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Abstract. We show that for a given nilpotent Lie algebra g with Z(g) ⊆ [g, g] all commutative
post-Lie algebra structures, or CPA-structures, on g are complete. This means that all left and
all right multiplication operators in the algebra are nilpotent. Then we study CPA-structures
on free-nilpotent Lie algebras Fg,c and discover a strong relationship to solving systems of
linear equations of type [x, u] + [y, v] = 0 for generator pairs x, y ∈ Fg,c. We use results of
Remeslennikov and Stöhr concerning these equations to prove that, for certain g and c, the
free-nilpotent Lie algebra Fg,c has only central CPA-structures.

1. Introduction

Post-Lie algebras and post-Lie algebra structures arise in many areas of mathematics and
physics. They have been studied by Vallette [19] in connection with the homology of partition
posets and the study of Koszul operads, by Loday [15] within the context of algebraic operad
triples, and by several authors in connection with modified Yang-Baxter equations, double Lie
algebras, R-matrices, isospectral flows, Lie-Butcher series and other topics [12]. In our study of
geometric structures on Lie groups, post-Lie algebras arise as a natural common generalization
of pre-Lie algebras [11, 13, 18, 1, 2, 3] and LR-algebras [5, 6], in the context of nil-affine actions
of Lie groups. We have obtained several results on the existence of post-Lie algebra structures in
general [4, 7, 8, 9]. A particular interesting class of post-Lie algebra structures are commutative
structures, so-called CPA-structures. We have studied CPA-structures mainly for semisimple,
perfect and complete Lie algebras in [9, 10]. In particular we have shown that CPA-structures
on perfect Lie algebras are trivial. This is far from true for nilpotent Lie algebras. Here the
first remarkable observation was, that all CPA-structures on non-abelian 2-generated nilpotent
Lie algebras are complete, i.e., that all left and right multiplication operators L(x) and R(x) in
the algebra are nilpotent [9]. We have conjectured that this is true for all nilpotent Lie algebras
g without abelian factor. Here we will give a proof now, see Theorem 3.6. This is a main
result of this paper, which has further consequences concerning CPA-structures on nilpotent
Lie algebras. It follows, among other things, that g · Z(g) = 0 for CPA-structures on nilpotent
Lie algebras with 1-dimensional center Z(g).
The second topic of this paper concerns the classification of CPA-structures on the free-nilpotent
Lie algebra Fg,c, with g ≥ 2 generators, and of nilpotency class c ≥ 2. Here we find a surprising
connection to the work of Remeslennikov and Stöhr [17] on the equation [x, u] + [y, v] = 0 over
free Lie algebras, where x and y are free generators. We can apply their results to prove that
the free-nilpotent Lie algebra F3,c admits only central CPA-structures for all c ≥ 3. It also
follows that Fg,c admits only central CPA-structures with given g ≥ 4 for all c ≥ 3, provided
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this is already true for Fg,3. Here we conjecture that all CPA-structures on Fg,c for c ≥ 3 and
g ≥ 2 are central, see Conjecture 4.9. For g = 2 this leads to the study of the system of linear
equations

[x, u] + [y, v] = 0,

[x, v] + [y, w] = 0,

where (x, y) is a generating pair of F2,c. We want to find all solutions u, v, w ∈ [g, g]. The
conjecture is that they are all contained in the center of F2,c. In the last section, we study
such equations for general 2-generated nilpotent Lie algebras. We say that such a Lie algebra
has property F , if for every generating pair (x, y) of F2,c, all solutions u, v, w ∈ [g, g] of the

above equations are central. We consider the invariant z(g) = dimZ(g)
dim g

, which gives a necessary

condition for 2-generated nilpotent Lie algebras g to have property F . In fact, if z(g) < 1
3
,

then g cannot have property F , see Lemma 5.3. We conjecture that the only such Lie algebras
having property F are the free-nilpotent Lie algebras F2,c, for c ≥ 3.

2. Preliminaries

Let K denote a field of characteristic zero, if not said otherwise, and g be a finite-dimensional
Lie algebra over K. Denote by g1 = g, gi+1 = [g, gi] for i ≥ 1 the lower central series ideals of
g, and by g(1) = g, g(i+1) = [g(i), g(i)] for i ≥ 1 the derived ideals.

