ROTA-BAXTER OPERATORS AND POST-LIE ALGEBRA STRUCTURES
ON SEMISIMPLE LIE ALGEBRAS
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ABSTRACT. Rota—Baxter operators R of weight 1 on n are in bijective correspondence to post-
Lie algebra structures on pairs (g, n), where n is complete. We use such Rota—Baxter operators
to study the existence and classification of post-Lie algebra structures on pairs of Lie algebras
(g,n), where n is semisimple. We show that for semisimple g and n, with g or n simple, the
existence of a post-Lie algebra structure on such a pair (g, n) implies that g and n are isomorphic,
and hence both simple. If n is semisimple, but g is not, it becomes much harder to classify
post-Lie algebra structures on (g, n), or even to determine the Lie algebras g which can arise.
Here only the case n = sl3(C) was studied. In this paper we determine all Lie algebras g such
that there exists a post-Lie algebra structure on (g,n) with n = sly(C) @ sl (C).

1. INTRODUCTION

Rota—Baxter operators were introduced by G. Baxter [3] in 1960 as a formal generalization
of integration by parts for solving an analytic formula in probability theory. Such operators
R: A — A are defined on an algebra A by the identity

R(r)R(y) = R(R(v)y + zR(y) + Azy)

for all x,y € A, where X is a scalar, called the weight of R. These operators were then further
investigated, by G.-C. Rota [31], Atkinson [1], Cartier [I7] and others. In the 1980s these oper-
ators were studied in integrable systems in the context of classical and modified Yang—Baxter
equations [34, [4]. Since the late 1990s, the study of Rota—Baxter operators has made great
progress in many areas, both in theory and in applications [26], 2, 23] 2], 22} 5], 20].

Post-Lie algebras and post-Lie algebra structures also arise in many areas, e.g., in differential
geometry and the study of geometric structures on Lie groups. Here post-Lie algebras arise
as a natural common generalization of pre-Lie algebras [24, 27, B3] 6, [7, 8] and LR-algebras
[9, 10], in the context of nil-affine actions of Lie groups, see [I1]. A detailed account of the
differential geometric context of post-Lie algebras is also given in [I9]. On the other hand,
post-Lie algebras have been introduced by Vallette [35] in connection with the homology of
partition posets and the study of Koszul operads. They have been studied by several authors
in various contexts, e.g., for algebraic operad triples [29], in connection with modified Yang—
Baxter equations, Rota—Baxter operators, universal enveloping algebras, double Lie algebras,
R-matrices, isospectral flows, Lie-Butcher series and many other topics [2, 19 20]. There are
several results on the existence and classification of post-Lie algebra structures, in particular
on commutative post-Lie algebra structures [13], 14] [15].
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2 D. BURDE AND V. GUBAREV

It is well-known [2] that Rota-Baxter operators R of weight 1 on n are in bijective correspon-
dence to post-Lie algebra structures on pairs (g, n), where n is complete. In fact, RB-operators
always yield PA-structures. So it is possible (and desirable) to use results on RB-operators for
the existence and classification of post-Lie algebra structures.

The paper is organized as follows. In section 2 we give basic definitions of RB-operators and
PA-structures on pairs of Lie algebras. We summarize several useful results. For a complete Lie
algebra n there is a bijection between PA-structures on (g, n) and RB-operators of weight 1 on
n. The PA-structure is given by z -y = {R(x),y}. Here we study the kernels of R and R + id.
If g and n are not isomorphic, then both R and R + id have a non-trivial kernel. Moreover, if
one of g or n is not solvable, then at least one of ker(R) and ker(R + id) is non-trivial.

In section 3 we complete the classification of PA-structures on pairs of semisimple Lie algebras
(g,n), where either g or n is simple. We already have shown the following in [I1]. If g is simple,
and there exists a PA-structure on (g, n), then also n is simple, and we have g 2 n with z-y =0
or z -y = [x,y]. Here we deal now with the case that n is simple. Again it follows that g and
n are isomorphic. The proof via RB-operators uses results of Koszul [28] and Onishchik [30].
We also show a result concerning semisimple decompositions of Lie algebras. Suppose that
g = 51 + s is the vector space sum of two semisimple subalgebras of g. Then g is semisimple.
As a corollary we show that the existence of a PA-structure on (g,n) for g semisimple and n
complete implies that n is semisimple.

In section 4 we determine all Lie algebras g which can arise by PA-structures on (g,n) with
n = sly(C) @ sly(C). This turns out to be much more complicated than the case n = sly(C),
which we have done in [I1]. By Theorem 3.3 of [12], g cannot be solvable unimodular. On the
other hand, the result we obtain shows that there are more restrictions than that.

2. PRELIMINARIES

Let A be a nonassociative algebra over a field K in the sense of Schafer [32], with K-bilinear
product A x A — A, (a,b) — ab. We will assume that K is an arbitrary field of characteristic
zero, if not said otherwise.

Definition 2.1. Let A € K. A linear operator R: A — A satisfying the identity
(1) R(z)R(y) = R(R(x)y + zR(y) + Azy)
for all x,y € A is called a Rota—Baaxter operator on A of weight A, or just RB-operator.

Two obvious examples are given by R = 0 and R = \id, for an arbitrary nonassociative
algebra. These are called the trivial RB-operators. The following elementary lemma was shown
n [23], Proposition 1.1.12.

Lemma 2.2. Let R be an RB-operator on A of weight \. Then —R — \id is an RB-operator
on A of weight \, and \"'R is an RB-operator on A of weight 1 for all X # 0.

It is also easy to verify the following results.

Proposition 2.3. [5] Let R be an RB-operator on A of weight A and ¢ € Aut(A). Then
RW) = 4~'Ry is an RB-operator on A of weight .

Proposition 2.4. [23] Let B be a countable direct sum of an algebra A. Then the operator R
defined on B by

R((a1,a9,...,apn,...)) = (0,a1,a; + as,ay + as + as, . ..)
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1s an RB-operator on B of weight 1.

Proposition 2.5. Let B=A® A and ¢ € Aut(A). Then the operator R defined on B by
(2) R((a1,az2)) = (0,9(a1))
1s an RB-operator on B of weight 1. Furthermore the operator R defined on B by
(3) R((a1,a2)) = (—a1, —¢(a1))
1s an RB-operator on B of weight 1.
Proof. Let © = (a1, a2) and y = (b1, b2). Then we have

R(R(z)y + zR(y) + Azy) = R((0,1(a1)by + (0, astb(by)) + (aiby, azbs))

= (0,%(a1by))

— (0, %(an) (b))
— R(2)R(y).

