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Introduction

Lie algebras arise in many areas of mathematics and physics, such as differential geometry,
Lie theory, number theory, combinatorics and quantum field theory, just to name a few of
them. Originally Lie algebras were called “infinitesimal groups” of Lie groups. Herman Weyl
introduced the name Lie algebra only in the nineteen twenties, at the suggestion of Nathan
Jacobson. One can associate Lie algebras to Lie groups and algebraic groups. It is a vector
space, the tangent space at the identity, together with a Lie bracket. The relationship between
Lie groups and Lie algebras is very close and Sophus Lie proved three important theorems on
this relationship. Many problems about Lie groups can be “linearized”, i.e., formulated on the
level of Lie algebras, which often makes them more accessible.

We also give an introduction in this lecture to representation theory of Lie algebras. We
study highest weight modules for complex semisimple Lie algebras. The basic case here is the
classification of all finite-dimensional representations of sl2(C).

Let us give another basic example of a Lie algebra, namely so3(R), which can be viewed as
the vector space R3 together with the cross product as Lie bracket. We have the following two
identities

0 = v × v,
0 = (u× v)× w + (v × w)× u+ (w × u)× v.

The Lie brackets for a basis (e1, e2, e3) of so3(R), consisting of skew-symmetric 3× 3-matrices
are given by

[e1, e2] = e3, [e3, e1] = e2, [e2, e3] = e1.

The representation theory of this algebra is also important in quantum mechanics, as the theory
of angular momentum.

I want to present some historical information on the work of mathematicians which have worked
on Lie algebras. A short list of these mathematicians is as follows:

Elie Joseph Cartan (1869-1951)

Claude Chevalley (1909-1984)

Friedrich Engel (1861-1941)

Carl Gustav Jacob Jacobi (1804-1851)

Wilhelm Karl Joseph Killing (1847-1923)

Marius Sophus Lie (1842-1899)

Anatoly Ivanovich Malcev (1909-1967)

Hermann Klaus Hugo Weyl (1885-1955)

• Elie Cartan was a French mathematician in Montpellier, Lyon, Nancy and Paris. He was
a student of Marius Sophus Lie. In his dissertation of 1894 he completed Wilhelm Killings
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2 INTRODUCTION

classification of finite-dimensional semisimple complex Lie algebras. He initiated among other
things the theory of Riemannian symmetric spaces.

• Claude Chevalley was a French mathematician in Princeton, Columbia University and Paris.
He proved fundamental results in the theory of algebraic groups and in algebraic geometry. He
wrote a three-volume work on Lie groups.

• Friedrich Engel was a German mathematician in Leipzig, Greifswald and Gießen. He was
a student of Marius Sophus Lie. Lie and Engel wrote in the eighteen nineties a three-volume
work on transformation groups.

• Carl Jacobi was a German mathematician in Berlin and Königsberg. He made important
contributions to number theory, determinants and partial differential equations. He invented
the “Jacobi-identity” around 1830 in the context of Poisson brackets arsing in Hamiltonian
mechanics.

• Wilhelm Killing was a German mathematician in Münster. he was a student of Weierstraß.
He introduced Lie groups in the context of non-Euclidean geometry. He gave the first clas-
sification of finite-dimensional complex semisimple Lie algebras, although it was incomplete.
After the death of his four sons he joined at the age of 39 with his spouse the Third Order of
Franciscans in 1886.

• Sophus Lie was a Norwegian mathematician in Kristiania (Oslo) and Leipzig. He created the
theory of continuous transformation groups, which later on became the concept of a Lie group.
He applied this to the study of geometry and differential equations.

• Anatoly Malcev was a Russian mathematician in Moscow and Ivanovo. He studied among
other things solvable groups, Lie groups, topological algebras and decision problems in algebra.

• Hermann Weyl was a German mathematician in Zürich, Göttingen and Princeton. His
research has had major significance for theoretical physics as well as purely mathematical
disciplines including number theory and Lie theory. He was one of the most influential math-
ematicians of the twentieth century, and an important member of the Institute for Advanced
Study during its early years.



CHAPTER 1

Basic notions of Lie algebra theory

1.1. Definitions and examples

Let k be an arbitrary field and V be a k-vector space equipped with a k-bilinear product
x · y. For three elements x, y, z ∈ V define the associator by

(x, y, z) = (x · y) · z − x · (y · z).

Definition 1.1.1. A k-algebra A is a k-vector space together with a k-bilinear map

A× A→ A, (x, y) 7→ x · y.
The algebra A is called left-symmetric, or a pre-Lie algebra, if falls

(x, y, z) = (y, x, z)

for all x, y, z ∈ A. It is called associative if

(x, y, z) = 0

for all x, y, z ∈ A.

A Lie algebra is a special type of a k-algebra, named after the mathematician Sophus Lie.

Definition 1.1.2. A Lie algebra g over k is a k-vector space together with a k-bilinear
map, the so-called Lie bracket

g× g→ g, (x, y) 7→ [x, y],

such that we have for all x, y, z ∈ g,

0 = [x, x],

0 = [x, [y, z]] + [y, [z, x]] + [z, [x, y]].

The first identity is called skew-symmetry, because it implies the identity [y, x] = −[x, y]:

0 = [x+ y, x+ y] = [x, x] + [x, y] + [y, x] + [y, y]

= [x, y] + [y, x].

However, conversely this identity implies [x, x] = 0 only for characteristic of k different from
two. For y = x one obtains [x, x] = −[x, x], hence 2[x, x] = 0 and [x, x] = 0. To include the
case of characteristic p = 2 one defines skew-symmetry by [x, x] = 0.

The second identity is called Jacobi identity. It arises by “derivation” of the group structure of
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4 1. BASIC NOTIONS OF LIE ALGEBRA THEORY

Lie groups. Note that the Jacobi identity does not imply associativity in general (only if the
Lie algebra is 2-step nilpotent).

For two subspaces h, k of g the space [h, k] is defined as the subspace generated by all products
[h, k] with h ∈ h and k ∈ k. Each element of [h, k] is a sum

[h1, k1] + · · ·+ [hr, kr]

with hi ∈ h, ki ∈ k. The multiplication of subspaces in a Lie algebra is commutative.

Lemma 1.1.3. For subspaces h, k of g we have [h, k] = [k, h].

Proof. Let h ∈ h and k ∈ k. Then [h, k] = −[k, h] ∈ [k, h], hence [h, k] ⊆ [k, h]. Similarly
we obtain [k, h] ⊆ [h, k]. �

A subspace a of a Lie algebra g is called subalgebra respectively ideal, if [a, a] ⊆ a respectively
if [g, a] = [a, g] ⊆ a. The commutator algebra [g, g] is an ideal in g because of the Jacobi identity.
Indeed, we have [g, [g, g]] ⊆ [g, g].

For every LSA A, hence also for every associative k-algebra the commutator defines a Lie
bracket on the underlying vector space.

Lemma 1.1.4. Let A be an LSA with product (x, y) 7→ x · y. Then (A, [ , ]) is a Lie algebra
with bracket [x, y] = x · y − y · x.

Proof. The claim follows directly from the following identity

[[a, b], c] + [[b, c], a] + [[c, a], b] =

(a, b, c) + (b, c, a) + (c, a, b)− (b, a, c)− (a, c, b)− (c, b, a),

which holds in any k-algebra. �

Example 1.1.5. Let A = Mn(k) be the associative matrix algebra of n×n-matrices over k.
Then taking commutators we obtain the general linear Lie algebra gln(k) of dimension n2.

The Lie bracket for elements A,B ∈Mn(k) is given by [A,B] = AB−BA. The commutator
of gln(k) has a “special” name.

Lemma 1.1.6. The commutator subalgebra of gln(k) is the special linear Lie algebra

sln(k) = {X ∈ gln(k) | tr(X) = 0}

of dimension n2 − 1.

Proof. We have to show that [gln(k), gln(k)] = sln(k). Let A,B ∈ gln(k). Then [A,B] ∈
sln(k) because of

tr([A,B]) = tr(AB)− tr(BA) = 0.

Thus we have [gln(k), gln(k)] ⊆ sln(k). Conversely consider the matrices Eij, having the entry
1 at position (i, j), and zero entries otherwise. We have

[Ejk, E`m] = δk`Ejm − δjmE`k.(1.1)
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In particular, we have for j 6= k,m

[Ejk, Ekj] = Ejj − Ekk,
[Ejm, Emk] = Ejk.

These matrices generate the Lie algebra sln(k) for j 6= k. Obviously they are in the subspace of
commutators. Hence we have sln(k) ⊆ [gln(k), gln(k)]. Finally, we easily see that the elements
Eij for i 6= j and the elements Eii − Ei+1,i+1 for 1 ≤ i ≤ n − 1 form a basis of sln(k). It has
(n2 − n) + (n− 1) = n2 − 1 elements. �

Remark 1.1.7. The algebra sln(k) is a Lie subalgebra of gln(k), but not a subalgebra of
Mn(k) with the matrix product.

Indeed, for A = B =

(
1 0
0 −1

)
∈ sl2(k) we have AB = id 6∈ sl2(k).

Example 1.1.8. For a given matrix J ∈ glm(k) the subspace

g(J) = {X ∈ glm(k) | JX +X tJ = 0}
is a Lie subalgebra of glm(k).

Indeed, for X, Y ∈ g(J) we have

[X, Y ]tJ + J [X, Y ] = Y tX tJ −X tY tJ + JXY − JY X
= −Y tJX +X tJY + JXY − JY X
= JY X − JXY + JXY − JY X
= 0.

For m = 2n and

J =

(
0 En
−En 0

)
we obtain the Lie algebra g(J) = sp2n(k), the symplectic Lie algebra of order n. So a block
matrix M = ( A B

C D ) lies in sp2n(k) if and only if(
At Ct

Bt Dt

)(
0 En
−En 0

)
= −

(
0 En
−En 0

)(
A B
C D

)
,

hence if (
−Ct At

−Dt Bt

)
=

(
−C −D
A B

)
,

hence if

Ct = C, Bt = B, D = −At.
Thus the dimension of the symplectic Lie algebra is

dim(sp2n(k)) = n(n+ 1) + n2 = 2n2 + n.

For J = Em we obtain the Lie algebra g(J) = som(k), the orthogonal Lie algebra of order m.
It consists of all skew-symmetric matrices

som(k) = {X ∈ glm(k) | X +X t = 0}.
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Clearly we have dim(som(k)) = m(m−1)
2

. Sometimes we also need another representation of the
orthogonal Lie algebra, distinguishing the case m = 2n even and the case m = 2n+1 odd. One
chooses for J the first matrix for even m and the second matrix for odd m,

J =

(
0 En
En 0

)
, J =

1 0 0
0 0 En
0 En 0

 .

Then we obtain two series of orthogonal Lie algebra, namely so2n(k) and so2n+1(k). Their
dimensions are n(2n− 1) respectively n(2n+ 1). Of course, these two different representations
give isomorphic Lie algebras. There is only “one” orthogonal Lie algebra for any given order
m.

Example 1.1.9. The space of upper-triangular matrices of size n over k forms a Lie sub-
algebra of gln(k), which we denote by tn(k).

Clearly the strictly upper-triangular matrices form a Lie subalgebra of tn(k), which we
denote by nn(k). The Lie subalgebra of diagonal matrices in tn(k) is denoted by dn(k). We
have the following equalities.

dn(k) + nn(k) = tn(k),

[dn(k), nn(k)] = nn(k),

[tn(k), tn(k)] = nn(k).

The last equality follows from the first two equalities.

Let us explicitly consider the Lie algebra n3(k), the so-called 3-dimensional Heisenberg Lie
algebra. A basis (X, Y, Z) is given by the strictly upper-triangular matrices

X =

0 1 0
0 0 0
0 0 0

 , Y =

0 0 0
0 0 1
0 0 0

 , Z =

0 0 1
0 0 0
0 0 0

 ,

with Lie brackets determined by [X, Y ] = Z.

1.2. Derivations and representations of Lie algebras

Definition 1.2.1. Let A be a k-algebra with product (x, y) 7→ x · y and End(A) be the
space of all vector space endomorphisms of A. A linear map D ∈ End(A) is called a derivation
of A if

D(x · y) = D(x) · y + x ·D(y)

for all x, y ∈ A. The space of derivations of A is denoted by Der(A).

It is clear that Der(A) is a subspace of End(A) ist.

Example 1.2.2. For the R-algebra A = C∞(R) of smooth functions the map D : A → A
with D(f) = f ′ is a derivation.

This follows from the product rule (Leibniz rule).
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Example 1.2.3. The derivation algebra of the pre-Lie algebra A = Cx⊕ Cy with product

x · x = 2x, x · y = y

y · x = 0, y · y = x

is trivial. We have Der(A) = 0.

Note that A is a simple algebra, i.e., having no two-sided ideals except for 0 and A. The
Lie algebra of A is given by [x, y] = y.

Let D be a derivation of A. Write D(x) = α1x+ α2y and D(y) = α3x+ α4y. Then D(x · x) =
D(x) · x+ x ·D(x) is equivalent to 2α1x− α2y = 0, so α1 = α2 = 0 and D(x) = 0. In the same
way we have

D(y · y)−D(y) · y − y ·D(y) = D(x)− (α3x+ α4y) · y − y · (α3x+ α4y)

= −2α4x− α3y

= 0.

This gives D(y) = 0 and D is the zero map.

Let us denote the Lie algebra of End(A) with commutator as Lie bracket, by gl(A). Consider
A = kn as vector space. Then we identify gl(A) with gln(k). The subspace Der(A) becomes a
Lie algebra with commutator as Lie bracket, too.

Lemma 1.2.4. Let A be a k-algebra. Then Der(A) is a Lie subalgebra of gl(A).

Proof. For given D1, D2 ∈ Der(A) we need to show that [D1, D2] ∈ Der(A). For x, y ∈ A
we have

[D1, D2](x · y) = (D1D2)(x · y)− (D2D1)(x · y)

= D1(D2(x) · y + x ·D2(y))−D2(D1(x) · y + x ·D1(y))

= (D1D2(x)) · y + x · (D1D2(y))) +D2(x) ·D1(y) +D1(x) ·D2(y)

− (D2D1(x)) · y − x · (D2D1(y))−D1(x) ·D2(y)−D2(x) ·D1(y)

= [D1, D2](x) · y + x · [D1, D2](y).

In the penultimate line we have added and subtracted the terms D1(x) · D2(y) and D2(x) ·
D1(y). �

Now we can chose A to be a Lie algebra g. This yields the derivation Lie algebra Der(g).

Example 1.2.5. Let r2(k) = kx ⊕ ky be the 2-dimensional Lie algebra given by the Lie
bracket [x, y] = y, see Example 1.2.3. Then we have

Der(r2(k)) =
{(

0 0
α β

)
| α, β ∈ k

}
.

To see this, we only need to check one non-trivial condition, namely for the basis elements
x, y,

D([x, y]) = [D(x), y] + [x,D(y)].

This yields the claim. The Lie algebra Der(r2(k)) is also 2-dimensional with basis D1, D2

corresponding to the choices (α, β) = (0, 1) and (α, β) = (1, 0)), and [D1, D2] = D2. So the Lie
algebras Der(r2(k)) and r2(k) are isomorphic (can be rewritten).
There are several generalizations of derivations. For a particular one see [4]:
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Definition 1.2.6. A k-linear map P : g→ g is called a prederivation of g if

P ([x, [y, z]]) = [P (x), [y, z]] + [x, [P (y), z]] + [x, [y, P (z)]]

for all x, y, z ∈ g.

the space of prederivations of g forms a Lie subalgebra Pder(g) of gl(g) containing the Lie
algebra Der(g).

Lemma 1.2.7. Let g be a Lie algebra. Then Der(g) ⊆ Pder(g).

Proof. Let D ∈ Der(g). Then we have

D([x, [y, z]]) = [x,D([y, z])] + [D(x), [y, z]]

Substituting D([y, z]) = [D(y), z] + [y,D(z)] we obtain

D([x, [y, z]]) = [x, [D(y), z]] + [x, [y,D(z)]] + [D(x), [y, z]].

�

Example 1.2.8. We have Pder(r2(k)) = Der(r2(k)), but

Der(n3(k)) =


α δ 0
β ε 0
γ ζ α + ε

 | α, β, γ, δ, ε, ζ ∈ k
 .

which is different from Pder(n3(k)) = gl3(k).

Recall that the Lie bracket of n3(k) is given by [x, y] = z, so that we have [[u, v], w] = 0
for all u, v, w ∈ n3(k). Hence every term in the prederivation identity 1.2.6 is equal to zero.
Hence every P ∈ gl(k3) is a prederivation. On the other hand, Der(n3(k)) consists of the linear
maps D = (aij)1≤i,j≤3 with a13 = a23 = 0 and a33 = a11 + a22. We have D(Z) ⊆ Z, where
Z = 〈z〉 is the center. Note that n3(k) has nonsingular derivations. In this respect, there are Lie
algebras having only nilpotent derivations. They are called characteristically nilpotent. Here is
an example. Consider a 7-dimensional Lie algebra g with basis (e1, . . . , e7) and Lie brackets

[e1, ei] = ei+1, 2 ≤ i ≤ 6,

[e2, e3] = e6 + e7

[e2, e4] = e7.

Then all derivations in Der(g) are nilpotent. However, there are even invertible prederivations,
such as P = diag(1, 3, 3, 5, 5, 7, 7). Note that dim(Der(g)) = 11 and dim(Pder(g)) = 16.

Remark 1.2.9. Every prederivation of a finite-dimensional semisimple Lie algebra g over
a field k of characteristic zero is a derivation, and hence an inner derivation, i.e., Pder(g) =
Der(g) = ad(g).

Let us now come to Lie algebra representations.

Definition 1.2.10. A Lie algebra homomorphism ϕ : g → h is a linear map satisfying
ϕ([x, y]g) = [ϕ(x), ϕ(y)]h for all x, y ∈ g. It is called a Lie algebra isomorphism if ϕ is bijective.

Definition 1.2.11. A representation of a Lie algebra g over k is a pair (V, ρ) consisting of
a k-vector space V and a homomorphism of Lie algebras ρ : g → gl(V ). If ρ is injective, the
representation is called faithful.
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Remark 1.2.12. The term representation means that an abstract Lie algebra g is expressed
in terms of explicit matrices. If it is faithful, we realize g this way as a Lie subalgebra of gln(k).
The famous Theorem of Ado and Iwasawa says that every finite-dimensional Lie algebra over
a field k has a finite-dimensional faithful representation.

Example 1.2.13. The linear map ad(x) : g → g given by ad(x)(y) = [x, y] defines a Lie
algebra representation

ad: g→ gl(g), x 7→ ad(x).

Indeed, we have

[ad(x), ad(y)](z)− ad([x, y])(z) = [x, [y, z]]− [y, [x, z]]− [[x, y], z]

= [x, [y, z]] + [y, [z, x]] + [z, [x, y]]

= 0.

The representation ad: g → gl(g) is called the adjoint representation of g. It also is a repre-
sentation of g into the subalgebra Der(g) ⊆ gl(g).

Proposition 1.2.14. The endomorphisms ad(x) are derivations of g. For D ∈ Der(g) and
x ∈ g we have [D, ad(x)] = ad(D(x)). Hence ad(g) is a Lie ideal in Der(g), called the ideal of
inner derivations.

Proof. For x, y, z ∈ g we have

ad(x)([y, z])− [ad(x)(y), z]− [y, ad(x)(z)] = [x, [y, z]]− [[x, y], z]− [y, [x, z]]

= [x, [y, z]] + [y, [z, x]] + [z, [x, y]]

= 0.

Furthermore

[D, ad(x)](y) = D([x, y])− [x,D(y)]

= [D(x), y]

= ad(D(x))(y).

�

The kernel of the homomorphism ad: g→ gl(g) is called the center of g,

Z(g) = {x ∈ g | [x, y] = 0 ∀ y ∈ g}.
It coincides with Zg(g) defined below.

Definition 1.2.15. Let A ⊆ g be a subset of a Lie algebra g. Then the centralizer of A in
g is defined by

Zg(A) = {x ∈ g | [x, y] = 0 ∀ y ∈ A},
and the normalizer of A in g is defined by

Ng(A) = {x ∈ g | [x, y] ∈ A ∀ y ∈ A}.

Both centralizer and normalizer are Lie subalgebras of g and Zg(g) = Z(g).

Let us define sl2(k) = kx⊕ ky⊕ kh abstractly (so not by explicit matrices) by the Lie brackets
[x, y] = h, [x, h] = −2x and [y, h] = 2y.
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Example 1.2.16. The map

x 7→
(

0 1
0 0

)
, y 7→

(
0 0
1 0

)
, h 7→

(
1 0
0 −1

)
.

defines a 2-dimensional representation of sl2(k).

Indeed, let ϕ : sl2(k)→ gl(k2) be the linear map, defined on a basis as above. Then we have

ϕ([x, y]) = ϕ(h) =

(
1 0
0 −1

)
=
[(

0 1
0 0

)
,

(
0 0
1 0

)]
= [ϕ(x), ϕ(y)].

Similarly we see that ϕ([x, h]) = [ϕ(x), ϕ(h)] and ϕ([y, h]) = [ϕ(y), ϕ(h)].

Example 1.2.17. The adjoint representation of sl2(k) is the 3-dimensional representation
given by

ad(x) =

0 0 −2
0 0 0
0 1 0

 , ad(y) =

 0 0 0
0 0 2
−1 0 0

 , ad(h) =

2 0 0
0 −2 0
0 0 0

 .

The identity map defines an n-dimensional representation of the Lie algebra gln(k):

id : gln(k)→ gl(kn).

It is called the natural representation. This term is also applied to any subalgebra of g ⊂ gln(k)
see Example 1.2.16.

If (ρ, V ) a representation of a Lie algebra g, then we obtain by x.v = ρ(x)(v) a k-bilinear
operation g× V → V , (x, v) 7→ x.v such that for all x, y ∈ g and all v ∈ V ,

[x, y].v = x.(y.v)− y.(x.v).(1.2)

Then V together with this map is called a g-module M . We often identify the terms g-module
M and representation ρ of g.

Example 1.2.18. The trivial action x.v = 0 for all x ∈ g and v ∈ V equips every k-vector
space V with a g-module structure.

The field k equipped with the trivial action is called the trivial representation. The zero
space equipped with the trivial action is called the zero representation on g.

Definition 1.2.19. A linear map ϕ : V → W between two representations, i.e., g-modules
V and W of a Lie algebra g is called a homomorphism of representations or g-module homo-
morphism if

ϕ(x.v) = x.ϕ(v) ∀ v ∈ V, x ∈ g.

Two representations are called isomorphic, if there is a homomorphism between them, which
is an isomorphism of the underlying vector spaces. A subspace U of a representation V of g is
called a subrepresentation if x.u ∈ U for all x ∈ g, u ∈ U .

Example 1.2.20. For a linear form λ ∈ g∗ on g the map ρλ : g→ gl(k) with x 7→ λ(x) is a
representation if and only if λ vanishes on [g, g].

The linear forms of g vanishing on [g, g] are called characters of g. The 1-dimensional
representation then is denoted by kλ. The map λ → kλ induces a bijection of (g/[g, g])∗ and
the isomorphism classes of all 1-dimensional representations of g.
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Definition 1.2.21. A representation V of a Lie algebra g is called simple, or irreducible, if
it is nonzero and its only proper subrepresentation is the zero representation.

Lemma 1.2.22. If ϕ : V → W is a homomorphism of representations of a Lie algebra g,
then ker(ϕ) is a subrepresentation of V and im(ϕ) is a subrepresentation of W .

If U ⊂ V is a subrepresentation of V , then there is exactly one representation of g on the
quotient space V/U such that π : V → V/U , v 7→ v+U is a homomorphism of representations.
We call V/U the quotient representation.

Remark 1.2.23. The ideals of a Lie algebra g are exactly the subrepresentations of the
adjoint representation of g.

If U is a subrepresentation of V , then a subrepresentation W ⊂ V is called a complement
of U in V , if V is the direct vector space sum of U and W , i.e., if V ∼= U ⊕W . The map
U ⊕W → V , (u,w) 7→ u+ w then is an isomorphism of representations.

Definition 1.2.24. A representation V of g is called semisimple, if each subrepresentation
has a complement.

A simple representation only has 0 and V as subrepresentations and hence is semisimple.

Lemma 1.2.25. Subrepresentations and quotient representations of semisimple representa-
tions are semisimple.

Proof. Let V be a semisimple representation and W ⊂ V be a subrepresentation. Let us
show first that W is semisimple. So let U ⊂ W be a subrepresentation. We have to find a
complement of U in W . Since V is semisimple there is a complement U ′ of U in V , so that
V = U ⊕ U ′. But then U ′ ∩W is a complement of U in W , because

U ∩ (U ′ ∩W ) ⊂ U ∩ U ′ = {0},
and because of W ⊂ U + U ′ and U ⊂ W we also have W ⊂ U + (U ′ ∩W ). Hence we have
(U ′ ∩W )⊕ U = W .
Secondly, we show that V/W is semisimple. Let π : V → V/W be the canonical projection and
W ′ be a complement of W in V . Then π |W ′ : W ′ → V/W is an isomorphism of representations.
Since W ′ is semisimple by the first part, this is also true for V/W . �

We can now state the following important result for semisimple representations (we always
assume that the representations are finite-dimensional).

Proposition 1.2.26. For a representation V of a Lie algebra g the following assertions are
equivalent:

(1) V is semisimple.
(2) V is the sum of simple representations.
(3) V is the direct sum of simple representations.

Remark 1.2.27. The result enables us to reduce the classification of semisimple represen-
tations of a Lie algebra g to the case of simple representations.

Example 1.2.28. Let g = C be the 1-dimensional Lie algebra with trivial Lie bracket and
V = C2 be the representation of g defined by 1.v = ( 0 1

0 0 ) v. Then V is not semisimple.

Assume that V is semisimple. Then V is the direct sum of two 1-dimensional representations
since V itself is not simple. Then there exists a basis in which the matrix ( 0 1

0 0 ) has block form,
i.e., is of the form ( z 0

0 w ). This is impossible since the matrix is not diagonalizable.
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Definition 1.2.29. For representations V and W of a Lie algebra g denote by Homg(V,W )
the space of homomorphisms ϕ : V → W of representations. Define Endg(V ) = Homg(V, V ).

It is clear that Endg(V ) is an associative subalgebra of End(V ) ist. Denote by k an algebraic
closure of k.

Proposition 1.2.30 (Lemma of Schur). Let V and W be simple representations of g. Then
we have:

(1) Homg(V,W ) = 0, if V and W are not isomorphic.

(2) Endg(V ) is a division algebra, i.e., every nonzero element is invertible.

(3) If dimk V <∞ and k = k, then Endg(V ) = k · id.

Proof. For (1): Let ϕ : V → W be a homomorphism of g-representations. If ϕ 6= 0, then
ϕ(V ) ⊂ W is a subrepresentation, different from the zero representation. Since W is simple, we
obtain ϕ(V ) = W . Similarly we see that ker(ϕ) = 0. Hence ϕ is an isomorphism, i.e., V ∼= W .

For (2): It is clear that Endg(V ) is an algebra. Let ϕ ∈ Endg(V ) be different from zero. As in
(1) we see that ϕ is invertible.

For (3): Let ϕ ∈ Endg(V ). Since k is algebraically closed, the characteristic polynomial χϕ(t) =
det(ϕ− t id) has a root λ in k. Hence there is an eigenvector v 6= 0 to the eigenvalue λ. Since
the eigenspace V λ(ϕ) of ϕ corresponding to λ is a subrepresentation of V , it follows that
V λ(ϕ) = V , since V is simple. Hence ϕ = λ id and Endg(V ) = k · id. �

Corollary 1.2.31. Let ρ : g→ gl(V ) be a simple representation of a Lie algebra g over an
algebraically closed field k. Then the only endomorphisms of V commuting with all ρ(x), x ∈ g
are the scalars, i.e., the λ · id with λ ∈ k.

Proof. Let ϕ ∈ End(V ) and x.v = ρ(x)(v). Then ϕ ∈ Endg(V ) if ϕ(x.v) = x.ϕ(v), see
the definition of a g-module homomorphism. Using ρ this condition reads as (ϕ ◦ ρ(x))(v) =
(ρ(x) ◦ ϕ)(v). Hence ϕ commutes with all ρ(x). By Schur’s Lemma it follows that Endg(V ) =
k · idV . �

Remark 1.2.32. Schur’s Lemma need not be true if k is not algebraically closed. Indeed,
consider the simple representation of g = R over k = R in the real vector space V = C ∼= R2,
where λ ∈ g acts on V by multiplication with λi. Then Endg(V ) = C · id 6= R · id = k · id.
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1.3. Semidirect sums of Lie algebras

Suppose that gj, j ∈ J is a family of Lie algebras. Then we can form the direct sum of the
vector spaces gj,

g =
⊕
j∈J

gj.

The elements of g are denoted by (xj). Then [(xj), (yj)] = ([xj, yj]) defines a Lie bracket for g.
This Lie algebra is called the direct sum or direct product of the Lie algebras gj. Here the term
“product” refers to the underlying Cartesian product, which gives the name for the group case.

Definition 1.3.1. Let g be a Lie algebra, a be a subalgebra in g and b an ideal of g such
that we have g = a⊕b as vector spaces. Then g is called the inner semidirect sum (or product)
of a and b. We write g = an b.

Note that a semidirect sum g = an b is direct if and only if both summands are ideals in g.

Lemma 1.3.2. Let a and b be Lie algebras and ϕ : a → Der(b) be a Lie algebra homomor-
phism. Then we obtain a Lie bracket on g = a× b by

[(x, a), (y, b)] = ([x, y], [a, b] + ϕ(x)(b)− ϕ(y)(a)).(1.3)

This Lie algebra is denoted by g = anϕ b.

Proof. Clearly we have [(x, a), (x, a)] = (0, 0). Let

J(x, y, z) = [x, [y, z]] + [y, [z, x]] + [z, [x, y]]

for x, y, z ∈ a × b. Note that J(x, y, z) = J(y, z, x) = J(z, x, y). One may check that J is
trilinear, so we may restrict ourselves for verifying J ≡ 0 to the following four cases:

x, y, z ∈ b,

x, y ∈ b, z ∈ a,

x ∈ b, y, z ∈ a,

x, y, z ∈ a.

In the first and the last case we obtain J ≡ 0, because b respectively a is a Lie algebra. The
other two cases follow from the facts that the images of ϕ are derivations of b and that ϕ is a
Lie algebra homomorphism. �

Definition 1.3.3. The Lie algebra g = anϕ b is called the outer semidirect sum of a and
b.

Obviously a× 0 ∼= a is a subalgebra in g, and 0× b ∼= b is an ideal in g. Hence g is also an
inner direct sum of a and b. Conversely the following holds.

Proposition 1.3.4. Let g be an inner semidirect sum of a and b, and ϕ as above. Then
anϕ b→ g, (x, a)→ x+ a is an isomorphism of Lie algebras.

Remark 1.3.5. A semidirect sum g = an b corresponds to a split short exact sequence of
Lie algebras,

0→ b→ g
β−→ a→ 0.

Here split means that there is a Lie algebra homomorphism τ : a→ g such that β ◦ τ = id|a.

Let D : g→ gl(V ) be a representation of g, where we consider V as an abelian Lie algebra.
Then we have Der(V ) = gl(V ). Hence (1.3) shows the following.



14 1. BASIC NOTIONS OF LIE ALGEBRA THEORY

Example 1.3.6. The semidirect product g n V with abelian Lie algebra V becomes a Lie
algebra by

[(x, v), (y, w)] = ([x, y], D(x)(w)−D(y)(v)),

for x, y ∈ g and v, w ∈ V .

For g = gl(V ) and D = id we obtain the Lie algebra

aff(V ) := gl(V ) n V

with Lie bracket [(A, v), (B,w)] = ([A,B], Aw − Bv). Identifying V with kn, we obtain that
aff(V ) is isomorphic to the following subalgebra of gln+1(k):

aff(V ) ∼=
{(

A v
0 0

)
| A ∈Mn(k), v ∈ kn

}
.