Definition 2.1. A Lie algebra g is called a stem Lie algebra, if the center is contained in the
commutator, i.e., if Z(g) ⊆ [g, g].

An indecomposable Lie algebra is a stem Lie algebra, but the converse need not hold.

Let us first recall the definition of post-Lie algebra structures on pairs of Lie algebras (g, n)
over K [7]:

Definition 2.2. Let g = (V, [ , ]) and n = (V, { , }) be two Lie brackets on a vector space V
over K. A post-Lie algebra structure, or PA-structure on the pair (g, n) is a K-bilinear product
x · y satisfying the identities:

x · y − y · x = [x, y]− {x, y}(1)

[x, y] · z = x · (y · z)− y · (x · z)(2)

x · {y, z} = {x · y, z}+ {y, x · z}(3)

for all x, y, z ∈ V .

Define by L(x)(y) = x · y and R(x)(y) = y · x the left respectively right multiplication
operators of the algebra A = (V, ·). By (3), all L(x) are derivations of the Lie algebra (V, {, }).
Moreover, by (2), the left multiplication

L : g→ Der(n) ⊆ End(V ), x 7→ L(x)

is a linear representation of g. A particular case of a post-Lie algebra structure arises if the
algebra A = (V, ·) is commutative, i.e., if x · y = y · x is satisfied for all x, y ∈ V , so that we
have L(x) = R(x) for all x ∈ V . Then the two Lie brackets [x, y] = {x, y} coincide, and we
obtain a commutative algebra structure on V associated with only one Lie algebra [9]:
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Definition 2.3. A commutative post-Lie algebra structure, or CPA-structure on a Lie algebra
g is a K-bilinear product x · y satisfying the identities:

x · y = y · x(4)

[x, y] · z = x · (y · z)− y · (x · z)(5)

x · [y, z] = [x · y, z] + [y, x · z](6)

for all x, y, z ∈ V .

Let g be a nilpotent Lie algebra over an algebraically closed field. Let ρ : g → Der(g) be a
homomorphism. For a linear functional α ∈ g∗ we define the vector subspace

gα = {v ∈ g | (ρ(x)− α(x) idg)
dim(g)(v) = 0 for all x ∈ g}.

If gα is nonzero, then α ∈ g∗ is called a weight of g, and gα is called a weight space. The
following result is well-known, e.g., see [14], Chapter II, section 4, Corollary to Theorem 5,
page 41, for algebraically closed fields of arbitrary characteristic.

Theorem 2.4 (Weight space decomposition). Let ρ : g→ Der(g) be a homomorphism as above.
Then g decomposes as a direct vector space sum

g =
⊕
α∈g∗

gα,

where αi ∈ g∗ are the different weights of the representation ρ. In an appropriate basis of g the
operators ρ(x) have block diagonal matrix form, with blocks given by

ρi(x) =


αi(x)

αi(x) *
. . .

0 αi(x)
αi(x)


Moreover, for all α, β ∈ g∗ we have

[gα, gβ] ⊆ gα+β.

The grading property here follows easily from the Leibniz rule for derivations. Indeed, for
all x ∈ g, α, β ∈ g∗, vα ∈ gα, vβ ∈ gβ and for all n ≥ 1 we have

(ρ(x)− (α + β)(x) idg)
n([vα, vβ]) =

∑
i+j=n

(
n

i, j

)
[(ρ(x)− α(x) idg)

i(vα), (ρ(x)− β(x) idg)
j(vβ)]

which vanishes for all n ≥ 2 dim(g). We obtain [gα, gβ] ⊆ gα+β.

Note that the weight space decomposition makes sense for commutative post-Lie algebra struc-
tures on a nilpotent Lie algebra g as follows. The left multiplication map L : g → Der(g) is a
Lie algebra homomorphism, so that we may specialize Theorem 2.4 to L = ρ. We will use this
throughout the next section for the proof of Theorem 3.6.
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3. Complete CPA-structures

In accordance with complete LR-structures [6] and complete pre-Lie algebra structures [18]
we define complete CPA-structures as follows.