The second claim follows similarly. O

Proposition 2.6. [26] Let A = A; & Ay, Ry be an RB-operator of weight X on Ay, Rs be
an RB-operator of weight A on Ay. Then the operator R: A — A defined by R((a1,a2)) =
(Ry1(a1), Ra(ag)) is an RB-operator of weight A on A.

Proposition 2.7. [23] Let A = A+ Ay be the direct vector space sum of two subalgebras. Then
the operator R defined on A by

(4) R(CLl + CLQ) = —)\a2
foray € Ay and as € Ay is an RB-operator on A of weight \.

We call such an operator split, with subalgebras A; and A;. Note that the set of all split
RB-operators on A is in bijective correspondence with all decompositions A = A;+A4, as a
direct sum of subalgebras.

Lemma 2.8. [5] Let R be an RB-operator of nonzero weight X on an algebra A. Then R is
split if and only if R(R + Aid) = 0.

Lemma 2.9. Let A = A_+Ay+A, be a direct vector space sum of subalgebras of A. Suppose
that R is an RB-operator of weight A on Ay, A_ is an (R + id)(Ap)-module and A is an
R(Ap)-module. Define an operator P on A by

(5) Py =0, Py, =R, Pa, = —Xid.
Then P is an RB-operator on A of weight \.

Definition 2.10. Let P be an RB-operator on A defined as above such that not both A_ and
A, are zero. Then P is called triangular-split.

We also recall the definition of post-Lie algebra structures on a pair of Lie algebras (g,n)
over K, see [11].
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Definition 2.11. Let g = (V,[,]) and n = (V,{, }) be two Lie brackets on a vector space V'
over K. A post-Lie algebra structure, or PA-structure on the pair (g,n) is a K-bilinear product
x -y satisfying the identities:

(6) zoy—y-z=[z,y —{r,y}
(7) [yl z2=2-(y-2)—y-(x-2)
(8) Ay, 2} ={v-y, 2} +{y, v 2}

forall z,y,z € V.

Define by L(z)(y) = x - y the left multiplication operator of the algebra A = (V,-). By (§),
all L(z) are derivations of the Lie algebra (V,{, }). Moreover, by (7)), the left multiplication

L: g — Der(n) C End(V), z — L(z)

is a linear representation of g.
If n is abelian, then a post-Lie algebra structure on (g,n) corresponds to a pre-Lie algebra
structure on g. In other words, if {z,y} = 0 for all z,y € V, then the conditions reduce to

roy—y-x =z,
[zyl-z=2-(y-2)—y-(z-2),
i.e., x -y is a pre-Lie algebra structure on the Lie algebra g, see [I1].
Definition 2.12. Let z -y be a PA-structure on (g, n). If there exists a ¢ € End(V') such that
z-y ={e(),y;
for all x,y € V, then z -y is called an inner PA-structure on (g, n).

The following result is proved in [2], Corollary 5.6.

Proposition 2.13. Let (n,{, }, R) be a Lie algebra together with a Rota—Bazter operator R of
weight 1, 1.e., a linear operator satisfying

{R(x),R(y)} = R{R(x),y} + {z, R(y)} + {z,9})
forall z,y € V. Then

z-y={R(z),y}
defines an inner PA-structure on (g,n), where the Lie bracket of g is given by

Note that ker(R) is a subalgebra of n. For 2,y € ker(R) we have R({z,y}) = 0. Recall that
a Lie algebra is called complete, if it has trivial center and only inner derivations.

Proposition 2.14. Let n be a Lie algebra with trivial center. Then any inner PA-structure on
(g,n) arises by a Rota—Bazter operator of weight 1. Furthermore, if n is complete, then every
PA-structure on (g,n) is inner.

Proof. The first claim follows from Proposition 2.10 in [11]. By Lemma 2.9 in [I1] every PA-
structure on (g,n) with complete Lie algebra n is inner. The result can also be derived from
the proof of Theorem 5.10 in [2]. O

Corollary 2.15. Let n be a complete Lie algebra. Then there is a bijection between PA-
structures on (g,n) and RB-operators of weight 1 on n.
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As we have seen, any inner PA-structure on (g,n) with Z(n) = 0 arises by a Rota—Baxter
operator of weight 1. For Lie algebra n with non-trivial center this need not be true.

Example 2.16. Let (e, e, e3) be a basis of V and n = vy(K) & K with {e1,ea} = es. Then

1 0 0
e=10 =10
a [ v

defines an inner PA-structure on (g,n) by x -y = {p(z),y} with g = n, i.e., with [e1, ea] = es.
But ¢ s not always a Rota—Baxter operator of weight 1 for n. It is easy to see that this is the
case if and only iof B = 0.

Proposition 2.17. Let x -y be an inner PA-structure arising from an RB-operator R on n of
weight 1. Then R is also an RB-operator of weight 1 on g, i.e., it satisfies

[B(x), Rly)] = R([R(z),y] + [z, R(y)] + [z, y])
forallz,y € V.

Proof. Because of R([x,y]) = {R(z), R(y)} and the definition of [z, y] we have

R(y
R([R(x), y] + |z, R(y)] + [z, y]) = {R(R(x)), R(y)} + {R(x), R(R(y))} + {R(z), R(y)}
= [R

(z), R(y)]
for all z,y € V. U
Corollary 2.18. Let -y = {R(x),y} be a PA-structure on (g,n) defined by an RB-operator
R of weight 1 on n. Denote by g; be the Lie algebra structure on V' defined by
[I’, y]O - {I’, y}7
[z, yliv1 = [R(2),y]; — [R(y), z]; + [z, ¥,

for alli > 0. Then R defines a PA-structure on each pair (g;y1,9i)-

We have [z,y]; = [z,y], and both R and R + id are Lie algebra homomorphisms from g;;4
to g, see Proposition 7 in [34]. Hence we obtain a composition of homomorphisms

% R S e e R
¥ d ¥ Rad T R %O

So the kernels ker(R') and ker((R + id)*) are ideals in g; for all 1 <7 < j.

For a Lie algebra g, denote by g the derived ideals defined by g’ = g and g(*! = [g®, g(¥)]
for ¢ > 1. An immediate consequence of Proposition is the following observation.