The Lie bracket here is given by the commutator of matrices,[(
A v
0 0

)
,

(
B w
0 0

)]
=

(
[A,B] Aw −Bv

0 0

)
The algebra aff(V ) is the Lie algebra of the group Aff(V ) of affine transformations LA,v : V →
V, x 7→ Ax+ v.
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1.4. Simple, semisimple and reductive Lie algebras

Definition 1.4.1. A Lie algebra g is called simple, if its adjoint representation is simple.
It is called reductive, if its adjoint representation is semisimple.

Because of remark 1.2.23 we see that g is simple if and only if g has only the two ideals 0
and g, and the commutator [g, g] is nonzero, so that [g, g] = g. As in group theory, Lie algebras
coinciding with their commutator ideal are called perfect.

By definition g is reductive if and only if for every ideal a in g there is a complementary
ideal b in g such that

g = a⊕ b.

Note that a reductive Lie algebra need not be semisimple.

Remark 1.4.2. A Lie algebra g is simple if and only if it is nonabelian and every nonzero
homomorphism of Lie algebras ϕ : g→ h is injective.

In the theory of k-algebras, semisimple is equivalent to being a sum of simple algebras. We
take this as a definition here.

Definition 1.4.3. A Lie algebra g is called semisimple, if it is a direct sum of simple Lie
algebras.

Obviously every simple Lie algebra is semisimple. The converse is not true. Furthermore
every semisimple Lie algebra is reductive.

Lemma 1.4.4. Let g be a semisimple Lie algebra. Then g is perfect, reductive and has a
trivial center.

Proof. Let g be semisimple. Then there exist simple Lie algebras gj with g =
⊕

j∈J gj.
Since all gj are perfect we obtain

[g, g] =
⊕
j∈J

[gj, gj] =
⊕
j∈J

gj = g.

Now every gj is a simple ideal in g, and therefore a simple subrepresentation of the adjoint
representation of g. Thus the adjoint representation of g is semisimple by Proposition 1.2.26,
and hence g is reductive.

Since Z(gj) is an ideal in gj, it is zero or gj. The latter is impossible since gj is nonabelian by
assumption. Hence we have Z(gj) = 0 and

Z(g) =
⊕
j∈J

Z(gj) = 0.

�

We can say more on the structure of reductive Lie algebras.

Proposition 1.4.5. Let g be a reductive Lie algebra. Then the following holds.

(1) For any ideal a in g, both a and g/a are reductive.
(2) We have g = [g, g]⊕ Z(g), where [g, g] is semisimple.
(3) g is semisimple if and only if Z(g) = 0.
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Proof. For (1): by assumption there is an ideal b in g with g = a ⊕ b. In particular we
have [a, b] = 0, so that every ideal of a is an ideal of g. The ideals of a are hence just the
subrepresentations of the adjoint representation of a, which is semisimple by Lemma 1.2.25.
Hence there exists to every ideal in a a complementary ideal in a, so that a is reductive. Because
of g/a ∼= b we see that g/a is reductive by the above argument applied to the ideal b.

For (2): Since the adjoint representation of g is semisimple, the subrepresentation [g, g] has a
complement W and we have g = [g, g]⊕W . Since [g,W ] ⊂ [g, g] ∩W = 0 we have W ⊂ Z(g),
so [g, g] + Z(g) = g. The sum is in fact direct: the subrepresentation [g, g] is semisimple, so
that there exists a complement U of [g, g] ∩ Z(g). So we have U ⊕ ([g, g] ∩ Z(g)) = [g, g]. On
the other hand we have

[g, g] = [g, [g, g] + Z(g)] = [g, [g, g]] = [g, U ] ⊂ U,

hence [g, g] ∩ Z(g) = 0. Finally, we need to show that the Lie algebra [g, g] is semisimple. The
subrepresentation [g, g] of the adjoint representation of g is semisimple, hence it is a direct sum
of simple representations gj, j ∈ J , which are also ideals in g. We have [gi, gj] = 0 for i, j ∈ J .
So we see that the ideals gj are simple. Hence their direct sum is semisimple.

For (3): Assume that Z(g) = 0. Then g = [g, g] is semisimple by (2). Conversely assume that
g is semisimple. Then Z(g) = 0 by Lemma 1.4.4. �

We want to show that the Lie algebra sl2(k) is simple, except for characteristic 2, where it
is the Heisenberg Lie algebra, without using any structure theory.

Proposition 1.4.6. Let k be a field of characteristic different from two. Then the Lie
algebra sl2(k) is simple.

Proof. Let a be a nonzero ideal in sl2(k) and w ∈ a with w 6= 0. We can write w =
αx + βy + γh in the basis (x, y, h) of sl2(k) with [x, y] = h, [x, h] = −2x and [y, h] = 2y. We
need to show that a = sl2(k). We have

[x, [x,w]] = [x, βh− 2γx] = −2βx ∈ a,

[y, [y, w]] = −2αy ∈ a.

For α nonzero we have y ∈ a, and then h = [x, y] ∈ a, αx = w− βy− γh ∈ a, hence a = sl2(k).
For β nonzero we obtain a = sl2(k) the same way. For α = β = 0 we have w = γh ∈ a
with γ 6= 0, hence h ∈ a. Then we have 2x = [h, x] ∈ a and 2y = [y, h] ∈ a, so that again
a = sl2(k). �

What about the Lie algebra gl2(k), in characteristic zero? We have gl2(k) = sl2(k)⊕ k, so
that it is reductive. These result do not only hold for n = 2, but in general. Let us state the
following result here without proof.

Proposition 1.4.7. Let k be a field of characteristic zero. Then the Lie algebra gln(k) is
reductive and its commutator subalgebra sln(k) is simple.

For a proof see [10] and Corollary 2.2.15.

1.5. Classification of simple representations of sl2(C)

We already know simple representations of sl2(C) in low dimensions, namely the trivial
representation in dimension 1, the natural representation in dimension 2 and the adjoint repre-
sentation in dimension 3. We will prove now that there is up to isomorphism a unique simple
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representation in any dimension n ≥ 1. Let k[X] = k[x1, . . . , xn] be the polynomial ring in n
variables and let ∂i be the partial derivative with respect to the variable xi.

Lemma 1.5.1. The linear map

ρ : gln(k)→ gl(k[X]),

Eij 7→ xi∂j

is a representation of gln(k) on the polynomial ring k[X].

Proof. For all polynomials p ∈ k[X] we have the formula

xi∂jxk∂`(p) = δjkxi∂`(p) + xixk∂j∂`(p).

This yields

[ρ(Eij), ρ(Ek`)] = [xi∂j, xk∂`]

= δjkxi∂` − δ`ixk∂j
= ρ(δjkEi` − δ`iEkj)
= ρ([Eij, Ek`]).

�

Theorem 1.5.2. In every dimension n ≥ 1 there is up to isomorphism exactly one simple
representation of sl2(C).

Proof. First we construct for every dimension n a simple representation of sl2(C). Then we
show that every two simple representations of dimension n are isomorphic. Let (x, y, h) be the
standard basis of sl2(C). By Lemma 1.5.1 we obtain a representation ρ : sl2(k) → gl(k[X, Y ])
by

ρ(x) = X∂Y ,

ρ(y) = Y ∂X ,

ρ(h) = X∂X − Y ∂Y .

However, this representation is neither finite-dimensional nor simple. But we can consider the
subrepresentation V (m) formed by the polynomials of fixed total degree m, given by

V (m) = k[X, Y ]m ⊂ k[X, Y ]

This representation has dimension m + 1 with basis vi = Y iXm−i for i = 0, 1, . . .m. With
respect to this basis the action of sl2(k) on V (m) is given as follows:

x.vi = ivi−1,

y.vi = (m− i)vi+1,

h.vi = (m− 2i)vi.

Here we set v−1 = vm+1 = 0. The representing matrices are given by
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ρ(x) =


0 1 0 · · · 0

0 0 2
. . .

...
...

. . . . . . . . . 0
...

. . . . . . . . . m− 1
0 0 · · · 0 0

 , ρ(y) =


0 0 · · · 0 0

m 0
. . . 0 0

0
. . . . . . . . .

...
...

. . . 2 0 0
0 · · · 0 1 0


and

ρ(h) =


m 0 · · · 0 0
0 m− 2 · · · 0 0
...

. . . . . . . . .
...

0 0
. . . 2−m 0

0 0 · · · 0 −m


These representations are simple. Indeed, every nonzero subrepresentation U ⊂ V (m)

contains an eigenvector for h, hence one of the vi, since we have h.U ⊂ U by definition. The
formulas then immediately imply that U = V (m). First we have v0 ∈ U by repeated action of
x, then v1, v2, . . . vm by action of y. So we have found a simple representation in each dimension
m ≥ 1.

Now we have to show that any two simple representations of dimension m are isomorphic. Let
ρ : sl2(C)→ gl(V ) be an arbitrary representation of dimension m and

Vµ = ker(ρ(h)− µ id)

be the eigenspace of ρ(h) corresponding to the eigenvalue µ ∈ C. We have

h.(x.v)− x.(h.v) = [h, x].v = 2xv,

h.(x.v) = x.(h+ 2).v,

and hence x.Vµ ⊂ Vµ+2. In the same way we see that y.Vµ ⊂ Vµ−2 because of h.(y.v) =
y.(h− 2).v.
Since V is finite-dimensional and nonzero there is a λ ∈ C with Vλ 6= 0, but Vλ+2 = 0. For
v ∈ Vλ we obtain x.v = 0 and h.v = λv. By induction we verify the following identities, with
y.(y.v) = y2.v and so on for all n ≥ 1:

h.(yn.v) = (λ− 2n)yn.v,

x.(yn.v) = n(λ− n+ 1)yn−1.v.

Thus the subspace generated by all yn.v with n ≥ 0 is a subrepresentation. Assuming now
that V is simple and v 6= 0, we see that the yn.v span all of V . If yn.v 6= 0 then all elements
v, y.v, . . . , yn.v are eigenvectors of h to pairwise distinct eigenvalues, and hence linearly inde-
pendent. Because of dimV < ∞ there exists a d ≥ 1 such that yd.v = 0. Choosing this d
minimal, the set of vectors (v, y.v, . . . , yd−1.v) is a basis of V and we have dimV = d. Now
yd.v = 0 implies that

0 = x.(yd.v) = d(λ− d+ 1)yd−1.v,

and therefore λ = d − 1, since we had assumed that d 6= 0 and yd−1.v 6= 0. For every simple
representation ρ of sl2(C) the matrices for ρ(x), ρ(y) and ρ(h) in the basis (v, y.v, . . . , yd−1.v)
only depend on d. Hence any two of them in the same dimension are isomorphic. �



1.6. ABELIAN, NILPOTENT AND SOLVABLE LIE ALGEBRAS 19

Every simple representation V (m) of dimension m + 1 of sl2(C) decomposes under h in
1-dimensional eigenspaces to the eigenvalues m,m− 2, . . . , 2−m,−m. We write

V = Vm ⊕ Vm−2 ⊕ · · · ⊕ V2−m ⊕ V−m.

Remark 1.5.3. The Lie algebra sl2(C) is isomorphic to the complexified Lie algebra of the
rotation group SO3(R) and its universal cover, the spin group S3, i.e.,

sl2(C) ∼= C⊗R Lie(SO3(R)) ∼= C⊗R Lie(S3).

It follows from Theorem 1.5.2 that the dimension induces a bijection between the simple finite-
dimensional continuous complex representations of S3 up to isomorphism, and the set of positive
integers. In fact, the integers corresponding to SO3(R) are {1, 3, 5, 7, . . .}.

1.6. Abelian, nilpotent and solvable Lie algebras

Let g be a nonzero Lie algebra if not said otherwise.

Definition 1.6.1. A Lie algebra g over k is called abelian, if [g, g] = 0.

An abelian Lie algebras has a trivial Lie bracket. So it is just a k-vector space like kn. Note
that an abelian Lie algebra g 6= 0 is not semisimple by definition, but only reductive. Let us
inductively define two sequences of ideals of g:

• The descending central series g0 = g, g1 = [g, g], . . . , gi+1 = [g, gi];

• The derived series g(0) = g, g(1) = [g, g], . . . , g(i+1) = [g(i), g(i)].

We have gi ⊂ gi−1 and g(i) ⊂ g(i−1). The next lemma shows that indeed all subspaces gi and
g(i) are Lie ideals in g.

Lemma 1.6.2. Let a and b be ideals in g. Then also a + b, a ∩ b and [a, b] are ideals in g.

Proof. The first two claims are obvious, and the third one is implied by the Jacobi identity,
which we have already shown earlier in the special case of g = a = b for the commutator ideal.
So we have

[g, [a, b]] ⊂ [[g, a], b] + [a, [g, b]]

⊂ [a, b] + [a, b]

⊂ [a, b].

Here we used that [g, a] ⊂ a and [g, b] ⊂ b. �

Definition 1.6.3. A Lie algebra g 6= 0 is called k-step nilpotent, if gk = 0 and gk−1 6= 0. It
is called k-step solvable if g(k) = 0 and g(k−1) 6= 0.

We may consider the zero Lie algebra as being nilpotent and solvable, too. Abelian Lie
algebras are solvable and nilpotent of step or class 1. Because of g(i) ⊂ gi every nilpotent Lie
algebra is solvable. If g is solvable of class k, then we obtain an identity of iterated Lie brackets
with 2k elements. For, say, k = 3 the condition g(3) = 0 reads as

[[[x1, x2], [x3, x4]], [[x5, x6], [x7, x8]]] = 0

for all xi ∈ g.

Example 1.6.4. The Heisenberg Lie algebra n3(k) is 2-step nilpotent.
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Note that the center of n3(k) is 1-dimensional and hence abelian. So n3(k) is 2-step solvable
and 2-step nilpotent. This explains again, why sl2(k) = n3(k) is nilpotent in characteristic two.

Example 1.6.5. The Lie algebra tn(k) of upper-triangular matrices is solvable and its com-
mutator algebra nn(k) is nilpotent.

Lemma 1.6.6. For r, s ∈ N we have [gr, gs] ⊂ gr+s+1.

Proof. We show this by induction on r ≥ 0. For r = 0 the claim is true by definition.
The step r 7→ r + 1 goes as follows:

[gr+1, gs] = [[g, gr], gs]

⊂ [[g, gs], gr] + [g, [gs, gr]]

⊂ [gr, gs+1] + [g, gr+s+1]

⊂ gr+s+2 + gr+s+2

⊂ gr+s+2.

�

Remark 1.6.7. A Lie algebra g is called residually nilpotent, if⋂
n∈N

gn = 0.

If g is finite-dimensional, then this is equivalent to being nilpotent. In general however, a
residually nilpotent Lie algebra need not be nilpotent.

Proposition 1.6.8. Let g be a nilpotent Lie algebra. Then we have the following statements:

(1) For any ideal a 6= 0 in g we have a ∩ Z(g) 6= 0. In particular we have Z(g) 6= 0.
(2) Every subalgebra and every homomorphic image of g is nilpotent.
(3) Given a short exact sequence of Lie algebras

0→ a→ h→ g→ 0

where both a and g ∼= h/a are nilpotent, and with a ⊂ Z(h), then it follows that also h
is nilpotent.

Proof. For (1): Since a is an ideal in g we have that g acts on a by the adjoint represen-
tation. By Lemma 1.6.13 there is a v 6= 0 in a such that 0 = g.v = [g, v], so with v ∈ a ∩ Z(g).
This shows the claim. On the other hand, there is also a direct proof. If g is nilpotent of class
k then gk−1 6= 0 and gk = [g, gk−1] = 0, hence gk−1 ⊂ Z(g).

For (2): If a is a subalgebra of g then we have an ⊂ gn for all n ≥ 0. Hence also a is nilpotent. If
ϕ : g→ h is a surjective Lie algebra Homomorphism then ϕ(gn) = hn. Hence also h is nilpotent.

For (3): Let π : h→ h/a be the quotient map. Since h/a is nilpotent, there exists a n ≥ 1 with
(h/a)n = 0. Because of (2) we then have π(hn) = (h/a)n = 0. Hence hn ⊂ a ⊂ Z(h), and thus
hn+1 ⊂ [h, Z(h)] = 0. �

There is an important remark for (3). If a and h/a are nilpotent then h need not be nilpotent
in general. So we cannot abandon the condition that a ⊂ Z(h). Nilpotency is not an extension
property in general. We demonstrate this with an example.
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Example 1.6.9. Let h = r2(k) with [x, y] = y, and a = ky be an ideal in h. Then a and
h/a are nilpotent, but h is not nilpotent.

Indeed, a and h/a are 1-dimensional and hence abelian and nilpotent. On the other hand
we have hn = ky for all n ≥ 1. So h is not nilpotent.

Lemma 1.6.10. Let a and b be nilpotent ideals in g. Then the ideal a + b is nilpotent.

Proof. We show that
(a + b)2m ⊂ am + bm

for all m ≥ 0. Then the claim follows by choosing m so big that am = bm = 0. The case m = 0
is clear. Let

y := [x1, [x2, [x3, . . . , [x2m, x2m+1] · · · ]]] ∈ (a + b)2m,

where we may assume that xj ∈ a ∪ b. If at least m+ 1 of the xj are in a, we have y ∈ am. If
this is not the case then there are at at least m+ 1 of the xj in b, and hence y ∈ bm. Since we
can write every element of (a + b)2m as a sum of elements of the form of y , we are done. �

The lemma shows that there exists a maximal nilpotent ideal in a finite-dimensional Lie
algebra. Indeed, if n is a nilpotent ideal of maximal dimension in g and a an arbitrary nilpotent
ideal in g, then a + n is again a nilpotent ideal. Then n = n + a by dimension reasons. Hence
a ⊂ n, so that n contains every nilpotent ideal. So it is maximal. Also, it is uniquely determined.
So the following definition makes sense.

Definition 1.6.11. Let g be a finite-dimensional Lie algebra. Then the maximal nilpotent
ideal in g is called the nilradical of g, and is denoted by nil(g).

Now we want to come to Engel’s Theorem. We’ll need the following lemma.

Lemma 1.6.12. Let V be a g-module and a be an ideal in g. Then

V a = {v ∈ V | a.v = 0}
is a submodule of V .

Proof. Let w ∈ V a, x ∈ g and y ∈ a. Then [y, x] ∈ a and

y.(x.w) = [y, x].w + x.(y.w) = 0.

Hence we have x.w ∈ V a. �

Lemma 1.6.13. Let V be a nonzero vector space over a field k and g ≤ gl(V ) be a finite-
dimensional subalgebra such that every element in g is a nilpotent endomorphism of V . Then
there is a v ∈ V , v 6= 0, with g.v = 0.

Proof. Let x ∈ gl(V ) be a nilpotent endomorphismus. Then also ad(x) ∈ End(gl(V )) is
nilpotent. Indeed, ad(x)n(y) is, for all y ∈ gl(V ), a linear combination of terms of the form
xiyxn−i. Hence xn = 0 implies that ad(x)2n = 0. More generally we have, for x, y in an
associative algebra,

(ad(x))n(y) =
n∑
i=0

(
n

i

)
(−1)n−ixiyxn−i.

We show the lemma by induction on dim g. The case dim g = 0 is clear. We may assume that
the claim is true for all Lie algebras h with dim h < dim g.

Claim 1: For every proper subalgebra h of g the normalizer Ng(h) is strictly larger than h. To
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see this, consider the canonical homomorphism ρ : h → gl(g/h) with ρ(x)(y + h) = [x, y] + h.
This turns the quotient space g/h into an h-module. Since x ∈ h is nilpotent, so is ad(x). Hence
for every x ∈ h there exists a n ≥ 1 such that ad(x)n = 0, hence also with ρ(x)n = 0. Because
of dim h < dim g we can apply the induction hypothesis to the Lie subalgebra ρ(h) of gl(g/h).
So it exists a v ∈ g/h, v 6= 0 with (g/h).v = 0. Hence there is a v ∈ g \ h with ρ(h)(v + h) = 0,
and hence with [v, h] ⊂ h. This yields v ∈ Ng(h) \ h.

Claim 2: g contains an ideal a of codimension one. To see this, let a be a proper subalgebra
in g of maximal dimension. Then Ng(a) is strictly larger than a by Claim 1. So Ng(a) = g and
a is an ideal in g. For x ∈ g \ a we also have that a+ kx is a subalgebra of g, hence g = a+ kx.
In particular, a has codimension one.

Now we can finish the induction by applying the hypothesis on a ⊂ gl(V ). We obtain

V a = {v ∈ V | a.v = 0} 6= 0.

By Lemma 1.6.12 this is a g-submodule of V . For x ∈ g \ a the restriction of x to V a is a
nilpotent endomorphism of V a. Hence by assumption there exists a w ∈ V a \ 0 with x.w = 0.
Since we have g = a + kx, this gives then g.w = 0 and we are done. �

Under the assumptions of Lemma 1.6.13 we note the following corollary.

Corollary 1.6.14. In V there exists a chain of subspaces

0 = V0 ⊂ V1 ⊂ . . . ⊂ Vn = V

with dimVi = i and g.Vi ⊆ Vi−1 for i = 1, . . . , n.

Hence there is a basis of V such that the matrices of elements in g are all strictly upper
triangular matrices. If g is not yet a linear Lie algebra, we can consider a representation ρ of
g, for example the adjoint representation. Then the image ρ(g) is a linear Lie algebra.

Definition 1.6.15. A representation ρ : g → gl(V ) is called nilpotent, if there is an n ≥ 1
such that ρ(x1) · · · ρ(xn) = 0 for all x1, . . . , xn ∈ g.

Then we write ρ(g)n = 0. We want to show that the adjoint representation of g is nilpotent
if and only if g is nilpotent. We note the following lemma.

Lemma 1.6.16. A representation ρ : g→ gl(V ) is nilpotent if and only if there is a basis of
V , such that the matrices of all ρ(x) are strictly upper-triangular.

Here now is Engel’s Theorem.

Theorem 1.6.17 (Engel). Let ρ : g → gl(V ) be a finite-dimensional representation, for
which all ρ(x) are nilpotent endomorphisms. Then ρ is a nilpotent representation.

Proof. We’ll show the result by induction on dimV . The case dimV = 1 is clear, because
every nilpotent linear map of a 1-dimensional vector space is zero. The induction step goes as
follows. By Lemma 1.6.13 we know that V g 6= 0 and hence that V g is a nontrivial submodule
of V with quotient module V/V g. Let ρ : g → gl(V/V g) the induced representation of g on
V/V g. Then also the endomorphisms ρ(x) are nilpotent and we may apply the induction
hypothesis on V/V g. So the representation ρ is nilpotent, i.e., ρ(g)n.(V/V g) = 0. But this
implies ρ(g)n.V ⊂ V g and hence ρ(g)n+1.V = 0. �

For the adjoint representation ρ = ad we obtain the following corollary.



1.6. ABELIAN, NILPOTENT AND SOLVABLE LIE ALGEBRAS 23

Corollary 1.6.18 (Engel). A finite-dimensional Lie algebra g over an arbitrary field k is
nilpotent if and only if every endomorphism ad(x) for x ∈ g is nilpotent.

Now we want to generalize this to solvable Lie algebras. The analogue to Proposition 1.6.8
is the following result.

Proposition 1.6.19. Let g be a Lie algebra. Then the following assertions hold.

(1) If g is solvable then all subalgebras and all homomorphic images of g are solvable.
(2) Given a short exact sequence of Lie algebras

0→ a→ h→ g→ 0

with both a and g ∼= h/a solvable, we have that h is solvable. Hence solvability is an
extension property.

(3) If a and b are solvable ideals in g, then also the ideal a + b is solvable.

Proof. For (1): If a is a subalgebra of g then a(m) ⊂ g(m). So g(m) = 0 implies that a(m) = 0.
If ϕ : g→ h is a surjective homomorphism, then we obtain inductively that ϕ(g(n)) = h(n), and
thus h(n) = 0 provided that g(n) = 0.

For (2): Let π : h → h/a be the quotient map. Then we have π(h(n)) = (h/a)(n) since π is
surjective. By assumption (h/a)(n) = 0, so that h(n) ⊂ a and hence h(n+m) ⊂ a(m) = 0 for a
m ≥ 0, since a is solvable. Consequently h is solvable, too.

For (3): By assumption and by (1), b/(a ∩ b) ∼= (a + b)/a is solvable. By (2), also a + b is
solvable. �

Contrary to nilpotent Lie algebras a solvable Lie algebra may have trivial center, for example
Z(r2(k)) = 0.

By (3), every finite-dimensional Lie algebra g has a largest solvable ideal.

Definition 1.6.20. Let g be a finite-dimensional Lie algebra. The largest solvable ideal in
in g is called the solvable radical of g, and we denote it by rad(g).

Lemma 1.6.21. Let g be a finite-dimensional Lie algebra. Then we have

rad(g/ rad(g)) = 0.

Proof. Let π : g→ g/ rad(g) be the quotient map and let a be a solvable ideal in g/ rad(g).
Then rad(g) ⊂ π−1(a) is a solvable ideal with a solvable quotient

π−1(a)/ rad(g) = π(π−1(a)) = a.

Hence π−1(a) itself is a solvable ideal of g, hence π−1(a) ⊂ rad(g). It follows that a =
π(π−1(a)) = 0 in g/ rad(g). �

Lemma 1.6.22. Let g be a semisimple Lie algebra. Then rad(g) = 0.

Proof. Since ideals of semisimple Lie algebras are semisimple, rad(g) is semisimple and
hence perfect. So we have [rad(g), rad(g)] = rad(g). On the other hand, rad(g) is solvable by
definition. Hence there is a n ≥ 0 with 0 = rad(g)(n) = rad(g). �

Now we come to Lie’s Theorem, which is the analogues statement of Engel’s Theorem
for solvable Lie groups. For this, we need to generalize Lemma 1.6.12 as follows (for χ = 0 we
obtain it back).
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Lemma 1.6.23. Let V be a finite-dimensional g-module over a field k of characteristic zero,
a be an ideal in g and χ ∈ a∗ = Hom(a, k). Then

V χ = {v ∈ V | h.v = χ(h)v ∀h ∈ a}
is a g-submodule of V . For a given χ with V χ 6= 0 we have χ([a, g]) = 0.

Proof. Let x ∈ g, h ∈ a and 0 6= v ∈ V χ. Define spaces

Vm = span{v, x.v, . . . , xm−1.v}
for m ≥ 1 and V0 = 0. Then x.Vm ⊂ Vm+1. Since dim(V ) is finite, there is a minimal n with
Vn = Vn+1. Then x.Vn ⊂ Vn and hence Vm = Vn for m ≥ n. Then (v, x.v, . . . , xn−1.v) is a basis
of Vn. By induction over n we want to show that

h.(xj.v)− χ(h)xj.v ∈ Vj(1.4)

for all j ≥ 0. This implies then h.Vj+1 ⊂ Vj+1 for all j ≥ 0. The base case j = 0 goes as follows.
We have V1 = span{v} and (1.4) hold because of v ∈ V χ.
For j ≥ 1 we have h.(xj−1.v) = χ(h)xj−1.v + Vj−1 and a.Vj ⊂ Vj by induction hypothesis.
Moreover we have x.Vj−1 ⊂ Vj. Hence we have

h.(xj.v) = x.(h.(xj−1.v)) + [h, x].(xj−1.v)

∈ (χ(h)xj.v + x.Vj−1) + a.Vj

⊂ χ(h)xj.v + Vj.

This shows (1.4). It follows that h ∈ a acts by endomorphisms ρ(h) of Vn, which have upper-
triangular form with respect to the above basis, with diagonal entries equal to χ(h). Hence we
have tr(ρ(h)) = nχ(h). Thus we have, for elements of the form [x, h] ∈ a,

nχ([x, h]) = tr(ρ([x, h]))

= tr([ρ(x), ρ(h)])

= 0.

Now we need that k has characteristic zero (or at least that char(k) > dimV ) to conclude that
χ([h, x]) = 0. For w ∈ V χ we still need to show that x.w ∈ V χ. But this follows from

h.(x.w) = x.(h.w) + [h, x].w

= χ(h)x.w + χ([h, x]).w

= χ(h)x.w.

�

Lemma 1.6.24. Let k be an algebraically closed field of characteristic zero, V be a finite-
dimensional k-vector space and g be a solvable Lie subalgebra of gl(V ). If V 6= 0, then there
exists a v 6= 0 in V with g.v ⊂ kv.

Proof. We prove the result by induction over dim g. For g = 0 there is nothing to prove.
Let a ⊂ g be a subspace of codimension one containing g1. Such a subspace exists since g is
solvable so that g1 6= g. Every subspace containing g1 is an ideal. Indeed, then a/g1 is an ideal
in g/g1, since g/g1 is abelian. Hence a is an ideal in g. By induction hypothesis we find a v ∈ V ,
v 6= 0 with a.v ⊂ kv. Now let χ ∈ a∗ with h.v = χ(h).v for all h ∈ a. Then V χ is a g-submodule
by Lemma 1.6.23. Chose an arbitrary x ∈ g \ a. Then g = a + kx. There is an eigenvector w
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for x in V χ, since k is algebraically closed. Together we obtain g.w ⊂ a.w + kx.w ⊂ kw, since
V χ is a g-submodule. �

Proposition 1.6.25 (Lie’s Theorem). Let g be a solvable Lie algebra over an algebraically
closed field k of characteristic zero, and let ρ : g → gl(V ) be a representation of g. Then V
admits a basis such that all endomorphisms ρ(x) for x ∈ g are represented by upper-triangular
matrices.

Proof. We’ll again use induction over dimV to show that there is a g-invariant flag 0 =
V0 ⊂ V1 ⊂ · · · ⊂ Vn = V in V such that dimVj = j. Choosing the basis elements for V as
vi ∈ Vi, the claim follows because of ρ(x)(Vi) ⊂ Vi. For V = 0 there is nothing to show. So
let dimV ≥ 1. By Lemma 1.6.24 there is a v ∈ V , v 6= 0 with g.v ⊂ kv. It follows that
W = kv is a 1-dimensional g-submodule. By applying the induction hypothesis to the quotient
module V/W we find there an g-invariant flag 0 = W1 ⊂ · · · ⊂ Wn with dimWj = j − 1. Let
π : V → V/W be the quotient map. Then V0 = 0 and Vj = π−1(Wj) defines a g-invariant flag
in V with dimVj = j. �

Corollary 1.6.26. Let g be a solvable Lie algebra over an algebraically closed field k of
characteristic zero. Then every simple representation of g is 1-dimensional.

Proof. Let ρ : g→ gl(V ) be a simple representation. Then the g-invariant spaces Vi from
above are 1-dimensional subrepresentations. However, they are no proper subrepresentations
since ρ is simple. Hence we have dimV = 1. �

Remark 1.6.27. Lie’s Theorem does not hold in general if we omit one of the assumptions.
Consider the Lie algebra sl2(k), together with the natural representation

ρ : sl2(k)→ gl2(k)

given by ρ(x) = ( 0 1
0 0 ), ρ(y) = ( 0 0

1 0 ), ρ(h) = ( 1 0
0 −1 ). The ρ(z) have no common eigenvector

different from zero for all z ∈ sl2(k), so that there is no basis in which all operators are
all of upper-triangular form. Here the assumption that g is solvable is violated, except for
characteristic p = 2. But in that case Lie’s Theorem is also not true, as this example shows.