Definition 3.1. A CPA-structure on a Lie algebra g is called complete, if all left multiplication
operators L(x), and hence all right multiplication operators R(x), are nilpotent.

We have shown in [9] that all CPA-structures on a non-abelian nilpotent Lie algebra generated
by two elements are complete. The question then was, whether this is true for all nilpotent Lie
algebras without an abelian factor. The aim of this section is to give a positive answer to this
question. We will prove it in Theorem 3.6. However, first we need two lemmas.

Lemma 3.2. Let g be a nilpotent Lie algebra, and x · y be a CPA-structure on g. Then for all
weights α, β ∈ g∗ we have the inclusion

gα · gβ ⊆ gα ∩ gβ.

Furthermore, if α 6= β we have
α(gβ) = β(gα) = 0.

Proof. By construction the weight spaces gα and gβ are invariant under left multiplication, i.e.,
we have L(x)gα ⊆ gα and L(y)gβ ⊆ gβ for all x, y ∈ A. By specializing x ∈ gβ and y ∈ gα we
obtain

gα · gβ ⊆ gβ,

gβ · gα ⊆ gα.

Since the CPA-structure is commutative we have gα ·gβ = gβ ·gα, which gives gα ·gβ ⊆ gα∩gβ.
For α 6= β we have

L(gα)gβ = gα · gβ ⊆ gα ∩ gβ = 0.

Hence all operators in L(gα) vanish on gβ, so that in particular the diagonal components β(gα)
in L(gα)|gβ vanish identically. This gives β(gα) = 0. By symmetry we obtain α(gβ) = 0. �

Lemma 3.3. Let g be a nilpotent Lie algebra, and x · y be a CPA-structure on g. Then the
weight space decomposition satisfies

[g, g] ⊆ g0.

Proof. By Lemma 3.2 we have g0 · g0 ⊆ g0. We first show that

g · [g, g] ⊆ g0 · (g0 · g0) ⊆ g0.

By linearity, it is sufficient to show this for weight spaces, i.e., to show that

gα · [gβ, gγ] ⊆ g0 · (g0 · g0) ⊆ g0.

For gα · [gβ, gγ] = 0 there is nothing to prove, so that we may assume that

0 6= gα · [gβ, gγ] ⊆ gα · gβ+γ ⊆ gα ∩ gβ+γ

by the grading property of the weight space decomposition and by Lemma 3.2. Hence we have
α = β + γ. By (4) and (5) we obtain

gα · [gβ, gγ] = gβ+γ · [gβ, gγ]
= [gβ, gγ] · gβ+γ
⊆ gβ · (gγ · gβ+γ)− gγ · (gβ · gβ+γ).
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Since the left-hand side is nonzero, one of the right-hand side terms must be nonzero as well.
Whichever it is, Lemma 3.2 implies that β = γ = β + γ, so that

α = β = γ = 0.

Hence we have shown that g · [g, g] ⊆ g0, or L(g)([g, g]) ⊆ g0. By induction we obtain
L(g)n+1([g, g]) ⊆ L(g)n(g0) for all n ≥ 1. By definition of g0 there is some n, for example
dim(g), such that L(g)n(g0) = 0. Hence [g, g] ⊆ g0. �

The above lemma has already interesting consequences.

Corollary 3.4. Let g be a nilpotent Lie algebra with CPA-structure x ·y and left multiplication
map L : g → Der(g). Let a ⊆ gt be a characteristic ideal of g contained in the lower central

series ideal gt, and r = ddim(a)+t−1
t

e. Then we have

L(a)r(g) = 0.

In particular, if g is a nilpotent stem Lie algebra, i.e., satisfying Z(g) ⊆ g2 = [g, g] we have

r = ddimZ(g)+1
2

e and L(Z(g))r(g) = 0. This gives L(Z(g))(g) = g · Z(g) = 0 for dimZ(g) = 1.

Proof. By Lemma 3.3 we have L(g)m(a) = 0 for m = dim(a). This yields

L(a)d
m+t−1

t
e(g) = L(a)d

m−1
t
e(a · g)

= L(a)d
m−1
t
e(g · a)

⊆ L(g)m(a) = 0.

