RIGIDITY RESULTS FOR LIE ALGEBRAS ADMITTING A POST-LIE
ALGEBRA STRUCTURE

DIETRICH BURDE, KAREL DEKIMPE, AND MINA MONADJEM

ABSTRACT. We study rigidity questions for pairs of Lie algebras (g,n) admitting a post-Lie
algebra structure. We show that if g is semisimple and n is arbitrary, then we have rigidity in
the sense that g and n must be isomorphic. The proof uses a result on the decomposition of a
Lie algebra g = s1 + 59 as the direct vector space sum of two semisimple subalgebras. We show
that g must be semisimple and hence isomorphic to the direct Lie algebra sum g = 51 ®s2. This
solves some open existence questions for post-Lie algebra structures on pairs of Lie algebras
(g,n). We prove additional existence results for pairs (g, n), where g is complete, and for pairs,
where g is reductive with 1-dimensional center and n is solvable or nilpotent.

1. INTRODUCTION

Post-Lie algebra structures on pairs of Lie algebras naturally arise in several areas of mathe-
matics and physics. Some important examples of such areas are geometric structures on mani-
folds, affine actions on Lie groups, Rota-Baxter operators, étale and prehomogeneous modules
for Lie algebras, decompositions of Lie algebras, crystallographic groups, operad theory, de-
formation theory, or quantum field theory. There is a large literature on post-Lie algebra
structures, see for example the papers [15], 4 [, [6, [7, 8, 9] and the references given therein.

In the study of post-Lie algebra structures one often has to investigate Lie algebra decomposi-
tions, i.e., writing a Lie algebra g as the vector space sum g = a + b of two subalgebras a and
b. How much does the structure of a and b determine the structure of g? Recently we have
studied semisimple decompositions of Lie algebras, where both a and b are semisimple, see [10].
In general, such a Lie algebra need not be semisimple. Semisimple decompositions are closely
related to prehomogeneous modules for semisimple Lie algebras.

In the present article we show that a Lie algebra g = s; + s, which is the direct vector space
sum of two semisimple subalgebras s; and s, is already semisimple and a direct Lie algebra
sum g = t; @ty with s; = t; for i = 1,2. Here we use several results about decompositions of
Lie groups and Lie algebras from the papers [I3] 14] of Onishchik. We prove that Onishchik’s
arguments also imply the following result. Let s be a semisimple Lie algebra which is the
sum of two semisimple subalgebras, e.g., s = s§; + 5. Then the subalgebra s, N s is zero or
semisimple - see Lemma [2.6] This is not explicitly stated in [13, 14], and we could not find
it in the literature. The result is also very useful to prove a strong rigidity result for post-Lie
algebra structures on pairs (g, n), where g is semisimple - see Theorem

In section 4 we complete our “existence table” for post-Lie algebra structures on pairs (g, n)
from [9]. We only leave one case open, namely where g is reductive and n is semisimple - see
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Conjecture [3.5] We use the correspondence to Rota-Baxter operators to construct post-Lie
algebra structures on (g,n), where g is complete.

In section 5 we show that there are no post-Lie algebra structures on pairs (g,n), where g is
reductive with 1-dimensional center and n is solvable, non-nilpotent. However, if n is nilpo-
tent then we cannot show this in general. Even the case g = gl,,(C) then is open in general.
Here we can at least settle the case, where n is 2-step nilpotent by reducing the question to
left-symmetric structures on g = gl,(C) and using decompositions of wedge products of simple
sl,(C)-modules, which we had studied already in [10], section 3. The result is that there are
no post-Lie algebra structures on (gl,(C),n) for all n > 2, where n is 2-step nilpotent and
non-abelian - see Proposition 5.5.

2. SEMISIMPLE DECOMPOSITIONS OF LIE ALGEBRAS

We first recall the definition of a post-Lie algebra structure on a pair of Lie algebras (g,n)
over a field K, see [4]:

Definition 2.1. Let g = (V,[,]) and n = (V,{,}) be two Lie brackets on a vector space V'
over K. A post-Lie algebra structure, or PA-structure on the pair (g,n) is a K-bilinear product
x -y satisfying the identities:

(1) roy—y-x=ry —{z,y}
(2) [Tyl z=2-(y-2)—y- (v 2)
(3) z-{y, 2z} ={x-y,z} +{y,z -z}

for all x,y,z € V.

Define by L(z)(y) = = -y and R(x)(y) = y - x the left respectively right multiplication
operators of the algebra A = (V,-). By (3)), all L(x) are derivations of the Lie algebra (V,{, }).
Moreover, by , the left multiplication

L: g — Der(n) C End(V), z — L(z)

is a linear representation of g. The right multiplication R: V' — V, x — R(x) is a linear map,
but in general not a Lie algebra representation.