Remark 1.6.28. The following example contradicts Lie’s Theorem in any characteristic
p > 0. Let g = r2(k) be the solvable Lie algebra in dimension 2 over a field k of characteristic
p > 0, with Lie bracket [x, y] = x in a basis (x, y). Define a p-dimensional representation

ρ : g→ gl(V )

of g on the vector space V with basis (e1, . . . , ep) by ρ(x) = E, ρ(y) = F with

E(e1) = ep,

E(ei) = ei−1, i ≥ 2,

F (ei) = (i− 1)ei.
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It is easy to see that

[E,F ](e1) = E(F (e1))− F (E(e1))

= 0− (p− 1)ep

= ep,

[E,F ](ei) = E(F (ei))− F (E(ei))

= (i− 1)ei−1 − (i− 2)ei−1

= ei−1

for i ≥ 2. Hence [ρ(x), ρ(y)] = [E,F ] = E = ρ(x) and ρ, because of char(k) = p, is a
representation. This is not true in characteristic zero. The operators E,F are given as follows

E =



0 1 0 0 · · · 0
0 0 1 0 · · · 0

0 0 0 1 · · · ...
...

...
...

...
. . . 0

0 0 0 0 · · · 1
1 0 0 0 · · · 0


, F =



0 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 2 0 · · · 0
0 0 0 3 · · · 0
...

...
...

...
. . . 0

0 0 0 0 · · · p− 1

 .

From Ev = λv and Fv = µv we obtain v = 0, first for µ = 0, and then for µ 6= 0. Hence the
ρ(v) do not have a common nonzero eigenvector.

Let us note here that Lie’s Theorem has an analogue for algebraic groups, which was proved
by Ellis Kolchin (1916-1991).

Theorem 1.6.29 (Lie-Kolchin). Let G be a connected solvable linear algebraic group over
an algebraically closed field of arbitrary characteristic. Let ρ : G→ GL(V ) be a representation
on a finite-dimensional vector space V . Then there exists a common nonzero eigenvector v ∈ V
for all ρ(g) with g ∈ G.

For a proof, see [20]. Again we cannot omit some of the assumptions. In particular, the
connectedness assumption is necessary even for closed subgroups. Also, it fails for solvable
connected Lie groups in general, because these are not necessarily isomorphic to groups of
upper triangular matrices.

A standard counterexample for k = R is as follows. Consider the connected abelian linear
algebraic group over R given by

G =

{(
a b
−b a

)
| a2 + b2 = 1, a, b ∈ R

}
.

Let ρ be the natural representation. Obviously, ρ(G) is not triangularizable over R.

Corollary 1.6.30. Let g be a Lie algebra over a field k of characteristic zero. Then g is
solvable if and only if g1 = [g, g] is nilpotent.

Proof. Let g1 be nilpotent. Then g1 and g/g1 are both solvable, namely nilpotent respec-
tively abelian. By Proposition 1.6.19 then g is solvable. This even holds in characteristic p > 0.

The converse statement only holds in characteristic zero. Let g be solvable. Assume first that
k is algebraically closed. Then we can apply Lie’s Theorem for the adjoint representation of g.
With respect to a suitable basis of g the subalgebra ad(g) ⊂ gl(g) consists of upper-triangular
matrices. Hence [ad(g), ad(g)] = ad([g, g]) consists of strictly upper-triangular matrices, and
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hence is nilpotent. Since the kernel of ad: [g, g] → gl(g) lies in the center of [g, g], we obtain
that [g, g] is nilpotent by Proposition 1.6.8. If k is not algebraically closed we may apply the
method of scalar extension. Let F be an algebraic closure of k. For a k-vector space V we con-
sider VF = V ⊗k F. If g is solvable, so is gF. Hence [gF, gF] is nilpotent by the above argument,
and hence [g, g] is nilpotent. �

Remark 1.6.31. There are indeed examples of solvable Lie algebras in characteristic p > 0,
whose commutator subalgebra is not nilpotent. We can construct such an example from Remark
1.6.28. Let g = r2(k) and V be the p-dimensional representation given there. We equip the
space

h = g⊕ V
with the structure of a Lie algebra by viewing V as an abelian Lie algebra and letting g act on
V by ρ. More concretely, h has a basis (x, y, e1, . . . , ep) with Lie brackets

[x, y] = x,

[x, e1] = ep,

[x, ei] = ei−1, i ≥ 2,

[y, ei] = (i− 1)ei, 1 ≤ i ≤ p.

Since V and the quotient h/V are solvable, so is h. But [h, h] = kx ⊕ V is not nilpotent. We
have [h, h]1 = [h, h]2 = · · · = V . This example is taken from Jacobson [21].

We mention still another corollary to Lie’s Theorem.

Corollary 1.6.32. Let g be a Lie algebra over a field k of characteristic zero. Then
[g, rad(g)] is a nilpotent ideal of g, i.e., satisfying

[g, rad(g)] ⊆ nil(g).

Proof. Let r = rad(g) and set L := r + 〈y〉 for an element y ∈ g. Then we have [L,L] ⊆
[r, r] + [r, 〈y〉] ⊆ r, so that [L,L] is a solvable ideal of g, and hence L is solvable, too. It follows
that [L,L] is nilpotent by Corollary 1.6.30, i.e., ad(x) is nilpotent for all x ∈ [L,L]. Now
let x = [a, b] ∈ [r, g] a pure commutator. Then there is a y ∈ g with b ∈ r + 〈y〉, i.e., we
have x ∈ [L,L], so that ad(x) is nilpotent. Now since y is arbitrary, x = [a, b] runs through
whole [r, g], which yields that ad(x) is nilpotent for all x ∈ [r, g]. By Engel’s theorem, [r, g] is
nilpotent. �
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1.7. The classification of Lie algebras in low dimension

Our aim of this section is to classify all Lie algebras of dimension n ≤ 3 over an arbitrary
field k. For n ≤ 2 we obtain just one non-abelian Lie algebra. In dimension 3, however, we
obtain already infinitely many different solvable Lie algebras. We order the cases for a fixed
dimension of g by the dimension of g1 = [g, g].

Case 1, dim g = 1: We have g ∼= k, the 1-dimensional abelian Lie algebra.

Case 2a, dim g = 2, dim g1 = 0: We have g ∼= k2, the abelian Lie algebra in dimension 2.

Case 2b, dim g = 2, dim g1 = 1: Let g = kx + ky. Then [g, g] = k · [x, y] is 0-dimensional or
1-dimensional. We may assume that [g, g] = ky. Then [x, y] = αy with some α 6= 0. Replacing
x by α−1x we may assume that [x, y] = y. We denote this Lie algebra, as before, by r2(k).
Every non-abelian 2-dimensional Lie algebra is isomorphic to r2(k), as we have just shown.
This Lie algebra is also isomorphic to aff(k) ∼= k n k with [x, y] = [(1, 0), (0, 1)] = (0, 1) = y.

Case 3a, dim g = 3, dim g1 = 0: We have g ∼= k3, the abelian Lie algebra in dimension 3.

Case 3b, dim g = 3, dim g1 = 1: Suppose that g1 ⊂ Z(g) and let g1 = kz. We can extend z
to a basis (x, y, z) of g. Because of z ∈ Z(g) we have [x, z] = [y, z] = 0. We may assume that
[x, y] = z. Then g is isomorphic to the Heisenberg Lie algebra h3(k).
If g1 = ky is not contained in the center of g, then there exists an x′ ∈ g with [x′, y] 6= 0. Since
dim g1 = 1, we have [x′, y] = αy, and therefore [x, y] = y with x = α−1x′. The subalgebra
a = kx + ky hence is isomorphic to r2(k). Moreover a is an ideal in g because of g1 ⊂ a. Let
z ∈ g \ a. Because of Der(a) = ad(a), see Example 1.2.5, there exists a w ∈ a with ad(z)|a =
ad(w). Then [z −w, a] = 0. We have the direct decomposition g = a⊕ k · (z −w) ∼= r2(k)⊕ k.

Case 3c, dim g = 3, dim g1 = 2: We claim that g1 is abelian. Otherwise we had g1 ∼= r2(k) and
hence g ∼= r2(k)⊕ k as above, a contradiction to dim g1 = 2. Hence g1 is an abelian ideal in g.
Choosing an x ∈ g \ g1, we have

g ∼= kxn g1 ∼= k n k2.

These Lie algebras are solvable. Every such semidirect product is determined by a homomor-
phism D : k → gl2(k), i.e., by a linear map A = D(1) ∈ GL2(k). The Lie bracket in g is then
given, for x, x′ ∈ k2 and t, t′ ∈ k, by

[(t, x), (t′, x′)] = (0, tAx′ − t′Ax).

The matrix A is invertible since dim g1 = 2. Let us denote this Lie algebra by gA. We want
to determine the isomorphism classes of such Lie algebras. Hence let ϕ : gA → gB be an
isomorphism of two such Lie algebras. Then ϕ(g1

A) ⊂ g1
B. Hence there exists a C ∈ GL2(k), a

scalar α ∈ k∗ and a y ∈ k2 with ϕ(t, x) = (αt, Cx + ty). On the other hand, we have for all
t, t′, x, x′ that
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(0, tCAx′ − t′CAx) = ϕ([(t, x), (t′, x′)]A)

= [ϕ(t, x), ϕ(t′, x′)]B

= [(αt, Cx+ ty), (αt′, Cx′ + t′y)]B

= (0, αtBCx′ + αtt′By − αt′BCx− αtt′By)

= (0, αtBCx′ − αt′BCx).

This implies that CA = αBC, or

A = αC−1BC.

Thus the group G = k∗×GL2(k) acts on GL2(k) by (α,C).A = αC−1AC. The Lie algebras gA
and gB are isomorphic if and only if A and B are in the same orbit of this action. Let us first
assume that k is algebraically closed. The the Jordan normal form says that a representing
system for the G-orbits is given by the following matrices.(

1 1
0 1

)
,

(
1 0
0 λ

)
, λ ∈ k∗.

This corresponds to the following Lie algebras:

r3(k) : [e1, e2] = e2, [e1, e3] = e2 + e3,

r3,λ(k) : [e1, e2] = e2, [e1, e3] = λe3, λ 6= 0.

The only isomorphisms are given, with λ, µ ∈ k∗, as follows. We have r3,λ(k) ∼= r3,µ(k) if and
only if λ = µ or λµ = 1.

More generally, we have the following classification result in this case over an arbitrary field,
see [13]:

Proposition 1.7.1. Let g be a 3-dimensional Lie algebra over an arbitrary field k with
dim g1 = 2. Then g is isomorphic to one of the following solvable Lie algebras,

L1 : [e3, e1] = e1, [e3, e2] = e2,

L2
α : [e3, e1] = e2, [e3, e2] = αe1 + e2, α 6= 0,

L3
α : [e3, e1] = e2, [e3, e2] = αe1, α 6= 0.

The only isomorphisms are, for α, β ∈ k∗, as follows. We have L3
α
∼= L3

β if and only if α = t2β
with some t ∈ k∗.

Case 3d, dim g = 3, dim g1 = 3: In this case g has to be simple. Otherwise g had a non-
trivial ideal a, which were necessarily solvable because of dim a ≤ 2. In the same way, g/a were
solvable, so that g were a solvable extension, hence solvable, a contradiction to g1 = g.

Let (e1, e2, e3) be a basis of g and set

f1 = [e2, e3], f2 = [e3, e1], f3 = [e1, e2].
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Since g1 = g then (f1, f2, f3) is another basis of g. We may express one basis by the other, i.e.,

fi =
3∑
j=1

aijej.

The Jacobi identity J(x, y, z) = 0 in g with respect to the basis (e1, e2, e3) then imposes condi-
tions on the coefficients aij. In fact, the matrix

A := (aij)1≤i,j≤3

then is symmetric. The proof goes as follows. Because of skew-symmetry we have J = 0 as soon
as two elements are equal. Thus it suffices to look at the conditions given by J(e1, e2, e3) = 0.

0 = J(e1, e2, e3)

= [e1, [e2, e3]] + [e2, [e3, e1]] + [e3, [e1, e2]]

= [e1, f1] + [e2, f2] + [e3, f3]

= a12f3 − a13f2 − a21f3 + a23f1 + a31f2 − a32f1.

Conversely we obtain for every symmetric matrix A ∈ M3(k) a Lie algebra gA by specifying
the Lie brackets [ei, ej] accordingly to A. Thus we have described all 3-dimensional simple Lie
algebras. It remains to classify the isomorphism classes. Let M be the matrix of an isomorphism
ϕ : gA → gB. As before one can check that we have

B = det(M)(M−1)tAM−1

Then we can define the action of the group G = k∗×GL3(k) on the space of symmetric matrices
in M3(k) by (α,C)A = αCACt. We see that gA and gB are isomorphic if and only if A and
B lie in the same G-orbit. If k is algebraically closed and of characteristic different from two,
then we can reconstruct every symmetric bilinear form from its quadratic form. Hence in this
case the representing system only consists of the identity matrix A = E3. This corresponds to
the simple Lie algebra

so3(k) : [e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2.

It is isomorphic to sl2(k), as long as the characteristic is not two. The isomorphism ϕ : sl2(k)→
so3(k) is given by

ϕ =

t t 0
0 0 2t
1 −1 0

 ,

where t ∈ k is a solution of t2 + 1 = 0.

Proposition 1.7.2. Let g be a simple 3-dimensional Lie algebra over an algebraically closed
field k of characteristic different from two. Then g ∼= sl2(k).

The result does not hold for fields k, which are not algebraically closed. It is clear that, as an
example, sl2(R) and so3(R) are not isomorphic, since sl2(R) admits a 2-dimensional subalgebra,
but so3(R) does not.

We will see later that the following result holds.

Proposition 1.7.3. Let g be a simple real 3-dimensional Lie algebra. Then g is isomorphic
to sl2(R) or so3(R) .
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If k has characteristic two, then g ∼= sl2(k) is no longer simple, since it is nilpotent. Then
it is replaced by the following simple Lie algebra,

W (1; 2)(2) : [x, y] = h, [h, x] = x, [h, y] = y.

The following result has been proved by Strade [32]:

Proposition 1.7.4. Let g be a simple 3-dimensional Lie algebra over an algebraically closed
field of characteristic p = 2, or over a finite field F2k . Then g ∼= W (1; 2)(1).

For p > 2 Strade proved the following result [32].

Proposition 1.7.5. Let g be a simple 3-dimensional Lie algebra over a finite field k of
characteristic p ≥ 3. Then g ∼= sl2(k).

In dimension 4 the classification becomes of course much more difficult. The best case is a
result over the complex numbers.

Proposition 1.7.6. Every 4-dimensional complex Lie algebra is isomorphic to one of the
following list, with α, β ∈ C:

g Lie brackets
g0 = C4 −

g1 = n3(C)⊕ C [e1, e2] = e3

g2 = n4(C) [e1, e2] = e3, [e1, e3] = e4

g3 = r2(C)⊕ C2 [e1, e2] = e2

g4 = r2(C)⊕ r2(C) [e1, e2] = e2, [e3, e4] = e4

g5 = sl2(C)⊕ C [e1, e2] = e2, [e1, e3] = −e3, [e2, e3] = e1

g6 [e1, e2] = e2, [e1, e3] = e3, [e1, e4] = e4

g7(α) [e1, e2] = e2, [e1, e3] = e3, [e1, e4] = e3 + αe4

g8 [e1, e2] = e2, [e1, e3] = e3, [e1, e4] = 2e4, [e2, e3] = e4

g9(α, β) [e1, e2] = e2, [e1, e3] = e2 + αe3, [e1, e4] = e3 + βe4

g10(α) [e1, e2] = e2, [e1, e3] = e2 + αe3,
[e1, e4] = (α + 1)e4, [e2, e3] = e4

There are no isomorphisms between different types, but there are still isomorphisms within
some of the infinite families. We have g7(α) ∼= g7(β) if and only if α = β, and g10(α) ∼= g10(α′)
if and only if αα′ = 1 or α = α′. Furthermore we have g9(α1, β1) ∼= g9(α2, β2) if and only if
the double ratios 1 : α1 : β1 and 1 : α2 : β2 coincide up to permutation. In other words, for
α, β 6= 0, we have

g9(α, β) ∼= g9(α′, β′)

if and only if (α′, β′) is one of the following possibilities,

(α, β), (β, α),

(
1

α
,
β

α

)
,

(
β

α
,

1

α

)
,

(
1

β
,
α

β

)
,

(
α

β
,

1

β

)
.

We may compose every isomorphism from the following two ones,

g9(α, β) ∼= g9(β, α)

g9(α, β) ∼= g9

(
1

β
,
α

β

)
, β 6= 0



32 1. BASIC NOTIONS OF LIE ALGEBRA THEORY

Note that some of the algebras are decomposable, for example,

g7(0) ∼= r3,1(C)⊕ C,
g9(α, 0) ∼= r3,α(C)⊕ C with α 6= 0, 1

g9(0, 1) ∼= r3(C)⊕ C.
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1.8. Lie groups and Lie algebras

Lie groups form an important class of differentiable manifolds. Basic finite-dimensional
examples over the real numbers are the general linear group GLn(R), the unitary group U(n),
the orthogonal group On(R) and the special linear group SLn(R). Of great importance here is
the close relationship between a Lie group and its Lie algebra.

Definition 1.8.1. A Lie group G is a group, whose elements are the points of a smooth
manifold, such that the group multiplication G×G→ G is smooth.

Note that it follows that the map x → x−1 is smooth as well. For a given Lie group G we
consider the tangent space at the identity, denoted by T1(G). This vector space admits a natural
Lie bracket, yielding the Lie algebra g of G. The map G→ T1(G) has very good properties. It
is a functor of the category of Lie groups to the category of Lie algebras. We cannot go into
too much detail here, but we want to give an illustrating example with the orthogonal group
G = O(n), consisting of n× n matrices A with AtA = En. How do we compute its Lie algebra
so(n)? We consider the differentiable families

A : ]− ε, ε[→ O(n) ⊂ Rn2

for some ε > 0 with A(0) = En. All entries are differentiable functions. Now we take the
derivative of A(t)tA(t) = En with respect to t,

Ȧ(t)tA(t) + A(t)tȦ(t) = 0,

and substitute t = 0 so that we have

Ȧ(0)t + Ȧ(0) = 0,

hence X + X t = 0 with X = Ȧ(0). So the Lie algebra so(n) consists of the skew-symmetric
n× n matrices. Of course the commutator defines a Lie bracket on this space. Hence we have
determined the tangent space T1(O(n)).

Consider now some some A ∈ O(n) the conjugation cA : O(n) → O(n), with B 7→ ABA−1. If
we take instead of a fixed matrix A again a differentiable family as above, take the derivative
with respect to t and set t = 0, we obtain

(A(t)BA(t)−1)·|t=0 = Ȧ(0)B −BȦ(0).

Here we have used
(A(t)−1)· = −A(t)−1Ȧ(t)A(t)−1

which follows from taking the derivative of the identity A(t)A(t)−1 = En. Now we just have
computed the adjoint representation of the Lie algebra, namely

ad(X) : so(n)→ so(n)

Y → XY − Y X.
A natural question is, whether or not we can also compute the converse direction. It turns

out that it is indeed possible if the Lie group is connected and simply connected. Then the Lie
group is up to isomorphism determined by its Lie algebra. The exponential function exp: g→ G
then is a local diffeomorphism. We have the following result.

Theorem 1.8.2 (Lie’s third theorem). Every real finite-dimensional Lie algebra is isomor-
phic to a Lie algebra of a Lie group.
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We may summarize this as follows (in finite dimension).

Theorem 1.8.3. The functor G → T1(G) defines an equivalence of categories between the
category of real connected and simply connected Lie groups and the category of real Lie algebras.

How does this look like in our example with G = O(n) ? The exponential map

exp: so(n)→ SO(n)

has as image only the subgroup SO(n) of O(n) consisting of orthogonal matrices with deter-
minant one. As a topological space, O(n) consists of two components, one with determinant 1,
the other with determinant −1. For A ∈ gl(n), exp(A) is defined by

eA = En + A+
A2

2!
+ · · ·+ An

n!
+ · · · .

This series converges uniformly on each bounded subset of gl(n) and w have det(eA) = etr(A).
Hence we have eA ∈ GL(n). Moreover we have eA+B = eAeB, for AB = BA and BeAB−1 =

eBAB
−1

. For so(n) we obtain the Lie group SO(n), and not O(n). So we see that we need the
connectedness in the correspondence.

Example 1.8.4. For the matrix A =
(

0 −θ
θ 0

)
∈ so2(R) we have

eA =

(
cos θ − sin θ
sin θ cos θ

)
∈ SO2(R).

A very natural question is to asks for which Lie groups the exponential function is indeed
surjective. Even for connected matrix groups it need not be surjective in general. For example,

exp: sln(R)→ SLn(R)

is not surjective for n ≥ 2 (note that SLn(R) is not simply connected, but SLn(C) is simply
connected). To see this we may assume that n = 2. Let

A =

(
a b
c −a

)
be any matrix in sl2(R). Then A2 = (a2 +bc)E2 = − det(A)E2. If det(A) = 0 then eA = E2 +A,
and hence tr(eA) = 2. For det(A) > 0 we can find an ω > 0 with det(A) = ω2, hence with
ω2 = −(a2 + bc). Then A2 = −ω2E2 and

eA = cos(ω)E2 +
sin(ω)

ω
A.

Then we have tr(eA) = 2 cos(ω) ∈ [−2, 2]. Finally, we could have that det(A) < 0, i.e.,
a2 + bc > 0. Then there is an η > 0 with η2 = a2 + bc, and A2 = η2E2. We have

eA = cosh(η)E2 +
sinh(η)

η
A.

This means that tr(eA) = 2 cosh(ω) ∈ [2,∞). Altogether we always have that tr(eA) ≥ −2.
Therefore it is clear now that, say,

A =

(
−2 0
0 −1

2

)
6∈ exp(sl2(R)),
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but A ∈ SL2(R). It is easy to see that also for all λ 6= 0 the matrices

A =

(
−1 λ
0 −1

)
6∈ exp(sl2(R))

are not contained in the image of exp. On the other hand we have the following result.

Proposition 1.8.5. Let G be a connected compact real Lie group. Then the exponential
map is surjective.

But this is not the only criterion. For example, exp: gln(C)→ GLn(C) is surjective, whereas
exp: sln(C) → SLn(C) and exp: gln(R) → GLn(R) are not surjective. For more details see
[14] and the references given therein.

Finally we want to mention, that Ado’s Theorem need not be true for finite-dimensional Lie
groups in general, i.e., not all Lie groups are matrix groups. Here is a counterexample. Let

G =


1 x z

0 1 y
0 0 1

 , x, y, z ∈ R

 , N =


1 0 n

0 1 0
0 0 1

 , n ∈ Z

 .

Then N is a normal subgroup in G and H = G/N is a 3-dimensional Lie group.

Proposition 1.8.6. Every Lie group homomorphism ϕ : H → GLn(R) has a non-trivial
kernel.

In other words, there is no faithful linear representation. Hence H is not a matrix group.





CHAPTER 2

Structure theory of Lie algebras

2.1. Die Jordan-Chevalley decomposition

Let k be a field of characteristic zero in this section. For an endomorphism x ∈ End(V ) the
eigenspace Eλ(x) to the eigenvalue λ ∈ k is given by

Eλ(x) = ker(x− λ id).

The generalized eigenspace of x to λ is given by

Hλ(x) =
⋃
n≥0

ker(x− λ id)n.

Definition 2.1.1. An x ∈ End(V ) is called diagonalizable, if V is the direct sum of the
eigenspaces of x, i.e., if V = ⊕λEλ(x). We call x semisimple, if V is semisimple as module for
the Lie algebra kx ⊂ End(V ).

If x ∈ End(V ) is nilpotent then V = H0(x). The converse is also true if V is finite
dimensional. By definition, x is semisimple if for every x-invariant subspace U ⊂ V there exists
a complementary x-invariant subspace U ′ with V = U⊕U ′. It is easy to see that x is semisimple
if and only if the roots of its minimal polynomial are all distinct.

Lemma 2.1.2. Let k be an algebraically closed field. Then x ∈ End(V ) is semisimple if and
only if x is diagonalizable.

Proof. Let x be diagonalizable. Then V is the direct sum of its eigenspaces and hence the
sum of 1-dimensional x-invariant subspaces, which are simple kx-submodules. By Proposition
1.2.26, part (2) it follows that x is semisimple.

Conversely, let x be semisimple. Then V is by Proposition 1.2.26 the direct sum of simple
kx-modules. hence it suffices to show that every simple kx-module is 1-dimensional, because
every 1-dimensional kx-submodule is spanned by an eigenvector of x. So let V 6= 0 be a
simple kx-module and v ∈ V \ 0. Then we have V = span{xn.v | n ≥ 0}. The right hand
side is a nonzero x-invariant subspace, hence equal to V . Suppose that all xn.v are linearly
independent. Then U = span{xn.v | n ≥ 1} is a proper x-invariant submodule, contradiction
our assumption. Hence there exists a n ≥ 1 such that xn.v is a linear combination of the vectors
v, x.v, . . . , xn−1.v. It follows that V is finite-dimensional. Since k is algebraically closed, x has
an eigenvector w in V and V = span{w} is 1-dimensional. �

Lemma 2.1.3. Let x, y ∈ End(V ) be two commuting endomorphisms. If x and y are diago-
nalizable, the also their sum x+ y is diagonalizable. If x and y are nilpotent, then also the sum
x+ y is nilpotent.

Proof. Since x and y commute, they are simultaneously diagonalizable, so that x + y is
diagonalizable. Let us give a different proof, using Lemma 2.1.2. Assume that k is algebraically
closed. Then for each eigenvector v ∈ Eλ(x) we have xy(v) = yx(v) = λy(v). Hence yv ∈ Eλ(x)

37
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and y leaves the eigenspaces of x invariant. Since y is diagonalizable, V si a semisimple ky-
module. Submodules of V hence are also semisimple. Thus the restriction of y to the eigenspaces
of x is diagonalizable and there is a basis of eigenvectors in which x and y are simultaneously
of diagonal form. Hence x+ y is diagonalizable.

Assume that x and y are nilpotent with xn = ym = 0. Then, because of xy = yx, the binomial
formula implies that

(x+ y)k =
∑
i+j=k

(
k

i

)
xiyj.

For all k ≥ n+m− 1 the summands are zero, so that (x+ y)k = 0. �

Proposition 2.1.4 (Jordan-Chevalley). Let V be a finite-dimensional vector space over an
algebraically closed field k and x ∈ End(V ). Then the following statements hold.

(1) There exist unique xs, xn ∈ End(V ) with x = xs + xn, where xs is semisimple, xn is
nilpotent and xs, xn commute.

(2) The eigenspaces of xs are the generalized eigenspaces of x, i.e., Eλ(xs) = Hλ(x).
(3) There exist polynomials p(t), q(t) ∈ k[t] without constant term such that xs = p(x) and

xn = q(x).
(4) Any y ∈ End(V ) commuting with x also commutes with xs and xn.
(5) For commuting x, y ∈ End(V ) we have (x+ y)s = xs + ys and (x+ y)n = xn + yn.

Proof. For (1), (3), (4): Let αi be the different eigenvalues of x with multiplicities mi, for
i = 1, . . . , k. Hence x has the characteristic polynomial

f =
k∏
i=1

(t− αi)mi ,

which splits into linear factors since k is algebraically closed. V is the direct sum of the
eigenspaces Ei = Eαi(x), and each eigenspace is x-invariant. On Ei the endomorphism x has
the characteristic polynomial (t−αi)mi . Now we apply the CRT (Chinese Remainder Theorem)
to R = k[t] an. There exists a polynomial p with

p(t) ≡ αi mod (t− αi)mi

p(t) ≡ 0 mod t.

We put q(t) = t− p(t). The second congruence is only necessary if zero is not an eigenvalue of
x, in which case t is relatively prime to (t − αi)mi . Certainly p and q have no constant term.
We define xs := p(x) and xn := q(x). These are polynomials in x and hence they commute.
So we have [xs, xn] = 0. The polynomials also commute with endomorphisms commuting with
x, and they leave the eigenspaces Ei invariant. The first congruence shows that the restriction
of xs − αi id on Ei is identically zero for all i. Therefore xs acts diagonally on Ei with single
eigenvalue αi. By definition xn = x − xs then is nilpotent. We have shown (3), (4) and (1)
except for the uniqueness. So let x = s + n be another decomposition with these properties.
Since s and n commute with x, they also commute with xs and xn. We have

s− xs = n− xn.
Since the difference of two commuting diagonalizable endomorphisms s and xs is again diago-
nalizable, and n− xn is nilpotent again, we have that s− xs = n− xn are both diagonalizable
and nilpotent. Hence they are both zero, i.e., we have s = xs and n = xn.
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For (5): Assume that x, y ∈ End(V ) commute. Then by Lemma 2.1.3 we have that xs + ys
is diagonalizable and xn + yn is nilpotent. Both commute with each other and we have
x + y = (xs + ys) + (xn + yn). Because of the uniqueness of this decomposition we obtain
the claim.

For (2): Exercise. �

Definition 2.1.5. The decomposition x = xs + xn is called the additive Jordan-Chevalley
decomposition of x ∈ End(V ). Here xs is called the semisimple part, and xn is called the
nilpotent part of x.

Example 2.1.6. The Jordan-Chevalley decomposition of x = ( λ 1
0 λ ) is given by

x =

(
λ 0
0 λ

)
+

(
0 1
0 0

)
.

On the other hand,

x =

(
1 2
0 3

)
=

(
1 0
0 3

)
+

(
0 2
0 0

)
= xs + xn

is not the Jordan-Chevalley decomposition of x. It is true, though, that xs is semisimple and
xn is nilpotent, but the two summands do not commute:[(

0 2
0 0

)
,

(
1 0
0 3

)]
=

(
0 4
0 0

)
.

Hence x = xs is the Jordan-Chevalley decomposition of x.

Corollary 2.1.7. Let x = xs + xn be the Jordan-Chevalley decomposition of x ∈ End(V )
and let E ⊂ F ⊂ V be subspaces with x(F ) ⊂ E. Then we have xs(F ) ⊂ E and xn(F ) ⊂ E.

Proof. For every polynomial p(t) ∈ t · k[t] we have p(x)F ⊂ E by assumption. Then the
claim follows from Proposition 2.1.4. �

Lemma 2.1.8. Let V be a finite-dimensional vector space and x ∈ End(V ). If x is nilpotent
respectively diagonalizable, then so is ad(x).

Proof. Denote by Lx and Rx the left- respectively right multiplication by x. Then

ad(x) = Lx −Rx

[Lx, Rx] = 0.

Because of Lemma 2.1.3 it suffices to show that Lx, Rx inherit the nilpotency respectively
diagonalizability of x. Suppose that x is nilpotent with xn = 0. Then Lnx = Lxn = 0 and also
Rn
x = 0. Thus Lx and Rx are nilpotent, as well as Lx −Rx = ad(x).

Suppose now that x is diagonalizable and λ1, . . . λn are the different eigenvalues of x. We have
V =

⊕n
j=1 Eλi(x). For y ∈ End(V ) we write y =

∑n
j,k=1 yjk with yjkEλk(x) ⊂ Eλj(x). Consider

the block matrix of y with respect to the direct sum decomposition of V into the eigenspaces.
Then we have

Lxyjk = λjyjk

Rxyjk = λkyjk

ad(x)yjk = (λj − λk)yjk.
Hence Lx, Rx ∈ End(End(V )) are diagonalizable endomorphisms of End(V ). �
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Corollary 2.1.9. Let x ∈ End(V ) and x = xs+xn be the Jordan-Chevalley decomposition.
Then ad(x) = ad(xs)+ad(xn) is the Jordan-Chevalley decomposition of ad(x) in End( End(V )).

Proof. By Lemma 2.1.8 we know that ad(xs) is diagonalizable and ad(xn) is nilpotent.
Both are commuting with each other because of [ad(xs), ad(xn)] = ad([xs, xn]) = 0. So the
claim follows by the uniqueness of the Jordan-Chevalley decomposition. �

Proposition 2.1.10. Let A be a finite-dimensional k-algebra. Then the Lie algebra Der(A)
contains the semisimple and nilpotent part of all of its elements.