�

Example 3.5. Let g be the (2m + 1)-dimensional Heisenberg Lie algebra. Then Z(g) = [g, g]
is 1-dimensional, and for any CPA-structure on g we have g · [g, g] = g · Z(g) = 0.

Now we can prove the following main theorem.

Theorem 3.6. Let g be a nilpotent stem Lie algebra. Then every CPA-structure on g is
complete.

Proof. We can naturally embed g into the nilpotent Lie algebra gK := g⊗KK, which is again a
stem Lie algebra. Furthermore the post-Lie algebra structure on g can be naturally extended to
gK . In particular, if the structure on gK is complete then also the structure on g is complete. So
we may assume that K is algebraically closed. So we can use the weight space decomposition.
Now we only need to show that g = g0. For this we fix a weight α ∈ g∗, and then show that it
is the zero-weight. By Lemma 3.2, α vanishes on all weight spaces different from gα:

α
(⊕
γ 6=α

gγ
)

= 0.

By Lemma 3.3 we have [g, g] ⊆ g0. Suppose that α 6= 0. Then gα has trivial intersection with
g0, and therefore trivial intersection with Z(g) ⊆ [g, g] ⊆ g0. Hence there exists some weight β
such that

0 6= [gα, gβ] ⊆ gα+β ∩ [g, g] ⊆ gα+β ∩ g0.

This forces α+β = 0. Since K has characteristic zero, −α 6= α. Hence Lemma 3.2 implies that

−α(gα) = β(gα) = 0.
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This yields

α(g) = α
(⊕

γ

gγ
)

= α
(⊕
γ 6=α

gγ
)
⊕ α(gα) = 0.

This is a contradiction, and we are done. �

Remark 3.7. The proof can be extended to stem nilpotent Lie algebras over fields of prime
characteristic p > 2. The only argument depending on the characteristic was that we needed
−α 6= α to hold. In characteristic 2 however, the result is no longer true. Consider the 3-
dimensional Heisenberg Lie algebra h with basis (x, y, z) and Lie bracket [x, y] = z. Then
Z(h) ⊆ [h, h], but there exist post-Lie algebra structures, which are not complete:

x · x = x, x · y = y · x = y,

and all other products of basis elements equal to zero. Then L(x) is not nilpotent.

Remark 3.8. For a nilpotent Lie algebra g we even have equivalence: g is a stem Lie algebra if
and only if all CPA-structures on g are complete. Indeed, suppose that Z(g) is not contained
in [g, g]. Then there exists v 6= 0 in g and an ideal a in g such that

g = K · v ⊕ a,

with [v, a] = 0. Then

v · v = v, v · a = a · a = 0

defines a CPA-structure on g which is not complete.

CPA-structures on stem nilpotent Lie algebras sometimes satisfy other conditions in addition
to completeness.

Definition 3.9. Let g be a nilpotent Lie algebra. A CPA-structure on g is called central, if it
satisfies

g · g ⊆ Z(g).

Lemma 3.10. Let g be a nilpotent stem Lie algebra. A central CPA-structure on g satisfies

g · Z(g) = g · [g, g] = 0.

Proof. Using Z(g) ⊆ [g, g], g · g ⊆ Z(g) and (6) we have

Z(g) · g ⊆ [g, g] · g
⊆ [g · g, g] + [g, g · g]

⊆ [Z(g), g] + [g, Z(g)]

= 0.

By commutativity also g · Z(g) = g · [g, g] = 0. �

Denote by F2,3 the free-nilpotent Lie algebra with 2 generators e1, e2 and nilpotency class 3.
It has dimension 5, and there is a basis (e1, . . . , e5) with Lie brackets

[e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5.
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Example 3.11. All CPA-structures on F2,3 are central, given by

e1 · e1 = αe4 + βe5,

e1 · e2 = γe4 + δe5,

e2 · e2 = εe4 + κe5,

for α, β, γ, δ, ε, κ ∈ K. Of course, e2 · e1 = e1 · e2.