If n is abelian, then a post-Lie algebra structure on (g,n) corresponds to a pre-Lie algebra
structure, or left-symmetric structure on g. In other words, if {z,y} = 0 for all z,y € V, then
the conditions reduce to

(4) roy—y-x=[z,y
(5) [x,y]z:x(yz)—y(:cz),
i.e., x -y is a pre-Lie algebra structure on the Lie algebra g.

We will assume from now on that all Lie algebras are finite-dimensional and defined over the
complex numbers.

Let g be a Lie algebra and s; and s5 be two semisimple subalgebras of g. We write g = s1 + 59,
if g is the vector space sum of s; and s,, and

g = 51 + 59,
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if g is the direct vector space sum of s; and s, i.e., satisfying s; N sy = 0. We use the sum with
the dot to distinguish it from the direct sum of Lie ideals g = 51 @ s2. In analogy to dinilpotent
groups [I1], we have introduced in [I0] the notion of a disemisimple Lie algebra.

Definition 2.2. A Lie algebra g is called disemisimple, if it can be written as a vector space
sum of two semisimple subalgebras s; and s, of g. In this case we write g = 51 + s5. If the
vector space sum is direct, we say that g is strongly disemisimple.

For a Lie algebra g denote by rad(g) the solvable radical of g and by nil(g) the nilradical of
g. In [10] we have studied the structure of disemisimple Lie algebras. An important tool is the
close relationship to prehomogeneous s-modules, where s is a Levi subalgebra. We have shown
in [10], Theorem 3.7, that the solvable radical of a disemisimple Lie algebra with a simple Levi
subalgebra is abelian. An elementary result was Lemma 2.3 in [10], which is as follows.

Lemma 2.3. Let g be a disemisimple Lie algebra. Then g is perfect and the solvable radical of
g coincides with the nilradical, i.e., rad(g) = nil(g).

For strongly disemisimple Lie algebras one can show more.

Lemma 2.4. Let g be a strongly disemisimple Lie algebra with g = s, + 5. Then neither s,
nor S, can be a Levi subalgebra of g.

Proof. Assume that s, is a Levi subalgebra of g with g = s; x rad(g). We have
dim(rad(g)) = dim(g) — dim(s;) = dim(sy).

By the Levi-Malcev theorem there exists an element z € rad(g) such that ) maps sy to a
subalgebra of §;. Then M = rad(g) is an sy-module with dim(M) = dim(s2). Thus we can
apply Lemma 4.1 of [5]. It gives a nonzero x € s, such that x.z = 0. So the Lie bracket in g
is [x,2] = 0, so that ¢24®)(z) = z. This implies that also € s;, and hence z € 5, N s, = 0.
We obtain x = 0, which is a contradiction. Hence s; cannot be a Levi subalgebra. The same
applies to s,. O

Lemma 2.5. Let g be a strongly disemisimple Lie algebra with g = s1 + 89, and s a Levi
subalgebra of g with s; C s. Then there exists a semisimple subalgebra s3 of g such that
s = 81 + 53 and dim(s; N s3) = dim(rad(g)).

Proof. By the Levi-Malcev theorem there exists an element z € rad(g) such that, with ¢ =
) we have s, = (s3) for some semisimple subalgebra s3 C 5. We have s3 = ' (s,) with
= e2d(=2) etz € g. Then there exist s; € s; and sy € s, such that x = s; + s5. For all
y € g we have
_ = ad(—2)*
o =y—y- Y ) € radg)
- !

1
Hence we have, for y = sg,

T=8+ 5 =5+ (s2)+ (52— ¢ '(s2)) € 51 + 53+ rad(g).

So we have
g C 51+ 53 +rad(g) C g,
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and hence equality. Now let x € 5. Then z = s; 4+ s3 + r for some s; € s1, s3 € s3 and
r € rad(g). It follows that r =z — s; — s3 € 5, so that r = 0 because of rad(g) Ns = 0. Hence
we have s C 51 + 53 C 5, and § = 51 + s3. For the dimensions we have

dim(s) = dim(s;) + dim(s3) — dim(s; N s3).
On the other hand we have s; + s, = s x rad(g) and dim(s;) = dim(s3), so that

dim(s) = dim(s;) + dim(s3) — dim(rad(g)).
So we have dim(s; Ns3) = dim(rad(g)). O

The following lemma is a consequence of results and arguments from the two papers [13] and
[14] by Onishchick.

Lemma 2.6. Let s be a semisimple and disemisimple Lie algebra with s = s; 4+ s5. Then the
subalgebra s1 N so is zero or semisimple.

Proof. Let G5 be the connected algebraic group corresponding to s and let G, and G5, be the
connected algebraic subgroups of G corresponding to the subalgebras s; and s5. In [14] pages
522-523] in the proof of Theorem 3.1 in the case of reductive algebraic decompositions over C
it is shown that G5 = G, Gs, (and so also G = G, Gy, ).