Proof. Let D = Ds +Dn be the Jordan-Chevalley decomposition. It suffices to show that
Ds ∈ Der(A) since Der(A) is a vector space, so that Dn = D − Ds ∈ Der(A) follows. For
a, b ∈ A and λ, µ ∈ k we have for all n ≥ 1

(D − (λ+ µ) id)n(ab) =
n∑
k=0

(
n

k

)
(D − λ id)k(a)(D − µ id)n−k(b).(2.1)

For a ∈ Eλ(Ds) = Hλ(D) and b ∈ Eµ(Ds) = Hµ(D) we have ab ∈ Eλ+µ(Ds) = Hλ+µ(D), so
that Ds(ab) = (λ+µ)ab. On the other hand we have Ds(a)b+aDs(b) = λab+µab = (λ+µ)ab.
Since A is the direct sum of the spaces Eλ(Ds), it follows that Ds is a derivation of A. �

Let us mention the multiplicative Jordan-Chevalley decomposition as well. An endomor-
phism x ∈ End(V ) is called unipotent, if id−x is nilpotent. Equivalently, all eigenvalues over
an algebraic closure of k are equal to one. If x = xs+xn is the Jordan-Chevalley decomposition
of x, then gu = id +x−1

s xn is unipotent. We have the following result.

Proposition 2.1.11. Let G be an algebraic group over a perfect field k. Then for every
element g ∈ G(k) there exist unique elements gs, gu ∈ G(k) with g = gsgu = gugs. For all linear
representations ϕ : G→ GL(V ) it holds that ϕ(gs) is semisimple and ϕ(gu) is unipotent.

Every g ∈ Aut(V ) of a finite-dimensional vector space V over an algebraically closed field
has a unique multiplicative Jordan-Chevalley decomposition g = gsgu = gugs, where gs is
semisimple and gu is unipotent. For g, h ∈ Aut(V ) with gh = hg we have (gh)s = gshs and
(gh)u = guhu.

This may not hold for all subgroups G of GLn(k). There may be elements g ∈ G, so that gs or
gu need not be in G. Consider the following subgroup

G =

{(
1 0
0 1

)
,

(
1 1
0 −1

)}
.

The unique multiplicative Jordan-Chevalley of the element g of order 2 is given by

g =

(
1 1
0 −1

)
=

(
1 0
0 −1

)(
1 1
0 1

)
= gugs.

However, both gs and gu are not in G.

Note that this cannot happen if the subgroup is closed, i.e., if it is a linear algebraic group. In
this case we always have gs, gu ∈ G for all g ∈ G.

Back to the additive Jordan-Chevalley decomposition, one can show the following result,
by using Weyl’s Theorem, see Theorem 2.3.7:

Proposition 2.1.12. Let g ⊂ gl(V ) be a semisimple linear Lie algebra, where V is finite-
dimensional. Then g contains the semisimple and nilpotent part of all of its elements.
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For the proof see for example [19]. So far we only have defined a Jordan-Chevalley decom-
position for linear Lie algebras. It is also called the concrete Jordan-Chevalley decomposition.
For arbitrary Lie algebras we may define an abstract Jordan-decomposition for semisimple Lie
algebras as follows.

Proposition 2.1.13. Let g be a semisimple Lie algebra over a field k of characteristic zero.
Let x ∈ g. Then there exists unique elements s, n ∈ g with

(1) x = s+ n.
(2) [s, n] = 0.
(3) ad(s) is semisimple and ad(n) is nilpotent.

The proof depends very much on Corollary 2.2.18, saying that

Der(g) = ad(g),

i.e., that all derivations in this case are inner.

The element s is called the semisimple part of x, and n the nilpotent part of x. Sometimes we
just call s then ad-semisimple and n then ad-nilpotent. For a linear semisimple Lie algebra g
the concrete and abstract Jordan-Chevalley decomposition coincide.
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2.2. The Cartan criterion

Definition 2.2.1. Let g be a finite-dimensional Lie algebra over a field k. The bilinear
form κ : g× g→ k given by

κ(x, y) = tr(ad(x) ad(y))

is called the Killing form, or Cartan-Killing form.

More generally we have, for every finite-dimensional representation ρ : g→ gl(V ) the bilinear
form κρ(x, y) = tr(ρ(x)ρ(y)). Then κ = κad is a special case.

Definition 2.2.2. A symmetric bilinear form β : g× g→ k is called invariant, if

β([x, y], z) + β(y, [x, z]) = 0

for all x, y, z ∈ g.

More generally, replacing the adjoint representation by an arbitrary representation ρ, we
could say that β is ρ-invariant if β(ρ(x)(v), w) + β(v, ρ(x)(w)) = 0 for all x ∈ g and v, w ∈ V .

Definition 2.2.3. For a bilinear form β on a vector space V and a subspace U ⊂ V we
define the orthogonal space with respect to β by

U⊥ = {v ∈ V | β(v, u) = 0 ∀u ∈ U}.
Lemma 2.2.4. Let ρ : g → gl(V ) be a finite-dimensional representation. Then κρ is a

symmetric invariant bilinear form on g. If n is a nilpotent ideal of g, then κ(n, g) = 0 and thus
n ⊂ g⊥.

Proof. We have κρ(x, y) = tr(ρ(x)ρ(y)) = tr(ρ(y)ρ(x)) = κρ(y, x). The form is invariant,
because we have

κρ([x, y], z) = tr(ρ([x, y])ρ(z))

= tr(ρ(x)ρ(y)ρ(z))− tr(ρ(y)ρ(x)ρ(z))

= tr(ρ(y)ρ(z)ρ(x))− tr(ρ(y)ρ(x)ρ(z))

= tr(ρ(y)ρ([z, x]))

= −κρ(y, [x, z]).
Let x ∈ n and y ∈ g. Since n is nilpotent, we may assume that ad(n) consists of strictly upper-
triangular matrices. We set Vj = ad(n)j(g) for j ≥ 0. Then [n, g] ⊂ n implies ad(x) ad(y)Vj ⊂
Vj−1. Hence the trace of all ad(x) ad(y) is equal to zero, i.e., we have κ(x, y) = 0. �

In particular, the Killing form of a nilpotent Lie algebra is identically zero.

Lemma 2.2.5. For every derivation D ∈ Der(g) and x, y ∈ g we have κ(D(x), y)+κ(x,D(y)) =
0.

Proof. Using [D, ad(x)] = ad(D(x)) and the invariance we have

κ(D(x), y) = tr(ad(D(x)) ad(y))

= tr([D, ad(x)] ad(y))

= − tr(ad(x)[D, ad(y)])

= − tr(ad(x) ad(D(y)))

= −κ(x,D(y)).

�



2.2. THE CARTAN CRITERION 43

Lemma 2.2.6. let ρ : g→ gl(V ) be a representation, β be a ρ-invariant bilinear form on g,
and U ⊂ V be a subrepresentation of V . Then U⊥ is a subrepresentation of V .

Proof. Let u ∈ U , v ∈ U⊥ and x ∈ g. Then β(ρ(x)(v), u) = −β(v, ρ(x)(u)) = 0, since
ρ(x)(u) ∈ U . Hence we have ρ(x)(v) ∈ U⊥, and thus U⊥ is invariant under g. �

Applying this lemma to the Killing form β = κ we obtain the following corollary.

Corollary 2.2.7. For every ideal a in g the orthogonal space a⊥ with respect to the Killing
form is an ideal in g.

We’ll need the following result concerning nilpotency.

Proposition 2.2.8. Let V be a finite-dimensional k-vector space over a field k of charac-
teristic zero and E ⊆ F two subspaces of End(V ). Let x ∈ End(V ) be an endomorphism with
ad(x)(F ) ⊆ E. If tr(xy) = 0 for all y ∈ End(V ) with ad(y)(F ) ⊆ E, then x is nilpotent.

Proof. Let M = {y ∈ End(V ) | ad(y)(F ) ⊂ E}. Suppose first that k is algebraically
closed. Let (v1, . . . , vn) be a basis of V consisting of eigenvectors of xs, say xsvi = λivi for
suitable λi ∈ k. Let Q = spanQ{λ1, . . . , λn} be the Q-vector space in k spanned by the λi. We
need to show that Q = 0. Then x = xs + xn = xn is nilpotent.

Suppose that Q 6= 0. Then also the dual space Q∗ is nonzero. Hence there exists a non-
vanishing Q-linear map f : Q → Q. Define y ∈ End(V ) by yvi = f(λi)vi for i = 1, . . . , n. We
claim that y ∈M . We have

ad(y)(Eij) = (f(λi)− f(λj))Eij

= f(λi − λj)Eij
for all i and j. Hence

Eµ(ad(y)) =
⊕
f(λ)=µ

Eλ(ad(xs)),

so in particular ad(y)(F ) ⊂ E, since ad(xs)(F ) ⊆ E, see Corollary 2.1.7. Hence by assumption
we have

0 = tr(xy) =
n∑
i=1

λif(λi).

It follows that

0 = f(0) = f(tr(xy)) =
n∑
i=1

f(λi)
2.

So f(λi) = 0 for all i, contradicting the assumption that f 6= 0.

If k is not algebraically closed we may replace V by V ⊗k F, where F is an algebraic closure of
k. Then we consider instead of x, y ∈ End(V ) their F-linear extensions in End(V ⊗k F). It is
not difficult to see how to finish the proof. �

Now we’ll introduce the linear case of the so-called Cartan-criterion.

Proposition 2.2.9. Let g ⊂ gl(V ) be a linear Lie algebra over a field k of characteristic
zero. Then g is solvable if and only if tr(xy) = 0 for all x ∈ g and all y ∈ [g, g].
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Proof. We may assume that k is algebraically closed, because otherwise we may replace
V by V ⊗k F and g by g⊗k F, where F is an algebraic closure of k.

Suppose that g is solvable. Then we may, by Lie’s Theorem, identify g with a Lie subalgebra
of tn(k), and [g, g] with a Lie subalgebra of nn(k). Then we have, for x ∈ tn(k) and y ∈ nn(k)
that tr(xy) = 0. The argument for this is the same as the one in Lemma 2.2.4.

Conversely suppose that tr(xy) = 0 for all x ∈ g and y ∈ [g, g]. By Corollary 1.6.30 it suffices
to show that [g, g] is nilpotent in order to conclude that g is solvable. By Engel’s Theorem
[g, g] is nilpotent if and only if all ad(x) for x ∈ [g, g] are nilpotent. It is enough to show
that all x ∈ [g, g] are nilpotent. By Lemma 2.1.8 then also all ad(x) are nilpotent. Fix an
arbitrary x ∈ [g, g]. We want to apply Proposition 2.2.8 with E = [g, g] and F = g and with
g ⊂M = {y ∈ End(V ) | [y, g] ⊂ [g, g]}. For this we need to show that tr(xy) = 0 for all y ∈M .
Since x is the sum of commutators, and the trace is linear it suffices to show that tr([a, b]y) = 0
with a, b ∈ g for all y ∈M . By the invariance of the trace form we have tr([a, b]y) = tr(a[b, y]).
So we have [b, y] ∈ [g, g] because of y ∈ M . By assumption the trace on the right hand side is
always zero and Proposition 2.2.8 yields that x ∈ [g, g] is nilpotent. �

Corollary 2.2.10. Let g be a Lie algebra over a field k of characteristic zero. Then g is
solvable if and only if κ(g, [g, g]) = 0.

Proof. Suppose that g is solvable. Then ad(g) is solvable, too, as an homomorphic image.
By the above proposition it follows that tr(ad(x) ad(y)) = 0 for all x ∈ g and all y ∈ [g, g].

Conversely, suppose that κ(g, [g, g]) = 0. Then ad(g) is solvable by the Cartan criterion. Then
also g is solvable, because of ad(g) ∼= g/Z(g). �

Remark 2.2.11. We may rewrite the condition κ(g, [g, g]) = 0 as [g, g]⊥ = g. It means
that tr(ad(x) ad(y)) = 0 for all x ∈ g and all y ∈ [g, g]. In general we have [g, g]⊥ = rad(g).
Furthermore g is solvable if and only if κρ(g, [g, g]) = 0, where ρ is some finite-dimensional
representation of g.

Now we’ll come to Cartan’s criterion for semisimplicity.

Proposition 2.2.12. Let g be a finite-dimensional Lie algebra over a field k of characteristic
zero. The the following assertions are equivalent.

(1) g is semisimple.
(2) The solvable radical rad(g) is zero.
(3) The Killing form on g is non-degenerate.

Proof. (1)⇒ (2): This is exactly the assertion of Lemma 1.6.22.

(2)⇒ (3): Let a = g⊥ be the orthogonal space of g with respect to κ. Then a is an ideal in g
because of Corollary 2.2.7. We claim that κa(x, y) = κ(x, y) for all x, y ∈ a. The endomorphisms
ad(x) and ad(y) map g to a. Thus this holds for ad(x) ad(y), too. Hence we have

κa(x, y) = tr(ad(x)a ad(y)a) = tr((ad(x) ad(y))a)

= tr(ad(x) ad(y)) = κ(x, y).

So we have

κa(a, [a, a]) = κ(a, [a, a]) ⊂ κ(a, g) = 0.

It follows from Corollary 2.2.10 that a is solvable. Hence a ⊂ rad(g) = 0 and κ is non-
degenerate.
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(3) ⇒ (2): Let a be an abelian ideal in g. For x ∈ a and y ∈ g the space im(ad(x) ad(y)) is a
Lie subalgebra of a and hence we have (ad(x) ad(y))2 = 0, since a is abelian. Thus ad(x) ad(y)
is nilpotent and tr(ad(x) ad(y)) = 0. So we have κ(a, g) = 0. Since κ is non-degenerate we
obtain a = 0. Hence rad(g) = 0.

(2) ⇒ (1): Let a be an ideal in g. Then b = a⊥ ∩ a is an ideal in g. The restriction of κ on
b × b vanishes. For a, b ∈ b and x ∈ g we have [b, x] ∈ b, hence in particular [b, x] ∈ a⊥ and
κ([a, b], x) = κ(a, [b, x]) = 0. Then b is solvable by Corollary 2.2.10, so that b ⊂ rad(g) = 0
and a⊥ ∩ a = 0. We already have shown that (2) implies that κ is non-degenerate. Hence we
have dim a⊥ = dim g − dim a, and therefore g = a ⊕ a⊥ is a direct sum of ideals. Hence g is
reductive. Because of Z(g) ⊂ rad(g) = 0, by Proposition 1.4.5, g is semisimple. �

Remark 2.2.13. The implication (3)⇒ (1) remains true in characteristic p > 0. However,
the converse implication (1) ⇒ (3) need not be true in characteristic p > 0. For example, the
classical Lie algebra psln(k) for p | n is simple (sln(k) has a 1-dimensional center z for p | n with
simple quotient psln(k) = sln(k)/z). However, the Killing form of psln(k) is identically zero.

We want to formulate the following fact, which we have shown in the proof above, as a
lemma.

Lemma 2.2.14. Let a be an ideal in g. Then the Killing form κa of a is the restriction of
the Killing form κ of g on a× a.

Corollary 2.2.15. Let n ≥ 2 and k be a field of characteristic zero. Then the Lie algebra
sln(k) is semisimple.

Proof. By Cartan’s criterion it suffices to show that the Killing form on sln(k) is non-
degenerate. Let X = (xij) ∈ sln(k) be given such that κ(X, Y ) = 0 for all Y ∈ sln(k). A direct
calculation shows that κ(X, Y ) = 2n tr(XY ). So for Y = Eij with i 6= j we have

0 = κ(X,Eij) = 2nxji.

Since 2n 6= 0, X is a diagonal matrix. For Y = Eii − Ejj we obtain

0 = κ(X,Eii − Ejj) = 2n(xii − xjj)
for 1 ≤ i, j ≤ n. Hence X = λEn. So tr(X) = 0 implies that X = 0. Hence κ is non-
degenerate. �

Corollary 2.2.16. Let g be a Lie algebra with solvable radical rad(g). Then g/ rad(g) is
semisimple.

Proof. Because of Lemma 1.6.21 we have rad(s) = 0 for s = g/ rad(g). Then s is semisim-
ple by Proposition 2.2.12. �

Proposition 2.2.17. Let g be a finite-dimensional Lie algebra over a field k of characteristic
zero, and a be a semisimple ideal in g. Then g = a⊕ a⊥ and a⊥ is the centralizer of a in g.

Proof. Since a is semisimple, the Killing form κa = κ|a×a of a is non-degenerate. As above
we obtain that g = a⊕ a⊥ is the direct sum of ideals. Because of Z(a) = 0 the centralizer of a
is a⊥, hence Zg(a) = a⊥. �

Corollary 2.2.18. Let g be a finite-dimensional semisimple Lie algebra over a field k of
characteristic zero. Then we have Der(g) = ad(g). In other words, all derivations of g are
inner.
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Proof. We apply Proposition 2.2.17 to the Lie algebra Der(g). Since Z(g) = 0 we have
ad(g) ∼= g, so ad(g) is a semisimple ideal in Der(g). Hence we have Der(g) = ad(g) ⊕ ad(g)⊥.
But ad(g)⊥ is the centralizer of ad(g) in Der(g) by Proposition 2.2.17, and this is zero. For
D ∈ ad(g)⊥ we have

ad(D(x)) = [D, ad(x)] = 0 ∀ x ∈ g.

Since ad is injective, we obtain D = 0 and hence ad(g)⊥ = 0. �
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2.3. Weyl’s Theorem

Weyl’s Theorem is a central result in the theory of representations of semisimple Lie alge-
bras. Note that we always assume that the Lie algebras and their representations are finite-
dimensional. The original proof of this result by Weyl uses integration on compact Lie groups.
Afterwards a purely algebraic proof was found by van der Waerden, based on work of the
physicist Hendrik Casimir, who lived from 1909 till 2000. Brauer discovered in 1937 another
algebraic proof. The result also follows from the Whitehead Lemma about Lie algebra coho-
mology.

Let us give an elementary algebraic proof using Casimir elements associated to a non-degenerate
bilinear form β. The radical of β is defined by

rad(β) = {x ∈ g | β(x, y) = 0 ∀ y ∈ g}.

So β is non-degenerate if and only if rad(β) = 0. If this is the case then for a given basis
(x1, . . . , xn) of g there exists a unique dual basis (x1, . . . , xn) with respect to β, given by
β(xi, x

j) = δij.

Lemma 2.3.1. Let β be a non-degenerate invariant bilinear form on a Lie algebra g with
basis (x1, . . . , xn) and (x1, . . . , xn) be the dual base with respect to β. Let ρ : g → A be a
homomorphism into an associative algebra, i.e., satisfying also ρ([x, y]) = ρ(x)ρ(y)−ρ(y)ρ(x) =
[ρ(x), ρ(y)]. Then the element

Ω(β, ρ) =
n∑
j=1

ρ(xj)ρ(xj)

in A commutes with all ρ(x).

Proof. Let z ∈ g. The we can write

[z, xj] =
n∑
k=1

akjxk,

[z, xj] =
n∑
k=1

ajkxk

with elements akj, a
jk ∈ k. We have

akj = β([z, xj], x
k) = −β(xj, [z, x

k]) = −akj.

Then

ρ(xj)ρ(xj)ρ(z)− ρ(z)ρ(xj)ρ(xj) = ρ(xj)
(
ρ(xj)ρ(z)− ρ(z)ρ(xj)

)
−
(
ρ(z)ρ(xj)− ρ(xj)ρ(z)

)
ρ(xj).
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It follows, writing Ω = Ω(β, ρ),

Ωρ(z)− ρ(z)Ω =
n∑
j=1

ρ(xj)ρ(xj)ρ(z)− ρ(z)ρ(xj)ρ(xj)

=
n∑
j=1

ρ(xj)[ρ(xj), ρ(z)]− [ρ(z), ρ(xj)]ρ(xj)

=
n∑
j=1

ρ(xj)ρ([xj, z])− ρ([z, xj])ρ(xj)

=
n∑

j,k=1

−akjρ(xj)ρ(xk)− ajkρ(xk)ρ(xj)

=
n∑

j,k=1

akjρ(xj)ρ(xk)− ajkρ(xk)ρ(xj)

=
n∑

j,k=1

akjρ(xj)ρ(xk)−
n∑

j,k=1

akjρ(xj)ρ(xk)

= 0.

�

Definition 2.3.2. Let β be a non-degenerate invariant bilinear form on g and ρ be a
representation of g as above. Then the element Ω(β, ρ) ∈ A is called a (quadratic) Casimir
element with respect to β and ρ.

It is easy to see that Ω(β, ρ) does not depend on the choice of a basis for g.

Lemma 2.3.3. Let g be a semisimple Lie algebra and ρ : g→ gl(V ) be a faithful representa-
tion of g. Then β(x, y) = tr(ρ(x)ρ(y)) is a symmetric non-degenerate invariant bilinear form
on g.

Proof. Any trace form is invariant because of tr([A,B]C) = tr(A[B,C]) for A,B,C ∈
End(V ). Hence rad(β) is an ideal in g. Since ρ is injective we have ρ(rad(β)) ∼= rad(β). By
definition of the radical the trace form vanishes there, so that rad(β) is solvable by the linear
Cartan criterion. Hence we have rad(β) ⊂ rad(g) = 0 and β is non-degenerate. �

We can define the Casimir element with respect to β and ρ in particular for the algebra
A = End(V ). Then ρ is a Lie algebra representation and Ω(β, ρ) is an endomorphism of V ,
also called Casimir operator. We have

tr(Ω) =
n∑
j=1

tr(ρ(xj)ρ(xj))

=
n∑
j=1

β(xj, x
j)

=
n∑
j=1

1 = dim g.
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A possible faithful representation of g is ρ = ad, because g is semisimple and hence ker(ad) =
Z(g) = 0.

Example 2.3.4. Let g = sl2(k), V = k2 and ρ be the identity map g→ gl(V ). Let (x, y, h)
be the standard basis of g and β be the trace from on g. Then we have

Ω(β, id) =

(
3/2 0
0 3/2

)
.

To see this, first note that the dual basis with respect to β is given by (y, x, h
2
). Then

Ω(β, id) = ρ(x)ρ(y) + ρ(y)ρ(x) +
ρ(h)2

2
=

(
3/2 0
0 3/2

)
,

recalling from Example 1.2.16 that

ρ(x) =

(
0 1
0 0

)
, ρ(y) =

(
0 0
1 0

)
, ρ(h) =

(
1 0
0 −1

)
.

So Ω acts here as a scalar, i.e., by λ · id with λ ∈ k. This is clear. Indeed, the representation
ρ is simple and Ω commutes with all ρ(x) by Lemma 2.3.1. Then Schur’s Lemma 1.2.31 gives
Ω = λ · id. More precisely, we have λ = 3

2
= dim g

dimV
.

Let us mention another consequence of Schur’s Lemma here, see [19].

Lemma 2.3.5. Let g be a simple Lie algebra and α(x, y), β(x, y) be two symmetric non-
degenerate invariant bilinear forms on g. Then there is a nonzero scalar µ ∈ k∗ with α(x, y) =
µβ(x, y) for all x, y ∈ g.

In particular the Killing form of simple Lie algebras is a scalar multiple of the trace form.
The following table shows a few examples. Note that gl(n) is reductive but not simple.

g κ(x, y)
gl(n), n ≥ 2 2n tr(xy)− 2 tr(x) tr(y)
sl(n), n ≥ 2 2n tr(xy)
so(n), n ≥ 3 (n− 2) tr(xy)
sp(2n), n ≥ 1 2(n+ 1) tr(xy)

Remark 2.3.6. One can ask how we may express the Killing form tr(ad(x) ad(y)) and more
generally also tr(ad2(x) ad2(y)) by the trace form. We may write

tr((ad(x))2(ad(y))2) = αn tr(x2y2) + βn tr(xyxy) + γn tr(x2) tr(y2)

+ δn(tr(xy))2

with certain scalars αn, βn, γn, δn depending on n. To give an example, let g = sl(n). Then it
is easy to see that we have, for all x, y ∈ sl(n),

tr((ad(x))2(ad(y))2) = 2n tr(x2y2) + 2 tr(x2) tr(y2) + 4(tr(xy))2.
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Indeed, for n ≥ 4 we obtain from the above the following system of linear equations

βn + δn = 4,

αn + βn + 2γn + 2δn = 2n+ 12,

αn + βn + 4γn + δn = 2n+ 12,

γn = 2.

This system has a unique solution as above. How do we obtain the linear equations? We ex-
plicitly compute the terms with respect to a standard basis of sl(n). The adjoint representation
is given by the formula (1.1). For example, for hi = Eii − Ei+1,i+1 we obtain that ad(hi) is a
diagonal matrix with 2(n − 2) entries 1, 2(n − 2) entries −1, once 2, once −2 and otherwise
zeros on the diagonal. Hence ad2(hi) is a diagonal matrix with 4(n−2) entries 1 and 2 entries 4
on the diagonal, yielding trace 4n. So we have tr(ad4(hi)) = 4n+ 24. Plugging into our Ansatz
x = y = hi, we obtain

4n+ 24 = 2αn + 2βn + 4γn + 4δn.

This is the second linear equation listed, providing we have 2 6= 0. Similarly we obtain the
other equations.

We also can show that, for all x, y ∈ so(n),

tr((ad(x))2(ad(y))2) = (n− 6) tr(x2y2)− 2 tr(xyxy) + tr(x2) tr(y2)

+ 2(tr(xy))2.

Now we are ready to prove Weyl’s Theorem.

Theorem 2.3.7 (Weyl). Let ρ : g→ gl(V ) be a representation of a semisimple Lie algebra
over a field k of characteristic zero. Then ρ is semisimple.

Proof. Step (1): Since V is semisimple as g-module if and only if V is semisimple as ρ(g)-
module, we may replace g by ρ(g) and assume that g ⊂ gl(V ) and ρ = id. Then β(x, y) = tr(xy)
is a symmetric invariant bilinear form. It is non-degenerate, since rad(β) is a solvable ideal by
the linear Cartan criterion. Hence rad(β) ⊂ rad(g) = 0. Thus we may define the associated
Casimir element Ω =

∑n
j=1 ρ(xj)ρ(xj) ∈ End(V ). It lies in Endg(V ) = {A ∈ End(V ) | Ax =

xA ∀x ∈ g}, with tr(Ω) = dim g = n. Note that Ax and xA are products of endomorphisms.
Suppose that ρ is a simple representation. Then Ω is an automorphism of V and we have
tr(Ω) 6= 0, since g 6= 0 and k has characteristic zero. So Ω 6= 0 and Schur’s Lemma yields
Ω = λ · id with λ 6= 0.

Step (2): Let W ⊂ V be a subrepresentation of codimension 1. We’ll show that W has a
complement. Since dimV/W = 1 we know that g = [g, g] acts trivially on V/W , because all
commutators of endomorphisms of a 1-dimensional vector space vanish.

(a): We’ll show that we may assume that W is simple. Indeed, suppose that the claim in (2)
holds for all simple modules. Then we use induction on dimV to show that the claim holds in
general. So let 0 6= V1 ⊂ V be a minimal submodule. For V being simple there is nothing to
show. So assume that V1 6= V is a proper submodule. If V1∩W = 0, then V1 is already a module
complement for W , since we then have W + V1 = V because of dimV/W = 1. Otherwise, if
V1∩W 6= 0, then we obtain V1 ⊂ W from the minimality of V1. Now we can apply the induction
hypothesis on V/V1. So the submodule W/V1 of codimension 1 has a module complement U ,
which we can write as

U = U ′/V1
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for a submodule U ′ ⊃ V1 of V . Hence we have W/V1⊕U ′/V1 = V/V1 with dimU ′/V1 = 1. Thus
V1 ⊂ U ′ is a simple submodule of codimension 1. We may apply the claim (2) to it, to find a
module complement V2 to V1 in U ′, so V1⊕ V2 = U ′. Then V2 is a module complement to W in
V , hence V = W ⊕ V2, because dimW + dimV2 = (dimV − 1) + 1 = dimV and W ∩ V2 = 0.

(b): We claim that g acts faithfully on W . Let a = {x ∈ g | x.W = 0}. This is an ideal in
g. Since g is semisimple, so is a and we have a = [a, a]. Because of g.(V/W ) = 0 we have
g.V ⊂ W , and hence [a, a] = 0, because for x, y ∈ a we have xy.V ⊂ x.W = 0. This we have
a = 0 and therefore the representation of of g on W is faithful.

(c): We can now prove the claim (2). So let W be simple. Let ρV be the representation of g on V
and ρW be the restriction on W . The latter is faithful, see (b). Thus we can define the Casimir
operator ΩW ∈ End(V ), which is associated to the bilinear form κρW (x, y) = tr(ρW (x)ρW (y)).
Because of (1), ΩW is injective on the simple module W , because it acts there as a nonzero
scalar. Hence ker(ΩW ) is a 1-dimensional g-submodule of V , having trivial intersection with W .
So we have V = W ⊕ ker(ΩW ). Thus the desired complement to W in V is given by ker(ΩW ).

Step (3): Now we can prove the general case, where W ⊂ V is an arbitrary submodule. We
may equip the space Hom(V,W ) with a structure of a g-module by

x.ϕ = ρW (x) ◦ ϕ− ϕ ◦ ρV (x), x ∈ g, ϕ ∈ Hom(V,W ).

Then the space
U = {ϕ ∈ Hom(V,W ) | ϕ|W ∈ k · idW}

is a g-submodule, since for ϕ ∈ U we even have (x.ϕ)(W ) = 0. Indeed, we obtain, with
ϕ|W = λ · idW and w ∈ W , that

(x.ϕ)(w) = x.ϕ(w)− ϕ(x.w)

= x.(λw)− λx.w
= 0.

Hence U0 = {ϕ ∈ U | ϕ(W ) = 0} is a submodule of U with dimU/U0 = 1. With (2) we find
a ψ ∈ U with kψ ⊕ U0 = U . By applying a suitable scalar multiplication we may assume that
ψ|W = idW . Then the 1-dimensional g-module kψ is trivial, and hence we have x.ψ = 0 and
x.ψ(v) − ψ(x.v) = (x.ψ)(v) = 0. Thus ψ is a module homomorphism and therefore ker(ψ) is
a submodule of V . But then ker(ψ) is a complementary submodule to W in V , i.e., we have
V = ker(ψ)⊕W and V is semisimple. �

Remark 2.3.8. The “converse” of Weyl’s Theorem also holds. If every finite-dimensional
representation of g is semisimple, then g is semisimple. In fact, since the adjoint representation
is semisimple, every ideal in g has a complementary ideal and hence can be viewed as a quotient
of g. Suppose that g is not semisimple. Then g has a commutative quotient, hence also a 1-
dimensional quotient. But the Lie algebra g = k also has non-semisimple representations, see
Example 1.2.28. This is a contradiction.
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2.4. Levi’s Theorem

In this section all Lie algebras are finite-dimensional over a field k of characteristic zero.
Levi’s Theorem says that any Lie algebra g has a semisimple subalgebra s, a so-called Levi
complement, with g ∼= sn rad(g). In other words, the short exact sequence of Lie algebras

0→ rad(g)→ g→ s→ 0

splits. In this case, s ∼= g/ rad(g). A Levi complement need not be unique. Malcev’s Theorem
says that all Levi complements are conjugated by special automorphisms of g.

The existence of Levi complements reduces the classification of Lie algebras to a large extend
to the classification of semisimple and solvable Lie algebras. The semisimple Lie algebras can
be classified, whereas the solvable ones cannot in general. We start with the following lemma.

Lemma 2.4.1. Let α : g→ h be a surjective homomorphisms of Lie algebras. Then we have
α(rad(g)) = rad(h).

Proof. Since rad(g) is a solvable ideal in g, also α(rad(g)) is a solvable ideal in h, since α is
a surjective homomorphism. We have α(rad(g)) ⊂ rad(h). To see this, we note that α(rad(g))
is an ideal in h, because

[h, α(rad(g))] = [α(g), α(rad(g))] = α([g, rad(g)]) ⊂ α(rad(g)).

