1, D(e2)] + [D(e1), e2]
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yields

α9e1 + . . . α12e4 = [e1, α5e1 + . . .+ α8e4] + [α1e1 + . . .+ α4e4, e2]

= (α6e3 + α7e4)− (α1e3),

so that α9 = α10 = 0, α11 = α6 − α1 and α12 = α7. Altogether we see that D has the form

D =


ξ1 0 0 0
ξ2 ξ5 0 0
ξ3 ξ6 ξ1 + ξ5 0
ξ4 ξ7 ξ6 2ξ1 + ξ5

 .

The space of such derivations is 7-dimensional with basis D1, . . . D7. So we have

D =
7∑
i=1

ξiDi.

This implies dimZ1(g, g) = 7. Moreover we have dimB1(g, g) = 3, so that dimH1(g, g) = 4.
In fact,

H1(g, g) = span{[D1], [D2], [D5], [D7]},

because D6 = ad e1, D3 = − ad e2 and D4 = − ad e3 are inner derivations.

Note that for characteristic different from 2 and 3 there exist invertibe derivations. For example,
D1 + D5 = diag{1, 1, 2, 3} is an imvertible derivation, or D1 + 2D6 = diag{1, 2, 3, 4}. In this
context Jacobson proved in 1955 the following interesting result [17]:

Proposition 4.2.12 (Jacobson). Let g be a finite-dimensional Lie algebra of characteristic
zero admitting an invertible derivation D ∈ Der(g). Then g is nilpotent.

We also mention the result by Dixmier [11] from 1955:

Proposition 4.2.13 (Dixmier). Let g be a finite-dimensional nilpotent Lie algebra of charak-
teristic zero. Then there exists an outer derivation D ∈ Der(g). So we have H1(g, g) 6= 0.

The following result by Zassenhaus holds for arbitrary characteristic.

Proposition 4.2.14 (Zassenhaus). Let g be a finite-dimensional Lie algebra of arbitrary
characteristic, having a non-degenerate Killing form. Then all derivations D ∈ Der(g) are
inner and we have H1(g, g) = 0.

Proof. Let f(x, y) = tr(ad x ◦ad y) be the Killing form on g, and let D ∈ Der(g). Consider
the linear form x 7→ tr(adx ◦D) on g. Since f is non-degenerate, there eixsts a z ∈ g such that
f(x, z) = tr(ad x ◦D) for all x ∈ g. Let E := D − ad z ∈ Der(g). Then we have

tr(adx ◦ E) = tr(ad x ◦D)− tr(adx ◦ ad z)

= tr(adx ◦D)− f(x, z)

= 0
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This implies

f(E(x), y) = tr(adE(x) ◦ ad y)

= tr([adx,E] ◦ ad y)

= tr(adx ◦ E ◦ ad y − E ◦ adx ◦ ad y)

= tr(E ◦ ad y ◦ adx− E ◦ adx ◦ ad y)

= tr(E ◦ [ad y, adx])

= tr(E ◦ ad[y, x])

= 0

since tr(E ◦ adw) = 0 for all w ∈ g, see above. Since f is non-degenerate, we obtain E = 0 and
thus D = ad z. �

4.3. The second cohomology group

The main result of this section is the interpretation of the second cohomology group as the
set of equivalence classes of abelian extensions of Lie algebras.

Definition 4.3.1. Let q and n be two Lie algebras. A short exact sequence

0→ n
α−→ g

β−→ q→ 0(4.15)

is called an extension of q by n.

Identifying n with α(n) we see that g contains n as an ideal with quotient g/n ∼= q.

Definition 4.3.2. An extension (4.15) is called split, if there exists a Lie algebra homo-
morphism τ : q→ g with β ◦ τ = id|q.

Definition 4.3.3. Let a and b two Lie algebras, together with a Lie algebra homomorphism
ϕ : a→ Der(b). Let g = anϕb be the direct vector space sum a⊕b, equipped with the following
Lie bracket

[(x, a), (y, b)] = ([x, y], [a, b] + ϕ(x)(b)− ϕ(y)(a))),(4.16)

for all x, y ∈ a and a, b ∈ b. Then g is a Lie algebra, which is called the semidirect product, or
the semidirect sum of a and b.

We have the following result.

Proposition 4.3.4. Every semidirect product g = qnϕn defines a split short exact sequence
(4.15) with respect to τ , such that ϕ(x)(n) = [τ(x), n] for x ∈ q, n ∈ n. Conversely, every split
short exact sequence (4.15) together with a Lie algebra homomorphims τ : q → g defines a
semidirect product qnϕ n by

ϕ : q→ Der(n)(4.17)

ϕ(x)(n) = [τ(x), n],(4.18)

which is isomorphic as a Lie algebra to g.

Proof. The proof is analogous to the group case. We only show here that the map

ψ : qnϕ n→ g, (x, a) 7→ τ(x) + a(4.19)
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is a Lie algebra isomorphism. First, let us indetify a ∈ n with 0al(a) ∈ g. Since g = q ⊕ n
is a direct vector space sum, the representation τ(x) + a is unique. Hence ψ is bijektive.
Furthermore, by (4.16) and (4.17) we have

ψ([(x, a), (y, b)]) = ψ([x, y], [a, b] + ϕ(x)(b)− ϕ(y)(a))

= ψ([x, y], [a, b] + [τ(x), b]− [τ(y), a])

= τ([x, y]) + [a, b] + [τ(x), b]− [τ(y), a].

On the other hand we have

[ψ(x, a), ψ(y, b)] = [τ(x) + a, τ(y) + b]

= [τ(x), τ(y)] + [a, τ(y)] + [τ(x), b] + [a, b]

= τ([x, y]) + [a, b] + [τ(x), b]− [τ(y), a],

because τ is a Lie algebra homomorphism. Hence ψ is a Lie algebra isomorphism. �

Definition 4.3.5. Let g and g′ be two extensions of q by n. The extensions are called
equivalent, if there is a Lie algebra homomorphism ϕ : g→ g′, such that the following diagram
commutes:

0 // n

id

��

α // g

ϕ

��

β // q

id

��

// 0

0 // n
γ // g′

δ // q // 0

Denote by Ext(q, n) the set of equivalence classes of all Lie algebra extensions (4.15) of q by n.

As in the group case, equivalent extensions g and g′ of q by n are isomorphic as Lie algebras
by the Five Lemma, but the converse is not true.

Let V be a g-module. We may consider V as an abelian Lie algebra. We have the following
result.

Proposition 4.3.6. Let V be a g-module, ω ∈ C2(g, V ) and gω = g⊕V . Then the following
bracket on g⊕ V given by

[(x, a), (y, b)]gω = ([x, y], x.b− y.a+ ω(x, y))(4.20)

defines a Lie algebra if and only if ω ∈ Z2(g, V ). Then we obtain a short exact sequence

0→ V
ι−→ gω

π−→ g→ 0,

which splits if and only if ω ∈ B2(g, V ).