From [I4, Corollary 3.1] we then get that there exists a real compact form € of s and real
compact forms ¢ and & of the Lie algebras Ad(x)(s1) and Ad(y)(s2) corresponding to some
conjugates tGs, 7! and yGs,y~ ! of G,, and G, such that € = & + &. In [13], page 18, after
Corollary 2 it is shown that for the decomposition € = £; + €5 of compact forms we have that
€, N €, is zero or semisimple (Onishchik writes Uy = G, N G§ for this intersection). From this
it follows that the complexification (£ M €)% = €T N €S = Ad(z)(s1) N Ad(y)(s2) is also zero or
semisimple.

We now claim that s, Nss is isomorphic to Ad(z)(s1) NAd(y)(s2). To see this, first write x = ba
with b € G, and a € G, (recall that G; = G4,Gs,). Then

Ad(z)(s1) N Ad(y)se = Ad(b)(Ad(a)(s1) NAd(b 'y)(s2))
Ad(B)(1 1 Ad ("3 (s2))
~ 5 NAdA(D y)(s2).
Now write b1y = a'b’ with o’ € G,, and I/ € G.,, then
51 NAd(b y)(s2) = 51 NAd(a’) Ad(V)(s2)
51 N Ad(d) (5)
Ad(a’)(s1 N s2)
§1 M 89,

12

from which we indeed deduce that s, N sy = Ad(z)(s1) N Ad(y)s2 and so is semisimple. O
Now we can prove the main decomposition theorem.

Theorem 2.7. Let g be a strongly disemisimple Lie algebra with g = s, + 8. Then g is
semisimple and isomorphic to the direct Lie algebra sum s, & s,.

Proof. Assume that g is not semisimple. Then we have dim(rad(g)) > 1. Let s be a Levi
subalgebra of g such that s; C 5. By Lemma there exists a semisimple subalgebra s3 such
that s = s, + 53 and dim(s; Ns3) = dim(rad(g)) > 1. It follows that s; Ns3 C s is a semisimple
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subalgebra by Lemma[2.6] Hence s1Msj3 is a Levi subalgebra of the Lie algebra (s1Ms3) x rad(g).
Let ¢ = €*) be the special automorphism with ¢(s3) = s, from the proof of Lemma . We
claim that

(s1 Ns3) X rad(g) = (51 N s3) + (81 N s3).
Hence s1 N s3 cannot be a Levi subalgebra of (s; N s3) X rad(g) by Lemma 2.4 This is a
contradiction and it follows that g is semisimple. We need to show the claimed equality. Let
y € rad(g). Then

y=s1+ 82 =351+ p(s3) = (s1+ 83) + (¢(s3) — 53)
for some s; € ;. Here ¢(s3)—s3 € rad(g) and s;+s3 € s, so that s;+s3 = 0 and y = ¢(s3) —s3.
Note that s3 = —s; € 51 Ns3. Now let z € §; Ns3 and y € rad(g). Then
r+y=x+p(s3) —s3=(x —s3)+ p(s3) € (51 Ns3)+ (51 Ns3).
Conversely let y, 2 € 51 N s3. Then
y+e(z) = (y+2) + (p —id)(z) € (51N s3) x rad(g).
Finally, since s, and s, are semisimple subalgebras, they are reductive in the semisimple Lie

algebra g. Hence we can apply Koszul’s Theorem [12] to conclude that g is isomorphic to the
direct Lie algebra ideal sum of s; and s,. O

Remark 2.8. The theorem cannot be generalized to disemisimple Lie algebras. Indeed, we have
shown in Example 4.10 of [§], that for n > 2,

s[,(C) x V(n) =sl,(C) + ¢(s1,(C)) = 51 + 52

is the vector space sum of two simple subalgebras s; and s,. The Lie algebra sl,,(C) x V(n) is
perfect, but not semisimple. We have ¢ = €24®) for a certain z in the radical V(n), which is
abelian. Note that the intersection satisfies

dim(s; Nsy) =n? —n — 1.
3. RIGIDITY RESULTS

Let (g,n) be a pair of finite-dimensional complex Lie algebras admitting a post-Lie algebra
structure. The rigidity question is the following.

For which algebraic properties of g and n can we conclude that g and n are necessarily isomor-
phic?

The properties we are mostly interested in here are that g and n are simple, semisimple or
reductive.