It is solvable since homomorphic images of solvable Lie algebras are solvable. Conversely, con-
sider the quotient map π : h→ h/α(rad(g)) and the homomorphism β = π◦α : g→ h/α(rad(g)).
Because of rad(g) ⊂ ker(β), β factorizes to a surjective homomorphisms β′ : g/ rad(g) →
h/α(rad(g)). Since g/ rad(g) is semisimple by Corollary 2.2.16, also h/α(rad(g)) is semisimple,
being a homomorphic image of g/ rad(g). Hence we have π(rad(h)) ⊂ rad(h/α(rad(g))) = 0,
and rad(h) ⊂ α(rad(g)). �

Lemma 2.4.2. Let V be a g-module, a be an ideal in g, and Za(w) = {x ∈ a | x.w = 0} for
w ∈ V . Let v ∈ V be an element with g.v = a.v and Za(v) = 0. Then we have g ∼= Zg(v) n a.

Proof. By assumption Zg(v) ∩ a = Za(v) = 0 and a is an ideal. Moreover Zg(v) is a
subalgebra of g. So we only need to show that Zg(v) + a = g. Consider the linear map
ϕ : g → V, x 7→ x.v. Because of g.v = a.v we have ϕ(g) = ϕ(a), and hence g = ker(ϕ) + a =
Zg(v) + a. �

Theorem 2.4.3 (Levi). Every short exact sequence of Lie algebras in characteristic zero

0→ rad(g)
ι−→ g

α−→ s→ 0

with a semisimple Lie algebra s splits, i.e., there is a homomorphism β : s→ g with α ◦β = ids.

Proof. Let a = ker(α) = ι(rad(g)). We will prove the result by induction over dim a. For
a = 0, the homomorphism α is injective and surjective. Then the claim follows with β = α−1.
So we may assume that dim(a) ≥ 1. We will make a case distinction.

Case 1: There exists a proper minimal ideal a1 in a = ker(α), which is different from 0 and a.
Then α factorizes to a surjective homomorphism

α1 : g/a1 → s

with dim ker(α1) = dim a− dim a1 < dim a = dim ker(α). By induction hypothesis there exists
a homomorphism

β1 : s→ g/a1 with α1 ◦ β1 = ids .
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Let q : g→ g/a1 be the quotient map and

b = q−1(β1(s))

the preimage of β1(s) under q. Then b is a subalgebra of g and the homomorphism

α̃ = q |b : b→ β1(s) ∼= s, x 7→ x+ a1

is surjective. We have dim ker(α̃) = dim a1 < dim a = dim ker(α), so that by induction hypoth-
esis there exists a homomorphism

β̃ : β1(s)→ b with α̃ ◦ β̃ = idβ1(s) .

But then β = β̃ ◦ β1 : s→ g is a homomorphism with

α ◦ β = α1 ◦ (α̃ ◦ β̃) ◦ β1 = α1 ◦ β1 = ids

and we are done.

Case 2: The ideal a itself is minimal and different from 0. We have α(rad(g)) = rad(s) = 0
because of Lemma 2.4.1 and since s is semisimple. So we have rad(g) ⊂ ker(α) = a. If
rad(g) = 0, then a = ker(α) = ι(0) = 0, a contradiction. So we may assume that rad(g) 6= 0.
Chose a maximal n ≥ 1 such that rad(g)(n) 6= 0. This is an abelian ideal of g different from
zero, because 0 = rad(g)(n+1) = [rad(g)(n), rad(g)(n)]. Since a was minimal, it follows that
a ⊂ rad(g)(n). Thus a is abelian. Then a is in the kernel of the representation

ρ : g→ gl(a), x 7→ ad(x) |a

which then factorizes by the homomorphism theorem to a representation of g/a on a. Since
α : g → s is a surjective homomorphism, we have g/ ker(α) = g/a ∼= s. This way a becomes a
s-module, which is even simple, because a is minimal. Here we need another case distinction.

Case 2a: Let a be a trivial s-module. Then a is contained in the center of g. Hence a is
contained in the kernel of the adjoint representation of g. By the homomorphism theorem the
adjoint representation of g factorizes to a representation of s. This way g becomes a s-module,
which is semisimple by Weyl’s Theorem. Hence there exists a complement to a, namely an
ideal which is complementary to a in g. But then we have g ∼= g/a ⊕ a ∼= s ⊕ rad(g). Hence
the above short exact sequence is split and we are done.

Case 2b: Let a be a non-trivial s-module. The vector space V = End(g) becomes a g-module
by x.ϕ = [ad(x), ϕ]. We consider the following subspaces P ⊂ Q ⊂ R of V :

P = ad(a),

Q = {ϕ ∈ V | ϕ(g) ⊂ a, ϕ(a) = 0},
R = {ϕ ∈ V | ϕ(g) ⊂ a, ϕ |a∈ k · ida}.

Here Q is the kernel of the linear map χ : R→ k with ϕ |a= χ(ϕ)·ida. Therefore dim(R/Q) ≤ 1.
We show that these subspaces are g-submodules of V . Let y ∈ g. For ad(x) ∈ P we have
y. ad(x) = [ad(x), ad(y)] = ad([x, y]) ∈ P . Therefore P is a submodule. To see that R and Q
are submodules, it suffices to show that g.R ⊂ Q. So let x ∈ g, ϕ ∈ R and ϕ |a= λ ida. For
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a ∈ a we have

(x.ϕ)(a) = x.ϕ(a)− ϕ([x, a])

= x.(λa)− λ[x, a]

= 0,

so x.ϕ ∈ Q. So we are done. Furthermore, we have a.R ⊂ P , because for y ∈ a we have
ad(y)(a) = 0, since a is abelian and therefore

y.ϕ = ad(y) ◦ ϕ− ϕ ◦ ad(y) = −λ ad(y) ∈ P.
Hence the ideal a acts trivially on the quotient module R/P , which becomes a g/a-module this
way, and hence a s-module. By Weyl’s Theorem there exists a module complement U to the
submoduleQ/P ofR/P with dimU = 1. It is spanned by a vector v ∈ R\Q, and we may assume
that v |a= ida. Because of s = [s, s] we know that U is a trivial s-module, so that g.v ⊂ P .
We want to apply Lemma 2.4.2 to this vector v. For this we need to check the assumptions of
the lemma. For x ∈ a we have by the above computation x.v = −λ ad(x) = − ad(x). Assume
that x.v = 0. Then x ∈ Z(a). Since a by assumption is a non-trivial s-module, a is a minimal
non-central ideal of g. Hence we have x ∈ Z(a) = 0. Thus we have

Za(v) = 0,

a.v = ad(a) = P = g.v.

Now we can apply the lemma to obtain the claim, and the proof is finished. �

Let us now formally define a Levi complement.

Definition 2.4.4. Let g be a Lie algebra. A subalgebra s of g with g ∼= sn rad(g) is called
a Levi complement in g.

Corollary 2.4.5. Let g be a Lie algebra. Then there exists a Levi complement in g.

Proof. We claim that s = g/ rad(g) is a Levi complement in g. First note that s is
semisimple by Corollary 2.2.16. Let α : g → s be the quotient map. By Levi’s Theorem there
exists a homomorphism β : s→ g with α ◦ β = ids. Then β is injective, so β(s) ∩ ι(rad(g)) = 0
and β(s) + ι(rad(g)) = g. This amounts to g ∼= β(s) n ι(rad(g)) and we are done. �

We obtain a further corollary to Levi’s Theorem.

Corollary 2.4.6. Let s be a Levi complement in g. Then

[g, g] ∼= sn [g, rad(g)].

If g is reductive, so that rad(g) = Z(g), then [g, g] is a Levi complement in g.

Proof. Since s is semisimple we have [s, s] = s. So we have, because of g = s + rad(g),

[g, g] = [g, s] + [g, rad(g)]

= [s, s] + [rad(g), s] + [g, rad(g)]

= s + [g, rad(g)].

Because of s ∩ rad(g) = 0 we have s ∩ [g, rad(g)] = 0.

For the second claim note that rad(g) = Z(g) is equivalent to [g, rad(g)] = 0, so to [g, g] ∼= s. �

Example 2.4.7. For g = gl(V ) we have rad(g) = Z(g) = k · id, and s = [g, g] = sl(V ) is a
Levi complement in g.
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Now we will come to Malcev’s Theorem. Let Aut(g) be the group of automorphisms of g,
consisting of all bijective Lie algebra endomorphisms of g.

Lemma 2.4.8. Let g be a Lie algebra and D a nilpotent derivation of g. Then eD = exp(D)
is an automorphism of g.

Proof. First of all, eD is an automorphism of the vector space of g. The series is finite,
since D is nilpotent. The inverse is given by the series e−D. For x, y ∈ g we have

Dp([x, y]) =

p∑
j=0

(
p

j

)
[Dp−j(x), Dj(y)],

which follows easily by induction. Then we have

eD([x, y]) =
∞∑
p=0

1

p!
Dp([x, y])

=
∞∑
p=0

p∑
j=0

1

(p− j)!j!
[Dp−j(x), Dj(y)]

=
∞∑
j=0

∞∑
p=j

1

(p− j)!j!
[Dp−j(x), Dj(y)]

=
∞∑
j=0

∞∑
p=0

1

p!j!
[Dp(x), Dj(y)]

= [eD(x), eD(y)].

Hence we have eD ∈ Aut(g). �

In particular, for D = ad(x), we have ead(x) ∈ Aut(g). Such an automorphism has a special
name.

Definition 2.4.9. Let g be a Lie algebra. An automorphism of the form ead(x) with x ∈
nil(g) is called special. Let Auts(g) denote the subgroups of Aut(g) generated by all special
automorphisms.

One can show that Auts(g) is a normal subgroup of Aut(g).

Theorem 2.4.10 (Malcev). Let g be a Lie algebra and s1 and s2 be two Levi complements
in g. Then there exists a special automorphism ϕ = ead(x) Auts(g) with x ∈ [g, rad(g)] ⊂ nil(g),
such that ϕ(s1) = s2.

We do not prove the result here. For a proof, see for example [5], where Weyl’s Theorem is
used in the proof. Let us give some corollaries to Malcev’s Theorem.

Corollary 2.4.11. Every semisimple subalgebra h of a Lie algebra g is contained in a Levi
complement of g.

Proof. Let a = rad(g) + h. Then a is a subalgebra of g and rad(g) is a solvable ideal in a.
Then

a/ rad(g) ∼= h/(h ∩ rad(g))

is a quotient of h and therefore it is semisimple and has a trivial solvable radical. So we have
rad(g) = rad(a). The ideal h ∩ rad(g) of h is semisimple and at the same time solvable, hence
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equal to zero. Thus we have a = hn rad(g) and h is a Levi complement in a. Let s be a Levi
complement in g. Then

a = (a ∩ s) n rad(g).

Since a∩s ∼= a/ rad(g) ∼= h is semisimple, a∩s is a Levi complement in a. By Malcev’s Theorem
there exists a x ∈ [a, rad(g)] with

ead(x)(a ∩ s) = h.

Hence h is contained in the Levi complement s′ = ead(x)(s) of g. �

Corollary 2.4.12. The Levi complements in g are exactly the maximal semisimple subal-
gebras of g.

Proof. Every maximal semisimple subalgebra of g is a Levi complement because of Corol-
lary 2.4.11. Conversely, let s be a Levi complement. For each semisimple subalgebra h of g we
have rad(g) ∩ h = 0, hence h ⊂ s, because of g = sn rad(g). �

Corollary 2.4.13. Let g be a Lie algebra with Levi decomposition g = sn rad(g) and a be
an ideal in g. Then a = (a ∩ s) n (a ∩ rad(g)) is a Levi decomposition of a.

Proof. Exercise. �

2.5. Cartan subalgebras

The adjoint representation of a Lie algebra g, restricted to a suitable subalgebra h, can give
a lot of structural information on the Lie algebra g. For h ∈ g and λ ∈ k let

gλ(h) = {x ∈ g | (ad(h)− λ id)nx = 0 for some n}
be the generalized eigenspace of ad(h) to λ. Clearly we have gλ(h) 6= 0 if and only if λ is an
eigenvalue of ad(h). Because of ad(h)(h) = 0 we have g0(h) 6= 0. In case k is algebraically
closed, the Jordan decomposition of ad(h) yields

g =
⊕
λ∈k

gλ(h)

=

p⊕
i=0

gλi(h),

= g0(h)⊕
p⊕
i=1

gλi(h)

where λ0 = 0, λ1, . . . , λp are the different eigenvalues of ad(h).

Lemma 2.5.1. Let h ∈ g. Then

[gλ(h), gµ(h)] ⊂ gλ+µ(h)

for all λ, µ ∈ k.

Proof. Let x ∈ gλ(h) and y ∈ gµ(h). Then we have, as in (2.1), for all n ≥ 1

(ad(h)− (λ+ µ)E)n([x, y]) =
n∑
k=0

(
n

k

)
[(ad(h)− λE)k(x), (ad(h)− µE)n−k(y)].

So if we have (ad(h)− λE)p(x) = 0 and (ad(h)− µE)q(y) = 0, then

(ad(h)− (λ+ µ)E)p+q([x, y]) = 0.
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�

In particular, the following holds.

Corollary 2.5.2. The subspace g0(h) in the above decomposition is a Lie subalgebra dif-
ferent from zero in g.

Now consider the characteristic polynomial Ph(t) = det(tE−ad(h)) of ad(h). Let n = dim g,
then we can write this polynomial with polynomial functions ai(h) in h ∈ g as

Ph(t) =
n∑
i=0

ai(h)ti.

Since zero is an eigenvalue of ad(h), we have Ph(0) = 0 and therefore a0 = 0. Furthermore we
have an = 1.

Definition 2.5.3. Let g be a finite-dimensional Lie algebra over an algebraically closed
field k. The rank of g, denoted by ` = rank g, is the smallest integer i ≥ 0 with ai 6= 0. An
element h ∈ g is called regular, if a`(h) 6= 0.

This number satisfies 1 ≤ rank g ≤ dim g. Since the multiplicity of zero as a root of of Ph(t)
equals dim g0(h), we have rank g ≤ dim g0(h). Indeed, the rank of g is exactly the minimal
dimension of the subalgebra g0(h), if h runs through g, i.e.,

rank g = min{dim g0(h) | h ∈ g}.

We have equality, namely rank g = dim g0(h), if and only if h is regular.

Lemma 2.5.4. A Lie algebra g is nilpotent if and only if rank g = dim g.

Proof. We have rank g = dim g if and only if all ad(x) are nilpotent for x ∈ g. So the
claim follows by Engel’s Theorem. �

Denote by greg the set of regular elements of g.

Lemma 2.5.5. The subset greg ⊂ g is a non-empty dense Zariski-open set in g, invariant
under all automorphisms of g.

Proof. By definition a` is not the zero polynomial, where ` = rank g. Hence there is
an element h in greg. The set is Zariski open, since the condition dim g0(h) > rank g can be
expressed by the vanishing of the polynomial functions a`(h). For ϕ ∈ Aut(g) we have

ad(ϕ(h)) = ϕ ◦ ad(h) ◦ ϕ−1.

Therefore we have

Pϕ(h)(t) = det(tE − ad(ϕ(h)))

= det(tE − ϕ ◦ ad(h) ◦ ϕ−1)

= det(ϕ ◦ (tE − ad(h)) ◦ ϕ−1)

= Ph(t).

Hence a`(ϕ(h)) = a`(h) for all h ∈ g. It follows that ϕ(greg) ⊂ greg for all ϕ ∈ Aut(g). �
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Example 2.5.6. Let g = sl2(k), char(k) 6= 2 and

x =

(
a b
c −a

)
be an element in g. Then the characteristic polynomial of x is given by

Px(t) = det

t− 2a 0 2b
0 t+ 2a −2c
c −b t

 = t3 + 4t det(x).

Hence a1(x) = 4 det(x) for all x ∈ g, and a0 = 0. Thus rank g = 1 and x is regular if and only
if det(x) 6= 0.

Even better, because of tr(x) = 0 we have that x ∈ g is regular if and only if x is not
nilpotent. So we have

sl2(k)reg = sl2(k) \ N ,
where N denotes the cone of nilpotent matrices in sl2(k).

Lemma 2.5.7. Let h0 ∈ greg. Then the Lie algebra h = g0(h0) is nilpotent.

Proof. Let λ0 = 0, λ1, . . . , λp be the distinct eigenvalues of ad(h0) and

g1 =

p⊕
i=1

gλi(h0)

be the sum of the spaces gλi(h0) without h = g0(h0). Then [h, g1] ⊂ g1 by Lemma 2.5.1.
Hence the adjoint representation of g, restricted to h, induces a representation ρ : h → gl(g1).
Consider the polynomial function

h 7→ d(h) = det(ρ(h))

on h. With qi = dim gλi(h0) we have

d(h0) = λq11 λ
q2
2 · · ·λqpp 6= 0.

Hence d is not the zero function and there exists a Zariski open set in h on which d does not
vanish. Let h ∈ h be an element with d(h) 6= 0. The eigenvalues of ρ(h) are all different
from zero. Hence we have g0(h) ⊂ h. Since h0 is regular, we have dim h = rank g and
dim g0(h) ≥ rank g. This implies that

h = g0(h).

Hence, by definition of g0(h), the linear map adh(h) is nilpotent, i.e., (adh(h))q = 0 for all
q ≥ rank g. The matrix entries of (adh(h))q are polynomial functions on h. Because of Zariski
continuity we have (adh(h))q = 0 for all h ∈ h. Therefore all adh(h) are nilpotent, and h is
nilpotent by Engel’s Theorem. �

Lemma 2.5.8. Let h0 ∈ greg. Then the Lie algebra h = g0(h0) is equal to its normalizer in
g. So we have h = Ng(h).

Proof. Let x ∈ Ng(h). Then we have [h0, x] ∈ h = g0(h0). Hence there is a p ≥ 0 with

ad(h0)p([h0, x]) = ad(h0)p+1(x) = 0.

This implies that x ∈ h. Hence we have Ng(h) = h. �

Such nilpotent self-normalizing subalgebras h obtain a new name.
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Definition 2.5.9. A Lie subalgebra h of g is called a Cartan subalgebra in g, if h is nilpotent
and h = Ng(h).

It is not a priori clear whether or not there exists a Cartan subalgebra in a given Lie algebra
g. We have the following result.

Proposition 2.5.10. Let g be a finite-dimensional Lie algebra over an infinite field k. Then
there exists a Cartan subalgebra in g. If k has characteristic zero then all Cartan subalgebras h
have the same dimension, namely dim(h) = rank(g).

Proof. Assume first that k is algebraically closed. Then g0(h) is a Cartan subalgebra
for every h ∈ greg, as we have seen in 2.5.7 and 2.5.8. Now let k be a field of characteristic
zero, K be an algebraic closure of k and gK = K ⊗k g. Let h be a subalgebra of g and hK
be the subalgebra of gK spanned by h over K. Then h is a Cartan subalgebra in g, if hK is a
Cartan subalgebra in gK . Hence there exists a Cartan subalgebra in characteristic zero, because
there exists a Cartan subalgebra of gK , which is defined over k. Furthermore one can show
that a Cartan subalgebra always exists whenever the field k has more than dimk(g) elements,
see [30]. In particular, finite dimensional Lie algebras over infinite field always have Cartan
subalgebras. �

The existence of Cartan subalgebras in Lie algebras over finite fields is still an open problem,
see [30].

Example 2.5.11. Let g = gl2(k). Then each of the following subalgebras,

h1 =

{(
a 0
0 b

)
| a, b ∈ k

}
,

h2 =

{(
a b
−b a

)
| a, b ∈ k

}
form a Cartan subalgebra in g.

This shows that Cartan subalgebras need not be unique. However, we have the following
result.

Proposition 2.5.12. Let g be a finite dimensional Lie algebra over an algebraically closed
field of characteristic zero. Then all Cartan subalgebras are conjugate under automorphisms of
g.

For k = R the two Cartan subalgebras of Example 2.5.11 in g = gl2(R) are not conjugate.
So the proposition is not true over arbitrary fields of characteristic zero.

Proposition 2.5.13. Let h be a Cartan subalgebra in g. Then h is a maximal nilpotent
subalgebra of g.

Proof. Let n be a nilpotent subalgebra of g with n ⊃ h. Assume that n 6= h. Then
the adjoint representation of n, restricted to h, defines a representation σ : h → gl(n/h). This
representation acts by nilpotent operators by Engel’s Theorem. By Lemma 1.6.13 there is a
nonzero v ∈ n/h with σ(x)v = 0 for all x ∈ h. Let y ∈ n be a representative of the coset v.
Then we have [x, y] = ad(x)(y) ∈ h for all x ∈ h. Hence y ∈ Ng(h) = h, because h is a Cartan
subalgebra in g. Hence the coset is zero in n/h, d.h., v = 0, a contradiction. It follows that
n = h. �
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Corollary 2.5.14. Let g be a nilpotent Lie algebra. Then g is the only Cartan subalgebra
in g.

The converse of Proposition 2.5.13 need not be true. There exist maximal nilpotent subal-
gebras, which are not Cartan subalgebras, see the following example.

Example 2.5.15. Let g = sl2(k), where k is a field of characteristic zero, and (x, y, h) be
the standard basis of g. Then the subalgebra a = k · x is maximal nilpotent, but not a Cartan
subalgebra in g.

To see this, suppose that n is a nilpotent subalgebra of g, which contains x. Then dim(n) ≤
2. Thus n is abelian. Let g = αx+ βy + γh ∈ n. Then we have

0 = [x, g] = βh− 2γx.

Hence β = γ = 0 and therefore n = k · g = k · x = a. So a is maximal nilpotent. On the other
hand, n is not self-normalizing, since all upper-triangular matrices in g normalize n.

Let us mention the following lemma, which is proved along the lines of Proposition 2.5.12

Lemma 2.5.16. Let g be a Lie algebra over an algebraically closed field k. Let h be a Cartan
subalgebra in g. Then there exists an h ∈ greg ⊂ g with h = g0(h).

From now on we want to restrict ourselves mainly to Cartan subalgebras of semisimple Lie
algebras over a field of characteristic zero. We will see that their structure then is much simpler
than in general.

Proposition 2.5.17. Let g be a semisimple Lie algebra over a field k of characteristic zero,
and h be a Cartan subalgebra in g. Then h is abelian.

Proof. We may assume that k is algebraically closed. Then there exists by Lemma 2.5.16
an h0 ∈ h with h = g0(h0). Let λ 6= 0 and x ∈ gλ(h0). For h ∈ h and µ ∈ k we have

ad(x) ad(h)(gµ(h0)) ⊂ ad(x)(gµ(h0)) ⊂ gλ+µ(h0).

Let λ0 = 0, λ1, . . . , λp be the distinct eigenvalues of ad(h0). Choosing a basis of g corresponding
to the decomposition

g =

p⊕
i=0

gλi(h0),

the associated block matrix of ad(x) ad(h) has zero blocks on the diagonal. Hence the Killing
form satisfies κ(x, h) = 0 for all x and h. Hence h is orthogonal to all spaces gλi(h0) for
1 ≤ i ≤ p with respect to the Killing form. Since h is nilpotent and hence solvable, we have
κ(h, [h, h]) = 0 by the Cartan criterion. So we obtain κ(g, [h, h]) = 0. Since g is semisimple and
the characteristic of k is zero, the Killing form on g is non-degenerate. So we obtain [h, h] = 0
and h is abelian. �

Since Cartan subalgebras are maximal nilpotent, we obtain the following corollary.

Corollary 2.5.18. Let g be a semisimple Lie algebra in characteristic zero. Then Cartan
subalgebras in g are maximal abelian subalgebras.

Lemma 2.5.19. Let g be a semisimple Lie algebra over an algebraically closed field k of
characteristic zero. Let h be a Cartan subalgebra in g. Then all h ∈ h are semisimple.
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Proof. Let h ∈ h and consider its Jordan-Chevalley decomposition h = s+n, see Proposi-
tion 2.1.13. Since h is abelian, we have ad(h)(h) = 0. Since ad(s) and ad(n) are the semisimple
respectively nilpotent parts of ad(h), we can represent them by polynomials in ad(h) without
constant term. In particular we have

ad(s)(h) = ad(n)(h) = 0.

Since h is maximal abelian, we have s, n ∈ h. By Lemma 2.5.16 we obtain h = g0(h0). As in
the proof of Proposition 2.5.17 we see that h is orthogonal to gλ(h0), for the eigenvalues λ 6= 0
of ad(h0). Let y ∈ h. Because of [ad(y), ad(n)] = ad([y, n]) = 0, with ad(y) and ad(n) nilpotent
we also have that ad(y) ad(n) is a nilpotent linear map. Therefore we obtain κ(y, n) = 0 and
thus n is orthogonal to g. Since the Killing from of g is non-degenerate, it follows that n = 0
and that h = s is semisimple. �

Corollary 2.5.20. Let g be a semisimple Lie algebra over an algebraically closed field of
characteristic zero. Then all regular elements in g are semisimple.

Proof. Let h ∈ greg. Then g0(h) is a Cartan subalgebra in g by Lemma 2.5.7 and Lemma
2.5.8. By Lemma 2.5.19, h is semisimple. �
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2.6. The root space decomposition

Let g be a finite-dimensional Lie algebra over a field k (always of characteristic zero) and
h ⊂ g. For every linear map α : h→ k let

gα =
⋂
h∈h

gα(h)(h)

be the the intersection of the generalized eigenspaces for all h ∈ h. Here α is called a weight, if
gα 6= 0.

Proposition 2.6.1. Let k be algebraically closed and h ⊂ g be a nilpotent subalgebra. Then
the following holds.

h ⊂ g0,(2.2)

[gα, gβ] ⊂ gα+β,(2.3)

[h, gα] ⊂ gα,(2.4)

g =
⊕
α∈h∗

gα(2.5)

For gα 6= 0 we have α([h, h]) = 0. For h, h′ ∈ h the Killing form is given by

κ(h, h′) =
∑
α∈h∗

dim(gα)α(h)α(h′).

Proof. Since h nilpotent we have (ad(h))nx = 0 for all x, h ∈ h and sufficiently large
n ∈ N. Hence we have h ⊂ g0. Then (2.3) and (2.4) follow by Lemma 2.5.1, even if k is not
algebraically closed. The sum in (2.5) obviously is direct. It remains to show that the sum of
the simultaneous generalized eigenspaces exhausts all of g. It is easy to see that this follows by
the previous properties, by [h, gα(h)(h)] ⊂ gα(h)(h) and because g is finite-dimensional.

For the formula we will apply Lie’s Theorem, where we need that k is algebraically closed.
So for all α : h → k there exists a basis of gα, such that the endomorphisms ad(h) |gα are
simultaneously represented by strictly upper-triangular matrices in glm(k), m = dim gα, and
with diagonal elements equal to α(h). This immediately yields the formula for the Killing form.
Furthermore, if we consider ad([h, h′]), this upper-triangular matrix has the entries α([h, h′])
on the diagonal. At the same time this coincides with [ad(h), ad(h′)], which has zero diagonal.
So, if gα 6= 0, we obtain α([h, h′]) = 0 = [α(h), α(h′], and thus α ∈ h∗ and α([h, h]) = 0. �

Now let g be a semisimple complex Lie algebra, and h be a Cartan subalgebra of g. Then all
elements h ∈ h are ad-semisimple by Lemma 2.5.19 and h is abelian. Hence we may represent
the endomorphisms ad(h) on gα by diagonal matrices diag(α(h), . . . , α(h)). So we have

gα = {x ∈ g | [h, x] = α(h)x ∀h ∈ h}.

Definition 2.6.2. The root system of g with respect to h is defined by

Φ = Φ(g, h) = {α ∈ h∗ | α 6= 0, gα 6= 0}.
The elements of Φ are called the roots. For α ∈ Φ we call gα the root space to the root α.

The Lie algebra g decomposes into the direct sum

(2.6) g = h⊕
⊕
α∈Φ

gα.
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The decomposition is called root space decomposition, or Cartan decomposition of g with respect
to h. Here h = g0 = Zg(h) is equal to the weight space to the weight zero. We will see later
in Corollary 2.6.12 that the Cartan decomposition implies the following equation in positive
integers

dim(g) = rank(Φ) + |Φ|.

Proposition 2.6.3. Let h be a Cartan subalgebra of g and (2.6) be the corresponding Cartan
decomposition. Then the following holds.

(1) Given α, β ∈ Φ ∪ {0} with α + β 6= 0, we have κ(gα, gβ) = 0, hence gα ⊥ gβ.
(2) From α ∈ Φ it follows that gα ⊥ h.
(3) The restriction of the Killing form κ on gα×g−α, and hence on h×h, is non-degenerate.
(4) If α ∈ Φ then −α ∈ Φ.
(5) span Φ = h∗.

Proof. For (1): Let x ∈ gα and y ∈ gβ. By Proposition 2.6.1 we have

(ad(x) ad(y))n(gγ) ⊂ gn(α+β)+γ = 0

for all γ ∈ Φ ∪ {0}, if n is sufficiently large and if α + β 6= 0. Therefore the endomorphism
ad(x) ad(y) ∈ gl(g) is nilpotent and the Killing form is zero, i.e., κ(x, y) = 0.

For (2): This follows immediately from (1) with β = 0.

For (3): Let z ∈ g−α with κ(z, gα) = 0. We need to show that z = 0. By (1) we have
κ(g−α, gβ) = 0 for all β 6= α. Hence κ(z, gβ) = 0 for all β, and therefore κ(z, g) = 0 by (2.6).
Since κ is non-degenerate on g× g, it follows that z = 0.

For (4): Let α ∈ Φ. Assume that −α 6∈ Φ, so g−α = 0. Then we have κ(gα, gβ) = 0 for all β
and hence again κ(gα, g) = 0, which implies that gα = 0. This is a contradiction to α ∈ Φ.

For (5): Assume that Φ does not generate h∗. Then, by duality there exists an h ∈ h, h 6= 0
with α(h) = 0 for all α ∈ Φ. More precisely, if (h∗1, . . . , h

∗
`) is a basis of h∗ extending the basis

of Φ by, say, h∗` 6∈ Φ. Then we consider the dual basis (h1, . . . , h`) of h with h∗i (hj) = δij. We
have h∗i (h`) = 0 for all i 6= ` and hence α(h) = α(h`) = 0 for all α ∈ Φ, since (h∗1, . . . , h

∗
`−1) is a

basis of Φ. But this implies [h, gα] = 0 for all α ∈ Φ. Because of [h, g0] = 0 we have [h, g] = 0,
hence h ∈ Z(g) = 0, which is a contradiction. �

Lemma 2.6.4. Let α ∈ Φ, x ∈ gα, y ∈ g−α and h ∈ h. Then we have [x, y] ∈ h and

κ(h, [x, y]) = α(h)κ(x, y).(2.7)

In particular, dim([gα, g−α]) ≥ 1.

Proof. We have [x, y] ∈ gα−α = g0 = h by (2.3). Furthermore we have

κ(h, [x, y]) = κ([h, x], y) = κ(α(h)x, y) = α(h)κ(x, y).

Since κ is non-degenerate on gα×g−α, there exists an xα ∈ gα and a x−α ∈ g−α with κ(xα, x−α) 6=
0. Since α 6= 0 there is an h ∈ h with α(h) 6= 0, hence also with κ(h, [xα, x−α]) 6= 0 because of
(2.7). Thus [xα, x−α] is a nonzero element in [gα, g−α]. �

Lemma 2.6.5. Let α ∈ Φ and x ∈ gα, y ∈ g−α with [x, y] 6= 0. Then we have α([x, y]) 6= 0.

Proof. Let h = [x, y]. Assume that α(h) = 0. Then we have [h, x] = α(h)x = 0 and
[h, y] = −α(h)y = 0. Therefore x, y, h generate a nilpotent subalgebra of g. By Lie’s Theorem
we can represent ad(x), ad(y) and ad(h) simultaneously by upper-triangular matrices, so that
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ad(h) = [ad(x), ad(y)] is nilpotent. This is a contradiction to h 6= 0 and the fact that ad(h) is
semisimple. �

Lemma 2.6.6. For each root α ∈ Φ we have dim([gα, g−α]) = 1 and α does not vanish on
the line [gα, g−α] ⊂ h.