Proof. The Jacobi identity for the bracket (4.20) says

0 = [(x, a), [(y, b), (z, c)]] + [(y, b), [(z, c), (x, a)]]

+ [(z, c), [(x, a), (y, b)]]

The second component yields

0 = x.ω(y, z)− y.ω(x, z) + z.ω(x, y)− ω([x, y], z) + ω([x, z], y)− ω([y, z], x).

But this means ω ∈ Z2(g, V ). In this case gω is a Lie algebra with bracket (4.20), such that
ι(a) = (0, a) for a ∈ V and π(x, a) = x for x ∈ g and the above sequence is exact.
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Now every homomorphism τ : g → gω with π ◦ τ = id is of the form τ(x) = (x, f(x)) with
f ∈ Hom(g, V ). We have

τ([x, y]) = ([x, y], f([x, y]))

[τ(x), τ(y)] = [(x, f(x)), (y, f(y))]

= ([x, y], x.f(y)− y.f(x) + ω(x, y)).

So τ is a homomorphism if and only if

ω(x, y) = f([x, y])− x.f(y) + y.f(x) ∈ B2(g, V ).

�

An extension of Lie algebras

0→ a
α−→ g

β−→ q→ 0,(4.21)

is called abelian if a is abelian. Then a beomes a g-module by

x.a = α−1([β−1(x), α(a)]g)(4.22)

for x ∈ q and a ∈ a. Here β−1(x) is an arbitrary preimage of x under β. Since α(a) is an ideal
in g, α−1 is defined on [β−1(x), α(a)]. The action is well-defined since a is abelian. We obtain
the following interpretation of H2(q, a):

Theorem 4.3.7. Let a be an abelian Lie-Algebra and q be a Lie algebra. Then there is a
bijective correspondence between the equivalence classes of abelian extensions g of q by a and
H2(q, a), together with the action (4.22).

Proof. Let g be an abelian extension (4.21) of q by a. Then choose a linear map τ : q→ g
with β ◦ τ = id and define ω = ωτ ∈ Alt(g2, a) by

ω(x, y) = α−1([τ(x), τ(y)]− τ([x, y])).(4.23)

Note that this makes sense, because we have by

β([τ(x), τ(y)]− τ([x, y]) = [(β ◦ τ)(x), (β ◦ τ)(y)]− (β ◦ τ)([x, y])

= 0

that [τ(x), τ(y)]− τ([x, y]) ∈ ker β = imα. Hence we can indeed apply the map α−1. First we
show that ω ∈ Z2(q, a). We may choose τ(x) as preimage β−1(x) in (4.22), i.e.,

x.a = α−1([τ(x), α(a)])(4.24)

Then we obtain by (4.23),

(d2ω)(x1, x2, x3) = x1.ω(x2, x3)− x2.ω(x1, x3) + x3.ω(x1, x2)

− ω([x1, x2], x3) + ω([x1, x3], x2)− ω([x2, x3], x1)

= α−1([τ(x1), [τ(x2), τ(x3)]])− α−1([τ(x1), τ [x2, x3])])

− α−1([τ(x2), [τ(x1), τ(x3)]]) + α−1([τ(x2), τ [x1, x3])])

+ α−1([τ(x3), [τ(x1), τ(x2)]])− α−1([τ(x3), τ [x1, x2])])

− α−1([τ([x1, x2]), τ(x3)]) + α−1(τ([[x1, x2], x3]))

+ α−1([τ([x1, x3]), τ(x2)])− α−1(τ([[x1, x3], x2]))

− α−1([τ([x2, x3]), τ(x1)]) + α−1(τ([[x2, x3], x1])).
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This equals zero as follows. View the terms as four equal-sized blocks. The two diagonal blocks
are zero by the Jacobi identity in g and in q. The other two blocks cancel each other. So we
have ω ∈ ker d2 = Z2(q, a). Replacing τ by τ ′, it follows that ωτ − ωτ ′ ∈ B2(q, a). Indeed, let
σ = τ − τ ′. Then β(σ) = 0, so that σ(q) ⊂ α(a) and α−1σ ∈ Hom(q, a). We have

d(α−1σ)(x, y) = x.(α−1σ(y))− y.(α−1σ(x))− (α−1σ)([x, y]).

This together with (4.24) yields

ωτ (x, y)− ωτ ′(x, y) = α−1([τ(x), τ(y)]− τ([x, y]))

− α−1([τ ′(x), τ ′(y)]− τ ′([x, y]))

= α−1([σ(x), τ(y)] + [τ(x), σ(y)]− σ([x, y])

= x.(α−1σ(y))− y.(α−1σ(x))− (α−1σ)([x, y])

= d(α−1σ)(x, y).

Thus the cohomology class [ω] ∈ H2(q, a) does not depend on the choice of τ .

Finally we will show that two equivalent abelian extensions define the same cohomology class
with respect to a given q-action on a. Let gω and gω′ be two equivalent extension of q by a.
Then there exists a linear map ϕ̃ : q→ a such that the map

ϕ : gω → gω′ , (x, a) 7→ (x, a+ ϕ̃(x)), x ∈ q, a ∈ a

is a Lie algebra homomorphism. But this means that

ϕ([(x, a), (y, b)]) = ϕ([x, y], x.b− y.a+ ω(x, y))

= ([x, y], x.b− y.a+ ω(x, y) + ϕ̃([x, y]))

coincides with

[ϕ(x, a), ϕ(y, b)] = [(x, a+ ϕ̃(x)), (y, b+ ϕ̃(y))]

= ([x, y], x.(b+ ϕ̃(y))− y.(a+ ϕ̃(x)) + ω′([x, y]))

This means that

ωτ ′(x, y)− ωτ (x, y) = ϕ̃([x, y])− x.ϕ̃(y) + y.ϕ̃(x)

= −(dϕ̃)(x, y) ∈ B2(q, a).

Conversely consider a fixed ω ∈ Z2(q, a). It defines an extension by (4.20), given by Erweiterung

0→ a→ gω → q→ 0,

as we have seen in Proposition (4.3.6). It is easy to see that different representatives of the
class [ω] ∈ H2(g, a) lead to equivalent extensions. �

We will note two corollaries of this theorem.

Corollary 4.3.8. The map Z2(q, a)→ Ext(q, a), ω → [gω] induces a bijection H2(q, a)→
Ext(q, a), where the zero class [0] ∈ H2(q, a) corresponds to the class of splitting extensions of
q by a.

Corollary 4.3.9. The elements of H2(q, K) classify the equivalence classes of central
extensions of q by K.
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Here K is the trivial 1-dimensional q-module. The Lie bracket (4.20) then becomes

[(x, t), (y, t′)] = ([x, y], ω(x, y)), t, t′ ∈ K, x, y ∈ g,

so that α(K) lies in the center of g.