If both Lie algebras are solvable, it is obvious that g and n need not be isomorphic in general.
Indeed, consider the Lie algebra g = t31(C) with basis (eq, e2, e3) and Lie brackets [e1, €3] = e,
le1, €3] = e3, and let n = tv3(C), given by the Lie brackets {ej,es} = e, {€1,e3} = es + es.
The Lie algebras are solvable, but not isomorphic. Nevertheless there exists a post-Lie algebra
structure on (g, n):

Example 3.1. There exists a post-Lie algebra structure on the pair (g,n) = (r31(C),r3(C)),
given by ey - e3 = —ez and all other products e; - e; equal to zero.

If g and n are both simple, then we know that rigidity holds. This is Proposition 4.6 in [4].
However, an even stronger result holds if just g is simple, see Theorem 3.1 of [6].
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Proposition 3.2. Let (g,n) be a pair of Lie algebras, where g is simple and n is arbitrary.
Suppose that (g,n) admits a post-Lie algebra structure. Then n is isomorphic to g.

We can now generalize this result to the case where g is semisimple.

Theorem 3.3. Let (g,n) be a pair of Lie algebras, where g is semisimple and n is arbitrary.
Suppose that (g,n) admits a post-Lie algebra structure. Then n is isomorphic to g.

Proof. By Proposition 2.11 of [4] there is an embedding
¢: g — nx Der(n)

such that p o ¢: g — n is a vector space isomorphism, where p: n x Der(n) — n denotes
the projection on n. If ¢: n x Der(n) — Der(n) denotes the projection on the second factor,
then g o p: g — Der(n) is a Lie algebra homomorphism. Hence h = (g o ¢)(g) C Der(n) is a
semisimple Lie algebra, because g is semisimple. Note that if h = 0 we obtain g = n and we
are done. We may view the embedding now as ¢: g < n x h. We claim that

nxb=ep(g+h

as a direct vector space sum of subalgebras of n x h. Indeed, for a given element (z,y) € n x b
there is a unique v € g with p(v) = (z,2) for some z € b, and there is a unique w € b with
(z,y) = ¢(v) +w. Hence n x b is the direct vector space sum of two semisimple subalgebras
©(g) and h. By Theorem it follows that n x b is semisimple, and hence also the ideal n is
semisimple. Hence we have n x h Zn @ b, and also n x h = ¢(g) & h. Writing

pg) =Za @Dy
b= Doy

as direct sum of simple ideals, p(g) & h = n @ bh implies that
(M@ @a) (1@ D) Z(b1D---Db) D (1D D).

Since the decomposition of a semisimple Lie algebra into simple ideals is unique up to permu-
tation, we obtain i = j and g = ¢(g) = n. O

Remark 3.4. A corresponding strong rigidity result for the case that n is semisimple does not
hold. For example, we know that there are post-Lie algebra structures on pairs (g, n), where n
is semisimple and g is solvable, see Proposition 3.1 in [5]. Furthermore, even if (g, n) is a pair
of reductive Lie algebras admitting a post-Lie algebra structure, g need not be isomorphic to
n in general. Indeed, for g = sl,(C) & gl,,(C) and n = s[,(C) & C* the pair (g,n) admits a
post-Lie algebra structure, by taking the direct sum of a non-trivial post-Lie algebra structure
on (gl,(C),C™), coming from a pre-Lie algebra structure on gl,(C), and the zero structure on

(s1,(C),s1,(C)).
On the other hand, we still believe that there holds the following rigidity result.

Conjecture 3.5. Let (g,n) be a pair of Lie algebras, where g is reductive and n is semisimple.
Suppose that (g,n) admits a post-Lie algebra structure. Then n is isomorphic to g.
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4. THE EXISTENCE TABLE

For the existence question of post-Lie algebra structures on pairs of Lie algebras (g,n) we
have introduced a “table” in [9], where g and n belong to one of the following seven classes,
defined by the following properties: abelian, nilpotent, solvable, simple, semisimple, reductive,
complete. Here we want to avoid an unnecessary overlap, so we assume that nilpotent means
non-abelian, solvable means non-nilpotent, semisimple means non-simple, and reductive (re-
spectively complete) means non-semisimple. Of course, a complete Lie algebra in the table
may also be solvable and non-nilpotent. It cannot be nilpotent, since nilpotent Lie algebras
have a non-trivial center. Similarly, a reductive, non-semisimple Lie algebra may be abelian,
but has a non-trivial center and hence cannot be complete. The existence table in [9] still has
SiX open cases:

(g,n) n abe nsol nsim nred ncom
g abelian v v v — — — v
v v v — - — v
g solvable v v v v v v v
g simple — — — v — — —
_ - v 1 -
g reductive | v/ 3) 1) - (2) v v
g complete | v v v (5) (6) v v

We can now solve all open cases with one exception and obtain the following table.