Proof. We already know that dim([gα, g−α]) ≥ 1 by Lemma 2.6.4. By Lemma 2.6.5 we
have [gα, g−α] ∩ ker(α) = 0. So we have

dim([gα, g−α]) = dim
(

[gα, g−α] + ker(α)
)

+ dim
(

[gα, g−α] ∩ ker(α)
)
− dim ker(α)

≤ dim h + 0− (dim h− 1)

= 1.

�

Since the Killing form of g is non-degenerate on h×h, we may identify h and h∗ by it. More
precisely, we have an isomorphism

h∗ → h, α 7→ tα,

which is characterized by the condition

κ(h, tα) = α(h) for all h ∈ h.(2.8)

Hence Φ corresponds to the subset {tα | α ∈ Φ} ⊂ h.

Definition 2.6.7. For α ∈ Φ define the element tα ∈ h by (2.8).

Lemma 2.6.8. Let α ∈ Φ be a root and x ∈ gα, y ∈ g−α elements with κ(x, y) = 1. Then
we have [x, y] = tα.

Proof. By (2.7) we have κ(h, [x, y]) = α(h) for all h ∈ h. Using (2.8) we obtain [x, y] =
tα. �

Lemma 2.6.9. For every root α ∈ Φ we have κ(tα, tα) 6= 0.

Proof. Let us write tα = [x, y] with x ∈ gα, y ∈ g−α and κ(x, y) = 1 as above. Then we
have

κ(tα, tα) = α(tα) = α([x, y]) 6= 0

by Lemma 2.6.5. �

Definition 2.6.10. Let α ∈ Φ be a root. Then the coroot, or dual root α∨ ∈ Φ∗ is defined
by

hα = α∨ =
2

κ(tα, tα)
tα ∈ h.

Note that we have

α(hα) =
2α(tα)

κ(tα, tα)
= 2,

an (−α)∨ = −α∨.

Now we will see that all root spaces gα are in fact one-dimensional, and that no integer
multiple of a root α is again a root, except for ±α. In other words, we have

Zα ∩ Φ = {α,−α}
for all α ∈ Φ.
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Proposition 2.6.11. For every root α ∈ Φ we have dim(gα) = 1, and dim(gnα) = 0 for all
n ∈ Z\{±1}. For every α ∈ Φ there exists an injective Lie algebra homomorphism sl2(C) ↪→ g
with

C ( 0 1
0 0 ) ∼= gα, C ( 0 0

1 0 ) ∼= g−α, C ( 1 0
0 −1 ) ∼= [gα, g−α].

Proof. Choose elements x±α ∈ g±α with [xα, x−α] = hα. Because of α(hα) = 2 we then
have [hα, xα] = 2xα and [hα, x−α] = −2x−α. This implies that

sα = Cxα ⊕ Cx−α ⊕ Chα
is a 3-dimensional subalgebra of g, which is isomorphic to sl2(C). In fact, the isomorphism
is given by ( 0 1

0 0 ) → xα, ( 0 0
1 0 ) → x−α and ( 1 0

0 −1 ) → hα. The subalgebra sα is well-defines as
soon as we know that dim gα = 1 for all α ∈ Φ. Then it also follows that g±α = 〈x±α〉 and
[gα, g−α] = 〈hα〉. To prove it, consider the subspace

s = Cx−α ⊕ Chα ⊕
⊕
n≥1

gnα,

which is invariant under ad(xα) and ad(x−α). Then we have, with ad = ads and α(hα) = 2,

0 = tr([ad(xα), ad(x−α)])

= tr(ad([xα, x−α]))

= tr(ad(hα))

= −α(hα) + 0 +
∑
n≥1

n · dim gnα · α(hα)

= 2(−1 + dim gα +
∑
n≥2

n · dim gnα).

So we obtain the Diophantine equation

1 = dim gα +
∑
n≥2

n · dim gnα.

On the right hand side all terms are non-negative integers. Assume that dim gnα > 0 for some
n ≥ 2. Then the sum on the RHS would be at least 2, a contradiction. So we have dim gnα = 0
for all n ≥ 2 and dim gα = 1. We can apply the same argument for −α. Hence we also have
dim g−α = 1 and dim g−nα = 0 für all n ≥ 2. �

Corollary 2.6.12. For h, h′ ∈ h we have

κ(h, h′) =
∑
α∈Φ

α(h)α(h′).

We have
dim g = rank(g) + |Φ| = rank(Φ) + |Φ|.

Proof. The formula for the Killing form follows from Proposition 2.6.1 and from dim gα =
1 for α ∈ Φ. The second formula follows from the Cartan decomposition (2.6) and from
dim gα = 1. �

Let α, β ∈ Φ. It is customary to use the following notation

〈β, α∨〉 = β(hα).

We have 〈α, α∨〉 = α(α∨) = α(hα) = 2. Furthermore the following assertions hold.
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Lemma 2.6.13. Let α, β ∈ Φ. Then we have

(1) 〈β, α∨〉 = β(hα) ∈ Z.
(2) κ(hα, hβ) ∈ Z.
(3) β − 〈β, α∨〉α ∈ Φ.

Proof. For (1): Let β = ±α. Then β(hα) = ±2 ∈ Z. Otherwise we have β 6= ±α and we
set

s :=
⊕
j

gβ+jα.

Every nonzero summand here is 1-dimensional and s is a sα-module and hence a sl2(C)-module.
By assumption and by Proposition 2.6.11, β cannot be an integer multiple of α. Thus we have
β + kα 6= 0 for all k ∈ Z and

(β + kα)(hα) = β(hα) + 2k.

Hence all weights differ by a multiple of two and s is a simple sα-module and we can use its
classification. In particular we know that hα acts with integral eigenvalues. More precisely we
have the following. If q ≥ 0 is the maximal integer with β + qα ∈ Φ and r ≥ 0 is the maximal
integer with β − rα ∈ Φ, then the whole string

β − rα, β − (r − 1)α, . . . , β + qα

lies in in Φ, see the picture below, and we have β(hα) − 2r = −(β(hα) + 2q). In other words,
we have

β(hα) = r − q ∈ Z.
The numbers β(hα) are called Cartan numbers.

b

a

g

h

f

e

c

d
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For (2): The proof follows from the formula for the Killing form in Corollary 2.6.12.

For (3): In the root string β − rα, . . . , β + qα we have in particular the root

β − (r − q)α = β − 〈β, α∨〉α.
This finishes the proof. �

Definition 2.6.14. We define a bilinear form of h∗ via the Killing form by

(λ, µ) := κ(tλ, tµ)

for λ, µ ∈ h∗.

We have

β(hα) = 〈β, α∨〉
= κ(tβ, hα)

= 2
κ(tβ, tα)

κ(tα, tα)

=
2(β, α)

(α, α)

= r − q ∈ Z.

The roots α ∈ Φ generate the space h∗, but they are not linear independent. So we chose
a basis (α1, . . . , α`) of h∗. Each root β ∈ Φ then can be uniquely represented as a linear
combination of the basis elements. We may assume that the coefficients are even rational
(exercise). If h∗Q denotes the subspace of h∗ generated by the roots over Q, then we have
dimQ h∗Q = dimC h

∗. Let E = h∗R be the real vector space generated by the α ∈ Φ. Then we
have the following result.

Proposition 2.6.15. The restriction of the bilinear form (λ, µ) on E is a positive definite
scalar product. The space E becomes a Euclidean vector space with it.

Proof. For λ ∈ E we have α(tλ) ∈ R and hence

(λ, λ) = κ(tλ, tλ) =
∑
α∈Φ

α(tλ)
2 ≥ 0

by Corollary 2.6.12. If (λ, λ) = 0 then α(tλ) = 0 for all α ∈ Φ and hence tλ = 0, and λ = 0.
For λ 6= 0 we have (λ, λ) > 0, hence the scalar product is positive definite. �

Instead of considering E in h∗R, we may view instead E∗ = hR in h. This is just the real
subspace of the Cartan subalgebra h of g, which is generated by the coroots α∨. Then the
restriction of the Killing form on the real vector space hR × hR is a scalar product on hR. The
subset Φ ⊂ E forms, together with this scalar product, a so-called reduced root system. As we
have seen in Lemma 2.6.13, for α, β ∈ Φ, also

sα(β) = β − 2(β, α)

(α, α)
α

is in Φ. In our Euclidean space E this element sα is a reflection at the hyperplane, which is
orthogonal to α. Indeed, we have sα(α) = −α and sα(λ) = λ for (α, λ) = 0. Note that these
reflections leave Φ invariant.
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Definition 2.6.16. We denote by W the subgroup of the orthogonal group of E, generated
by reflections sα for α ∈ Φ. The group W is called the Weyl group of the root system Φ.

It is clear that W is a finite group, because all generating reflections, and hence the whole
group leaves the finitely many roots invariant, and hence permute them. Since the roots
generate E it follows that W is finite. In fact, W is uniquely determined, up to isomorphism,
by the given semisimple complex Lie algebra g and does not depend on the choice of a Cartan
subalgebra, because all Cartan subalgebras are conjugated.

Example 2.6.17. Let g = sln(C). Then the diagonal matrices in g form a Cartan subalgebra
h. Let h = diag(λ1, . . . , λn) ∈ h and εi ∈ h∗ for i = 1, . . . , n, defined by εi(h) = λi. Then the
root system of g with respect to h is given by

Φ = {εi − εj | 1 ≤ i, j ≤ n, i 6= j}
and the Cartan decomposition is given by

sln(C) = h⊕
⊕
i 6=j

CEij.

The equation dim(g) = rank(Φ) + |Φ| is given by n2 − 1 = (n − 1) + n(n − 1) and the Weyl
group is given by W ∼= Sn.

To see this, recall that for h ∈ h we have

ad(h)(Eij) = [h,Eij] = (εi − εj)(h)Eij.

Hence we have αij = εi − εj ∈ Φ. The root spaces are given by gα = gεi−εj = CEij. They are
1-dimensional h-submodules of g, where g is an h-module by the adjoint representation. By
setting αi := εi − εi+1 for i = 1, . . . , n − 1 we obtain a basis of h∗ with n − 1 elements. If the
hi = Eii − Ei+1,i+1 denote the standard basis of h, we have

αi(hi) = 2,

αi(hi±1) = −1,

αi(hj) = 0, |i− j| > 1.

The coroots are just the elements α∨i = hαi = hi. So the αi(hj) are the Cartan numbers. The
elements tαi are given by tαi = 1

2n
hi, and the Killing form is given by κ(x, y) = 2n tr(xy). The

elements Ei,i+1, Eii − Ei+1,i+1, Ei+1,i form a subalgebra if g, which is isomorphic to sl2(C).

The Weyl group of sln(C) is the symmetric group on n elements, Sn. Indeed, Sn acts on h via
conjugation by permutation matrices. This action induces an action on the dual space h∗. If
P is a permutation matrix associated to a σ ∈ Sn, then this action on h∗ is just P · εi = εσ(i).
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2.7. Abstract root systems

In this section we want to start the classification of simple (and hence semisimple) complex
Lie algebras by classifying their root systems. Of course we need to justify that such Lie algebras
are uniquely determined by their root systems and vice versa. To a given semisimple Lie algebra
we can associate an abstract root system, which is unique up to root isomorphism and which
does not depend on the choice of the Cartan subalgebra. Conversely we may construct to a
given root system Φ a complex semisimple Lie algebra, up to isomorphism, whose root system
is exactly Φ. This has been proved by Serre. We will treat this shortly in section 2.9.

Definition 2.7.1. Let V be a finite-dimensional real vector space and α ∈ V with α 6= 0.
Then a reflection along α is an endomorphism sα of V with sα(α) = −α and dim(im(idV −sα)) =
1.

Lemma 2.7.2. Let α ∈ V with α 6= 0. Then the following holds.

(1) There exists exactly one linear form α∨ ∈ V ∗ with

sα(λ) = λ− 〈λ, α∨〉α

for all λ ∈ V . Then 〈α, α∨〉 = 2.

(2) We have s2
α = idV and det(sα) = −1.

(3) The fixed point set {λ ∈ V | sα(λ) = λ} = ker(α∨) is a hyperplane not containing α.

(4) Let β ∈ V, β∨ ∈ V ∗ with 〈β, β∨〉 = 2. Then

sβ,β∨(λ) = λ− 〈λ, β∨〉β

defines a reflection along β.

Proof. For (1): Because of (idV −sα)(α) = 2α and dim(im(idV −sα)) = 1 we have
im(idV −sα) = Rα. Therefore there exists exactly one linear form α∨ ∈ V ∗, α∨ 6= 0 with

(idV −sα)(λ) = 〈λ, α∨〉α.

This shows the formula in (1). Furthermore we have −α = sα(α) = α − 〈α, α∨〉α, so that
〈α, α∨〉 = 2.

For (2): We have, for all λ ∈ V ,

s2
α(λ) = sα(λ− 〈λ, α∨〉α)

= sα(λ)− 〈λ, α∨〉sα(α)

= λ− 〈λ, α∨〉α− 〈λ, α∨〉(−α)

= λ.

Then by (3) all eigenvalues of sα on ker(α∨) are equal to 1. Since sα(α) = −α it follows that
det(sα) = −1.

For (3): The fixed point set is equal to {λ ∈ V | 〈λ, α∨〉α = 0} = ker(α∨). This is indeed a
hyperplane in V .

For (4): This is easy to see. �
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Definition 2.7.3. A subset Φ ⊂ V of a Euclidean vector space V is called an abstract root
system in V , if the following axioms hold.

(1) Φ is finite, generates V and does not contain the zero vector.
(2) For each root α ∈ Φ there exists a reflection sα along α with sα(Φ) = Φ.
(3) If α, β ∈ Φ and sα is the reflection along α with sα(Φ) = Φ, then β − sα(β) ∈ Zα.
(4) If α ∈ Φ, then 2α 6∈ Φ.

The trivial root system if the root system Φ = ∅ in V = 0. The rank of Φ is the dimension of
V . Two root systems (Φ1, V1) and (Φ2, V2) are called isomorphic, if there exists an isomorphism
ϕ : V1 → V2 with ϕ(Φ1) = Φ2. If (Φ1, V1) and (Φ2, V2) are root systems, then Φ1 × 0 ∪ 0× Φ2

is a root system in V1 ⊕ V2, which we will denote by Φ1 ⊕ Φ2.

Definition 2.7.4. A root system of the form Φ1⊕Φ2, where Φ1 and Φ2 are both non-trivial,
is called reducible. A root system is called irreducible, if it is not reducible and non-trivial.

Every root system can be uniquely decomposed into irreducible components. Condition (3)
is called the crystallographic restriction. It says that

〈β, α∨〉 =
2(β, α)

(α, α)
∈ Z

for all α, β ∈ Φ, where (· , ·) is a suitable scalar product on V . This already implies that we
even have, for β 6= ±α,

〈β, α∨〉 ∈ {0,±1,±2,±3},

as we will see later. This already restricts possible examples of root systems quite a lot, as we
will see below. Let us consider all possible root systems of rank one and two.

` = 1: The root system A1 of rank 1 consists of {α,−α}.
` = 2: We find exactly four different root systems.

Case 1: The reducible root system A1 ⊕ A1 of rank 2 consists of {±α,±β}.
Case 2: The root system A2 consists of Φ = {±α,±β,±(α + β)}. With hR ∼= R2 and the
canonical scalar product on R2 we can view the roots as in the picture below as vectors in R2.
Indeed, for

α =

(
−1

2√
3

2

)
, β =

(
1
0

)
we have (α, α) = (β, β) = 1 and

〈α, α∨〉 =
2(α, α)

(α, α)
= 2,

〈α, β∨〉 =
2(α, β)

(α, α)
= −1,

〈β, β∨〉 = 2.

One easily checks that all conditions for a root system are satisfied. The angles between the
roots are multiples of 60 degree. The Cartan numbers here are 〈α, α∨〉 = 〈β, β∨〉 = 2 and
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〈α, β∨〉 = 〈β, α∨〉 = −1. One summarizes these numbers usually by a matrix, which looks here
as follows, (

2 −1
−1 2

)
.

This matrix is called the Cartan matrix of A2.

c
a b

d

2

1

2

3

3551

61

4

2

5

Case 3: The root system B2 is given by Φ = {±α,±β,±(α+β),±(α+ 2β)}. We can represent
it by the vectors

α =

(
−1
1

)
, β =

(
1
0

)
and obtain

〈α, β∨〉 =
2(α, β)

(α, α)
= −1,

〈β, α∨〉 = −2.
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Hence the Cartan matrix is given by (
2 −1
−2 2

)
.

Case 4: The root system G2 is given by

Φ = {±α,±β,±(α + β),±(α + 2β),±(α + 3β),±(2α + 3β)}.
We can represent it by choosing α = (−3/2,

√
3/2) and β = (1, 0). The Cartan matrix of G2 is

given by (
2 −1
−3 2

)
.

Of course one needs to justify that we have found all root systems of rank two. We will leave
this here as an exercise.

Definition 2.7.5. Let (Φ, V ) be a root system. Let

A(Φ) = {ϕ ∈ Aut(V ) | ϕ(Φ) = Φ}
be the group of automorphisms leaving Φ invariant. The subgroup W = W (Φ) of A(Φ),
generated by the reflections sα, α ∈ Φ , is called the Weyl group of the root system Φ.

Since Φ spans the vector space V , each ϕ ∈ A(Φ) is determined by its restriction to Φ.
Hence A(Φ) is isomorphic to a subgroup of the symmetric group Sym(Φ), hence finite.

Lemma 2.7.6. Let (Φ, V ) be a root system. Then the following holds.

(1) We have Φ = −Φ.
(2) For α ∈ Φ the reflection sα along α with sα(Φ) = Φ is uniquely determined.
(3) There exists a uniquely determined injective map Φ → V ∗, α 7→ α∨, such that the

reflection sα along α with sα(Φ) = Φ is given by

sα : λ 7→ λ− 〈λ, α∨〉α
for all λ ∈ V .

(4) For α, β ∈ Φ we have 〈α, α∨〉 = 2 and 〈α, β∨〉 ∈ Z.

Proof. For (1): If α ∈ Φ then −α = sα(α) ∈ Φ.

For (2): Let s′α be another reflection along α with s′α(Φ) = Φ. Then consider ϕ = sαs
′
α ∈ A(Φ).

We have
(idV −ϕ) = (idV −sα)s′α + (idV −s′α),

so that im(idV −ϕ) ⊂ Rα. Hence there is an α∗ ∈ V ∗ with

ϕ(λ) = λ+ 〈λ, α∗〉α.
By induction, using α ∈ ker(α∗), it follows that

ϕn(λ) = λ+ n〈λ, α∗〉α.
So we have, with n = |A(Φ)|,

λ = ϕn(λ) = λ+ n〈λ, α∗〉α,
hence |A(Φ)|〈λ, α∗〉α = 0 for all λ ∈ V , and thus α∗ = 0 and ϕ = id. So we have s′α = s−1

α = sα.

For (3): It remains to show the injectivity of the map α 7→ α∨. This follows from Lemma 2.7.8.

For (4): Because of β 6= 0 the claim follows from 〈α, β∨〉β = α− sβ(α) ∈ Zβ. �
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We also mention the following result, which is easy to show.

Lemma 2.7.7. For ϕ ∈ A(Φ) and α ∈ Φ we have ϕ ◦ sα ◦ ϕ
−1 = sϕ(α). In particular, W (Φ)

is a normal subgroup of A(Φ).

The next result is as follows.

Lemma 2.7.8. There exists a scalar product (· , ·) on V , which is A(Φ)-invariant, i.e., which
satisfies (ϕ(λ), ϕ(µ)) = (λ, µ) for all λ, µ ∈ V and ϕ ∈ A(Φ). For α ∈ Φ we have

〈λ, α∨〉 =
2(λ, α)

(α, α)
.

Proof. Let ((· , ·)) be any scalar product on V . Then

(λ, µ) =
1

|A(Φ)|
∑

ϕ∈A(Φ)

((ϕ(λ), ϕ(µ)))

defines an A(Φ)-invariant scalar product on V . For α ∈ Φ ans λ ∈ V we have

(α, sα(λ) + λ) = (sα(α), sα(sα(λ) + λ))

= (−α, sα(λ) + λ).

So we obtain

0 = (α, sα(λ) + λ)

= (α, 2λ− 〈λ, α∨〉α)

= 2(α, λ)− 〈λ, α∨〉(α, α).

�

In case Φ is irreducible we have only one such invariant scalar product, up to positive mul-
tiples. If Φ is reducible, then the different irreducible components are orthogonal to each
other. We may normalize the scalar product on the irreducible components Ψ von Φ by
maxα∈Ψ(α, α) = 2.

For a given root system (Φ, V ) define the dual root system (Φ∨, V ∗) by

Φ∨ = {α∨ | α ∈ Φ}.

We have (α∨)∨ = α for all α ∈ Φ ⊂ V = V ∗∗. We can identify the Weyl groups of Φ and of Φ∗.

In the next step we’ll consider all possible angles 0 ≤ ^(α, β) ≤ π of two roots α, β ∈ Φ.
Clearly we have ^(α, α) = 0 and ^(α,−α) = π. The following result shows that there are only
seven different possibilities.

Proposition 2.7.9. Let α, β ∈ Φ with β 6= ±α. Then, up to permutation of α and β,
exactly one of the following seven cases can arise.
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〈α, β∨〉 〈β, α∨〉 ^(α, β) (α,α)
(β,β)

0 0 π/2 −
1 1 π/3 1
−1 −1 2π/3 1
1 2 π/4 2
−1 −2 3π/4 2
1 3 π/6 3
−1 −3 5π/6 3

Proof. Let θ = ^(α, β). Then we have

(α, β) =
√

(α, α)
√

(β, β) cos θ.

This implies that

4 cos2 θ = 2
(α, β)

(α, α)
· 2(β, α)

(β, β)
= 〈α, β∨〉 · 〈β, α∨〉.

The factors on the RHS are integers. Hence we have 4 cos2 θ ∈ Z with 0 ≤ 4 cos2 θ ≤ 4. Because
of β 6= ±α it follows that

4 cos2 θ ∈ {0, 1, 2, 3}.
If θ = 0 or θ = π, then β = ±α, because other multiples of α don’t lie in Φ. This was excluded.
So it is enough to discuss each of the above four possibilities for 4 cos2 θ.

Case 1: We have 4 cos2 θ = 0. Then θ = π/2 and 〈α, β∨〉 = 〈β, α∨〉 = 0.

Case 2: We have 4 cos2 θ = 1. Then we have either cos θ = 1/2, hence θ = π/3 and 〈α, β∨〉 =
〈β, α∨〉 = 1, or we have cos θ = −1/2 and 〈α, β∨〉 = 〈β, α∨〉 = −1.

The other two cases are similar. �

As a corollary we obtain that our list of root systems in the rank two case is already
complete. We also obtain that we can have, in an irreducible root system, at most two different
root lengths. The length of a root α is given by ‖α‖ =

√
(α, α). For θ = π/3 or θ = 2π/3 the

roots have equal length. But for θ = π/4, 3π/4 the ratio of the length is always equal to
√

2.
Recall that we always assume here that β 6= ±α. So we really can have different root lengths.
For θ = π/6, 5π/6 the ratio of the root lengths is given by

√
3. In the case that not all roots

have equal length we speak of long and short roots.

Lemma 2.7.10. For α, β ∈ Φ with α 6= β and (α, β) > 0 we have α− β ∈ Φ.

Proof. If (α, β) > 0 then 〈α, β∨〉 > 0. By our above table then either 〈α, β∨〉 = 1 and
α− β = sβ(α) ∈ Φ, or by permuting α and β, 〈β, α∨〉 = 1 and α− β = −sα(β) ∈ Φ. �

Each hyperplane passing though zero in V not containing a root decomposes V into two
half spaces V+ and V−, so that Φ is decomposed into positive roots Φ+ = Φ ∩ V+ and negative
roots Φ− = Φ ∩ V−.

Definition 2.7.11. Let Φ be a root system in V and Φ+ be the set of positive roots. A
root α ∈ Φ+ is called simple, if it cannot be written as a sum of two positive roots. The set Π
of simple roots is called a basis of Φ.

The name “basis” for Π is justified as follows.
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Proposition 2.7.12. Let Φ be a root system with basis Π ⊂ Φ. Then Π is an R-linearly
independent set and every root γ ∈ Φ can be written as a linear combination

γ =
∑
α∈Π

nαα,

where the coefficients nα are either all in Z≥0, or all in Z≤0.

Proof. Let α, β ∈ Π be simple roots with α 6= β. Then (α, β) ≤ 0, i.e., the angle between
two different roots is always obtuse. Otherwise we would have α − β ∈ Φ by Lemma 2.7.10,
and hence ±(α− β) ∈ Φ+. Because of

α = (α− β) + β

β = (β − α) + α

this would yield a contradiction to the simplicity of α or β.

To show that the simple roots are linearly independent over R, suppose that∑
α∈Π

rαα = 0.

Then let
ε =

∑
α∈Π
rα>0

rαα =
∑
β∈Π
rβ<0

(−rβ)β.

We obtain that
(ε, ε) =

∑
α,β∈Π

rα>0, rβ<0

rα(−rβ)(α, β).

because of (α, β) ≤ 0 we obtain (ε, ε) ≤ 0 and therefore ε = 0. By construction of Φ+ there
exists an η ∈ V with (η, α) > 0 for all α ∈ Φ+. It follows that

0 = (η, ε) =
∑
α∈Π
rα>0

rα(η, α) =
∑
β∈Π
rβ<0

−rβ(η, β) > 0.

So the sums must be empty and we obtain rα = 0 for all α ∈ Π.

For the second claim we may assume that γ ∈ Φ+, otherwise we pass to −γ. If γ ∈ Π, then we
are done. Otherwise we have γ = γ1 + γ2 with γ1, γ2 ∈ Φ+. As above it follows then, with η,
that

(η, γ) > (η, γ1) and (η, γ) > (η, γ2).

We can proceed inductively. After finitely many steps we are done, since Φ+ is a finite set. �

For a given representation γ =
∑

α∈Π nαα we define the height of γ by

ht(γ) =
∑
α∈Π

nα.

Definition 2.7.13. Let Φ be a root system with basis Π = {α1, . . . , α`}. Define the Cartan
matrix A = (Aij) ∈M`(Z) by

Aij =
2(αi, αj)

(αi, αi)
.

By Proposition 2.7.9 we have the following result.
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Proposition 2.7.14. The Cartan matrix of a root system has the following properties.

(1) Aii = 2 for all i = 1, . . . , `.
(2) Aij ∈ {0,−1,−2,−3} for i 6= j.
(3) Aij = 0⇐⇒ Aji = 0.
(4) Aij ∈ {−2,−3} =⇒ Aji = −1.

Define integers nij := AijAji. We have nij ∈ {0, 1, 2, 3} für i 6= j.

Definition 2.7.15. Let Φ be a root system with basis Π = {α1, . . . , α`}. The Dynkin
diagram of Φ is the graph, which is given as follows: for each simple root αi there exists a
vertex i, and each two different vertices i and j are connected by exactly nij edges.

To every Dynkin diagram we associate the quadratic form

Q(x1, . . . , x`) := 2
∑̀
i=1

x2
i −

∑̀
i,j=1
i 6=j

√
nijxixj.

The Dynkin diagram and its quadratic form are determined by the Cartan matrix. For the
four root systems of rank two they are given as follows.

1 2 1 2 1 2 1 2

a b c d

Φ A Q

A1 ⊕ A1 ( 2 0
0 2 ) 2x2

1 + 2x2
2

A2

(
2 −1
−1 2

)
2x2

1 − 2x1x2 + 2x2
2

B2

(
2 −1
−2 2

)
2x2

1 − 2
√

2x1x2 + 2x2
2

G2

(
2 −1
−3 2

)
2x2

1 − 2
√

3x1x2 + 2x2
2

Note that the Dynkin diagram is connected if and only if Φ is irreducible.

Proposition 2.7.16. The quadratic form Q(x1, . . . , x`) of a root system Φ is positive defi-
nite.

Proof. Recall that we have, for i 6= j, that

nij = 2
(αi, αj)

(αi, αi)
· 2 (αj, αi)

(αj, αj)
.

because of (αi, αj) ≤ 0 we obtain

−√nij = 2
(αi, αj)

‖αi‖‖αj‖
.
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Then we can rewrite Q as follows:

Q(x1, . . . , x`) =
∑̀
i,j=1

2(αi, αj)

‖αi‖‖αj‖
xixj

= 2
(∑̀
i=1

xiαi
‖αi‖

,
∑̀
j=1

xjαj
‖αj‖

)
= 2(y, y).

This shows that Q(x1, . . . , x`) ≥ 0. If Q(x1, . . . , x`) = 0, then it follows that y = 0. Since the
αi are linearly independent, this implies xi = 0 for all i and we are done. �
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2.8. The classification of Dynkin diagrams

Let g be a semisimple complex Lie algebra with Cartan subalgebra h and root system Φ.
Then the Cartan matrix and hence the Dynkin diagram is independent of the choice of h, and
also independent, up to renumbering of the fundamental roots α1, . . . , α` ∈ Π. The connected
components of the Dynkin diagrams satisfy the following properties:

(A) The graph is connected.

(B) Two different vertices are connected by 0, 1, 2 or 3 edges.

(C) The associated quadratic form is positive definite.

Theorem 2.8.1. The graphs satisfying the conditions (A), (B), (C) are given as follows:

1

2

3

4

6

7

5

8

Here we have ` ≥ 1 for A`, ` ≥ 2 for B` and ` ≥ 4 for D`.

Proof. First we show that all listed graphs satisfy the three conditions. This is clear for
conditions (A) and (B). Hence we will focus on (C). By Sylvester’s criterion, a quadratic form∑

i,j aijxixj is positive definite if and only if all of the leading principal minors are positive, i.e.,

if the principal submatrices of its symmetric matrix (aij) have positive determinant, i.e., if

det(a11) > 0, det

(
a11 a12

a21 a22

)
> 0, . . . , det(aij) > 0.

So let Γ be a graph with ` vertices if the above list. We’ll show by induction on `, that
Q(x1, . . . , x`) is positive definite.
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` = 1: Then Γ = A1 and Q(x1) = 2x2
1 is positive definite.

` = 2: Then Γ is A2, B2 or G2. The symmetric matrices representing Q(x1, x2) for these types
have positive leading principal minors:

(
2 −1
−1 2

)
,

(
2 −

√
2

−
√

2 2

)
,

(
2 −

√
3

−
√

3 2

)
.

` ≥ 3: Every graph Γ of the list given in Theorem 2.8.1 has at least one outer vertex, say `,
which is connected to exactly one other vertex, say ` − 1, by exactly one edge. Denote this
graph by Γ`, and by Γ`−1 the graph obtained from Γ` by deleting the vertex `. Furthermore
let Γ`−2 be the graph obtained from Γ`−1 by deleting the vertex `−1. We note that the graphs
Γ`−1 and Γ`−2 again are contained in the list. Denote by S` the symmetric matrix representing
the quadratic form Q(x1, . . . , x`) of Γ`. The last column of S` is given by (0, . . . , 0,−1, 2)t.
Using Laplace expansion along this column for detS` we obtain

detS` = 2 detS`−1 − detS`−2.

This enables us to compute detS` for all graphs of the list inductively. For example, consider
the graph of type A`. We already know that detA1 = 2 and detA2 = 3, see above. Then by
detA` = 2 detA`−1−detA`−2 we obtain detA` = `+ 1 by induction. Indeed, deleting an outer
vertex ` from the graph A`, one obtains A`−1, and so on. Similarly we obtain

detB` = 2,

detD` = 4,

detF4 = 2 detB3 − detB2 = 1,

detE6 = 2 detD5 − detA4 = 3,

detE7 = 2 detD6 − detA5 = 2,

detE8 = 2 detD7 − detA6 = 1.