Proposition 2.19. Let z-y = {R(z),y} be a PA- structure on (g,n) defined by an RB-operator
R of weight 1 on n. Then we have dim g® < dimn® for all i > 1.

Corollary 2.20. Let x -y be a PA-structure on (g,n), where n is complete. Then we have
dim g® < dimn® for all i > 1. In particular, if n is solvable, so is g, and if g is perfect, so is
n.

Proof. By Corollary this follows from the proposition. OJ

Proposition 2.21. Let z-y = {R(z),y} be a PA-structure on (g,n) defined by an RB-operator
R of weight 1 on n. Then the following holds.
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(1) If g and n are not isomorphic, then both R and R+ id have a non-trivial kernel.
(2) If either g or n is not solvable, then at least one of the operators R and R + id has a
non-trivial kernel.

Proof. For (1), assume that ker(R) = 0. Then R: g — n is invertible, hence an isomorphism.
This is a contradiction. The same is true for R+id. For (2) assume that ker(R) = ker(R+id) =
0. Then R and R + id are isomorphisms from g to n, and g = n. Then we can apply a result
of Jacobson [25] to the automorphism v := (R +id) o R~ of n, because n is not solvable. We
obtain a nonzero fixed point € n, so that

0=v()—2=(R+id)R ' (z) —x = R (2).
Since R is bijective, x = 0, a contradiction. 0

Corollary 2.22. Let n be a simple Lie algebra and R be an invertible RB-operator of nonzero
weight A on n. Then we have R = —\id.

Proof. By rescaling we may assume that R has weight 1. We obtain a PA-structure on (g, n)
by Proposition [2.13] with Lie bracket (9) on g. Since n is not solvable, either R or R+ id have
a nontrivial kernel. But ker(R) = 0 by assumption, so that ker(R + id) is a nontrivial ideal of

n. Hence we have R +id = 0. L]

3. PA-STRUCTURES ON PAIRS OF SEMISIMPLE LIE ALGEBRAS

We will assume that all algebras in this section are finite-dimensional. Let = -y be a PA-
structure on (g,n) over C, where g is simple and n is semisimple. Then n is also simple, and
both g and n are isomorphic, see Proposition 4.9 in [I1]. We have a similar result for n simple
and g semisimple. However, its proof is more difficult than the first one.

Theorem 3.1. Let z-y be a PA-structure on (g,n) over C, where n is simple and g is semisim-
ple. Then g is also simple, and both g and n are isomorphic.

Proof. By Corollary we have z -y = {R(z),y} for an RB-operator R of weight 1 on n.
Assume that g and n are not isomorphic. By Proposition (2) both ker(R) and ker(R + id)
are proper nonzero ideals of g, with ker(R) Nker(R + id) = 0. So we have

g =ker(R) @ ker(R+id) ® s
with a semisimple ideal 5. We have n = im(R) +im(R+id) because of z = R(—z)+ (R+id)(x)
for all z € n, and
im(R) = g/ ker(R) = ker(R +id) @ s,
im(R +id) = g/ ker(R + id) = ker(R) & s.
This yields a semisimple decomposition
n = (ker(R+id) @ s) + (ker(R) @ s).

Suppose that s is nonzero. Then both summands are not simple. This is a contradiction to
Theorem 4.2 in Onishchik’s paper [30], which says that at least one summand in a semisimple
decomposition of a simple Lie algebra must be simple. Hence we obtain s = 0, im(R) =
ker(R +id), im(R +id) = im(R) and

n = im(R)+im(R + id).
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Then the main result of Koszul’s note [28] implies that n = im(R) @ im(R + id), which is a
contradiction to the simplicity of n. Hence g and n are isomorphic. 0

If g is semisimple with only two simple summands, we can prove the same result for any field
K of characteristic zero.

Proposition 3.2. Let z -y be a PA-structure on (g,n), where n is semisimple, and g = $1 @ 5y
is the direct sum of two simple ideals of g. Then g and n are isomorphic.

The proof is the same as before. The only argument where we needed the complex numbers,
was the result of [30], which we do not need here.

Let n = 51 @ 59 be a direct sum of two simple isomorphic ideals s; and s5. We would like to
find all RB-operators of weight 1 on n such that g with bracket @D is isomorphic to n.

Proposition 3.3. All PA-structures on (g,n) with g = n = s, @ 69, where 1 and sy simple
isomorphic ideals of n, arise by the trivial RB-operators or by one of the following RB-operators
R onn, and ¢ € Aut(n),

R((s1,82)) = (=51, —¢(s1)),
R((s1,82)) = (0,9(s1)),
R((s1,52)) = (—51,0)),

up to permuting the factors and application o R) = —R —1id to these operators.
p p g pp 2 D

Proof. By Proposition [2.5] and Proposition [2.7] the given operators are RB-operators of weight
1 on n, because R is. By Proposition at least one of ker(R) and ker(R + id) is nonzero.
Suppose first that both ker(R) and ker(R+id) are zero. Then we have g = ker(R) @ ker(R+1id)
and n = ker(R)+ ker(R + id). It is easy to see that ker(R) coincides with §; or sy by using
the Theorem of Koszul [28]. Applying ¢ if necessary, we can assume that ker(R) = s5. Then
again by Koszul’s result we have R((s1,s2)) = (¢1(s1),%2(s1)) or R((s1,52)) = (¢1(s1),0)) for
some ¢,y € Aut(n). Since im(R) = ker(R + id) we either have R((s1,$2)) = (—s1, =% (s1))
or R((s1,52)) = (—s1,0).

In the second case, one of the kernels is zero. Applying ¢ if necessary, we may assume that
ker(R + id) = 0 and ker(R) = s;. Then g/ ker(R) is a simple Lie algebra, and —R — id is
an invertible RB-operator of weight 1 on g/ker(R). By Corollary we obtain —R — id =
—1id, hence R = 0 on g/ker(R). This implies R* = 0 on g. The projections of im(R) to s
and sy are either zero or an isomorphism on one factor. So we have R((s,0)) = (0,(s)) or
R((s,0)) = (¢1(s),1(s)) for some automorphisms v, 11, 1. But the second operator does not
satisfy R? = 0, and hence is impossible. Therefore we are done. ([l

Proposition 3.4. Let z-y = {R(x),y} be a PA-structure on (g,n) defined by an RB-operator
R of weight 1 on n. Let ny = ker(R"), ny = ker(R +id)"”, ng = im(R™) Nim((R + id)™) for
n =dim(V). Then n = nj+nytng with {ny,n3} Cny, {ng,n3} C ny, and ny is solvable.