Theorem 4.1. The existence table for post-Lie algebra structures on pairs (g,n) is given as
follows:

(g,n) n abe n sol n sim nred n com
g abelian v v v — — — v
v v v — — — v
g solvable v v v v v v v
g simple — — — v — — —
_ _ _ _ v _ _
g reductive | Vv v v — ? v v
g complete v v v v v v v

A checkmark only means that there is some non-trivial pair (g,n) of Lie algebras with the given
algebraic properties admitting a post-Lie algebra structure. A dash means that there does not
exist any post-Lie algebra structure on such a pair.

Proof. By Theorem there is no post-Lie algebra structure on a pair (g,n), where g is
semisimple, and n is not semisimple. This solves case (1). Case (2) is still open, see Conjecture
3.5 For the remaining cases, there exist non-trivial examples admitting a post-Lie algebra
structure. The cases (3), (4) follow from Proposition the case (5) from Proposition 4.3 and
the case (6) from Proposition [4.4] below. O
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Denote by n3(C) the Heisenberg Lie algebra and by vy(C) the 2-dimensional non-abelian Lie
algebra. Note that to(C) is a complete Lie algebra.

Proposition 4.2. There exists a post-Lie algebra structure on the pairs

(g,1) = (s5(C) & C!, C" @ n3(C)),
(g,1n) = (s1,(C) & C*,C* @ 15(C)).

Proof. Let x -y be a LSA, or pre-Lie algebra structure on sly(C) @ C. Such structures exist
and have been classified in [2], Theorem 3. By definition this structure is a post-Lie algebra
structure on the pair (slo(C) @ C,C*). Let x oy be an LR-structure, i.e., a special case of a
post-Lie algebra structure, on n3(C). For the definition of an LR-structure see [3]. There exist
several LR-structures on ng(C) see [3], Proposition 3.1. By definition this structure is a post-Lie
algebra structure on the pair (C?,n3(C)). Now equip the pair (g,n) = (sl,(C) ®C* C*@n3(C))
with the post-Lie algebra structure

(71,y1) ® (22,92) = (21 - T2, Y1 © 12)

induced by the post-Lie algebra structures on (sly(C) & C,C*) and (C3,n3(C)). This defines a
post-Lie algebra structure on (sly(C) & C*, C* & n3(C)).

The same construction works by choosing an LR-structure x oy on to(C), which is a post-Lie
algebra structure on the pair (C? t5(C)). The post-Lie algebra structures on (sly(C) & C,C*)
and (C?,ty(C)) induce a post-Lie algebra structure on the direct sum of these pairs, e.g., on
(5[2(@) @C3,C469t2((C)). O

Denote by E;; the matrix with entry 1 at position (¢, j), and all other entries equal to 0. Let
n = sl3(C) and consider the following basis for it:

e1 = Eig, ea = Fy3, e3 = By, eq = Faz, e5 = L3y,

€6 = Bso, €7 = By — By, eg = Foy — Ess.

Then the Lie brackets are defined by

{e1,e3} = er, {ea, €6} = e, {es, e} = es,
{e1,ea} = eo, {ea, e7} = —ey, {es, e7} = ey,
{e1,e5} = —es, {ea,e8} = —ea, {eq, e} = —2ey,
{e1,e7} = —2ey, {es, e6} = —es, {es,e7} = e,
{e1,es} = e, {es, er} = 2es, {es5,es} = e,
{e2, e3} = —ey, {es es} = —es, {es, er} = —es,
{ea,e5} = er + es, {e4, e5} = e3, {es, es} = 2es.

Let aff,(C) = gl,,(C) x C" be the affine Lie algebra of dimension n?+n. It is simply complete,
i.e., it is complete and has no nontrivial complete ideal. We can choose a basis (fi, ..., fs) for
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aff,(C) @ aff, (C) with Lie brackets

Lf1, fa] = fa, [f2, fa] = fo, [fa, feo] = fe,
L1, fsl = —fs [f2, f6] = fs, Lfz, fs] = fr,
Lf1, f5] = fs, [f3, fa] = — f,

[f2, fs] = f1 = fa, [f3, f5] = fs,

where (f1,...fs) = (E11, E1a, B9y, Eao, E13, Ea3) is a basis of affy(C) and (f7, fs) is a basis of
aff; (C) = v2(C).