Remark 4.3.10. The interpretation of non-abelian extensions of q by n is much more
complicated to describe. Each extension

0→ n→ g→ q→ 0

of q by n defines a factor system (n, T ), with a Lie algebra homomorphism T : q→ Der(n)/ ad n.
However, not all such homomorphisms arise by a Lie algebra extension. The obstruction of such
a homomorphism T lies in the cohomology group H3(q, Z(n)). Note that Z(n) becomes a q-
module via the action of Der(n)/ ad n on Z(n), by [D].z = D(z) for D ∈ Der(g) and z ∈ Z(n).
The equivalence classes of Lie algebra extensions corresponding to a factor system (n, T ) are
classified by H2(g, Z(n)).

As for the first cohomology group there is a Whitehead Lemma for the second cohomology
group. Again we are able to give a rather short proof.

Theorem 4.3.11 (Second Whitehead Lemma). Let g be a finite-dimensional semisimple
Lie algebra of characteristic zero and M be a finite-dimensional g-module. Then we have
H2(g,M) = 0.

Proof. Let ω ∈ Z2(g,M) and gω = g ⊕ω M be the corresponding abelian extension of g
by M , given by the short exaxct sequence

0→M → gω → g→ 0.

Then M = rad(gω) equals the solvable radical of gω, because M is an abelian ideal of gω
with semisimple quotient g ∼= gω/M . By Levi’s Theorem there exists a Levi complement to
M in gω. Thus the above short exact sequence splits. By Proposition 4.3.6 this means that
ω ∈ B2(g,M). �

Remark 4.3.12. There is no Third Whitehead Lemma, at least not without further as-
sumptions. This is seen from the next result.

Proposition 4.3.13. Let g be a semisimple Lie algebra over a field of characteristic zero.
Then H3(g, K) is nonzero.

Proof. See Exercise 27. �

For example, let g be a complex simple Lie algebra. Then we have

H3(g,C) ∼= C.
Still, there is a way to generalize the Whitehead Lemmas. Note that we have for M = M1⊕M2,
that

Hq(g,M) = Hq(g,M1)⊕Hq(g,M2).

By Weyl’s Theorem we see that the computation of Hq(g,M) for semisimple Lie algebras g
can be reduced to coefficients in simple g-modules M . Indeed, M is the direct sum of finitely
many simple g-modules. So we may assume that M is simple. If g.M = 0, then dimM = 1
and M = K. Then Hq(g,C) need not be trivial for q ≥ 3. On the other hand, if g.M 6= 0, and
therefore g.M = M and M g = 0, we have the following result.
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Theorem 4.3.14 (Whitehead). Let g be a finite-dimensional Lie algebra over a field K of
characteristic zero and M be a finite-dimensional simple g-module with M g = 0. Then we have
Hq(g,M) = 0 für alle q ≥ 0.

We obtain also the following result.

Proposition 4.3.15. Let g be a finite-dimensional reductive Lie-Algebra over a field K of
characteristic zero, and let M be a finite-dimensional semisimple g-module. Then we have

Hn(g,M) ∼= Hn(g,M g) ∼= Hn(g, K)⊗M g.

We can again compute the second cohomology group for some easy examples.

Example 4.3.16. Let g = sl2(K) and K be a field of characteristic not 2. Then we have
H2(g, K) = 0.

Indeed, this follows for characteristic zero already from the Second Whitehead Lemma.

Let (e1, e2, e3) be a basis of g as in Example 4.2.10, and let ω ∈ C2(g, K). Then ω ∈ Z2(g, K)
if and only if

ω([ei, ej], ek)− ω([ei, ek], ej) + ω([ej, ek], ei) = 0

for all i, j, k. However, this is an empty condition. For example, let (i, j, k) = (1, 2, 3). Then it
means

ω(e3, e3) + 2ω(e1, e2) + 2ω(e2, e1) = 0,

which says that 0 = 0. It is also obvious that ω(ei, ej) = f([ei, ej]) for some f ∈ Hom(g, K),
because [e1, e2], [e1, e3], [e2, e3] is again a basis for g. So we have Z2(g, K) = C2(g,M) =
B2(g,M).

Example 4.3.17. Let g = n4(K). Tehn we have dimH2(g, K) = 2.

Let (e1, e2, e3, e4) be a basis of n4(K) as in Example 4.2.11. The condition

ω([e1, e2], e3)− ω([e1, e3], e2) + ω([e2, e3], e1) = 0

yields ω(e2, e4) = 0. For (i, j, k) = (1, 2, 3) we obtain ω(e3, e4) = 0. We have Z2(g, K) =
span{ω12, ω13, ω14, ω23}, where ωij(ei, ej) = 1, ωij(ej, ei) = −1 and zero otherwise. It is easy to
see that B2(g, K) = span{ω12, ω13}, because of

1 = ω12(e1, e2) = f([e1, e2]) = f(e3)

1 = ω13(e1, e3) = f([e1, e3]) = f(e4)

1 = ω14(e1, e4) 6= f([e1, e4]) = 0

1 = ω23(e2, e3) 6= f([e2, e3]) = 0.

Thus H2(g, K) = span{[ω14], [ω23]}.

The second cohomology group H2(g, g) with adjoint coefficients has another special interpre-
tation. It describes all infinitesimal deformations of g. For references see, among others, the
papers by Gerstenhaber. He introduced defomations of associative algebras and rings in [13].
For deformations of Lie algebras see Nijenhuis and Richardson [23].
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Definition 4.3.18. Let (g, [ , ]) be a Lie algebra over a field K, and g, h ∈ g, ϕk ∈
Hom(Λ2g, g) = C2(g, g). A formal one-parameter defomation of g is a power series

[g, h]t := [g, h] +
∑
k≥1

ϕk(g, h)tk,

so that the Jacobi identity is satisfied for [ , ]t.

Actually, the Jacobi identity is equivalent to infinitely many conditions over k ∈ N. For
k = 1 we see that it implies ϕ1 ∈ Z2(g, g). One can summarize all conditions in the following
differentially graded Lie algebra structure of the complex {C•(g, g), d} as follows. For α ∈
Cp(g, g) and β ∈ Cq(g, g) is the product [α, β] ∈ Cp+q−1(g, g) defined by

[α, β](g1, . . . , gp+q−1)

=
∑

i1<···<iq

(−1)
∑

s(is−s)α(β(gi1 , . . . , giq), g1, . . . , ĝi1 , . . . , ĝiq , . . . , gp+q−1)

− (−1)(p−1)(q−1)
∑

j1<···<jq

(−1)
∑

t(jt−t)β(α(gj1 , . . . , gjp), g1, . . . ,

ĝj1 , . . . , ĝjp , . . . , gp+q−1),

where the summation goes over all indices ir, jr with 1 ≤ ir, jr ≤ p+ q − 1.

The Jacobi identity for [ , ]t is equivalent to the sequence of relations Relationen

dϕk = −1

2

k−1∑
i=1

[ϕi, ϕk−i], k = 1, 2, 3, . . .