Proof. We first show by induction that ker(R") is a subalgebra of n, and that
{ker(R"),im((R +id)")} C ker(R")

for all # > 1. The case i = 1 goes as follows. We already know that ker(R) is a subalgebra of
n. So we have to show that {ker(R),im(R +id)} C ker(R). Let = € ker(R) and y € n. Then
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by @ we have

{z,(R+id)(y)} = {z, R(y)} + {z,y}
= [z,y] + {y, R(z)}
= [z,y],

which is in ker(R), since this is an ideal in g. For the induction step ¢ +— i + 1 consider the
iteration of the Lie bracket @ for all « > 0, given by

[z, yli = [z, ylivs — [R(2),y]i — [z, R(y)l:
for all 4 > 0. Then
{z,y} = [z,y]1 — [R(x),ylo — [z, R(¥)]o
= [z, y)a — [R*(x), ylo — 2[R(x), ylo — 2[R(x), R(y)]o — 2[z, R(y)]o — [=, R*(y)]o

and so on. Define a degree of a term [R'(z), R*(y)],, by | + k +m, and let x,y € ker(R'™).
We can iterate the brackets, until the degree of every summand on the right-hand side will be
greater than 3i, so that all summands either have a term R!(z) with [ > 4, or a term R*(y) with
k > 4, or all summands lie in [ker(R*!) ker(R"™!)];;;. By induction hypothesis, such terms will
vanish for [ > i or k > ¢, and since ker(R*"!) is an ideal in g, we have {z,y} € ker(R""!), so
that ker(R"™) is a subalgebra of n. The induction step for the second claim follows similarly.

Since the image of a subalgebra under the action of an RB-operator is a subalgebra ny,
ny, and their intersection ns are subalgebras of n. We want to show that n = n;4ny4ns.
Because of ker(R™) Nim(R"™) = 0 we have n = ker(R")+1im(R"). In the same way we have
n = ker((R +id)")+im((R + id)"). We obtain

im(R"™) Nker((R + id)")+im(R") Nim((R +id)") C im(R").

We claim that ker((R + id)") C im(R"), so that we have equality above. Indeed, for = €
ker((R 4 id)™) we have by the binomial formula

v+ (nf 1) Rz)+-- + (T) R (z) = —R"(z) € im(R").

Applying R"™! we obtain R""!(z) € im(R") and

v+ nR(x)+ -+ (Z) R"2(z) € im(R").

[terating this we obtain = € im(R"™). This yields
n = ker(R")+ im(R")
= ker(R")+ ker((R + id)")+im(R™) Nim((R + id)™)
= ny+ny+ng.

On n3 both operators R and R + id are invertible. By Proposition m part (2) it follows that
ns is solvable. O

Corollary 3.5. The decomposition n = ni+ny+ns induces a decomposition g; = n;-ny+ns
for each i > 1 with the same properties as in the Proposition. The Lie algebras (n;,[,];) and
(n;,[,]o) are isomorphic for j =1,2,3.
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Proof. Since R and R + id are RB-operators on all g;, we obtain the same decomposition with
the same subalgebras. Note that R + id is invertible on n;, R is invertible on ny and both are
invertible on ng. In order to show that (ny,[,]; is isomorphic to (ny, [, o, we consider a chain of
isomorphisms

R+id R+id R+id
(n17 L]n) % (n17[7]n—1) i P i 7 (nla [7]0)'
In a similar way we can deal with ny, and ns. 0

Note that Proposition 3.6 is not correct. Hence the proof of Proposition 3.7 and 3.8 is invalid.
However, the statement of both results is true and we have given a new proof of it in our paper
[T6] on decompositions of algebras and post-associative algebra structures.

Proposition 3.6. Let g = 51+ be the vector space sum of two complex semisimple subalgebras
of g. Then g is semisimple.

Proof. Suppose that the claim is not true and let g be a counterexample of minimal dimension.
Then g contains a nonzero abelian ideal a. Then we obtain

g/a=s1/(s1Na)+s/(saNa).

Since s; N a is an abelian ideal sq, it must be zero, i.e., s; N a = 0. In the same way we have
s9Na = 0. Hence we obtain a semisimple decomposition of g/a with dim(g/a) < dim(g). If g/a
is semisimple, this is a contradiction to the minimality of the counterexample g. Otherwise we
may assume that g has 1-dimensional solvable radical. Then g is reductive, and by Theorem
3.2 of [30], there are no semisimple decompositions of a complex reductive non-semisimple Lie
algebra. Hence we are done. 0

Proposition 3.7. Let x -y = {R(z),y} be a PA-structure on (g,n) over C, where n is simple,
defined by an RB-operator R of weight 1 on n, with associated Lie algebras g; fori=1,...,n=
dim(V'). Assume that go = n and g,, are semisimple. Then all g; are isomorphic to n.

Proof. Since n; and n, are kernels of homomorphisms, they are ideals in g,. The quotient
gn/(M + n2) = ny is semisimple and solvable by Proposition [3.4 Hence ny = 0, and we
obtain g, = ker(R") & ker((R + id)"). Because of Corollary we have the decomposition
g; = ker(R")+ ker((R +id)") for all i < n, where all Lie algebras (ker(R"),[,];) are isomorphic,
and all Lie algebras (ker((R+id)"), [, ];) are isomorphic. By Proposition 3.6|all g; are semisimple.
By Koszul’s result [2§], all g; are isomorphic. O

Proposition 3.8. Suppose that there is a post-Lie algebra structure on (g,n) over C, where g
18 semisimple and n is complete. Then n must be semisimple.