Note that Γ`−1 and Γ`−2 may not be of the same type as Γ`. For example, deleting an outer
vertex ` of F4 one obtains B3. Deleting further ` − 1, we obtain B2. But in every case
the determinants are positive. Now the principal minors of the symmetric matrix for Γ` are
themselves symmetric matrices to certain subgraphs of Γ`. We may chose a numbering such
that all subgraphs are connected. The given list has the nice property that every connected
subgraph again appears in the list. Hence the determinant of every principal minor of the given
symmetric matrix is positive. Thus the quadratic form for Γ` is positive definite.
It remains to prove the converse direction, namely that every graph satisfying (A), (B), (C) is
contained in our list. We need some more lemmas.

Lemma 2.8.2. For every graph of the following list, the determinant of the associated qua-
dratic form Q(x1, . . . , x`) equals zero.
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1

2

3

4

5

6

7

8

9

Here ` ≥ 2 for A
(1)
` and C

(1)
` , ` ≥ 3 for B

(1)
` and ` ≥ 4 for D

(1)
` .

Note that a graph Γ` in this list has ` + 1 vertices. We might consider the graph of, say,

A
(1)
` as a regular (`+ 1)-gon, for each ` ≥ 2. We’ll also need the next lemma, in order to prove

the converse direction of the theorem.

Lemma 2.8.3. Let Γ be a graph satisfying (A), (B), (C), and Γ′ be a connected graph obtained
from Γ by either deleting vertices or by decreasing the number of edges between two vertices.
Then also Γ′ satisfies (A), (B), (C).

Proof of Theorem 2.8.1: Let Γ be a graph satisfying (A), (B), (C). Let us call the list of
graphs from the list of Lemma 2.8.2 the list of forbidden subgraphs. This name is justified by
Lemma 2.8.2 and Lemma 2.8.3, which imply that Γ must not contain such a subgraph. In
particular, Γ cannot contain any cycles, because otherwise Γ would have a forbidden subgraph

of type A
(1)
` for some ` ≥ 2.

Assume that Γ contains a triple edge. Then Γ is the graph G2, because otherwise Γ would

contain a forbidden subgraph G
(1)
2 . So we may assume from now on that Γ contains no triple

edge. Then Γ can only contain a single double edge, because otherwise we’d have a forbidden

subgraph C
(1)
` for some ` ≥ 2. Moreover Γ cannot in addition a a double edge also have a



2.8. THE CLASSIFICATION OF DYNKIN DIAGRAMS 81

ramification point, because otherwise we’d have a forbidden subgraph B
(1)
` for some ` ≥ 3.

Thus Γ looks like a chain with only a single double edge. In case this double edge sits at an
end, our graph is B`. If not, we have F4, because otherwise we’d have a forbidden subgraph

F
(1)
4 . Form now on we may assume that Γ has no double and no triple edges. In case Γ has

no ramification point, we have the graph A` for some ` ≥ 1. In case there is a ramification

point, it must be the only one, because otherwise we’d have a forbidden subgraph D
(1)
` for some

` ≥ 5. Hence Γ has exactly one ramification point P , from which exactly three edges lead off,

because otherwise we’d have a subgraph D
(1)
4 . Denote the number of vertices on these three

edges by `1, `2, `3, where mit `1 ≥ `2 ≥ `3. Then Γ has in total 1 + `1 + `2 + `3 vertices, with P
as vertex in the center of Γ. We have `3 = 1, because otherwise we would have `i ≥ 2 for all i,

so that there would be a subgraph E
(1)
6 . In case that `2 = 1, we have Γ = D` for some ` ≥ 4. If

`2 > 1, then it follows that `2 = 2, because otherwise `1, `2 ≥ 3 and Γ would have a subgraph

E
(1)
7 . Thus we may assume now that `3 = 1, `2 = 2. Then `1 ≤ 4, because otherwise we’d

have a subgraph E
(1)
8 . So Γ is of type E6, E7 or E8. We are indeed done. All graphs satisfying

(A), (B), (C) are contained in the list of Theorem 2.8.1. �

Proof of Lemma 2.8.2 :

Proof. First let Γ = A
(1)
` . Each row of the symmetric matrix for the associated quadratic

form has one entry equal to 2, and two entries equal to −1, and the other entries equal to zero.
The sum of all column vectors of this matrix then is zero, since each component of this vector

is the sum of the row entries, hence equal to 2− 1− 1 = 0. Hence detA
(1)
` = 0.

For all other graphs Γ we can find an outer vertex `, which is connected exactly to one other
vertex `− 1, by either a single or a double edge. In case of a single edge, we have as above

detS` = 2 detS`−1 − detS`−2.

In case of a double edge we have

detS` = 2 detS`−1 − 2 detS`−2.

This enables us to compute all determinants inductively as we have done before.

detB
(1)
3 = 2 detA3 − 2(detA1)2 = 0,

detC
(1)
2 = 2 detB2 − 2 detA1 = 0,

detD
(1)
4 = 2 detD4 − (detA1)3 = 0,

detE
(1)
6 = 2 detE6 − detA5 = 0,

detE
(1)
7 = 2 detE7 − detD6 = 0,

detE
(1)
8 = 2 detE8 − detE7 = 0,

detG
(1)
2 = 2 detG2 − detA1 = 0,

detF
(1)
4 = 2 detF4 − detB3 = 0.
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Furthermore we have

detB
(1)
` = 2 detD` − 2 detD`−1 = 0, ` ≥ 4,

detC
(1)
` = 2 detB` − 2 detB`−1 = 0, ` ≥ 3,

detD
(1)
` = 2 detD` − detA1D`−2 = 0, ` ≥ 5.

�

Proof of Lemma 2.8.3 :

Proof. We only need to show that Γ′ satisfies again (C). So let Q(x1, . . . , x`) be the
quadratic form of Γ, and Q′(x1, . . . , xm) the one from Γ′, with m ≤ `. Then we have

Q(x1, . . . , x`) = 2
∑̀
i=1

x2
i −

∑̀
i,j=1
i 6=j

√
nijxixj,

Q′(x1, . . . , xm) = 2
m∑
i=1

x2
i −

m∑
i,j=1
i 6=j

√
n′ijxixj,

with integers n′ij ≤ nij for 1 ≤ i, j ≤ m. Assume that Q′ is not positive definite. Then there
exist real numbers y1, . . . , ym, not all zero, such that

Q′(y1, . . . , ym) ≤ 0.

Then we also have

Q(|y1|, . . . , |ym|, 0, . . . , 0) = 2
m∑
i=1

y2
i −

m∑
i,j=1
i 6=j

√
nij|yi||yj|

≤ 2
m∑
i=1

y2
i −

m∑
i,j=1
i 6=j

√
n′ijyiyj

= Q′(y1, . . . , ym)

≤ 0.

But this says that Q(v) ≤ 0 with v 6= 0. Thus Q(x1, . . . , x`) is not positive definite, a contra-
diction, and we are done. �

The next step in the classification of semisimple Lie algebras is to relate Cartan matrices
bijectively to Dynkin diagrams. A Dynkin diagram is uniquely determined by the Cartan
matrix, by the condition nij = AijAji. However, the converse is not true in general. The
Cartan matrix is not uniquely determined by the Dynkin diagram. Indeed, if nij = 2, then the
above equation can be either 2 = 1·2 or 2 = −2·−1. Similarly for nij = 3. This happens exactly
for the graphs B`, F4, G2. But we can restore uniqueness here quite easily by introducing an
orientation into the Dynkin diagram.

Definition 2.8.4. In the Dynkin diagram we draw an arrow from the vertex i to the vertex
j if and only if ‖αi‖ > ‖αj‖, i.e., if |Aji| > |Aij|.
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In the picture below the arrow in the left diagram means that ‖αi‖ =
√

2‖αj‖, i.e., that

Aij = −1, Aji = −2. For the right diagram we have ‖αi‖ =
√

3‖αj‖, and Aij = −1, Aji = −3.
So we may consider the arrow as an inequality sign for the length of the fundamental roots.

1 12 2

For the diagrams of type B2, F4, G2 the direction of the arrow is irrelevant since these diagrams
are symmetric. However, for B`, ` ≥ 3 it makes a difference. Therefore we split up this type
into two types as follows.

1

2

This finally leads to the classical list of Dynkin diagrams of simple Lie algebras. By summarizing
the obtained result we can now formulate the classification of simple complex Lie algebras.

Theorem 2.8.5 (Cartan, Killing). Let g be a finite-dimensional complex simple Lie algebra.
Then g is isomorphic to one of the Lie algebras of the following table.

type g rank(g) |Φ| dim(g) |W |
An sln+1(C) n ≥ 1 n(n+ 1) n(n+ 2) (n+ 1)!
Bn so2n+1(C) n ≥ 2 2n2 n(2n+ 1) n! · 2n
Cn sp2n(C) n ≥ 3 2n2 n(2n+ 1) n! · 2n
Dn so2n(C) n ≥ 4 2n(n− 1) n(2n− 1) n! · 2n−1

G2 g2(C) 2 12 14 22 · 3
F4 f4(C) 4 48 52 27 · 32

E6 e6(C) 6 72 78 27 · 34 · 5
E7 e7(C) 7 126 133 210 · 34 · 5 · 7
E8 e8(C) 8 240 248 214 · 35 · 52 · 7

Here |W | is the cardinality of the Weyl group. The associated Cartan matrices are given as
follows, uniquely up to permutation of the indices of Aij:
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A` =



2 −1
−1 2 −1

−1 2 −1
−1 · ·

· · ·
· · −1
−1 2 −1

−1 2 −1
−1 2



B` =



2 −1
−1 2 −1

−1 2 −1
−1 · ·

· · ·
· · −1
−1 2 −1

−1 2 −1
−2 2



C` =



2 −1
−1 2 −1

−1 2 −1
−1 · ·

· · ·
· · −1
−1 2 −1

−1 2 −2
−1 2



D` =



2 −1
−1 2 −1

−1 2 −1
−1 · ·

· · ·
· · −1
−1 2 −1

−1 2 −1 −1
−1 2 0
−1 0 2



G2 =

(
2 −1
−3 2

)
,
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F4 =


2 −1 0 0
−1 2 −1 0
0 −2 2 −1
0 0 −1 2



E6 =


2 −1
−1 2 −1

−1 2 −1 −1
−1 2
−1 2 −1

−1 2



E7 =



2 −1
−1 2 −1

−1 2 −1
−1 2 −1 −1

−1 2
−1 2 −1

−1 2



E8 =



2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1 −1
−1 2
−1 2 −1

−1 2



Two simple Lie algebras having the same Cartan matrix are isomorphic, see [10].

Remark 2.8.6. The following table gives an overview of all complex simple Lie algebras of
dimension n, with n ≤ 1224:
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n g n g n g n g
3 A1 105 B7, C7 325 D13 728 A26

8 A2 120 A10, D8 351 B13, C13 741 B19, C19

10 B2, C2 133 E7 360 A18 780 D20

14 G2 136 B8, C8 378 D14 783 A27

15 A3 143 A11 399 A19 820 B20, C20

21 B3, C3 153 D9 406 B14, C14 840 A28

24 A4 168 A12 435 D15 861 D21

28 D4 171 B9, C9 440 A20 899 A29

35 A5 190 D10 465 B15, C15 903 B21, C21

36 B4, C4 195 A13 483 A21 946 D22

45 D5 210 B10, C10 496 D16 960 A30

48 A6 224 A14 528 A22, B16, C16 990 C22

52 F4 231 D11 561 D17 1023 A31

55 C5 248 E8 575 A23 1035 D23

63 A7 253 B11, C11 595 B17, C17 1081 B23, C23

66 D6 255 A15 624 A24 1088 A32

78 B6, C6 276 D12 630 D18 1128 D24

80 A8 288 A16 666 B18, C18 1155 A33

91 D7 300 B12, C12 675 A25 1176 B24, C24

99 A9 323 A17 703 D19 1224 A34
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2.9. Serre’s structure theorem

Having classified all complex simple and semisimple Lie algebras by Dynkin diagrams and
Cartan matrices, one would like to associate to every Dynkin diagram a unique simple Lie
algebra, whose Dynkin diagram is the given one. J. Tits was the first, who proved in 1966
that this can be done. However, his construction does not work for all types simultaneously.
In particular, the construction for each exceptional type is different. Jean-Pierre Serre found
a uniform construction of all simple Lie algebras by generators and relations, which is directly
derived from the root system. This gives an elegant way of realizing the simple, exceptional
Lie algebras. Let us shortly describe this construction.

Let α, β be roots and define

〈β, α〉 := 2
(β, α)

(α, α)
.

The the root string goes β + jα goes from β − rα till β + qα, where r − q = 〈β, α〉. Let Π be
the basis of the root system Φ. If α, β ∈ Π, then β − α is not a root, since we have a positive
and a negative coefficient. The the root string is

β, β + α, . . . , β + qα

with q = −〈β, α〉. Therefore we have

(adxα)−〈β,α〉+1xβ = 0

for xα ∈ gα and xβ ∈ gβ, but

(adxα)kxβ 6= 0, 0 ≤ k ≤ −〈β, α〉,

for xα 6= 0, xβ 6= 0. Let Π = {α1, . . . , α`}. Then we may take ei ∈ gαi and fi ∈ g−αi with
hi = [ei, fi], such that

e1, . . . , e`, f1, . . . , f`, h1, . . . , h`

generates the Lie algebra, and we have the following relations:

[hi, hj] = 0,(2.9)

[ei, fi] = hi,(2.10)

[ei, fj] = 0, i 6= j,(2.11)

[hi, ej] = 〈αj, αi〉ej,(2.12)

[hi, fj] = −〈αj, αi〉fj,(2.13)

(ad ei)
−〈αj ,αi〉+1ej = 0, i 6= j,(2.14)

(ad fi)
−〈αj ,αi〉+1fj = 0, i 6= j.(2.15)

Serre’s Structure Theorem now is as follows.

Theorem 2.9.1 (Serre). Let Φ be a root system of rank ` with basis Π = {α1, . . . , α`}.
Then the complex Lie algebra, which is generated by the 3` elements ei, fi, hi for i = 1, . . . , `
and satisfies the relations (2.9), . . . ,(2.15), is semisimple and its roots system is isomorphic to
Φ.
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Proof. We will only give an idea for the proof. One starts with the free Lie algebra f in
3` generators

X1, . . . , X`, Y1, . . . , Y`, Z1, . . . , Z`.

Let g be a semisimple Lie algebra defined by generators and relations with (2.9)–(2.15). Then
there exists a unique Lie algebra homomorphism ϕ : f → g with ϕ(Xi) = ei, ϕ(Yi) = fi and
ϕ(Zi) = hi. Let a be the ideal in f generated by the elements

[Zi, Zj], [Xi, Yj]− δijZi, [Zi, Xj]− 〈αj, αi〉Xj, [Zi, Yj] + 〈αj, αi〉Yj.

Consider the quotient Lie algebra

m = f/a.

It satisfies the first five relations from above. Denote by xi, yi, zi the images of Xi, Yi, Zi in m.
We realize m as Lie subalgebra of the Lie algebra End(A) with a tensor algebra A = T (V ) for
a suitable vector space V with basis v1, . . . , v`. We let act f on A, whose kernel contains a,
so that we obtain an induced action of m on A, ψ : m → End(A). The elements xi, yi, zi are
linearly independent and the zi generate an `-dimensional abelian Lie subalgebra z of m. This
yields a decomposition

m = m− ⊕ z⊕m+,

where m+ is the Lie subalgebra generated by the xi, and m− the Lie subalgebra generated by
the yi. Writing cij := 〈αi, αj〉 we define for all i 6= j in {1, 2, . . . , `} the elements

xij = ad(xi)
−cji+1(xj),

yij = ad(yi)
−cji+1(yj).

The sixth and seventh relation from above,, namely (2.14) and (2.15) hold if and only if the
ideal k generated by the xij and yij, is the zero ideal. We have, for all k and i 6= j,

ad(xk)(yij) = 0,(2.16)

ad(yk)(xij) = 0.(2.17)

The claim is now that the quotient

g := m/k

is a finite-dimensional complex semisimple Lie algebra with Cartan subalgebra h = z/k and
root system Φ.

To see this, let i be the ideal in m+ generated by the xij and j be the ideal in m− generated by
the yij. Then we have

i + j ⊆ k.

We claim that i and j are ideals in m. Indeed, every yij is a weight vector for z, and [z,m−] ⊂ m−.
Therefore we have [z, j] ⊂ j]. On the other hand, we have [xk,m−] ⊂ z+m− and [xk, yij] = 0 by
(2.16). The Jacobi identity now implies that ad(xk)(j) ⊂ j. Since the xk generate m+, it follows
that [m+, j] ⊂ j, again with the Jacobi identity. Therefore j is an ideal of m. In the same way
also i is an ideal in m, and hence their sum i+ j. This deal contains the generators of k, so that

k = i + j.
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In particular we have z ∩ k = 0, so that z is isomorphic to an `-dimensional abelian subalgebra
of g = m/k by projection. As vector space sum we obtain, because of j∩m+ = 0 and i∩m− = 0,
then

g = n− ⊕ h⊕ n+,

with n− = m−/j and n+ = m+/i. The xi, yi, zi generate a Lie algebra sl(2), hence a simple Lie
algebra. So the projection map is an isomorphism on each sl(2). Denote the images of xi, yi, zi
by ei, fi, hi. Then g is generated by the 3` elements

e1, . . . , e`, f1, . . . , f`, h1, . . . , h`,

and all relations (2.9)–(2.15) are satisfied. Furthermore g has no nonzero abelian ideals, hence
is semisimple. The root system of g is given by Φ. �





CHAPTER 3

Representations of semisimple Lie algebras

Let g be a finite-dimensional Lie algebra over an algebraically closed field K of characteristic
zero. Every finite-dimensional representation of g is semisimple by Weyl’s Theorem, so it suffices
to study the simple representations of g. We will often assume that K = C. For a reference,
see [31].

3.1. Classification by the highest weight

Let h be an abelian Lie algebra. The elements of h∗ are called weights.

Definition 3.1.1. Let V be a representation of an abelian Lie algebra h and λ ∈ h∗ be a
weight. The weight space Vλ to λ is defined by the subspace

Vλ = {v ∈ V | Hv = λ(H)v ∀H ∈ h}.
If Vλ 6= 0, then λ is called a weight of V . We denote the set of all weights of V by

P (V ) = Ph(V ) = {λ ∈ h∗ | Vλ 6= 0}.

In case of a semisimple Lie algebra g with Cartan subalgebra h, we have considered V = g
as a representation of h via the adjoint operation. Then the nonzero weights of V just form
our root system Φ, which often is also denoted by R in the literature, i.e.,

R = Φ = Ph(g) \ 0.

The weight space Vα to α ∈ R then was denoted by gα. For each root α ∈ h∗ there is a
coroot α∨ ∈ h and a reflection sα : h∗ → h∗. These reflection generate the Weyl group, a finite
subgroup,

W = W (R) ⊂ GL(h∗).

Definition 3.1.2. Let R ⊂ h∗ be a root system. The maximal convex subsets in the
complement of the union of the reflection hyperplanes

〈R〉Q \
⋃
α∈R

ker(α∨)

are called Weyl chambers.

The Weyl group acts freely and transitively on the set of Weyl chambers. We denote by
R+ the set of positive roots. It has a basis Π = Π(R+), whose elements are called simple roots.
We obtain a bijection between the set of all systems of positive roots and the set of all Weyl
chambers by the assignment

R+ → C(R+) = {λ ∈ 〈R〉Q | 〈λ, α∨〉 > 0 ∀α ∈ R+}.
The Weyl chamber C(R+) is called the dominant Weyl chamber associated to the system R+ of
positive roots. The reflections sα with α ∈ Π(R+) are called simple reflections. They are just

91
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the reflections at the walls of the dominant Weyl chamber, and they generate the Weyl group.
The image of a chamber under such a reflection at one of its walls is just separated from its
reflection image by this wall, i.e., we have

sα(R+) = R+ \ {α} ∪ {−α}
for every simple root α ∈ Π(R+).

Definition 3.1.3. Let g be a complex semisimple Lie algebra with Cartan subalgebra h
and root system R = R(g, h). For each system of positive roots R+ ⊂ R we define a partial
order on the set h∗ of all weights by

λ ≥ µ⇐⇒ λ ∈ µ+R,

where R denotes the submonoid in h∗ generated by R+, i.e., the set of all finite sums of positive
roots including the empty sum, the zero. Let V be a representation of g and assume that there
is a maximal element µ in the set of weights Ph(V ) with respect to this partial order. Then µ
is called the highest weight of V with respect to R+, and every nonzero element in Vµ is called
a highest weight vector.

Remark 3.1.4. It can happen, for some infinite-dimensional representations V of g, that
V does not have any h-weights at all, i.e., with V 6= 0 but Ph(V ) = ∅. It can also happen
that Ph(V ) is not empty, but doesn’t possess a maximal element. We’ll see that all simple
finite-dimensional representation always have a highest weight. In fact, they are even classified
by this highest weight.

Denote the set of isomorphism classes of finite dimensional simple representations of g by
Rep(g).

Theorem 3.1.5 (Classification by the highest weight). Let g be a complex semisimple Lie
algebra with Cartan subalgebra h and R+ ⊂ R(g, h) by a system of positive roots. Denote by

X+ = {λ ∈ h∗ | 〈λ, α∨〉 ∈ Z≥0 ∀α ∈ R+}
the set of dominant integral weights, with respect to R+. Then we have a bijection

Rep(g)
∼−→ X+,

V 7→ µ,

where µ is the highest weight of V with respect to R+.

In order to give a proof we’ll need several preparations. We will first prove a part by
elementary methods, i.e., not using the universal enveloping algebra. Later we’ll give a full
proof making heavy use of it. Let us start with an example.

Example 3.1.6. The classification result is true for g = sl2(C) with R+ = {α}. Then
m · α

2
is the highest weight of the simple representation V (m) in dimension m+ 1, and we have

X+ = α
2
· N, which is in bijection to N via α

2
·m 7→ m.

This follows from Theorem 1.5.2.

Denote the lattice of integral weights for a root system R by

X = {λ ∈ h∗ | 〈λ, α∨〉 ∈ Z ∀α ∈ R}.
Then by definition all roots are integral weights, i.e., R ⊂ X and the lattice of integral weights
is invariant by the action of the Weyl group.
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Let Π = {α1, . . . , αr} ⊂ R+ be the basis of R. Then the coroots α∨1 , . . . , α
∨
r form a basis of the

vector space h. The elements of its dual basis are denoted by

$1, . . . , $r.

They are called the fundamental dominant weights and are characterized by 〈$i, α
∨
j 〉 = δij.

They form a Z-basis of the lattice of integral weights X. The set of dominant integral weights

X+ = N$1 + . . .+ N$r

is just the intersection of X with the closure of the dominant Weyl chamber.

Lemma 3.1.7. Let V be a representation of a semisimple Lie algebra g with root system R.
Then

gαVλ ⊂ Vα+λ ∀α ∈ R, λ ∈ h∗.

Proof. This follows immediately from the definition of a weight space and the formula

HXv = [H,X]v +XHv ∀H ∈ h, X ∈ g, v ∈ V.
�

Lemma 3.1.8. Let a = b + c be a decomposition of a Lie algebra a as a vector space sum of
two subalgebras b and c. Let V be a representation of a and U ⊂ V be a subspace invariant by
b. Then the c-subrepresentation W of V , which is generated by U , is invariant by a.

Proof. We need to show that XW ⊂ W for all X ∈ b. Fix an r ∈ N and consider the
subspace

W (r) = 〈Y1 · · ·Yiv | i ≤ r, Yj ∈ c〉.
We have W =

⋃
rW (r) and it suffices to show that XW (r) ⊂ W (r) for all r ≥ 0 and all X ∈ b.

We will do this by induction over r. For r = 0 we have W (0) = U , which is invariant by b by
assumption. For the induction step we’ll use the identity

XY1Y2 · · ·Yrv = Y1XY2 · · ·Yrv + [X, Y1]Y2 · · ·Yrv
We apply the induction hypothesis on the RHS on the first term, and then writing [X, Y1] = x+y
with x ∈ b and y ∈ c, again on the second term. �

Proposition 3.1.9. Let V be a simple representation of g. Assume that the set P (V )
has a maximal element with respect to the partial order on h∗ associated to R+. Then this
maximal element is already the highest weight of V . In particular, every finite-dimensional
simple representation of g has an highest weight.

Proof. It is enough to prove the first part. We have the decomposition g = b⊕ n, where

b = h⊕
⊕
α∈R+

gα, n =
⊕
α∈R+

g−α.

If λ ∈ P (V ) is maximal then Vλ is an b-invariant subspace. By Lemma 3.1.8 it follows that
the n-subrepresentation W of V , generated by Vλ, is already a g-subrepresentation. Since V is
simple, this implies W = V . Hence the weight space Vλ generates the whole space V by the
action of n. Then the claim follows from Lemma 3.1.7 by weight translation. �

Lemma 3.1.10. Let V be a finite-dimensional representation of g. Then all weights of V in
h∗ are integral and the set of weights P (V ) is invariant under the Weyl group action. In other
words, P (V ) ⊂ X and W · P (V ) = P (V ).
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Proof. Let α ∈ R and let
gα := gα ⊕Kα∨ ⊕ g−α

be the subalgebra of g, which is isomorphic to sl2(K). In fact, the coroot α∨ has the property
that there is an isomorphism sl2(K) ∼= gα, diag(1,−1) 7→ α∨. The eigenvalues of diag(1,−1)
on V are integers, as we know. Thus we have 〈λ, α∨〉 ∈ Z for all λ ∈ P (V ). For 0 6= v ∈ Vλ,
m = 〈λ, α∨〉, Kxα = gα, Kyα = g−α we have ymα v 6= 0 for m ≥ 0 and x−mα v 6= 0 for m ≤ 0.
Hence we always have Vλ−mα 6= 0, and therefore sα(λ) = λ−mα ∈ P (V ) for all generators sα
of W . �

Corollary 3.1.11. The maximal weights of a finite-dimensional representation V of g are
all integral and dominant.

Proof. Let λ ∈ P (V ) be a weight, which is not dominant, i.e., there exists a positive root
α ∈ R+ with 〈λ, α∨〉 < 0. Then sα(λ) = λ− 〈λ, α∨〉α ∈ P (V ) and we have sα(λ) > λ. So λ is
not maximal, a contradiction. �

Lemma 3.1.12. Let g be a finite-dimensional complex semisimple Lie algebra. Suppose that
V and W are two simple representations of g having the same highest weight. Then V ∼= W .

Proof. Let λ be the highest weight of V and W . Chose nonzero vectors v ∈ Vλ and
w ∈ Wλ and let U ⊂ V ⊕W be the subrepresentation generated by (v, w). We claim that U is
simple. Consider the decomposition g = b⊕n as in the proof of Proposition 3.1.9. Then the line
L through (v, w) is invariant by b. By Lemma 3.1.8, U is generated by (v, w) as representation
of n. In particular, U is the direct sum of its weight spaces by Lemma 3.1.7 and L = Uλ. Every
subrepresentation of U is invariant under the Cartan subalgebra and hence itself the direct sum
of its weight spaces. Hence every proper subrepresentation A of U lies in

⊕
µ6=λ Uµ. So we have

π1(A) 6= V and π2(A) 6= W for the projections. Since V and W are simple, we obtain π1(A) = 0
and π2(A) = 0, i.e., A = 0. Hence U is simple and the nonzero maps π1 : U → V , π1 : U → W
have to be isomorphisms, because kernel and image of these maps are subrepresentations of the
simple representations U , respectively V and W . Hence we obtain V ∼= U ∼= W . �

Remark 3.1.13. We have proved Theorem 3.1.5 except for showing the surjectivity, i.e.,
that for each dominant integral weight λ there exists a finite-dimensional simple representation
with highest weight λ. Here there seems to be no general argument available avoiding the
universal enveloping algebra. Of course we might prove surjectivity directly for, say, the case
sln+1(C). For each i the representation ΛiCn+1 has highest weight $i = ε1 + · · ·+εi and highest
weight vector e1 ∧ · · · ∧ ei. For each integral dominant weight λ ∈ X+ we may construct a
representation with highest weight λ by forming suitable tensor products of the representations
ΛiCn+1, where a suitable simple summand must be the desired representation with highest
weight λ.
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3.2. The universal enveloping algebra

Let A be an associative algebra and denote by AL the Lie algebra with Lie bracket [x, y] =
xy − yx.

Definition 3.2.1. A universal enveloping algebra U(g) of a Lie algebra g over K is a pair
(U, c) consisting of a K-algebra U and a Lie algebra homomorphism c : g → UL such that
the universal property holds: for every K-algebra A and every Lie algebra homomorphism
ϕ : g→ AL there exists a unique homomorphism ϕ̃ : U → A such that ϕ = ϕ̃ ◦ c.

A universal enveloping algebra, if it exists, is unique by the usual argument. The universal
property can be reformulated by saying that for every K-algebra A the pre-composition of the
map c induces a bijection

HomK(U,A) ' Homg(g, AL)

between the K-algebra homomorphisms U → A and the Lie algebra homomorphisms g→ AL.
In the language of category theory, taking the universal enveloping algebra is the left adjoint
functor of the functor A 7→ AL, from the category of K-algebras to the category of Lie algebras
over K. As K-algebra, U(g) is already generated by the image of g.

Example 3.2.2. For g = 0 we have U(g) ∼= K and for g ∼= K we have U(g) ∼= K[X].

If {X} is a basis of g, then the polynomial ring U = K[X] in one variable is a universal
enveloping algebra for g with canonical map c : g→ K[X] given by aX 7→ aX.

Lemma 3.2.3. Let V be an abelian group and (U, c) a universal enveloping algebra of a Lie
algebra g over K. Then there is a bijection of U-module structures on V as ring modules and
g-module structures on V as Lie algebra representations.

Proof. A structure on V as U -module is by definition a ring homomorphism ϕ : U →
End(V ). The restriction of ϕ to K ⊂ U turns V into a K-vector space, and induces a homomor-
phism of K-algebras ϕ : U → EndK(V ), and then a Lie algebra homomorphism ϕ : UL → gl(V ).
Composing with c we obtain a Lie algebra homomorphism ϕ ◦ c : g → gl(V ), i.e., a represen-
tation of g. Altogether we have assigned a g-module structure on V to a given U -module
structure on V . To show that the assignment is bijective we give the inverse assignment. A
representation V of a Lie algebra g is a Lie algebra homomorphism ρ : g → (End(V ))L. By
the universal property of U we can extend this homomorphism uniquely to a homomorphism
ρ̃ : U → End(V ) of K-algebras. So we obtain a U -module structure on V . It is easy to see that
these two assignments are inverse to each other. �

For X ∈ g we often write X again for its image c(X) ∈ U(g). Note that the natural map
g→ U(g) is injective, by the so-called PBW-Theorem:

Theorem 3.2.4 (Poincaré-Birkhoff-Witt). Every Lie algebra g possesses a universal en-
veloping algebra U(g). If (Xλ)λ∈Λ is a basis of g and ≤ a total order on Λ, then the ordered
monomials Xλ(1) · · ·Xλ(r) with λ(1) ≤ · · · ≤ λ(r) form a basis of U(g).

We will give a proof in several parts. The empty monomial, for r = 0, is the unit 1 ∈ U(g).
For the existence of a universal enveloping algebra, we first recall the following definition.

Definition 3.2.5. Let V be a K-vector space. A free K-algebra over V is a pair (T, c)
consisting of a K-algebra V and a linear map c : V → T such that the universal property holds:
for every K-algebra A and every linear map ϕ : V → AL there exists a unique homomorphism
ϕ̃ : T → A such that ϕ = ϕ̃ ◦ c.