This follows by a direct computation. Note that not all CPA-structures on h = F2,2, the
Heisenberg Lie algebra, are central. Indeed, for [e1, e2] = e3 we have a CPA-product given by

e1 · e1 = e2, e1 · e2 = αe3,

which is not central. On the other hand we know that h · Z(h) = h · [h, h] = 0 by Example
3.5. Of course there are also examples where even these properties do not hold. Consider the
free-nilpotent Lie algebra F3,2 with 3 generators e1, e2, e3 of nilpotency class 2. We have a basis
(e1, . . . , e6) with Lie brackets

[e1, e2] = e4, [e1, e3] = e5, [e2, e3] = e6.

We have Z(g) = [g, g].

Example 3.12. There exist CPA-structures on F3,2 with g · Z(g) 6= 0.

Indeed, consider the following CPA-product

e1 · e1 = e2,

e1 · e2 = −e5,
e1 · e5 = e6,

e2 · e3 = −2e6.

4. CPA-structures on free-nilpotent Lie algebras

Denote by Fg,c the free-nilpotent Lie algebra with g generators and nilpotency class c. We
will assume that g, c ≥ 2, because CPA-structures on abelian Lie algebras just correspond to
commutative and associative algebra structures on the underlying vector space, see Example
2.3 in [10]. If Fg denotes the free Lie algebra on g generators {x1, . . . , xg}, Fg,c can be defined
by Fg/F

c+1
g . We have Z(Fg,c) ⊆ [Fg,c, Fg,c], and

dim(Fg,c) =
c∑

m=1

1

m

∑
d|m

µ(d)g
m
d .

The last summand, for m = c gives the dimension of Z(Fg,c). We first note that Fg,c always
admits all possible central solutions.

Lemma 4.1. Let X = {x1, . . . , xg} be generators of Fg,c and (z1, . . . , zr) be a basis of Z(Fg,c).
Then

xi · xj = xj · xi =
r∑

k=1

αkijzk

for 1 ≤ i ≤ j ≤ g and arbitrary scalars αkij defines a central CPA-structure on Fg,c.
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Proof. Let g = Fg,c. Because only products between generators from X may have nonzero
product, and both Z(g) and [g, g] are not contained in X, we have

g · (g · g) ⊆ g · Z(g) ⊆ g · [g, g] = 0.

Hence all axioms (4), (5) and (6) are satisfied. �

Our aim is to show that Fg,c admits only these canonical central CPA-structures, for c big
enough. For c = 2 we already know that this is not true, e.g., for F2,2 and F3,2, see Example 3.12.
Hence it seems reasonable to assume that c ≥ 3. Example 3.11 shows that F2,3 only admits
central CPA-structures. We will show that the same is true for F3,3. Let X = {x1, x2, x3}.
Then by constructing a Hall basis we find a basis (x1, . . . , x14) for F3,3 with Lie brackets

[x1, x2] = x4, [x1, x3] = x5, [x1, x4] = x7, [x1, x5] = x8,

[x1, x6] = x9, [x2, x3] = x6, [x2, x4] = x10, [x2, x5] = x11,

[x2, x6] = x12, [x3, x4] = x11 − x9, [x3, x5] = x13, [x3, x6] = x14.

Proposition 4.2. All CPA-structures on F3,3 are central.

Proof. For k = 1, . . . , 14 let L(xk) = (xkij) be the left multiplication operators with variables

xkij. They are determined by L(xi) for i = 1, 2, 3. We know that all L(x) are nilpotent by
Theorem 3.6. Furthermore all L(x) are derivations of F3,3, and these are known. Now we can
solve the equations in xkij, given by the axioms by a direct computation. In fact, axioms (4)
and (6) give linear equations, which are easy to solve. Then it remains to solve the quadratic
equations given by (5). Since many coefficients are already zero, we only have relatively few
equations, so that a computation with Gröbner bases yields the result. �

The idea now is to use induction on the nilpotency class c, and to show the following result:

Theorem 4.3. All CPA-structures on F3,c with c ≥ 3 are central.