Proof. By Corollary the PA-structure is given by z -y = {R(z),y}, where R is an RB-
operator of weight 1 on n. If at least one of ker(R) and ker(R + id) is trivial, we obtain g = n
by Proposition [2.21] part (1). Otherwise n = im(R) + im(R + id) is the sum of two nonzero
semisimple subalgebras. By Proposition n is semisimple. U

4. PA-STRUCTURES ON (g,n) WITH n = sly(C) X sl,(C)

In [11], Proposition 4.7 we have shown that PA-structures with n = sl,(C) exist on (g,n)
if and only if g is isomorphic to sly(C), or to one of the solvable non-unimodular Lie algebras
t3.(C) for A € C\ {—1}. In this section we want to show an analogous result for n =
sly(C) x sly(C). Here we will use RB-operators on n and an explicit classification by Douglas
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and Repka [18] of all subalgebras of n. This classification is up to inner automorphisms, but we
will only need the subalgebras up to isomorphisms. Let us fix a basis (X1, Yy, Hy, X5, Y5, Ho)
of n consisting of the following 4 x 4 matrices.

X1 = FE, Y1 = Eo1, Hi = By — Eg, Xo = E3y, Yo = Ey3, Hy = FE33 — Eyy.
We use the following table.

Table 1: Complex 3-dimensional Lie algebras

g Lie brackets
c? —
n3(C) le1, e2] = €3
(C)aC [e1, €3] = eo
t3(C) le1, es] = e, [e1,e3] = e + e
t3A(C), A £ 0 le1, e2] = eg, [e1, €3] = Aes
sly(C) le1, e2] = e3, [e1,e3] = —2eq, [e2, €3] = 2e9

Among the family v3,(C), A # 0 there are still isomorphisms. In fact, v3,(C) = t3,(C) if
and only if u = A7 or u = X\. The list of subalgebras b of n is given as follows. We first list
the solvable subalgebras, then the semisimple ones and the subalgebras with a non-trivial Levi
decomposition.

Table 2: Solvable subalgebras

dim(h) Representative [somorphism type
1 <X1>, <H1>, <X1+X2>, <X1+H2>, <H1+CLHQ>, aecC* C
2 (X1, Xy), (X1, Hy), (Hy, Hy) C?
2 <X1+X2,H1+H2>, <X1,H1+X2>, <X1,H1+CLH2>, (IE(C 'CQ((C)
3 <X1,X2,H1+/\H2>, /\7é0 ‘C37,\(C), )\#O
3 <X1,H1,H2>, <X1,H1,X2> 'CQ(C)@(C
4 <X1,H1,X2,H2> tQ((C) EBtQ(C)

Table 3: Semisimple subalgebras and Levi decomposable subalgebras

dim(h) Representative Isomorphism type
3 <X1,}/1,H1>, <X1+X2,Y1+}/27H1+H2> 5[2(@)
4 (X1,Y1, Hy, Ho), (X1,Y1, Hi, X5) shL(C)a C
5 (X1,Y1, Hi, Xo, Ho) sl5(C) @ to(C)

Theorem 4.1. Suppose that there exists a post-Lie algebra structure on (g,n), where n =

5[2(@) D 5[2(@)

possibilities do occur:

Then g s isomorphic to one of the following Lie algebras, and all these
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sly(C) @ sl(C).
[2( )@tg)\< ) )\#—1
3A(C) @ 13,(C), (A, ) # (=1, 1),
2(C) & 12(C) & 15(C).
o (C) ® ((C3 x C) = (x1,...,x¢) and Lie brackets, for a #0, 5 #0,—1
[z1, 22] = @1, 23, T6] = T3, [34, T6] = Qwa, [25, w6] = Bus.
(6) Ca ((t30(C)d C) x C) = (21,...,x6) and Lie brackets, for X # 0, a # 0, —1,
(X2, 2] = @2, 23, 4] = Aws, [23,26] = T3, [75, w6] = 5.
(7) (t3.(C) & C?) x C = (w1,...,26) and Lie brackets, for X # 0, aj,a9 # 0, and
(A ar,9) # (=1, 00, —aq — 1),
(21, 23] = 1, [0, W3] = A2, [0, 2] = 122, [24, W6] = 24, 75, T6] = s,

(8) (C?2@ C?) x C* = (x1,...,x6) and Lie brackets

(21, 25) = x1,  [22,%5] = o, [X3, 75] = quxs, [T4, T5) = e,

<

(1)
(2)
(3)
(4)
()

[$1,$6] = 2, [$2,$6} = Q32, [$37l’6] = 573, [I4,x6] = Q7dy,
with one of the following conditions:
() az =1, a5 = a7, ag = agay, aqas # 1, ag,ar #0,—1,
(b)) ay=a;—1, a5 = —a1, g = az(a; — 1), ar = ayaz — aay — as,
az —aqag # 0, ap # 0, 1.

Proof. By Corollary it is enough to consider the RB-operators R of weight 1 on n. Then
ker(R) and ker(R + id) are ideals in g. If R is trivial, or one of the kernels is trivial, then we
have g = n, which is type (1). So we assume that R is non-trivial, both ker(R) and ker(R +id)
are non-zero, and dim(ker(R)) > dim(ker(R + id)). Then, for n 2 g, either g has a non-trivial
Levi decomposition, or g is solvable.

Case 1: Assume that g has a non-trivial Levi decomposition, i.e., that g = sly(C) x v. We
claim that sly(C) is a direct summand of g, i.e., g = sl5(C) @ t, and that v is not isomorphic to
t3(C). Then we can argue as follows. Because of Remark 2.12 of [12], g cannot be unimodular,
except for g = n. Thus v cannot be unimodular, so that g is isomorphic to 5[2((C) @13 (C) with
A # —1. On the other hand, all such algebras do arise by Proposition [2.6| and Proposition 4.7
of [11].

Case 1a: Suppose that sly(C) is not contained in ker(R), ker(R + id) as a subalgebra. Then
dim(ker(R 4 id)) = 1 and dim(ker(R)) € {1,2}. Let us assume, both have dimension 1. The
other case goes similarly. Then we have v = (x1, x9, z3), ker(R) = (x1) and ker(R + id) = (z3).
Furthermore im(R) = sl5(C) X (29, z3) and im(R + id) = sl5(C) x (x,z3) are 5-dimensional
subalgebras of n. By table 3, sl(C) is a direct summand of them. This implies that sly(C) is
also a direct summand in g. Since both ker(R) and ker(R + id) are ideals in t, we can exclude
that ¢ is isomorphic to t3(C), and we are done.