For k = 1 we obtain dϕ1 = 0, hence ϕ1 ∈ Z2(g, g).

Two deformations of g are called equivalent if the corresponding Lie algebras are isomorphic.
The cohomology class of ϕ1 is called the differential of the formal deformation [ , ]t and only
depends on the equivalence class of the deformation. A cohomology class [ϕ] in H2(g, g) is called
an infinitesimal deformation of g. Note that an infinitesimal deformation [ϕ] ∈ H2(g, g) need
not be the differential of a formal derivation. For this, the above equations for k = 2, 3, 4, . . .
are necessary and sufficient conditions. If they are satisfied, the deformation is called integrable.
We have the following resultat, see [25]:

Theorem 4.3.19 (Rauch). Let g be an finite-dimensional real or complex Lie algebra. If
H3(g, g) = 0, then every infinitesimal deformation of g is integrable.

Definition 4.3.20. A n-dimensional Lie algebra g is called (geometrically) rigid, if its Lie
algebra law µ in the variety Ln(k) of all Lie algebra structures has open orbit O(µ) in the
Zariski topology.

This means intuitively that all Lie algebra structures λ ∈ Ln(k) nearby µ are already
isomorphic to µ. Then µ has only trivial infinitesimal deformations, i.e., is also formally rigid.

Theorem 4.3.21 (Richardson 1967). Let g be a Lie algebra over an algebraically closed field
k of characteristic zero, or over k = R. If H2(g, g) = 0, then g is rigid.

The converse is not true. There are infinitely many rigid Lie algebras g with nonzero
H2(g, g).
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Example 4.3.22. Let ϕ : sl2(C)→ gln(C) be the standard n-dimensional irreducible repre-
sentation of sl2(C). We denote this module by V (n). Suppose that n ≡ 1(4) and n ≥ 13. Then
the Lie algebras

gn = sl2(C) nϕ V (n)

are rigid and have nonzero second cohomology H2(gn, gn).

Note that every semisimple Lie algebra of characteristic is rigid by the Second Whitehead
Lemma. This can be generalized to parabolic subalgebras of semisimple Lie algebras, see [27],
or [22], page 1.

Theorem 4.3.23. Let p be a parabolic subalgebra of a semisimple Lie algebra in character-
istic zero. Then we have Hn(p, p) = 0 for all n ≥ 0.

Remark 4.3.24. The number of nonisomorphic rigid Lie algebra laws µ ∈ Ln(k) is finite

for a given n, because O(µ) then is an irreducible component of the algebraic set Ln(k), which
has only finitely many component for a given n ≥ 1. One can show that the number grows at
least with

exp

(
log2(2)n

2 log(n)

)
for n big.

Remark 4.3.25. Note that there is also a converse to the Second Whitehead Lemma, see
[30]. Let g be a finite-dimensional Lie algebra in characteristic zero satisfying H2(g,M) = 0
for all finite-dimensional g-modules M . Then g is either semisimple, or 1-dimensional, or the
direct sum of a semisimple algebra and a one-dimensional algebra.

In positive characteristic there is no such Lie algebra at all, see [12]: Let g be a finite-dimensional
Lie algebra in characteristic p > 0. Then there exists a finite-dimensional g-module M such
that

Hn(g,M) 6= 0

für alle n = 0, 1, . . . , dim(g).

We also want to mention a result by Dixmier [11] on the cohomology of nilpotent Lie
algebras. We say that a g-module contains a g-module N , if N is a quotient module of a
submodule of M .

Theorem 4.3.26 (Dixmier). Let g be a nilpotent Lie algebra over an infinite field K and
M be a finite-dimensional g-module. Then we have:

(1) Hp(g,M) = 0 for all p ≥ 0, if M does not contain a trivial module.
(2) dimHp(g,M) ≥ 2 for 0 < p < dim g, if M contains a trivial module.

4.4. The third cohomology group

In this section we present the interpretation of the third Lie algebra cohomology H3(g,M)
as equivalence classes of crossed modules, and as equivalence classes of Lie algebra kernels, i.e.,
of homomorphisms ϕ : g→ H1(m,m), where m is a Lie algebra with Z(m) = M . For a reference
see for example [28].
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Definition 4.4.1. Let m and n be two Lie algebras. A crossed module (µ,m, n) is a Lie
algebra homomorphism µ : m → n together with an action η of n on m, (n,m) 7→ n · m =
η(n)(m), with the following conditions:

η(µ(m))(m′) = [m,m′] ∀ m,m′ ∈ m,(4.25)

µ(η(n)(m)) = [µ(m), n] ∀ n ∈ n, ∀ m ∈ m.(4.26)

The definition has a natural example.

Example 4.4.2. Let m be a Lie algebra and n = Der(m). Define µ by µ(m) = ad(m) and
η(n)(m) = n(m) for derivations n, then (µ,m, n) is a crossed module.

Indeed, we have

η(µ(m))(m′) = µ(m)(m′) = [m,m′],

µ(η(n)(m)) = ad(n(m)) = [ad(m), n] = [µ(m), n].

For a crossed module (µ,m, n) let

M := ker(µ).

The the sequence

0→M
i−→ m

µ−→ n

is exact. Because of (4.26), im(µ) is a Lie algebra ideal in n. Also

g := coker(µ)

is a Lie algebra, and we obtain the following short exact sequence

m
µ−→ n

π−→ g→ 0.

Now M is an abelian Lie algebra, since M is, by (4.25), a subalgebra of Z(m). Then, by (4.26),
the action of n on m also induces an action of g on M . So we obtain the following result.

Proposition 4.4.3. Every crossed module (µ,m, n) induces a 4-term exact sequence

(4.27) 0→M
i−→ m

µ−→ n
π−→ g→ 0,

where M is a g-module.

Definition 4.4.4. Two crossed modules (µ,m, n) and (µ′,m′, n′) with actions η respectively
η′ with ker(µ) = ker(µ′) = M and coker(µ) = coker(µ′) = g are called equivalent, if there exists
a Lie algebra homomorphism ϕ : m→ m′ and ψ : n→ n′, such that

ϕ(η(n)(m)) = η′(ψ(n))(ϕ(m)) ∀ m ∈ m,∀ n ∈ n,

and the following diagram is commutative:

0 // M

id
��

i // m

ϕ

��

µ // n

ψ
��

π // g

id

��

// 0

0 // M
i′ // m′

µ′ // n′
π′ // g // 0

Note that ϕ and ψ are not necessarily isomorphisms. Denote by CM(g,M) the equivalence
classes of crossed Lie algebra modules with fixed kernel M and cokernel g. The following result
is due to Gerstenhaber [14]:
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Theorem 4.4.5. There is a 1 − 1 correspondence between equivalence classes of crossed
modules with kernel M and cokernel g and elements of H3(g,M). We have CM(g,M) ∼=
H3(g,M) as abelian groups.