96 3. REPRESENTATIONS OF SEMISIMPLE LIE ALGEBRAS

A free algebra, if it exists, is unique by the usual argument.

Lemma 3.2.6. Let V be a K-vector space. Then there exists a free K-algebra T (V ) over V .

Proof. Consider the tensor algebra T (V ) over V , i.e., the K-algebra

T (V ) =
⊕
r≥0

V ⊗r = K ⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · ·

together with its universal property. It has a K-bilinear multiplication, uniquely determined
by the rule

(v1 ⊗ · · · ⊗ vm)(w1 ⊗ · · · ⊗ wn) = (v1 ⊗ · · · ⊗ vm ⊗ w1 ⊗ · · · ⊗ wn).

The embedding “as second summand” c : V ↪→ T (V ) then has the required universal property.
�

Now we can prove the first part of the PBW-Theorem.

Proposition 3.2.7. Let g be a Lie algebra over a field K and I be the ideal of T (V )
generated by the elements x⊗y−y⊗x− [x, y] for x, y ∈ g. Then the K-algebra U(g) = T (g)/I
together with the map c : g ↪→ T (g)→ U(g) is a universal enveloping algebra of g.

Proof. Let p : T (g) → U(g) be the projection and ι : g → T (g) be the canonical map, so
that c = p · ι.We have

c([x, y]) = p([x, y])

= p(x⊗ y − y ⊗ x)

= c(x)c(y)− c(y)c(x)

= [c(x), c(y)],

since by construction x⊗y−y⊗x−[x, y] ∈ I = ker(p). Hence c is a Lie algebra homomorphism.
For the universal property of U(g) consider the following diagram.

g

c

##
ι //

ϕ
!!

T (g)

ϕ̂
��

p // U(g)

ϕ̃{{
A

Let ϕ : g→ A be a homomorphism from g into a K-algebra A. Since ϕ is linear, there is a unique
extension to a ring homomorphism ϕ̂ : T (g)→ A. Since ϕ is a Lie algebra homomorphism from
g to AL, we have ϕ̂(x⊗ y − y ⊗ x− [x, y]) = 0, hence ϕ̂(I) = 0. Hence ϕ̂ factorizes over a ring
homomorphism ϕ̃ : U(g)→ A as desired. �

Lemma 3.2.8. The monomials from the PBW-Theorem span the universal enveloping alge-
bra.

Proof. Consider the subspace Ur in U(g) generated by all monomials of length ≤ r, i.e.,
the image of ⊕

0≤s≤r

g⊗s
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in U(g). Then we show by induction that Ur is spanned by the ordered monomials of length
≤ r. Indeed, let Xλ(1) · · ·Xλ(r) be a monomial. We have

Xλ(i)Xλ(i+1) = Xλ(i+1)Xλ(i) + [Xλ(i), Xλ(i+1)].

We may write the commutator as a finite linear combination of monomials, so that the coset of
a monomial of length r in Ur/Ur−1 does not depend on the order of the factors. This enables
us to carry out the induction over r. �

For the last step, we use a shorter notation for the Lie algebra element Xλ, with λ ∈ Λ. So
let us write λ′ := Xλ.

Lemma 3.2.9. Let g be a Lie algebra over K with basis (λ′)λ∈Λ and ≤ be a partial order

on Λ. Denote by K[λ̂]λ∈Λ or just K[λ̂] the polynomial ring in the variables λ̂ for λ ∈ Λ. Then

there is an action g×K[λ̂]→ K[λ̂] such that

λ′λ̂1λ̂2 · · · λ̂r = λ̂λ̂1λ̂2 · · · λ̂r
whenever λ ≤ λ1 ≤ λ2 · · · ≤ λr.

For a proof, see [31], Lemma 4.3.24 and Lemma 4.3.26.

Proof of the PBW-Theorem 3.2.4: The construction of U(g) in Proposition 3.2.7 shows that g
has a universal enveloping algebra, which is unique by the universal property. The monomials
given at the PBW-Theorem span the universal enveloping algebra by Lemma 3.2.8. We are left

to show that the ordered monomials are linearly independent. Consider K[λ̂] as U(g)-module,
see Lemma 3.2.9. If λ′1 · · ·λ′r is an ascending monomial in U(g), then

λ′1 · · ·λ′r · 1K[λ̂] = λ̂1λ̂2 · · · λ̂r.

However, since the ascending monomials are linearly independent in K[λ̂], they must have been
already linearly independent in U(g). �

Recall that the opposite algebra (Aop, ◦) of an algebra (A, ·) is defined by the K-bilinear product
b◦a := a·b. If g→ U is a universal enveloping algebra, then so is gop → U op. The multiplication

by (−1) : g
∼=−→ gop extends to a K-algebra isomorphism

S : U
∼=−→ U op, u 7→ ut,

which is called the principal antiautomorphism of U . If V is a representation of g, then V ∗ is
the contragredient representation defined by (uf)(v) = f(utv) for all f ∈ V ∗, v ∈ V and u ∈ U .

Definition 3.2.10. Let V be a vector space. Define the symmetric algebra of V by

S(V ) = T (V )/〈x⊗ y − y ⊗ x〉.
The symmetric algebra is the universal enveloping algebra of the abelian Lie algebra. It

inherits a grading from T (V ). For a Lie algebra g the universal enveloping algebra also inherits
the filtration from T (g). Denote the associated graded algebra by gr(U(g)). We obtain a version
of the PBW-Theorem without coordinates as follows.

Theorem 3.2.11. Let g be a Lie algebra over a field K. The two surjections T (g)→ S(g)

and T (g)
∼=−→ gr(T (g)) → gr(U(g)) have the same kernel and hence define an isomorphism of

graded K-algebras
gr(U(g)) ∼= S(g).
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Corollary 3.2.12. The universal enveloping algebra of a Lie algebra has no zero-divisors.
The universal enveloping algebra of a finite-dimensional Lie algebra is Noetherian.

Proof. A K-algebra with an exhausting filtration beginning with zero has no zero-divisors,
respectively is Noetherian if this is true for the associated graded ring. However, the graded
ring is a polynomial ring over a field by the above theorem, hence has no zero-divisors. If g is
finite-dimensional, the polynomial ring has only finitely many variables. So it is Noetherian by
Hilbert’s Basissatz. �
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3.3. The construction of highest weight modules

In section 3.1 on the study of finite-dimensional representations of semisimple Lie algebras
we haven’t answered the question whether or not every integral dominant weight arises as the
highest weight of some finite-dimensional simple representation. We can now give a positive
answer using the universal enveloping algebra. As before, let g be a semisimple Lie algebra,
with Cartan subalgebra h and R+ be a system of positive roots in R = R(g, h).

Definition 3.3.1. Let λ ∈ h∗ be a weight. Denote by Iλ the left ideal in U(g) generated
by all X ∈ gα with α ∈ R+ and all H − λ(H) with H ∈ h. The quotient

∆(λ) = U(g)/Iλ

is called the Verma module of highest weight λ. The coset of 1 ∈ U(g) is called the canonical
generator of ∆(λ) and is denoted by vλ ∈ ∆(λ).

Verma modules are named after Daya-Nand Verma, who wrote his his Ph.D. thesis (1968)
about this topic as a student of Nathan Jacobson at Yale University. We have the following
structure theorem for Verma modules.

Proposition 3.3.2. Let λ ∈ h∗ be a weight.

1. Let α, . . . , β ∈ R+ be the positive roots, listed in a fixed order, and y−α ∈ g−α be the

generators of the roots spaces for negative roots. Then the vectors y
m(α)
α · · · ym(β)

β vλ,

index by all multiindices m : R+ → N, form a basis of the Verma module ∆(λ).

2. Every Verma module ∆(λ) has a weight space decomposition of the form

∆(λ) =
⊕
µ≤λ

∆(λ)µ

and its highest weight space ∆(λ)λ is one-dimensional with basis vλ.

3. We have

dim(∆(λ)µ) = P(λ− µ),

where P : h∗ → N is the Kostant partition function, counting the number of differ-
ent non-negative decompositions of a weight into a sum of positive roots.

Proof. Given scalars λ1, . . . , λr ∈ K, the polynomial ring K[H1, . . . , Hr] has a basis of
polynomials of the form (H1 − λ1)n(1) · · · (Hr − λr)n(r) for multiindices n : {1, . . . , r} → N. In
particular, if H1, . . . , Hr is a basis of h, and α, . . . , β are the positive roots in a fixed order, and
xα ∈ gα, yα ∈ g−α are basis vectors, then the PBW-theorem implies that the products

ym(α)
α · · · ym(β)

β · (H1 − λ1)n(1) · · · (Hr − λr)n(r) · xl(α)
α · · ·xl(β)

β

are a basis of U(g), for m, l : R+ → N and n : {1, . . . , r} → N. By considering this basis with
λi := λ(Hi), the span of the basis vectors with n 6= 0 or ` 6= 0 yields the left ideal Iλ in U(g).

Hence the cosets of the y
m(α)
α · · · ym(β)

β for m : R+ → N yield a basis for the Verma module
∆(λ) = U(g)/Iλ. By definition we have Hvλ = λ(H)vλ for all H ∈ h. Thus vλ is a weight
vector for the weight λ, and the first part is proved. Now the other two parts are obvious. �
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Remark 3.3.3. We may reformulate the first part as follows: ∆(λ) is a free U(n) submodule
of rank one with basis vλ, where n =

⊕
α∈R+ g−α. In formulas, the multiplication yields a

bijection U(n)
∼−→ ∆(λ) given by u 7→ uvλ.

We consider an example for Kostant’s partition function.

Example 3.3.4. Let R be of type A2 with R+ = {α, β, α + β}. If an element µ can be
expressed as a non-negative integer linear combination of the positive roots, we have

P(n1α + n2β) = 1 + min(n1, n2).

If not, then P(µ) = 0.

Indeed, if µ is a non-negative integer linear combination of the positive roots µ = n1α +
n2β + n3(α + β), we also obtain presentations as a linear combination of α and β. Conversely
we obtain representations by replacing α + β a number of times.

Lemma 3.3.5. Let L be a representation of g, λ ∈ h∗ be a weight and v ∈ Lλ be a weight
vector satisfying gαv = 0 for all α ∈ R+. Then there exists a unique homomorphism of
representations ∆(λ)→ L with vλ 7→ v.

Proof. For every R-module M , the evaluation at 1R induces a bijection HomR(R,M)
∼−→

M . The universal property of quotients shows that for every left ideal I ⊂ R the evaluation at
1R + I induces a bijection

HomR(R/I,M)
∼−→ {m ∈M | Im = 0}.

Now apply this for R = U(g) and I = Iλ in the above situation. Since by assumption Iλv = 0,
the claim follows. �

The classification of simple highest weight modules is as follows.

Proposition 3.3.6. We have the following assertions.

1. For every weight λ ∈ h∗ the Verma module ∆(λ) has a largest proper submodule
rad ∆(λ).

2. The corresponding quotient module L(λ) = ∆(λ)/ rad ∆(λ) is simple. So we obtain a
bijection between the elements of h∗ and simple representations with a highest weight,
up to isomorphism, by λ 7→ L(λ).

3. If a simple representation L has a maximal weight, then this weight already is the
highest weight of L.

Proof. The weight space decomposition of ∆(λ) induces a weight space decomposition
N =

⊕
µ∈h∗ Nµ for every h-submodule N of ∆(λ). In case that N is a g-submodule, Nλ 6= 0

already implies thatN = ∆(λ). Thus ifN is a proper g-submodule we obtainN ⊂
⊕

µ6=λ ∆(λ)µ.
Hence the sum of all proper submodules is again a proper submodule. So claim 1. follows.

Concerning the second claim, the quotient module L(λ) is certainly simple with highest weight
λ. Conversely, every simple representation with highest weight λ is a quotient of ∆(λ), and the
kernel of the associated surjection has to be the largest proper submodule of ∆(λ). �
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Definition 3.3.7. Let ρ = 1
2

∑
α∈R+ α be the half-sum of the positive roots. Define an

action of the Weyl group W on h∗ by

x · λ = x(λ+ ρ)− ρ.
This action is called the dot action.

Note that we conjugate the usual action of the Weyl group by a fixed translation. Recall
that the reflection map sα satisfies sα(ρ) = ρ− α.

Lemma 3.3.8. For every simple root α ∈ Π and every weight λ ∈ h∗ with 〈λ + ρ, α∨〉 ∈ N
there is a module monomorphims

∆(sα · λ) ↪→ ∆(λ).

Proof. For a simple root α we have 〈ρ, α∨〉 = 1 and hence sα · λ < λ is equivalent to
〈λ, α∨〉 ∈ N. Now let α ∈ R+ with n = 〈λ, α∨〉 ∈ N. For xα ∈ gα and yα ∈ g−α we obtain

xαy
n+1
α vλ = 0

by a computation which is analogous to the one in the proof of Theorem 1.5.2. If in addition
α ∈ Π, then we even have xβy

i
αvλ = 0 for all β ∈ R+ \ {α} and all i ∈ N, because iα − β

then is never a sum of positive roots. Since we have sα · λ = λ − (n + 1)λ, it follows that
0 6= yn+1

α vλ ∈ ∆(λ)sα·λ and we obtain by the universal property of the Verma module, as
coinduced representation a nonzero homomorphism ∆(sα · λ)→ ∆(λ), mapping the canonical
generator of ∆(sα ·λ) to yn+1

α vλ. Since all Verma modules are free of rank one over the integral
domain U(n), this homomorphism must be injective. �

Proposition 3.3.9. Let λ ∈ h∗. Then the simple module L(λ) of highest weight λ is
finite-dimensional if and only if λ ∈ X+, i.e., if λ is integral and dominant.

Proof. If L(λ) is finite-dimensional then λ ∈ X+ by Corollary 3.1.11. Conversely, let
λ ∈ X+. Lemma 3.3.8 shows that, for a simple root α with 〈λ, α∨〉 integral and non-negative,
a highest weight vector of L(λ) generates a finite-dimensional gα-subrepresentation of L(λ).
Now for every representation V of g the sum W of all finite-dimensional gα-subrepresentations,
for arbitrary fixed α ∈ R, is a g-subrepresentation of V . If we have 〈λ, α∨〉 ∈ N for every
simple root α, then L(λ) is the sum of its finite-dimensional gα-subrepresentations for every
simple root α. Furthermore we have sαP (L(λ)) = P (L(λ)), see Lemma 3.1.7, for every simple
reflection sα ∈ W . But then P (L(λ)) is necessarily stable under the Weyl group, and hence
finite. It follows that dim(L(λ)) <∞. �
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3.4. The Weyl formulas

We recall the notations of this chapter. Let g be a semisimple Lie algebra with Cartan
subalgebra h and root system R = R(g, h), let X be the lattice of integral weights, and R+ be
a system of positive roots. Let X+ be the set of dominant integral weights with respect to R+.
Let ρ ∈ h∗ be the half-sum of positive roots.

We will start with the Weyl dimension formula, which is good for examples. The proof will
follow later from a more general result.

Theorem 3.4.1 (The Weyl dimension formula). For every λ ∈ X+ the dimension of the
simple representation L(λ) with highest weight λ is given by

dim(L(λ)) =

∏
α∈R+〈λ+ ρ, α∨〉∏
α∈R+〈ρ, α∨〉

=

∏
α∈R+(λ+ ρ, α)∏
α∈R+(ρ, α)

.

Since 〈β, α∨〉 = 2(β,α)
(α,α)

it is clear that the second equality holds.

Example 3.4.2. Let g be of type A1, with R+ = {α}. If λ(H) = m, then λ = mρ, so that
the Weyl formula gives

dim(L(λ)) =
(λ+ ρ, α)

(ρ, α)
=

(m+ 1)(ρ, α)

(ρ, α)
= m+ 1.

Example 3.4.3. Let g be of type A2. Then R+ = {α1, α2, α1 + α2} and ρ = α1 + α2. Then
λ = m1$1 + m2$2 with m1,m2 ∈ Z≥0 and ($i, αj) = δij. We compute (λ + ρ, α1) = m1 + 1,
(λ+ρ, α2) = m2+1 and (λ+ρ, α1+α2) = m1+m2+2. Also,

∏
α∈R+(ρ, α) = (α1+α2, α1+α2) = 2.

Hence the Weyl formula gives

dim(L(λ)) =
(m1 + 1)(m2 + 1)(m1 +m2 + 2)

2
.

Example 3.4.4. Let g be of type B2, with R+ = {α, β, α + β, 2α + β}. We have (α, α) =
−(α, β) = 1

2
(β, β) = 1 and λ = m1$1 +m2$2, and the Weyl formula gives

dim(L(λ)) =
(m1 + 1)(m2 + 1)(m1 + 2m2 + 3)(m1 +m2 + 2)

6
.

Indeed, we have ρ = 2α+ 3
2
β and an easy calculation shows that $1 = α+ 1

2
β, $2 = α+β.

So we have

λ = m1$1 +m2$2 = (m1 +m2)α +
(m1

2
+m2

)
β

with positive integers m1,m2. Then

dim(L(λ)) =
(λ+ ρ, α)(λ+ ρ, β)(λ+ ρ, α + β)(λ+ ρ, 2α + β)

(ρ, α)(ρ, β)(ρ, α + β)(ρ, 2α + β)

=
((m1 + 1)/2)(m2 + 1)((m1 + 3)/2 +m2)(m1 +m2 + 2)

(1/2)(1)(3/2)(2)

=
(m1 + 1)(m2 + 1)(m1 + 2m2 + 3)(m1 +m2 + 2)

6
.
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Example 3.4.5. Let g be of type G2, with R+ = {α, β, α+β, 2α+β, 3α+β, 3α+2β}. With
λ = m1$1 +m2$2 the Weyl formula gives

dim(L(λ)) =
1

120
(m1 + 1)(m2 + 1)(m1 + 2m2 + 3)(m1 +m2 + 2)

(m1 + 3m2 + 4)(2m1 + 3m2 + 5).

Let Zh∗ be the group ring of the additive group (h∗,+). Viewing λ ∈ h∗ as an element of
Zh∗ we’ll write eλ instead of λ so that the sum λ + µ is not ambiguous. Hence {eλ | λ ∈ h∗}
is a Z-basis of Zh∗ with eλeµ = eλ+µ. The ring Zh∗ is an integral domain, because every two
elements lie in a subring ZE for a finitely generated subgroup E ⊂ h∗. Since E is a free abelian
group the group ring ZE is isomorphic to a ring of Laurent polynomials. So we don’t have zero
divisors.

Definition 3.4.6. Let V be a finite-dimensional representation of g. We define the char-
acter ch(V ) ∈ Zh∗ of V by

ch(V ) =
∑
µ∈h∗

(dimVµ)eµ.

Note that ch(V ) is invariant under the Weyl group W . This follows from the representation
theory of sl2(K). Indeed, suitable powers of the generators of gα and g−α provide isomorphisms
between the weight spaces for λ and sα(λ).

Recall that the length of an element w in a Weyl group W , denoted by l(w), is the smallest
number k so that w is a product of k reflections by simple roots. So, the notion depends on
the choice of a positive Weyl chamber. In particular, a simple reflection has length one. The
Weyl dimension formula is a consequence of the following Weyl character formula.

Theorem 3.4.7 (The Weyl character formula). For every integral dominant weight λ ∈ X+

we have for the character of the finite-dimensional simple representation L(λ) of highest weight
λ the formula

ch(L(λ)) =

∑
w∈W (−1)l(w)ew(λ+ρ)∑
w∈W (−1)l(w)ewρ

in the quotient field of Zh∗.
Example 3.4.8. For g of type A1 we have ρ = 1

2
α, X+ = Nρ and we obtain for all n ≥ 1

that

ch(L(nρ)) =
e(n+1)ρ − e−(n+1)ρ

eρ − e−ρ
= enρ + e(n−2)ρ + e(n−4)ρ + · · ·+ e−nρ.

Remark 3.4.9. The Weyl character formula and its generalization by Kac yields several
famous combinatorial identities. Let

e(t) =
∏
n≥1

(1− tn).

As an example, we obtain the Euler pentagonal identity

e(t) =
∑
j∈Z

(−1)jtj(3j+1)/2,

we obtain the Gauß identity
e2(t)

e(t2)
=
∑
j∈Z

(−1)jtj
2

,
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we obtain the Jacobi identity

e3(t) =
∑
j≥0

(−1)j(2j + 1)j(j+1)/2,

and Jacobi’s triple product identity
∞∏
n=1

(1− q2n)(1 + zq2n−1)(1 + z−1q2n−1) =
∞∑

n=−∞

znqn
2

.

Consider the set Abb(h∗,Z) of all maps f : h∗ → Z. We write such maps as infinite formal
sums

f =
∑
λ∈h∗

f(λ)eλ.

We can extend the definition of a character of a representation of g with finite-dimensional
weight spaces with ch(V ) ∈ Abb(h∗,Z). We want to do computations with characters of Verma
modules. For this reason we introduce the following extended character ring.

Definition 3.4.10. Denote by Z〈h∗〉 ⊂ Abb(h∗,Z) the set of all maps f : h∗ → Z, whose
support is contained in a finite union of sets of the form {λ−

∑
nαα | n ∈ Abb(R+,N)}.

We may view Zh∗ ⊂ Z〈h∗〉 as the subset of all maps with finite support. The multiplication
in h∗ extends to a commutative, associative multiplication in Z〈h∗〉 by

(fg)(ν) =
∑
λ+µ=ν

f(λ)g(µ),

because the support condition ensures that only finitely many terms do not vanish in these
sums.

Lemma 3.4.11. The character of a Verma module ∆(λ) is given by

ch(∆(λ)) = eλ
∏
α∈R+

(1 + e−α + e−2α + . . .)

In particular, in Z〈h∗〉 we have( ∏
α∈R+

(1− e−α)

)
ch(∆(λ)) = eλ.

Proof. Rewriting the results of Proposition 3.3.2 on the structure of Verma modules in
our new terminology gives

ch(∆(λ)) =
∑
µ

P (−µ)

= eλ
∏
α∈R+

(1 + e−α + e−2α + . . .).

This shows the first formula. The second one follows directly from the first one. �

Remark 3.4.12. The character satisfies a very nice property, namely

ch(M ⊗N) = ch(M) · ch(N).

Here it is enough to assume that M,N are h-modules with finite-dimensional weight spaces,
and that they are the sum of their weight spaces, and that ch(M), ch(N) in Z〈h∗〉.
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In the next step we want to study the eigenvalues of the Casimir operator for a Verma
module. The Killing form κ of g induces an isomorphism κ : h → h∗, characterized by
〈κ(h), h′〉 = κ(h, h′) for all h, h′ ∈ h. Denote by (λ, µ) the bilinear form on h∗ correspond-
ing to the Killing form on h under the isomorphism κ. If κ sends h to λ, then µ(h) = (λ, µ)
for all µ ∈ h∗. We know that this bilinear form is positive definite on the subspace 〈R〉Q. It is
invariant under the Weyl group.

Lemma 3.4.13. Every endomorphism of a Verma module is the multiplication with a scalar.

Proof. Consider the maps

K ↪→ Endg(∆(λ)) ↪→ EndK(∆(λ)λ).

The second map is injective, because ∆(λ)λ generates ∆(λ) by Proposition 3.3.2. The compo-
sition of both maps must be a bijection, since dim(∆(λ)λ) = dim〈vλ〉 = 1 by Proposition 3.3.2.
Thus all maps are bijections and we are done. �

Lemma 3.4.14. Let C = Cκ be the Casimir operator of g with respect to the Verma module
∆(λ). Then C acts on ∆(λ) as multiplication with the scalar

cλ = (λ+ ρ, λ+ ρ)− (ρ, ρ).

Proof. By Lemma 3.4.13 we know that C acts as multiplication with a scalar and we only
have to find out by which scalar it acts on the highest weight space ∆(λ)λ. Let α ∈ R+. Chose
xα ∈ gα and yα ∈ g−α such that κ(xα, yα) = 1. Let h1, . . . , hn be an orthonormal basis of h
with respect to the Killing form κ. Then we have

C =
∑
α∈R+

yαxα + xαyα +
n∑
i=1

h2
i

=
∑
α∈R+

2yαxα + [xα, yα] +
n∑
i=1

h2
i ,

which acts on ∆(λ)λ by the scalar

cλ =
∑
α∈R+

λ([xα, yα]) +
n∑
i=1

λ(hi)
2.

Writing λ = κ(h) we obtain

cλ =
∑
α∈R+

κ(h, [xα, yα]) +
n∑
i=1

κ(h, hi)
2.

Because of κ(h, [xα, yα]) = κ([h, xα], yα) = α(h)κ(xα, yα) we obtain

cλ = 2ρ(h) + κ(h, h)

= (2ρ, λ) + (λ, λ)

= (λ+ ρ, λ+ ρ)− (ρ, ρ).

�
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Remark 3.4.15. One can also show the formula of Freudenthal, which is a recursive formula
for the dimensions of the weight spaces L(λ)µ in a simple representation L(λ). We have

dim(L(λ)µ)(|λ+ ρ|2 − |µ+ ρ|2) = 2
∑
α∈R+

∑
j≥1

dim(L(λ)µ+jα)(µ+ jα, α).

The next lemma is a result concerning composition series of Verma modules.

Lemma 3.4.16. Every Verma module ∆(λ) is of finite length and every simple subquotient
of ∆(λ) is a simple highest weight module L(µ) with µ ≤ λ and (µ+ ρ, µ+ ρ) = (λ+ ρ, λ+ ρ).

Proof. The second claim follows from Proposition 3.3.6, part 3 and Lemma 3.4.14, because
the Casimir operator acts on each subquotient of ∆(λ) again by the scalar cλ. In particular we
know that there are only finitely many µ, which can be a highest weight of a simple subquotient
of ∆(λ). Indeed, λ ≤ µ implies that µ = λ+ ν with ν ∈ 〈R〉, and there are only finitely many
elements of the root lattice ν ∈ 〈R〉 with (λ + ρ, λ + ρ) = (λ + ν + ρ, λ + ν + ρ), because this
equation is equivalent to the equation (ν, ν) + 2(λ + ρ, ν) = 0. And the bilinear form (·, ·) is
positive definite on 〈R〉Q, so that our equation can have only finitely many solutions in the
lattice 〈R〉.
Furthermore every nonzero subquotient S of ∆(λ) has a simple subquotient. Indeed, every
nonzero module over a ring has a simple subquotient. So for each such simple subquotient S
there is a weight µ with (µ+ ρ, µ+ ρ) = (λ+ ρ, λ+ ρ) and Sµ 6= 0. Taking a strictly decreasing
filtration of ∆(λ) we can estimate the length l(∆(λ)) by

l(∆(λ)) ≤
∑
µ≤λ

(µ+ρ,µ+ρ)=(λ+ρ,λ+ρ)

dim(∆(λ)µ).

�

Proposition 3.4.17 (Kostant’s character formula). Let λ ∈ X+ be a dominant inte-
gral weight. Then the character of a simple representation L(λ) with highest weight λ is
the alternating sum over the characters of the Verma modules ∆(w · λ) with w ∈ W , where
w · λ = w(λ+ ρ)− ρ, i.e.,

ch(L(λ)) =
∑
w∈W

(−1)l(w) ch(∆(w · λ)).

Proof. Let us write |λ| =
√

(λ, λ) for λ ∈ 〈R〉Q. By Lemma 3.4.16 we can write

ch(∆(λ)) =
∑
µ≤λ

|µ+ρ|=|λ+ρ|

aµλ ch(L(µ))

for suitable aµλ ∈ N with aλλ = 1. The corresponding matrix is unitriangular, hence invertible.
So we can invert the formula and can also write

ch(L(λ)) =
∑
µ≤λ

|µ+ρ|=|λ+ρ|

bµλ ch(∆(µ))

for suitable bµλ ∈ Z with bλλ = 1. So far, everything is valid for all λ ∈ h∗Q. Now we know in
addition that λ is integral and dominant so that L(λ) is finite-dimensional by Proposition 3.3.9
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and that ch(L(λ)) is invariant under the Weyl group W . Multiplying both sides of the last
equation by ∏

α∈R+

(
eα/2 − e−α/2

)
= eρ

∏
α∈R+

(
1− e−α

)
we obtain ∏

α∈R+

(
eα/2 − e−α/2

)
ch(L(λ)) =

∑
µ

bµλe
µ+ρ =

∑
ν

dνe
ν ,

where dν = bν−ρλ , dλ+ρ = 1 and dν = 0 if |ν| 6= |λ + ρ| or ν 6≤ λ + ρ. It is easy to see that the
LHS changes sign if we apply a simple reflection sβ on it. Hence the same is true for the RHS,
so that dν = (−1)l(w)dwν for all w ∈ W . In particular we have dν = 0 if not |ν| = |λ + ρ| and
wν ≤ λ+ ρ for all w ∈ W . By Lemma 3.4.18 below it follows that dν = 0 if not ν ∈ W (λ+ ρ).
Together with dλ+ρ = 1 and reparametrization we obtain Kostant’s formula. �

We still have to state and prove Lemma 3.4.18, which we’ve used in the last proof.

Lemma 3.4.18. Let λ ∈ X+ be an integral dominant weight and ν ∈ X an integral weight.
Then |ν| = |µ| and wν ≤ µ for all w ∈ W imply that ν ∈ Wµ.

Proof. We may consider a conjugate of ν, which lies in X+. This is always possible. So
we may assume that ν ∈ X+. Hence we only have to show that ν ≤ µ and |µ| = |ν| imply that
µ = ν. Since the scalar product of a vector from the dominant Weyl chamber with a positive
root is always nonnegative, µ− ν and ν enclose an obtuse angle. Hence the sum must have at
least the length of each of the two summands, and the equality of their lengths is only possible
when the corresponding summand coincides with the sum. �

Proof of Theorem 3.4.7, i.e., of Weyl’s character formula: consider the equation∏
α∈R+

(
eα/2 − e−α/2

)
ch(L(λ)) =

∑
w∈W

(−1)l(w)ew(λ+ρ),

which comes from the proof of Kostant’s formula in Proposition 3.4.17 and divide it by its
specialization at λ = 0, which is the so-called Weyl’s denominator formula

eρ
∏
α∈R+

(
1− e−α

)
=
∏
α∈R+

(
eα/2 − e−α/2

)
=
∑
w∈W

(−1)l(w)ewρ.

This gives exactly Weyl’s character formula. �

Remark 3.4.19. Weyl’s denominator formula can be used among other things to show that

ch(L(nρ)) = enρ
∏
α∈R+

(
1 + e−α + e−2α + · · ·+ e−nα

)
,

for any semisimple Lie algebra.

Proof of Theorem 3.4.1, i.e., of Weyl’s dimension formula: consider the ring homomorphism
a : Zh∗ → Z with a(eλ) = 1 for all λ ∈ h∗. We would like to apply Weyl’s character formula.
For this we need to apply an abstract version of L’Hopital’s rule. Consider the subring ZX in
the group ring Zh∗ and the group homomorphism ∂α : ZX → ZX with ∂α(eµ) = 〈µ, α∨〉eµ. It
is easy to see that the ∂α are commuting ring derivations. For D =

∏
α∈R+ ∂α ∈ End(ZX) we

have aDeµ =
∏

α∈R+〈µ, α∨〉. It follows that aDewµ = (−1)l(w)aDeµ for simple reflections w and
then for arbitrary w ∈ W . By Weyl’s character formula and his denominator formula we have
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eρ
∏
α∈R+

(
1− e−α

))
ch(L(λ)) =

∑
w∈W

(−1)l(w)ew(λ+ρ)

Applying aD on both sides we obtain

aD

(
eρ
∏
α∈R+

(
1− e−α

))
a(ch(L(λ))) = |W |

∏
α∈R+

〈λ+ ρ, α∨〉.

Now a(ch(L(λ))) = dim(L(λ)), and factors 1 − e−α, which are not hit by a derivation, vanish
under a. So dividing the equation by the one obtained for λ = 0 gives the result. �
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