Case 1b: sly(C) is contained in one of ker(R), ker(R + id). Without loss of generality we may
assume that sly(C) C ker(R). If ker(R) = sly(C), then sl3(C) is an ideal of g, and we have
g = slh(C) @ v, where vt = im(R) < n is not isomorphic to t3(C) by table 2, and we are done.
Thus we may assume that dim(ker(R)) > 4. If R splits with subalgebras ker(R) and ker(R+id),
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then g = ker(R) @ ker(R + id), and dim(ker(R)) + dim(ker(R + id)) = 6. By table 3, sly(C)
is a direct summand of ker(R), and hence of g. So we have again g = sl(C) @ ¢, and v is not
isomorphic to t3(C). If R is not split, it remains to consider the case dim(ker(R)) = 4 and
dim(ker(R +id)) = 1. We have v = (z,y, z) with ker(R) = sl,(C) & (x), ker(R + id) = (y)
and [y,sl2(C)] = 0. Assume that [z,sl(C)] # 0. Then sly(C) is not a direct summand of the
5-dimensional subalgebra im(R + id) of n, which is a contradiction to table 3. Thus we have

g = sl (C) @ v. Since v has two disjoint 1-dimensional ideals (z) and (y), it is not isomorphic
to t3 ((C)

Case 2: Assume that g is solvable. Then im(R) and im(R + id) are solvable subalgebras of n
of dimension at most 4 by table 2. So we have dim(ker(R)) > dim(ker(R + id)) > 2. Thus we
have the following four cases:

(2a) dim(ker(R)) = 4, dim(ker(R +id)) = 2,
(2b)  dim(ker(R)) = 3, dim(ker(R +id)) = 3,
(2¢)  dim(ker(R)) = 3, dim(ker(R + id)) = 2,
(2d)  dim(ker(R)) = 2, dim(ker(R + id)) = 2.

For the cases (2a) and (2b), R is split since the dimensions add up to 6. Then g is a direct
sum of two solvable subalgebras, which are both isomorphic to subalgebras of n. So we have
n = ker(R)+ker(R + id) and g = ker(R) & ker(R + id).

Case 2a: Since we have only t2(C) @ to(C) as 4-dimensional solvable subalgebra of n, we have
g = 15(C) @ t2(C) & C?, which is of type (3) for (A, u) = (0,0), or g = t2(C) & t5(C) & t2(C),
which is of type (4). Both cases can arise. For the first one we will show this in case (2b). For
the second, it follows from Proposition with n = (X1, Hy, Xy, Ho)+(Y1, Yo + Hy).

Case 2b: We have g = t3,(C) @ t3,(C). The case (A, ) = (—1,—1) cannot arise by Theorem
3.3 of [L1]. The cases (A, ) = (—1, ) for pu # —1 arise by Proposition 2.7 with

n = (X1, Xo, H — Hy)+(Y1,Ys, Hy + uHo).

The other cases with A\, # —1 arise by Proposition and Proposition 4.7 of [11].

Case 2c: Here g is isomorphic to (t3(C) @ t2(C)) x C or (t3,(C) & C?) x C. In the first case,
t2(C)xC = im(R) is a solvable subalgebra of n, hence isomorphic to 3, (C) by table 2. So C acts
trivially on to(C), and im(R+id) = 15, (C) X C = t3(C) @ re(C). Then g = vy(C) Bry(C) Bry(C),
which we have already considered in Case (2a). For (r3,(C) @ C?) x C we need to distinguish
A=0and \#0.

Case 2¢, A = 0: By Proposition we may assume that im(R + id) = (X7, Hy, Xs, Hs). Since
ker(R) is an ideal of im(R+1d) isomorphic to to(C) @ C, we have ker(R) = (X;, Hy, Xs). Let us
consider the characteristic polynomial y g of the linear operator R acting on n. By assumption
on the kernels, xr(t) = t3(t + 1)(t — p).

Case 2¢, A\ =0, p # 0,—1: Then R(z¢) = pxe for x¢ = Hy+aH, + X, +vXs. Since ker(R+id)
is an abelian 2-dimensional subalgebra of n, we have

ker(R + ld) = <Yi + V1X1 + VQHl, Yé + V3X2 —+ V4H2>.
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We want to compute [z,y] for x = x4 and y € ker(R + id). By Proposition we have, using
R(xg) = pxg
[z, y] = {R(x),y} = {R(y), =} + {z,y}
= {R(z),y}
= plz,y}

For 24 = Hy + aH; + BX; + X5 and y € ker(R + id) this yields, using the Lie brackets of n
in the standard basis { Xy, Y1, Hy, X, Y2, Hy},

(10) [z6, Y1 + 11 X1 + 1o Hi| = p((2ary — 2P19) Xy — 2aY; + fHy),
(11) [, Yo + 13 Xo + vy Ho| = p((2v5 — 2yv4) Xy — 2Y2 + vHs).
Since ker(R + id) is an ideal in g and p # 0, both vectors lie again in ker(R + id). Comparing
coefficients for the basis vectors we obtain
B=—2avy, a(v) +1v3) =0, 7= —2uy, v3 = —1j.

Suppose that « = 0. Then xg = Hy — 214X, and (X;, Hy) = t5(C) is a direct summand of g.
Therefore d = tQ(C) @C@t;z,,M(C) with C = <Yi —|—I/1X1 —I—I/QH1>, t3»M(C) = <X2, H2 —21/4X2, Yé—l—
vaHy —v2X5), n = —(p+1)/p, which we have already considered above. Hence we may assume
that o # 0 and v; = —v3. Consider a new basis for g (note that we redefine zg) given by

1
(71,...,26) = (X1, —§H1 + 15X1, Xo, Yy + voHy — V3 X1, Ya + vaHy — Vi Xo,

1
2—p(H2 + OZHl — 2041/2X1 — 21/4X2)),

with Lie brackets

p+1 p+1
arq, [:U37x6] = -

[xl>$2] = T, [xbajG] = = 3, [x4>$6] = Oy, [‘1'57:66] = Te-

This algebra is of type (5), if we replace x4 by g + @xg. It arises for the triangular-split

RB-operator R with A_ = ker(R) = (x1, x2, x3), ker(R + id) = (x4, z5) and Ay = (xg), where
x¢ = Hy — 214 X5, with the action R(zg) = pxs.
Case 2¢, A =0, p = —1: We may assume that there exists z¢ = Y2+ v such that (R+1id)(zg) =
w(Hy + aHy 4+ X1 + vX3) for some non-zero p and some «, 3,y € C. Since ker(R + id) is an
abelian subalgebra we obtain « = 8 = 0 and ker(R +id) = (Hy + vX5, Y1 + 11 Xy + v Hy).
Then we may choose xg = Yy + kX9 + v3H; + v4X;. Then
(w6, H2 + 7 Xo] = {R(zs), Hz + 7X2}

= {(R +id)(ws) — 6, H2 + 7 X2}

= —{Yo + xXy, Hy + 7 X5}

= —2}/2 + QI{XQ + ’YHQ.