Proof. We only give a sketch of the proof. First we explain how to obtain a 3-cocycle in
Z3(g,M) from a crossed module (µ,m, n). Consider the associated 4-term exact sequence

0→M
i−→ m

µ−→ n
π−→ g→ 0,

induced by (µ,m, n). Choose a transversal function τ : g → n with π ◦ τ = idg, and set, for
x1, x2 ∈ g,

ω(x1, x2) = [τ(x1), τ(x2)]− τ([x1, x2]).

Then ω is bilinear and skew-symmetric in x1, x2. We have π(ω(x1, x2)) = 0, because π is a Lie
algebra homomorphism, i.e.,

ω(x1, x2) ∈ im(µ) = ker(π).

Hence there exists a β(x1, x2) ∈ m with

µ(β(x1, x2)) = ω(x1, x2).

Now we may choose a transversal function σ : im(µ)→ m, so that we can write β as

β(x1, x2) = σ(ω(x1, x2)).

This shows that we may assume that β is bilinear and skew-symmetric. Denote by dm the
formal coboundary operator for g with values in m. Note that m need not be a g-module.
Nevertheless we can formally consider the coboundary operator. It is not difficult to prove the
following fact.

Fact 1: We have µ((dmβ)(x1, x2, x3)) = 0 for all x1, x2, x3 ∈ g.

It follows that (dmβ)(x1, x2, x3)) ∈ ker(µ) = im(i) = i(M). Hence there exists a

γ(x1, x2, x3) ∈M
with (dmβ)(x1, x2, x3) = i(γ(x1, x2, x3)). by using a transversal function ρ on i(M) = ker(µ)
we can choose γ in such a way that γ = ρ ◦ dmβ. This shows that we may assume that γ is
trilinear and skew-symmetric in x1, x2, x3. It is easy to verify the following claim.

Fact 2: We have γ ∈ Z3(g,M). Here γ is independent of the choice of the transversal functions
τ, σ, ρ.

The next step is to show that two equivalent crossed modules induce the same class [γ] ∈
H3(g,M). Then we have a well-defined map ϕ : CM(g,M)→ H3(g,M), and we need to show
that ϕ is injective and surjective. For a proof see [28]. The idea is, to view the 4-term exact
sequence (4.27) as so- called Yoneda product of two short exact sequences, which naturally arise
from (4.27), namely

0→ m/i(M)
µ−→ n

π−→ g→ 0

and
0→M

i−→ m
µ−→ im(µ)→ 0.

The second one defines a central extension. Since π in (4.27) is surjectiv, and since ker(π) =
im(µ) ∼= m/ker(µ) = m/i(M), we obtain the first short exact sequence.

In general the Yoneda product of short exact sequences yields all such crossed modules, which
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gives the surjectivity of ϕ. Indeed, to every cohomology class [γ] ∈ H3(g,M) there exists a
crossed module, whose associated cohomology class equals [γ]. �

4.5. Functorial definition of Lie algebra cohomology

We will use the language of categories and functors to define Lie algebra cohomology. Recall
that ModR denotes the category of left R-modules. For a Lie algebra g we let R = U(g), the
universal enveloping algebra of g. This yields the category MU(g) := ModU(g) of left U(g)-
modules. Denote by Mg the category of g-modules. Since every g-module is a U(g)-module
and also the converse way, the categories MU(g) and Mg are equivalent. Indeed, this follows
from the universal property of U(g): given a unital associative K-algebra A, and a Lie algebra
homomorphism ϕ : g→ A, then there exists a unique homomorphism of K-algebras ϕ̃ : U(g)→
A with ϕ̃(1) = 1, so that ϕ = ϕ̃ ◦ ι:

g
ϕ //

ι
��

A

U(g)

ϕ̃

==

For the construction of U(g) consider the tensor algebra

T (g) =
⊕
n∈N

T n(g) =
⊕
n∈N

g⊗n

and defined the quotient U(g) = T (g)/I by the ideal I, which is generated by all x⊗ y − y ⊗
x− [x, y]. The tensor algebra is filtered by

FnT (g) =
⊕
0≤i≤n

T i(g).

This filtration descends to the quotient, so that also U(g) is a filtered algebra, with

Un(g) = FnT (g)/(I ∩ FnT (g)).

For example, we have U0(g) ∼= K and U1(g) ∼= K ⊕ g.

We still need the following lemma for the functorial definition of Lie algebra cohomology.

Lemma 4.5.1. The functor F : Mg →MK, F (M) = M g from the category of g-modules to
the category of K-modules is left exact.

Proof. The trivial g-module functor T : MK →Mg is the exact functor which we obtain
by considering a K-module as trivial g-module. Since M g is the maximal trivial g-submodule
of M , F is right adjoint to T . Therefore F is left exact. �

In other words, if 0→ N →M → V → 0 is a short exact sequence of g-modules, then also
the sequence 0→ N g →M g → V g is exact. Since the category of g-modules has enough injec-
tives, every g-module has an injective resolution, and we can form the roght derived functors
RnF of F .

Definition 4.5.2. Let g be a Lie algebra and M be a g-module. Define the n-th cohomology
group of g with coefficients in M by

Hn(g,M) = (RnF )(M).
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More concretely we have, for a given injective resolution

0→M → I0
d0−→ I1

d1−→ I2
d2−→ · · ·

of M , that the complex

0
d−1

−−→ (I0)g
d0−→ (I1)g → · · · d

r−1

−−→ (Ir)g
dr−→ (Ir+1)g → · · ·

is no longer exact in general, and that we have Hr(g,M) ∼= ker(dr)/ im(dr−1).

For every homomorphism α : M → N of g-modules and each pair of injective resolutions
M → I• and N → J•, we can lift α to a map α̃ : I• → J• of complexes

0 // M

α
��

// I0

��

// I1

��

// · · ·

0 // N // J0 // J1 // · · ·
Here the homomorphisms Hr(α̃) : Hr(I•g) → Hr(J•g) are independent of the choice of α̃.
Applying this to the identity id : M → M , we see that the groups Hr(g,M) are well-defined
up to canonical isomorphism. Let us summarize some fundamental properties.

(1) We have H0(g,M) = F (M) = M g.
(2) If I is an injective g-module, then Hr(g, I) = 0 for all r > 0, because 0 → I → I →

0→ 0→ · · · is an injective resolution of I.
(3) Each short exact sequence 0 → N → M → V → 0 of g-modules induces a long exact

sequence of cohomology groups

0→ H0(g, N)→ H0(g,M)→ H0(g, V )→ H1(g, N)→ H1(g,M)→ · · ·
→ Hr(g, N)→ Hr(g,M)→ Hr(g, V )→ Hr+1(g, N)→ · · ·

The maps ∂ : Hr(g, V ) → Hr+1(g, N) are called connecting homomorphisms. Note that
again the cohomology groups obtained by the explicit coboundary operator and by the functorial
definition are isomorphic.