However, for the induction step to work, it turns out that we need to solve equations

[x, u] + [y, v] = 0

for generators x, y and elements u, v in Fg,c. As it turns out, there are results in the literature
concerning such equations in free Lie algebras. The following theorem is due to Remeslennikov
and Stöhr [17]:

Theorem 4.4. Let F be the free Lie algebra on the set X = {x1, x2, . . .}. If u, v ∈ F satisfy
the linear equation

[x1, u] + [x2, v] = 0,

then u and v are inner solutions, i.e., they are contained in the free subalgebra of F generated
by x1 and x2.

This result has the following corollary for g ≥ 3:

Corollary 4.5. Let Fg be the free Lie algebra with g ≥ 3 generators x1, . . . , xg. Consider the
linear system of equations

[uij, xk] + [xj, uik] = 0

for all 1 ≤ i, j, k ≤ g in the variables uij with uij = uji for all i, j. Then all solutions uij in the
commutator [Fg, Fg] are contained in the center Z(Fg), hence are zero.
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Proof. Fix i, j in {1, 2, . . . , g} with uij ∈ [Fg, Fg]. We will show that uij = 0. Since g ≥ 3 we
may select a k ∈ {1, 2, . . . , g}, which is distinct from i and j. Then we have

[uik, xj] + [xk, uij] = 0

[uji, xk] + [xi, ujk] = 0.

By Theorem 4.4 it follows that uij = uji is contained in the Lie algebra

〈xi, xk〉 ∩ 〈xj, xk〉 = K · xk.
Since we assume that uij ∈ [Fg, Fg] we have

uij ∈ K · xk ∩ [Fg, Fg] = 0.

�

This gives an analogous result for free-nilpotent Lie algebras.

Corollary 4.6. Let Fg,c be the free Lie algebra with g ≥ 3 generators x1, . . . , xg of nilpotency
class c ≥ 2. Consider the linear system of equations

[uij, xk] + [xj, uik] = 0

for all 1 ≤ i, j, k ≤ g in the variables uij with uij = uji for all i, j. Then all solutions uij in the
commutator [Fg,c, Fg,c] are contained in the center Z(Fg,c).

Proof. Let (uij) be a solution in [Fg,c, Fg,c], and decompose each uij into its homogeneous
components:

uij =
∑

2≤k≤c

ukij.

Then for each 2 ≤ k ≤ c we obtain a new solution (ukij) of degree k in Fg,c. For k ≤ c− 1 the

obvious lift of (ukij) is also a solution in the free Lie algebra Fg, because the vanishing condition
is of degree k + 1 ≤ c. By Corollary 4.5 we obtain

u2ij = · · · = uc−1ij = 0.

This means that all of the uij are contained in the center of Fg,c. �

Example 4.7. For g = 2, generators x1, x2 and variables u11, u12, u22 the linear system of
equations, without repetitions, is given by

[u11, x2] + [x1, u12] = 0,

[u22, x1] + [x2, u12] = 0.

For g = 3, generators x1, x2, x3 and variables u11, u12, u13, u22, u23, u33 the linear system of
equations, without repetitions, is given by

[u11, x2] + [x1, u12] = [u11, x3] + [x1, u13] = 0,

[u12, x3] + [x2, u13] = [u22, x1] + [x2, u12] = 0,

[u22, x3] + [x2, u23] = [u23, x1] + [x3, u12] = 0,

[u33, x1] + [x3, u13] = [u33, x2] + [x3, u23] = 0.

[u23, x1] + [x2, u13] = 0.
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Proof of Theorem 4.3: We want to show by induction on c ≥ 3 that all CPA-structures on
f := F3,c satisfy f · [f, f] = 0, and then also f · f ⊆ Z(f). By Proposition 4.2 we know that the
result is true for c = 3. Let us consider n := F3,c+1 and q := n/nc+1. Here q is a Lie algebra with
the induced CPA-structure from n, also denoted by by x · y. We have q ∼= F3,c. By induction
hypothesis we have

q · q ⊆ qc = nc/nc+1,

q · [q, q] ⊆ qc+1.

This implies that

n · n ⊆ nc,

n · [n, n] ⊆ nc+1.

Using (6) we obtain

n · n3 ⊆ [[n · n, n], n] + [n, [n · n, n]] + [n, [n, n · n]]

⊆ [[n · n, n], n]

⊆ [[nc, n], n]

⊆ nc+2 = 0.