This is not contained in ker(R + id), which is a contradiction to the fact that ker(R +id) is an
ideal.

Case 2¢, A = 0, p = 0: Then we have R(H,) = aH; + X1 + Xy # 0 and ker(R + id) =
Y1+ X1+l Yo+ 13Xo +1v4Hy). Since [Hy, Yo +11 Xy +1voHy | = {7 Xy, Yo+ 11 Xo+15Ho } s
in ker(R+1d), we obtain v = 0. Since [Hy, Y1 +11 X1 + 1o Hs] = {aH1 + X1, Y1+ X1 +1uH }
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is in ker(R + id), we obtain a(v; + v2) = 0 and 8 = —2avy. Since R(Hy) # 0 we have o # 0,
v = —1/3 and R(Hy) = aH; — 2ar,X;. Consider a new basis for g given by

1 1
(71,...,26) = (X1, —§H1 + 12X1, Xo, Y1 + voHy — V3 X1, Ya + v3Xo + vy Ho, —§H2),

with Lie brackets
(21, 29] = 21, [21, 6] = @1, [23, 6] = 23, [74, T6] = —vz4.
This algebra is of type (3), if we replace xg by x¢ — axs.

Case 2¢, A # 0: Then we have ker(R) = (X1, Xy, —1(H; + AH,)). We again have xz(t) =
t3(t + 1)%(t — p), where we distinguish the cases p # 0,—1, p = —1 and p = 0.

Case 2¢, X\ # 0, p # 0, —1: Then we may assume that R(x¢) = pxg for xg = Ho+aH; + X1+
vXs. As ker(R + id) is abelian, we have ker(R + id) = (Y1 + 11 Xy + voHy, Yo + 13X + vy Ho).
Since V' = ker(R) @ ker(R + id) @ (z¢), the two elements H; + AHy and Hy + aH; need to
be linearly independent, i.e., 1 — a\ # 0. By and we obtain v = —2uy, f = —2aws,
v3 = —v} and a(v; + v2). Suppose that a = 0. Then xg = Hy — 214 X5. Consider a new basis
for g given by

1 1
(#1,...,26) = (V1 + 11Xy +1oH1, Xy, Xo, —- (Hy + AHy), Y5 — VZX2 + vyHy, — ———Hy),
2 2(p+1)
with Lie brackets
[T, T4] = T3, [T3, 74] = A3, [73, T6] = T3, [T4, T6] = —Ava3, [75, 76] = 1 +p$5-
This is an algebra of type (6), if we replace x4 by x4 + Avyxs.
Now we assume that a # 0. Consider a new basis for g given by
1
(T1,. . 26) = (X1, X, —§(H1 + AHs),Ys — Vi Xo + vy Ha, Y1 — va Xy + o Hy,
1
— —(Hy — 21y Xo + a(H; — 21,X4))),
575y (e~ 2Xe + (i) — 20 X)))
with Lie brackets
[«Tth] = 7y, [$27$3] = A1, [%;956] = Xy, [962,%’] = X2,
[333,356] = —QLT| — AV4T, [3747-736] = 01y, [335,336] = adxs,
where 0 = —p—il. Replacing xg by %(xﬁ — Uy — VyTy — airg) we obtain the Lie brackets

[9(31,$3] = Iy, [$2,$3] = T2, [$2,$6] = Oélwza [$4,$6] = T4, [$5;$6] = QTs,

where

,:1—a)\ (p+1)(ar—=1)

5 P
Note that o/ # 0 and o # aX — 1 by assumption. In other words, o # % Consider a new
basis for g given by

(07

1 o
(:L‘/17 s 7m/6) = (1’2, L1, ¥T3, T4, X5, Te — Xxfﬂ)a

A
with Lie brackets

2} 2] = %, [wh, 4] = N, [hat) = —a/ N, [t} 24 = 2}, [}, 5] = aa,
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where X' = $. This is of type (7). Since v3,(C) = t3x(C), one may check that we do not only
have a # a/;r L but also a # A—a’. For % # A—a’ we obtain no restriction for ae. However, for

% = A—a’ we obtain A = —1 or A = & + 1, which excludes both (A, o/, a) = (—1,¢/, —a/ —1)
and (A, o/,a) = (A, A — 1,1). Rewriting this in the parameters of the Lie brackets from type
(7), we obtain all cases except for (A, o/, ) = (A, A — 1,1) with A # —1. These PA-structures
arise by a triangular-split RB-operator with A_ = ker(R), Ay = ker(R +id) and Ay = (z¢)
with the action R(xg) = pxg, p # 0, —1.

Case 2¢, A # 0,p = —1: This leads to a contradiction in the same way as case 2c¢ with
A=0,p=—-1

Case 2c, A # 0,p = 0: We have R(H) = X + Xs +v(H + AH;) and ker(R +id) = (x4, x5)
with zy = Y1 + n Xy + voHy, x5 = Yy 4+ 153Xs + v4Hs. Similarly to , we obtain
R(Hy) = ~v(H, —2v5X1) +yA\(Hy — 204 X5). This implies that v # 0 and x4 = Y] —v3 X, +1n Hy,
Ty = Yé — VZXQ + I/4H2. By setting T = Xl, To = XQ, T3 = —%(Hl + )\Hg) and Tg — %HQ we
obtain a new basis for g with Lie brackets

[xl,l‘:s] = I, [xz,l‘:s] = T2, [%;Iﬁ] = —I, [$2,$6] = 5$2;

[1'3,1'6] = 1Ty + )\2V4:L‘27 [$47ZE6] = T4, [$57ZL’6] = )\3175,
where 6 = —% with 6 # —\. Replacing xg by z¢ + vox1 + Avgzo + x3 We obtain the brackets
[xlu I3] = Ty, [$27 I3] = AI% [.TQ,[L'(;] = (1T, [x47x6] = T4, [$5,$6] = )\LU5

with oy = d + X\ = —%. This is of type (7) with ay = A. It arises by the triangular-split
RB-operator with A_ = (z1,29), Ay = (24, 25) and Ay = (u,v), with u = }/(Hg — 214X5) and
v=H; —21nX; + AN(Hy — 214X3), and the action R(u) = v, R(v) = 0.