Proposition 4.3. Let n = sl3(C). Then there exists a post-Lie algebra structure on the pair
(g,n) with g = aff2(C) @ aff1(C). More precisely, x -y = {p(x),y} with

90(63) = —€3 — €,
p(ey) = —eq — €5,

ole;)) =0 fori1=1,2,5,6,7,8

defines an inner post-Lie algebra structure on the pair (g,n) with Lie brackets for g given by

leq, €3] = 2eq, [ea, €5] = €7 + es, leq, 7] = —es,
[61, 64] = €, [62, 66] = €1, [647 68] = —€s,
[61, 65] = —€s, [62, 67] = —éy, [65767] = €5,
le1, e7] = —2ey, [ea, €8] = —ea, [es, es] = es,
[e1, es] = ex, e3, €4] = ea, [es, €7] = —e,
[62, 63] = €2, [63, 65] = €5, [€6> 68] = 2eg,
[62, 64] = —€7 — €3, [63, 66] = —€g,
and the post-Lie algebra structure given by

es- e = —2e; + ey, es3 - eg = €5 — €g, ey - €4 = €3,

€3 €y = —€3 — €y, e3 - er = —2es, eq4 - e5 = —es,

es - e3 = 2es, es - eg = €3, €y - €6 = —es,

€3+ €4 = €4, €4 €1 = €2 — €g, €4 €7 = —€4 — €5,

es3 - e5 = es, e4 - €y = €7+ eg, ey - g = 2e4 — e5.

Proof. By Corollary 2.15 in [7], post-Lie algebra structures on (g,n) are in bijection to Rota-
Baxter operators of weight A = 1 on n, since n is complete. For z -y = {¢(x), y} we can choose
p(e;) =0fori=1,2,5,6,7,8. Then a short computation shows that the above homomorphism
@ is a possible solution. We have a Lie algebra isomorphism

[+ 8= aff2(C) © aff1 (C)
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given by
00 -2 0 00 2 -1
01 0 0 O0O0O0 O
00 0 -1 100 O
loo -1 0 001 -2
f= 10 0 0 00O0 O
00 0 O 010 O
00 0 1T O0O0O0 O
00 -1 0 0O0O0 O
where det(f) = —3. Note that we also can use that R(n) = vy(C), and that ker(n) is a

6-dimensional complete Lie subalgebra of n = sl3(C). Since it is known that the only 6-
dimensional subalgebra of sl3(C) is the parabolic one, it follows that it is complete and isomor-
phic to aff,(C). O

For the next result let
e1 = Fig,e0 = Eyy,e3 = B — Ey,eq = Eis,e5 = Esy, 6 = Fyy — Esp
be a basis for the Lie algebra n = sly(C) @ sl (C).

Proposition 4.4. Let n = sly(C) @ sly(C). Then there exists a post-Lie algebra structure on
the pair (g,n) with g = v5(C) @ va(C) @ va(C). It is given by x -y = {¢(x),y} with

0 0 00 0 O

0O -1 00 0 O

0 0 00 =10

=10 0 00 0 0

0 0 00 —-10

0 0 00 0 O

where the Lie brackets for g given by
[61763] = _2617 [627 65] = _2625 [64766] = _2647

[e1, e5] = 2e4,
and the post-Lie algebra structure is given explicitly by
ey - e = es, e5 - e = —2ey, es - €4 = €g,

€9+ €3 = —262, €5+ €9 = 262, €5 - € = —265.

Proof. By Corollary 2.15 in [7], post-Lie algebra structures on (g,n) are in bijection to Rota-
Baxter operators of weight A = 1 on n, since n is complete. We can write n = n; + n, as the
direct vector space sum of the two subalgebras

ny = (e, €3, €4, €6), Ny = (€2, €3 + €5).

By Proposition 2.7 in [7] we know that R(n; + ny) = —ng for all n; € ny,ny € ny defines
a Rota-Baxter operator of weight 1 on n with associated post-Lie algebra structure given by
z -y = {R(x),y}. So we have R(e;) = R(es) = R(es) = R(eg) = 0 and R(es) = —ea,
R(e3 + e5) = —e3 — e5. This gives the above matrix ¢ for the operator R. One verifies the
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Lie brackets for g coming from [z,y] =z -y — y - x + {z,y} and the explicit post-Lie algebra
structure with respect to the basis of n. We have the decomposition of g into ideals

g=n;dny

= (e1, e3, €4, €5) D (€2, €3 + €5)
t5(C) & t2(C) & t5(C).

I

5. REDUCTIVE LIE ALGEBRAS WITH ONE-DIMENSIONAL CENTER

In this section we study the existence of post-Lie algebra structures on pairs (g, n), where
g is reductive with 1-dimensional center with dim(g) > 2. It is well known that there are no
post-Lie algebra structures on pairs (g,n) where g is semisimple and n is abelian. Hence it is
natural to consider the case, where g is reductive with a 1-dimensional center and n is solvable,
nilpotent or abelian. For an abelian Lie algebra n, post-Lie algebra structures on (g,n) are
pre-Lie algebra structures on g. For the case g = gl,,(C) there exist pre-Lie algebra structures,
and one can even classify them, see [2]. So the question is, what we can say when n is solvable
or nilpotent. We have the following result.

Theorem 5.1. Let (g,n) be a pair of Lie algebras, where g is reductive with 1-dimensional
center, and n is solvable non-nilpotent. Then there is no post-Lie algebra structure on (g,n).