Now (4), (5) and c ≥ 3 imply that

n · [n, n] = [n, n] · n
⊆ n · (n · n)− n · (n · n)

⊆ n · (n · n)

⊆ n · nc

⊆ n · n3 = 0.

For all i, j in {1, 2, 3} we define

uij := xi · xj ∈ n · n ⊆ nc ⊆ [n, n].

By n · [n, n] = 0, (4) and (6) we obtain the equations

uij = uji,

[uij, xk] + [xj, uik] = xi · [xj, xk] = 0.

By Corollary 4.6 we obtain that uij ∈ nc+1 for all i, j, so that

n · n ⊆ x1 · n + x2 · n + x3 · n + [n, n] · n
⊆ nc+1.

Hence the induction step is finished. �

Of course one would like to generalize Theorem 4.3 to all free-nilpotent Lie algebras Fg,c with
g ≥ 3. The induction step works as above, but we do not know the base case for given g ≥ 4.
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Corollary 4.8. Fix an integer g ≥ 3. Suppose that all CPA-structures on Fg,3 are central.
Then all CPA-structures Fg,c are central for all c ≥ 3.

For g = 2 we have established the base case, but an argument is missing to obtain a corre-
sponding result to Corollary 4.5. However, from direct computations it is reasonable to expect
that all solutions of the equations are central, and hence that all CPA-structures on F2,c are
central for c ≥ 3. Thus we want to pose the following conjecture.

Conjecture 4.9. All CPA-structures on Fg,c with c ≥ 3 and g ≥ 2 are central.

For g = 2, we have confirmed the conjecture for all 3 ≤ c ≤ 10 by direct computation. The
dimensions of F2,c for 1 ≤ c ≤ 10 are 2, 3, 5, 8, 14, 23, 41, 71, 127, 226.

5. Property F

Motivated by CPA-structures on F2,c we want to find out, which 2-generated nilpotent Lie
algebras have the property that all solutions in the commutator are central, for the system of
equations of Example 4.7.

Definition 5.1. Let g be a nilpotent Lie algebra with dim g/[g, g] = 2. We say that g has
property F , if for every generating pair (x, y) all solutions u, v, w ∈ [g, g] of the two linear
equations

[x, u] + [y, v] = 0

[x, v] + [y, w] = 0

are contained in the center Z(g).

We may assume that g is a stem Lie algebra, because if Z(g) is not contained in [g, g], then
g is abelian. This gives dim g = dim g/[g, g] = 2, which is not interesting. Furthermore, all
2-generated nilpotent Lie algebras g with Z(g) = [g, g] have property F .
In general, it is not clear whether it is enough to check this property for just one specific
generating pair (x, y). However, it is enough for the free-nilpotent Lie algebra F2,c, because in
this case the automorphism group acts transitively on the pairs of generators.

The first observation is that Lie algebras having property F cannot have a small center.

Definition 5.2. Let g be a Lie algebra. Denote by

z(g) :=
dimZ(g)

dim g

the quotient of the dimension of the center by the dimension of the Lie algebra.

Lemma 5.3. Let g be a nilpotent Lie algebra with dim g/[g, g] = 2 and

z(g) <
1

3
.

Then g does not have property F .

Proof. Assume that g satisfies property F . We want to show that this implies z(g) ≥ 1
3
. We may

assume that g is a stem Lie algebra, because otherwise g is abelian, see above. Let n = dim g.
Since [g, g] has dimension n− 2 we may assume that our vectors u, v, w are of the form

(0, 0, y3, . . . , yr, yr+1, . . . , yn),
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i.e., that they have coordinates of this form with respect to a basis of g where the first 2 basis
vectors are the generators, the last n− 2 are lying inside [g, g] and the last n− r are the basis
vectors of the center Z(g). The two equations now yield a system of linear equations in the
3(r − 2) variables y3, . . . , yr of the vectors u, v, w. By Engel’s Theorem we may assume that
both ad(x) and ad(y) are strictly lower-triangular matrices. The base change is compatible
with the condition Z(g) ⊆ [g, g]. The above equations are just

ad(x)u = −ad(y)v

ad(x)v = −ad(y)w.