Case 2d: Suppose that one of the kernels ker(R) and ker(R+1id) is non-abelian. Without loss of
generality, let us assume that ker(R) = to(C). Write g = (ker(R) @ ker(R +1d)) x (a,b). Then
ker(R) x (a) is a 3-dimensional solvable subalgebra of im(R + id). By table 2 we see that it is
isomorphic to t2(C) @ C. In this case there exist nonzero o’ € ker(R) @ (a) and b’ € ker(R) @ (b)
such that [/, ker(R)] = [V/,ker(R)] = 0. Then g = ker(R) @& (ker(R + id) & (da’,¥')) with
ker(R) = to(C), and ker(R + id) & (a’,b') = t3(C) @ to(C) by Table 2. Hence we obtain
g = 15(C) @ t2(C) @ v (C), which is of type (4).

So we may assume that ker(R) = ker(R + id) = C?. Then the characteristic polynomial of R
has the form xr(t) = t2(t + 1)*(t — p1)(t — pa2).

Case 2d, p1,ps # 0,—1: Suppose first that either p; # ps, or that p; = ps and the eigenspace
is 2-dimensional. Then by Proposition n = ker(R)+ ker(R + id)+(z%, vf) with linearly
independent eigenvectors x%, xy corresponding to the eigenvalues p; and ps. Since ker(R) is
an abelian ideal in im(R + id) = (Xy, Hy, X, Hy), we may assume that ker(R) = (X, Xo)
and [z%,zf] = 0. The decomposition n = ker(R + id)+im(R + id) shows that ker(R + id)
has a basis z3 = Y] + aH; + 13Xy, x4y = Yo + fHy + 14Xy, Since [z, z5] = 0, we have
k= Hy + 1 Xy + & (Hy + 15 Xo), g = Hy + 15 Xo + &(Hy + 11 X7) with §& # 1. So we have
by (T0) and (TI) 25 = Vi — 4 Hy — 2 X;, 24 = Y — 2 Hy — % X,. Consider a basis for g given
b

' 1 1

= (X1, X — _ /
(‘rla ,I’ﬁ) ( 1,22, L3, Ly, 2(1+p1>‘r57 2<1+p2)$6)7
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with Lie brackets

[901,!705] = I, [901,956] = &, [$2,$5] = &129, [$2,$6] = T2,

[I’g, .1'5] = VT3, [I’g, xﬁ] = 552‘7:37 [$4’I5] = ’7513347 [Z‘47 Iﬁ] = 6I47

where v = —plpjrl, )= —pfil with v, # 0, —1 and &;& # 1. This is type (8a). It arises by the
triangular-split RB-operator R with A_ = (X1, Xs), Ay = (x3,24) and Ay = (x5, z6), where R
acts on Ay by R(x5) = pi1ws and R(wg) = pexs. Note that for 1o = & = 0 and & # 0 we get
type (7) without the restriction (X, oy, an) # (A, A —1,1) for A # —1, which we had in Case 2c,
A#£0,p#0,—1.

Suppose now that p; = p; # 0, —1, and the eigenspace for p; is 1-dimensional. Let R(zf) = p1a%
and R(zg) = of + p1xg. In the same way as before we have xf = Hy + 11Xy + {(Ha + 12X3),
= k(Hy + 15 X5) with k # 0 and @3 = Y — 2 Hy — X, 24 = Yy — 2 H, — 2 X,. Consider
a basis for g given by

1 1
x1,...,76) = (X1, Xo, 23, T4, — Tr, — xh),
( 1 6) ( 1 2543, 44 2(1+p1) 5 2<1+p1) 6)

with Lie brackets

[I1,$5] =1, [Il,ZE(;] = (’7 —+ 1)[151, [.172,5135] = SIQ, [ZEQ,Iﬁ] = (KJ -+ 5 —+ 75)1’2,
[$3,.1'5] =73, [$3ax6] = _<7 + 1)%3, [334,1‘5] = 7514, [$47$6] = ('Li’y - f - ’76)*%47

where v = —plpjrl # 0,—1 and k # 0. This is type (8b). It arises by the triangular-split
RB-operator R with A_ = (X3, Xs), Ay = (x3,24) and Ay = (x5, x6), where R acts on Ay by

R(z5) = p1xs and R(xg) = x5 + p1x6.

Case 2d, py = p» = 0: We have g = ker(R + id)+im(R + id) and we can assume that
ker(R) = (X1, Xy) and ker(R+id) = (Y] + 11 Xy + voHy, Yo + 13X + vy Hs). Suppose first that
R(v) = X; and R(w) = X, for some v, w. Then

[Yi + I/le + I/ng,/U] = {Yi + I/le + VQHl,Xl} = _Hl + 21/2X1 S ker(R + ld),
which is a contradiction. Otherwise we see from the possible Jordan forms of R that there exist
v, w with R(v) = aX;+ X2 # 0 and R(w) = v. This leads to a contradiction in the same way.
Case 2d, py = 0, pa # 0, —1: This case is analagous to the second part of the case before.

Case 2d, py = 0,py = —1: As above we may assume that im(R + id) = (X3, Xy, Hy, Hy) and
ker(R) = (X, Xo), and aH1+FHy+vX1+6Xs € ker(R+id)Nim(R+id) for some «, 3,v,9 € C.
Since ker(R +1id) is abelian, we may assume that ker(R +id) = (Hy + 11 X1, Yo + 15 X5 + v Ho)
for some vy, 5, v3 € C. Let v € ker(R?) such that R(v) = 14X + v5Xs # 0. Then

[0, Y2 + 10 Xo + v3Hs) = {vs Xy + v5Xa, Yo + 10 Xo + v3Ha} = v5(Ha — 2v3X5) € ker(R + id)

implies that vs = 0. By [v, H; + 11 X1] = {vu X1, H1 + 11 X1} = —214.X; € ker(R+id) we obtain
vy = 0, which is a contradiction to R(v) # 0. O

Remark 4.2. The algebras from different types are non-isomorphic, except for algebras of type
(8), which have intersections with type (3) and (7) for certain parameter choices.
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