Remark 4.5.3. We also can define the homology groups of Lie algebras via functors and via
an direct boundary operator. The functorial definition is just the dual one, using the covariant
functor and projective resolutions. The explicit definition goes as follows. Denote by

Cn(g,M) = Λn(g)⊗K M.

The space of n-chains. The standard complex is given by

0←M ∼= Λ0(g)⊗M ∂0←− Λ1(g)⊗M ∂1←− Λ2(g)⊗M ∂2←− · · ·
where the boundary operator ∂n : Λn+1(g)⊗M → Λn(g)⊗M is given by

∂(y1 ∧ · · · ∧ yn+1 ⊗ x) =
n+1∑
k=1

(−1)ky1 ∧ · · · ŷk · · · ∧ yn+1 ⊗ yk · x

+
∑

1≤r<s≤n+1

(−1)r+s[yr, ys] ∧ y1 ∧ · · · ŷr · · · ŷs · · · ∧ yn+1 ⊗ x

Then we define

Hn(g,M) = ker(∂n)/ im(∂n+1).
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For the trivial g-module K we have

dimHn(g, K) = dimHn(g, K).

A connection between Lie algebra cohomology and homology with trivial coefficients is given by
the so-called Poincare duality. Recall that a Lie algebra g is called unimodular, if tr ad(x) = 0
for all x ∈ g.

Proposition 4.5.4 (Poincare duality). Let g be a unimodular Lie algebra of dimension n.
Then we have

Hp(g, K) ∼= Hn−p(g, K), p = 0, 1, . . . , n.

4.6. Betti numbers of nilpotent Lie algebras

The Betti numbers bi(g) for i ≥ 0 of a Lie algebra g are defined by

bi(g) = dimH i(g, K).

There are several open questions on the Betti numbers of a finite dimensional nilpotent Lie
algebra g. Often there is no explicit formula known and it may be impossible to obtain one.
Then one tries to obtain lower and upper estimates for the Betti numbers. Some results
concerning p-groups can be transfered to the Lie algebra case. A famous example for this is the
Golod-Shafarevich theorem for p-groups. Let G be a finite p-group. Then we denote by d(G)
the minimal number of generators for G, and by r(G) the minimal number of relations between
these generators in the associated free pro-p group. We can reformulate this in terms of group
cohomology:

d(G) = dimFp H
1(G,Fp),

r(G) = dimFp H
2(G,Fp).

Then the following result holds.

Theorem 4.6.1 (Golod-Shafarevich). For every finite p-group we have

r(G) >
d(G)2

4
.

The problem can be formulated for Lie algebras as well. For a finite dimensional nilpotent
Lie algebra g the cardinality of a minimal generating system is given by Erzeugendensystems
gleich

dim(g/[g, g]) = dimH1(g, K) = dimH1(g, K) = b1(g).

Moreover the cardinality of a minimal system of relations is given by

dimH2(g, K) = b2(g).

Now we have an analogous result to Golod-Shafarevich:

Theorem 4.6.2 (Koch). Let g be a finite dimensional nilpotent Lie algebra. Then we have

b2(g) >
b1(g)2

4
.
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The result was proved by Koch [20] in 1977, but seems to have been forgotten afterwards.
In a paper by Cairns et al. in 1997 this result was called the b2-conjecture, see [10].

There is another famous conjecture on the Betti numbers of nilpotent Lie algebras, namely the
so called toral rank conjecture, or TRC. It says that

n∑
p=0

bp(g) ≥ 2dimZ(g),

where Z(g) is the center of a nilpotent Lie algebra g. The conjecture originates from algebraic
topology. Denote by rk(M) the toroidal rank of a closed manifold M . This is the dimension of
the largest torus acting freely on M . Halperin conjectured in 1985 that we have

dimH∗(M) ≥ 2rk(M).

The conjecture is still open, as far as I know.

Now suppose that N is a nilpotent Lie group, and Γ is a discrete cocompact subgroup of N .
Then M := N/Γ is a compact nilmanifold with toral rank rk(M) = dimZ(g). Then the
Halperin conjecture implies the TRC for a certain class of nilpotent Lie algebras, namely for
such which are a model of a compact nilmanifold. Unfortunately there are many nilpotent Lie
algebras, which are not such a model, because they do not admit a basis with only rational
structure constants. Already in dimesnion 7 over C we have infinitely many distict nilpotent
Lie algebras, which are “non-rational”. So there is no reason why the TRC should be true for
general nilpotent Lie algebras. On the other hand, the TRC has been shown in many special
cases, see [8]:

Theorem 4.6.3. Let g be a complex finite dimensional nilpotent Lie algebra satisfying one
of the following conditions:

(1) dimZ(g) ≤ 5,
(2) dim g/Z(g) ≤ 7
(3) dim g ≤ 14
(4) g ist 2-stufig nilpotent.

Then the TRC is true, i.e., we have
∑n

p=0 bp(g) ≥ 2dimZ(g).

Note that the estimate is often not very good. For certain classes of nilpotent Lie algebras
one can obtain better estimates, see [26]:

Theorem 4.6.4. Let g be a 2-step nilpotent Lie algebra and v be a vector space complement
of Z(g) in g. Then we have

n∑
p=0

bp(g) ≥ 2t, t = dimZ(g) +

[
dim v + 1

2

]
There are also upper bounds for the Betti numbers of nilpotent Lie algebras. For example,

we have the following result, see [8]:

Theorem 4.6.5. Let g be a nilpotent nonabelian Lie algebra of dimension n ≥ 3. Then we
have, for p = 1, . . . , n− 1,

bp(g) ≤
(
n

p

)
−
(
n− 2

p− 1

)
.
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For some Lie algebras we have equality, e.g., for n3(K) ⊕ Kn−3. And is some exceptional
cases we can find an explicit formula for the Betti numbers. One case are the heisenberg
algebras.

Theorem 4.6.6 (Santharoubane). Let hn be the 2n+1-dimensional Heisenberg Lie algebra.
Then for all 0 ≤ p ≤ n we have

bp(hn) =

(
2n

p

)
−
(

2n

p− 2

)
.

Note that the other half of the Betti numbers is given by the Poincaré duality. For a slighly
more complicated Lie algebra we have the following formula for the Betti numbers, see [1]:

Theorem 4.6.7. Let gn be the Lie algebra of dimension 2n+1 with basis (xi, yi, z), 1 ≤ i ≤ n
and Lie brackets [z, xi] = yi. The for all 0 ≤ p ≤ 2n+ 1 we have

bp(gn) =

(
n+ 1[
p+1
2

])( n[
p
2

]).
For nilpotent Lie algebras g admitting an abelian ideal of codimension 1 there exists a

recursive formula for the Betti numbers bp(g) in terms of partitions, see [2]. We want to use
this for the so called standard graded filiform nilpotent Lie algebra fn+1 of dimension n + 1 for
n ≥ 2. It is defined by

[e1, ei] = ei+1, 2 ≤ i ≤ n

where (e1, e2, . . . , en+1) is a basis of fn+1. The result is as follows.