Both equations correspond each to n linear equations, but the first three component equations
are saying 0 = 0, because ad(x) and ad(y) are strictly lower-triangular. So we have at most
2(n− 3) non-trivial equations. Property F says that they have a unique solution, hence

2(n− 3) ≥ 3(r − 2).

This implies that

dimZ(g) = n− r ≥ n− 2n

3
=

dim g

3
.

�

Corollary 5.4. A filiform nilpotent Lie algebra of dimension n ≥ 4 does not have property F .

Proof. A filiform nilpotent Lie algebra g of dimension n satisfies dim g/[g, g] = 2 and is a stem
Lie algebra. However, we have z(g) = 1

n
< 1

3
for n ≥ 4. Hence by Lemma 5.3, g does not have

property F . �

Remark 5.5. For the free-nilpotent Lie algebras with 2 generators and nilpotency class n let us
write f(n) = z(F2,n). Then we have

f(n) =
In∑n
m=1 Im

,

where

Im =
1

m

∑
d|m

µ(d)2m/d.

The number Im also counts the monic irreducible polynomials of degree m in F2. The first
values of the sequence (f(n)) are given by

1

2
,
1

3
,
2

5
,
3

8
,

6

14
,

9

23
,
18

41
,
30

71
,

56

127
,

99

226
, · · ·

We have f(n) > 1
3

for all n ≥ 3, and Im ∼ 2m

m
for m→∞. So we obtain

lim
n→∞

f(n) = lim
n→∞

2n

n∑n
m=1

2m

m

=
1

2
.

Using Lemma 5.3 we can easily show the following result for low dimensions.

Proposition 5.6. Let g be a complex nilpotent stem Lie algebra with dim g/[g, g] = 2 and
dimension n ≤ 7. Then g has property F if and only if g is isomorphic to F2,2 or F2,3.
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Proof. In dimension 3 there is only one such Lie algebra, namely g = F2,2. It has property
F , since the center coincides with the commutator subalgebra. In dimension 4 we only have
the filiform nilpotent Lie algebra g = n4, which does not have property F , see Lemma 5.4. In
dimension 5, the only stem nilpotent Lie algebra with dim g/[g, g] = 2 and dimZ(g) ≥ 2 is F2,3.
It is easy to verify that F2,3 has property F , since it is enough to check it just for one specific
pair of generators.
In dimension 6, the classification shows that the only stem nilpotent Lie algebra satisfying
dim g/[g, g] = 2 and dimZ(g) ≥ 2 is given by g6,14, in Magnin’s notation [16]. The Lie brackets
are given by

[x1, xi] = xi+1, 2 ≤ i ≤ 4, [x2, x3] = x6.

Here x1, x2 generate g. A direct computation shows that it does not have property F .
In dimension 7, Magnin’s list [16] shows that there is no nilpotent stem Lie algebra with
dim g/[g, g] = 2 and dimZ(g) ≥ 3. �

In general, it seems likely that the following holds true:

Open problem. A nilpotent Lie algebra g with dim g/[g, g] = 2 has property F if and only if
it is isomorphic to some F2,c.
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[11] J. Helmstetter: Radical d’une algèbre symétrique a gauche. Ann. Inst. Fourier 29 (1979), 17–35.
[12] K. Ebrahimi-Fard, A. Lundervold, I. Mencattini, H. Z. Munthe-Kaas: Post-Lie Algebras and Isospectral

Flows. SIGMA Symmetry Integrability Geom. Methods Appl. 11 (2015), Paper 093, 16 pp.
[13] H. Kim: Complete left-invariant affine structures on nilpotent Lie groups. J. Differential Geom. 24 (1986),

no. 3, 373–394.



14 D. BURDE, K. DEKIMPE, AND W. MOENS

[14] N. Jacobson: Lie algebras. Dover Publications 1979.
[15] J.-L. Loday: Generalized bialgebras and triples of operads. Astrisque No. 320 (2008), 116 pp.
[16] L. Magnin: Determination of 7-dimensional indecomposable nilpotent complex Lie algebras by adjoining a

derivation to 6-dimensional Lie algebras. Algebras and Representation Theory 13, no. 6 (2010), 723–753.
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