Proof. Assume that z -y is a post-Lie algebra structure on (g,n). Denote by V' the underlying
vector space of g and n with dim(V') = n. All left multiplications L(x) are derivations of n and
hence map n into the nilradical nil(n). Indeed, for any Lie algebra b we have D(rad(h)) C nil(h)
for all D € Der(h), and for solvable h we clearly have b = rad(h). So we have

n-n= L(n)(n) Cnil(n).

Since n is solvable, {n,n} is a nilpotent ideal in n, so that {n,n} C nil(n). Hence for z,y € V
the Lie bracket of [z, y] in g satisfies

2,y =2 y—y z+ {z,y} € nil(n).

So we have [g, g] C nil(n). However, we have dim([g, g]) = n — 1, because g = [g,9] ® Z(g). It
follows that dim nil(n) > n—1. Since n is not nilpotent, dimnil(n) < n—1. Together we obtain
that dimnil(n) = n — 1 and [g, g] = nil(n) as vector spaces. But this implies that the post-Lie
algebra structure on (g,n) restricts to a post-Lie algebra structure on the pair ([g, g, nil(n)),
which is impossible by Theorem 4.2 of [5], because [g, g is semisimple. O

In particular, there are no post-Lie algebra structures on (gl,,(C), n) for solvable non-nilpotent
Lie algebras n. However, this is no longer true if we replace gl,,(C) by gl,(C) & C, i.e., if we
consider a reductive Lie algebra with dim(Z(g)) > 2. Indeed, we have the following result.

Proposition 5.2. For any n > 2 there is a post-Lie algebra structure on the pair (g,n), where
g = gl,(C) @ C with basis (Y1, -, Yn2,x), where x spans C, and let n be the 2-step solvable Lie
algebra with Lie brackets {z,y;} = y; for 1 <i < n?.

Proof. By definition, a = (y1, 42, ..., y,2) is an abelian ideal in n with n = a x (z), where x acts
on a by the derivation idy, i.e., with ad(z)), = ids. Choose a pre-Lie algebra product y; - y; on
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gl,(C), see [2]. This is a post-Lie algebra structure on the pair (gl,(C),a). Now extend this
product to the pair (gl,(C) @ C,n) by

r-x =0,
yi-x =0
Y = —Yi = —{%yi}

for all 1 <4 < n?. The axioms for a post-Lie algebra structure are satisfied. First, consider the
identity
u-v—v-u=[u,v] —{u,v}

We have to check it for all basis vectors y;,z. It holds for all u = y;,v = y;, because y; - y; is
a pre-Lie algebra structure on gl,(C) with {y;,y;} = 0. So we only need to consider the case
that v or v is equal to x. By symmetry we may assume that « = x. Then for v = x it trivially
is true, and for v = y; we have

T-Yi — YT =—Y; = [%M _{xayi}-

The third identity is equivalent to the fact that all L(v) are derivations of n for all v. We have
to check this for v = y; and v = z. In these cases, the last row and last column of L(v) are
zero. Let us consider the remaining matrices of size n?. For v = y;, this matrix is a derivation
of a, since the product is a post-Lie algebra structure on (gl,,(C),a). For v = x, this matrix is
—1. In both cases it follows that L(v) € Der(n).

The second identity is equivalent to the fact that L: z — L(z) is a Lie algebra representation of
g. This is again obvious from the form of the operators L(y;) and L(x). Indeed, L(z) commutes
with all operators L(y;). O

We would like to prove a similar result as Theorem with n nilpotent, non-abelian. We
start with the case of g = gl,(C).

Proposition 5.3. Let (g,n) be a pair of Lie algebras with g = gly,(C) and n nilpotent, non-
abelian. Then there is no post-Lie algebra structure on (g,n).

Proof. There are two non-abelian nilpotent Lie algebras of dimension 4 up to isomorphism,
namely n = ny(C) and n = n3(C) @ C. Here ny(C) is the standard graded filiform Lie algebra,
and n3(C) is the Heisenberg Lie algebra. For n = ny(C), the Lie algebra Der(n) is a strictly
upper triangular Lie algebra (by an easy computation), and hence solvable. Therefore also the
semidirect product nx Der(n) is solvable. Suppose that there exists a post-Lie algebra structure
on (g,n). Then by Proposition 2.11 in [4] there is an injective homomorphism g < n x Der(n)
given by = — (x, L(x)). It follows that g is solvable. However, g = gl,(C) is not solvable, a
contradiction.