Proposition 4.6.8. The p-th Betti number of fn+1 is given by

bp(fn+1) = Pp,n + Pp−1,n

for 1 ≤ p ≤ n+ 1, where P0,n = 1 and

Pp,n = #
{

(a1, . . . , ap) ∈ Zp | 1 ≤ a1 < · · · < ap ≤ n,

p∑
j=1

aj =
⌈p(n+ 1)

2

⌉}
For small p this yields explicit formulas for the Betti numbers bp(fn):

b1(fn) = 2

b2(fn) =

⌊
n+ 1

2

⌋
,

b3(fn) =

⌊(
n+1
2

2

)
+

1

8

⌋
=

⌊
n2

8

⌋
,

b4(fn) =

⌊
4

3

(
n+1
2

3

)
+

4n+ 13

36

⌋
=

⌊
(n− 1)3 + 18

36

⌋

The formulas can be derived as follows. Define the q-binomial coefficient by[
n

k

]
q

:=
k−1∏
i=0

1− qn−i

1− qi+1
.
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We can rewrite the definition of the sets used for the numbers Pp,n by using restricted partitions,
i.e.,

Pp,n = #
{

(b1, . . . , bp) ∈ Zp | 1 ≤ b1 ≤ · · · ≤ bp ≤ n− p+ 1,

p∑
j=1

bj = sp

}
,

sp : =
⌈p(n+ 1)

2

⌉
− p(p− 1)

2
.

Then Pp,n is given by the coefficient of xsp in the series development of

[
n+ 1

p

]
x

−
[

n

p− 1

]
x

.

This is quite effective for the computation of the numbers Pp,n. For small p we also can determine
the generating function. Then one can derive an explicit formula by using the partial fraction
decomposition.

For example, the generating function of P2,n is given by

x2

(1− x)(1− x2)
= x2 + x3 + 2x4 + 2x5 + 3x6 + 3x7 + 4x8 + 4x9 + · · ·+

of course we have P1,n = 1 and P2,n = bn
2
c. Furthermore we obtain

P3,n =
⌊(n− 1)2 + 4

8

⌋
,

P4,n =
⌊(n− 2)3 + 3

2
(n− 1)2 + 18

36

⌋
.

The generating functions of P1,n, . . . , P7,n are given by
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P1,n : 1,

P2,n :
x2

(1− x)(1− x2)
,

P3,n :
x3(1− x6)

(1− x)(1− x2)(1− x3)(1− x4)
,

P4,n :
x4(1 + x3)

(1− x)(1− x2)2(1− x3)
,

P5,n :
x5(1 + x)f5(x)

(1− x)(1− x2)(1− x4)(1− x6)(1− x8)
,

P6,n :
x6(1 + x2 + 3x3 + 4x4 + 4x5 + 3x7 + x8 + x10)

(1− x)(1− x2)2(1− x3)(1− x4)(1− x5)
,

P7,n :
x7f7(x)

g7(x)
,

where

f5(x) = x14 − x13 + 2x12 + x11 + 2x10

+ 3x9 + x8 + 5x7 + x6 + 3x5 + 2x4 + x3 + 2x2 − x+ 1,

f7(x) = 1− x+ 3x2 + 3x3 + 7x4 + 12x5 + 16x6 + 28x7 + 33x8 + 46x9 + 56x10 + 73x11

+ 83x12 + 90x13 + 106x14 + 109x15 + 121x16 + 110x17 + 121x18 + 109x19 + 106x20

+ 90x21 + 83x22 + 73x23 + 56x24 + 46x25 + 33x26 + 28x27 + 16x28 + 12x29 + 7x30

+ 3x31 + 3x32 − x33 + x34,

g7(x) = (1− x)7(1 + x)5(1 + x2)3(1− x+ x2)2(1 + x+ x2)2(1 + x4)(1− x2 + x4)

(1− x+ x2 − x3 + x4)(1 + x+ x2 + x3 + x4).

This can be used to compute the sequence explicitly. For example, the sequence (P5,n), n ≥ 5
starts with

(1, 1, 3, 6, 12, 20, 32, 49, 73, 102, 141, 190, 252, 325, 414, 521, 649,

795, 967, 1165, 1394, 1651, 1944, 2275, 2649, 3061, 3523, 4035, 4604,

5225, 5910, 6660, 7483, 8372, 9343, 10395, 11538, 12764, 14090, 15516,

17053, 18691, 20451, 22330, 24342, 26476, 28754, 31174, 33751, 36471,

39361, 42416, 45654, 49060, 52662, 56455, 60459, 64656, 69079, 73720,

78602, 83705, 89064, 94671, 100551, 106681, . . .)
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Consequently we also can compute the Betti numbers explictly. For example, the Betti numbers
of fn, for 3 ≤ n ≤ 15, are given by

n (b0, . . . , bn)
3 (1, 2, 2, 1)
4 (1, 2, 2, 2, 1)
5 (1, 2, 3, 3, 2, 1)
6 (1, 2, 3, 4, 3, 2, 1)
7 (1, 2, 4, 6, 6, 4, 2, 1)
8 (1, 2, 4, 8, 10, 8, 4, 2, 1)
9 (1, 2, 5, 10, 14, 14, 10, 5, 2, 1)
10 (1, 2, 5, 12, 20, 24, 20, 12, 5, 2, 1)
11 (1, 2, 6, 15, 28, 38, 38, 28, 15, 6, 2, 1)
12 (1, 2, 6, 18, 37, 56, 64, 56, 37, 18, 6, 2, 1)
13 (1, 2, 7, 21, 48, 82, 107, 107, 82, 48, 21, 7, 2, 1)
14 (1, 2, 7, 24, 61, 116, 167, 188, 167, 116, 61, 24, 7, 2, 1)
15 (1, 2, 8, 28, 76, 157, 253, 320, 320, 253, 157, 76, 28, 8, 2, 1)

However, in general we cannot expect an explicit formula for bp(fn).

Note that the above sequence of numbers (b0, b1, . . . , bn) is unimodal.

Definition 4.6.9. A sequence (a0, a1, . . . ad) of real numbers is called unimodal, if there
exists a j with 0 ≤ j ≤ d, such that ai ≤ ai+1 for all i = 0, . . . , j − 1 and ai ≥ ai+1 for all
i = j, . . . , d− 1. The sequence is called log-concave, if

a2i ≥ ai−1ai+1

for all i = 1, . . . , d− 1.

A log-concave sequence with positive terms is unimodal. We have the following result, see
[2]:

Theorem 4.6.10. Let g be a nilpotent Lie algebra having an abelian ideal of codimension
1. Then the sequence of its Betti numbers is unimodal. In particualr, the sequence of Betti
numbers of fn is unimodal.

For a generalization of the formula for bp(fn), see [2].

It is natural to als also for which nilpotent Lie algebras the sequence of Betti numbers is
log-concave. We have the following conjecture.