Secondly, let us assume that n = n3(C) @ C. Suppose that x - y is a post-Lie algebra structure
on (g,n) and let s = sly(C). Then s acts on n by the restriction of the homomorphism L: g —
Der(n) to s. We claim that s acts trivially on Z(n). Indeed, let {n,n} = (2) C Z(n) = (z,1).
By Weyl’s Theorem, there is an s-invariant complement W of {n,n} in Z(n). So we have
Z(n) = {n,n}®W as s-modules with dim({n,n}) = dim(W) = 1. Since s is semisimple, it acts
trivially on W and {n,n}, so that s - Z(n) = 0. Again by Weyl’s theorem we have

n=Zn)oU
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as s-modules with a complement U = (u,v). Suppose that {U,U} = 0. Then {n,n} =
{U® Z(n),U ® Z(n)} =0, which is a contradiction. It follows that {u,v} = w is nonzero and
h = (u,v,w) is a subalgebra of n isomorphic to nz(C). By construction, s - h C h. So by the
first axiom for a post-Lie structure we have

zyl=2-y—y-x+{z,y} €h

for all z,y € g. It follows that s = [s,s] C b, so that both vector spaces for s and h coincide.
Hence z-y induces a post-Lie algebra structure on (s, ), where s is semisimple and b is nilpotent.
This is a contradiction to Theorem 4.2 of [5]. O

We can generalize this result for pairs (gl,(C), n) where n is 2-step nilpotent and non-abelian.
For this we need the following lemma.

Lemma 5.4. Let x -y be a PA-structure on a pair (g,n), where n is 2-step nilpotent with Lie
bracket {z,y}. Then

1
roy={z.yt+z-y
defines a pre-Lie algebra structure on g.

Proof. This follows from Lemma 4.1 and Proposition 4.2 of [4]. But the axioms and for
a pre-Lie algebra structure on g can also be easily verified directly. 0

Defining the linear operators ¢(z), L(z),ad(z) by L(z)(y) = = -y, {(z)(y) = z oy and
ad(z)(y) = {x,y} we can rewrite the pre-Lie algebra product as

() = %ad(a:) + L(x).

Proposition 5.5. Let (g,n) be a pair of Lie algebras where g = gl,,(C) and n is 2-nilpotent
and non-abelian. Then there is no post-Lie algebra structure on (g,n).

Proof. By Proposition [5.3] we may assume that n > 3. Assume that z -y = L(z)(y) is a
post-Lie algebra structure on (g,n) and let L: gl,(C) — Der(n) be the representation given
by x — L(z). Then the restriction to s = sl,,(C) defines an s-module M. By Lemma 5.4 we
obtain a g-module, and then an s-module My, by ¢(z) = 1ad(z) + L(z). This defines a pre-Lie
algebra structure (or left-symmetric structure) on g.

Now we can apply Theorem 4.5 of [I] for all n > 3. It implies that the s-module M, is special in
the sense of [1], and equivalent to M, (C). The module action here is given by left multiplication
of matrices, and M,,(C) is equivalent to L(w;)®™ and as well to (L(w)*)®", where L(w;) denotes
the n-dimensional natural s-module and L(w;)* denotes its dual module. We may assume that
the only irreducible s-submodule of M, is of type L(w;). Since n is 2-step nilpotent and {n,n}
is a characteristic subspace of n, the formula ¢(z) = ad(z)+ L(z) shows that M, and M, have
the same irreducible s-submodules. So also M, has only irreducible submodules of type L(wy).
On the other hand, {n,n} is an s-invariant submodule of M. By Weyl’s theorem there exists
an s-invariant complement V- =1V; @ - - - @& Vj,, where V; is irreducible, with n =V & {n,n}. So
V is a generating space for n. Thus the s-submodule {n,n} is an s-submodule of

VAV=WV@® Vi) AWVd- V).
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Recall that L(w;) denotes the irreducible heighest weight module with fundamental weight w;.
By Lemma 3.4 in [10] we have

L(wl) (29 L((Ul) = L(u}g) P L(2W1) lf 7 7& j,

VAV, =
! Sym?(L(w)) = L(2w,) if i = j.

So V' AV contains an irreducible s-submodule L(2w;), which is not of type L(w;). It follows
that either {n,n} = 0, which is a contradiction, or that the s-submodule {n,n} doesn’t contain
an irreducible s-submodule of type L(w;) and hence cannot be an s-submodule of M. This is
also a contradiction. O

The method of this proof can also be applied to other pairs (g, n), where g is reductive with
1-dimensional center and n is 2-step nilpotent and non-abelian. However, for n being nilpotent
of class ¢ > 3 we do not know whether or not there exists a post-Lie algebra structure on (g, n).
So we formulate an open question as follows:

Question 5.6. Let (g,n) be a pair of Lie algebras, where g is reductive non-abelian with 1-
dimensional center, and n is nilpotent non-abelian. Is it true that there are no post-Lie algebra
structures on the pair (g,n)?
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