Conjecture 4.6.11. The sequence of Betti numbers (b1(fn), . . . , bn−1(fn)) is log-concave,
i.e., we have

b2i ≥ bi−1bi+1

for all 2 ≤ i ≤ n− 2.

Note that b21 ≥ b0b2 means 4 ≥
⌊
n+1
2

⌋
, which cannot hold as soon as n ≥ 9. Therefore we

need to omit b0 and bn in the sequence. For n ≤ 50 the conjecture is true. This follows from a
computation. For the general proof one could use that the partition function p(n) satisfies, for
all n > 25,

p(n)2 > p(n− 1)p(n+ 1).
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In other words, the sequence (p(n))n∈N is log-concave, or satisfies PF2, with

det

(
p(n) p(n+ 1)

p(n− 1) p(n)

)
> 0

for n > 25. This seemed to be open, but in fact has been proved, see my mathoverflow question
number 138321.

On the other hand, the sequence of Betti numbers (b0, b1, . . . , bn) is not always unimodal for
nilpotent Lie algebras. For example, this is not the case for the Heisenberg Lie algebras hn
discussed above. Indeed, there is a minimum exactly in the middle.

Consider now a family tn of filiform nilpotent Lie algebras with basis (x1, . . . , xn) and Lie
brackets

[x1, xi] = xi+1, 2 ≤ i ≤ n− 1

[xj, xn−j+1] = (−1)j+1xn, 2 ≤ j ≤ n/2

Here the sequence of Betti numbers bp(tn) resembles the one for the Heisenberg Lie algebras.
Here is a small list.

n (b0, b1, . . . , bn
2
)

4 (1, 2, 2)
6 (1, 2, 2, 2)
8 (1, 2, 3, 4, 4)
10 (1, 2, 4, 8, 9, 8)
12 (1, 2, 5, 13, 22, 23, 20)
14 (1, 2, 6, 19, 41, 61, 59, 50)
16 (1, 2, 7, 26, 68, 129, 177, 163, 134)
18 (1, 2, 8, 34, 105, 240, 414, 530, 466, 376)
20 (1, 2, 9, 43, 152, 406, 839, 1342, 1630, 1388, 1100)
22 (1, 2, 10, 53, 211, 643, 1541, 2929, 4410, 5129, 4243, 3320)
24 (1, 2, 11, 64, 284, 970, 2636, 5773, 10252, 14657, 16430, 13278, 10260)

Hence one would believe that the sequence is not unimodal for n ≥ 10. This seems to be open,
though.

The sum of all Betti numbers is also called the total cohomology of g.

Definition 4.6.12. The total cohomology of g is the number

σ(g) =
n∑
i=0

dimH i(g, K) =
n∑
i=0

bi(g).

There was a claim of Deninger and Singhof in [9], Proposition 2.7, that σ(g) ≡ 0 mod 4 for
nilpotent Lie algebras g of dimension n 6= 1, 3, 7. However, it turned out to be incorrect. And
indeed, our table for the Betti numbers of fn yields another counterexample. We have

σ(f15) = 2 · (1 + 2 + 8 + 28 + 76 + 157 + 253 + 320) = 1690 ≡ 2 mod 4.

Which Lie algebras g then do satisfy σ(g) ≡ 0 mod 4? Certainly simple Lie algebras of
dimension n > 3 over C, because then the trivial cohomology is given by an exterior algebra,
whose dimension is a power of 2 bigger than 2. In [6] the following result is proved.
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Theorem 4.6.13. Let g be a unimodular Lie algebra of characteristic not 2, and assume
that n = dim g 6≡ 3 mod 4. Then we have σ(g) ≡ 0 mod 4.

The proof uses the Euler characteristic χ(g) of g, which is related to σ(g) as follows.

Definition 4.6.14. Let g be a Lie algebra of dimension n and M be a finite-dimensional
g-module. Then the number

χ(g,M) =
n∑
i=0

(−1)i dimH i(g,M)

is called the Euler-Poincaré characteristic of g. If M is the trivial g-module K, then we write
χ(g) = χ(g, K) =

∑n
i=0(−1)ibi(g).

We have the following result [24]:

Theorem 4.6.15. Let g 6= 0 be a finite dimensional Lie algebra over a field K, and M be a
finite dimensional g-module. Assume that we have either g 6= [g, g], or char(K) = 0. Then we
have χ(g,M) = 0.

4.7. The Hochschild-Serre formula

In [16], Hochschild and Serre introduced a spectral sequence for the cohomology of Lie
algebras. We only want to state here some applications of it, from the forth section of this
paper.

Let g be a Lie algebra, M be a g-module and k be an ideal in g. So we have the short exact
sequence of Lie algebras

0→ k→ g→ g/k→ 0.

Denote by

rn : H(g,M)→ Hn(k,M)

the homomorphism induced by the restriction map of Cn(g,M) into Cn(k,M) by viewing k as
a subalgebra of g. Since k is also an ideal in g, we may regard the cochains for g/k in M k as
cochains for g in M , in the natural fashion. This gives rise to a natural homomorphism

`n : Hn(g/k,M k)→ Hn(g,M).

Assume now that either m = 1, or that Hn(k,M) = 0 for all 0 < n < m for a given m > 1.
Then every element of Hm(k,M)g has a representing cocycle which is the restriction to k of an
element f ∈ Cm(g,M), which determines an element of Hm+1/g/k,M k). This element depends
only on the given element of Hm(k,M)g. We denote the reysulting homomorphism by

tm+1 : Hm(k,M)g → Hm+1(g/k,M k).

Theorem 4.7.1. Let m ≥ 1 and assume that Hn(k,M) = 0 for all 0 < n < m. This is
vacuously satisfied for m = 1. Then we have a long exact sequence

0→ Hm(g/k,M k)
`m−→ Hm(g,M)

rm−→ Hm(k,M)g

tm+1−−−→ Hm+1(g/k,M k)
`m+1−−−→ Hm+1(g,M).

This induces the following result.
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Theorem 4.7.2. Let m ≥ 1. If m > 1, assume that Hn(k,M) = 0 for all 2 ≤ n ≤ m. Then
we have a long exact sequence

· · · → Hm(g/k,M k)
`m−→ Hm(g,M)

r′m−→ Hm−1(g/k, H1(k,M))

d2−→ Hm+1(g/k,M k)
`m+1−−−→ Hm+1(g,M).

Here, the homomorphism r′m results by restricting the first argument of a suitably selected
cocycle, representing the given cohomology class, to k.

Finally, let us state the Hochschild-Serre formula, which is Theorem 13 in [16] on page 603.

Theorem 4.7.3. Let g be a finite dimensional Lie algebra over a field F of characteristic
zero, r be an ideal of g such that s := g/r is semisimple. Let M be a g-module. Then we have

Hn(g,M) ∼=
⊕
i+j=n

H i(s,F)⊗Hj(g,M)s

for all n ≥ 0.
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