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Abstract. A complex vector space V is a prehomogeneous G-module if G acts rationally on V
with a Zariski-open orbit. The module is called étale if dimV = dimG. We study étale modules
for reductive algebraic groups G with one-dimensional center. For such G, we show that even
though every étale module is a regular prehomogeneous module, its irreducible submodules
have to be non-regular. For these non-regular prehomogeneous modules, we determine some
strong constraints on the ranks of their simple factors. This allows us to show that there do
not exist étale modules for G = GL1 × S ×⋯ × S, with S simple.
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1. Introduction

Affine étale representations of Lie groups arise in many contexts. For a given connected
Lie group G, the existence of such a representation is equivalent to the existence of a left-
invariant affine structure on G (see [2, 4]). In 1977 Milnor [15] discussed the importance of such
structures for the study of fundamental groups of complete affine manifolds, and for the study
of affine crystallographic groups, which initiated generalizations of the Bieberbach theorems
for Euclidean crystallographic groups to affine crystallographic groups, see [10]. Milnor asked
the existence question for left-invariant affine structures on a given Lie group G, and suggested
that all solvable Lie groups G admit such a structure. This question received a lot of attention,
and was eventually answered negatively by Benoist [3]. For a survey on the the results and the
history see [6, 7, 10].

Affine étale representations of G and left-invariant affine structures on G both define a
bilinear product on the Lie algebra g of G that gives g the structure of a left-symmetric algebra
(LSA-structure for short), and conversely an LSA-structure determines an affine structure on
G (see Paragraph 1.2 below). The existence question then can be formulated on the Lie algebra
level, and has been studied for several classes of Lie algebras, e.g., for semisimple, reductive,
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nilpotent and solvable Lie algebras, see [6]. LSA-structures on Lie algebras also correspond to
non-degenerate involutive set-theoretical solutions of the Yang-Baxter equation, and to certain
left brace structures, see [8, 1]. A natural generalization of LSA-structures is given by post-Lie
algebra structures on pairs of Lie algebras [7].

Étale representations also appear in the classification of adjoint orbits on graded semisimple
Lie algebras g = ⊕k∈Z gk. The classification of G0-orbits of nilpotent elements can be reduced to
determining certain graded semisimple subalgebras s associated to such elements which contain
an étale representation for the grade-preserving subalgebra s0 on the module s1, see [20].

It follows from the Whitehead Lemma in Lie algebra cohomology that a semisimple Lie
algebra over a field K of characteristic zero does not admit an LSA-structure. The reductive
Lie algebra gln(K), however, admits a canonical LSA-structure, and the group GLn(K) admits
a bi-invariant affine structure. Indeed, it is natural to consider the reductive case, where we
have the powerful tools of invariant theory and representation theory for reductive groups at
hand. Furthermore, we can use the theory of prehomogeneous modules for reductive groups as
developed by Sato and Kimura. Still, it turns out that the existence question is already very
difficult in the reductive case, and is still open in general.

On the other hand there are several results for reductive Lie algebras – respectively reductive
groups – with one-dimensional center. The first author showed in [5, Theorem 2] that a reductive
Lie algebra g = a ⊕ s with s simple and dim Z(g) = 1 admits an LSA-structure if and only if
s = sln(K). Baues [2, Section 5] classified all LSA-structures on gln(K).

It is the aim of this article to make further progress for the reductive case with one-
dimensional center.

1.1. Reductive prehomogeneous modules. A prehomogeneous module (G, %, V ) consists of
a linear algebraic group G and a rational representation % ∶ G→ GL(V ) on a finite-dimensional
complex vector space V , such that G has a Zariski-open orbit in V . The vector space V is called
a prehomogeneous vector space. We always assume that the representation % is faithful up to a
finite subgroup. From now on G is assumed to be reductive. Recall that in this case, the Lie
algebra g of G is a direct sum g = a⊕ s, where a is the center of g, and s is semsimple. We will
call a prehomogeneous module (G,%, V ) for a reductive group G a reductive prehomogeneous
module. A reductive group G is called k-simple if its semisimple factor has k simple factors.

There are several classification results on reductive prehomogeneous modules by a group of
Japanese mathematicians around Mikio Sato and Tatsuo Kimura from the 1970s up to the
present. However, a complete classification of prehomogeneous modules is not available.

The first classification result on prehomogeneous modules is due to Sato and Kimura [19].
They classified irreducible and reduced prehomogeneous modules for reductive algebraic groups
(the terminology will be explained in Section 2). In addition, they determined the stabilizer
subgroups of the open orbits and the relative invariants for all cases. We will label each module
in this class by SK n, where n is its number in [19, §7]. This classification can also be found in
Kimura’s book [11].

Kimura [12, §3] classified prehomogeneous modules of one-simple reductive groups,

(GLk
1 × S, %1 ⊕ . . .⊕ %k, V1 ⊕ . . .⊕ Vk)

where S is a simple group. We will label them Ks n, where n is the number of the module in
[12, §3]. In each case, the generic isotropy subgroup is determined. This classification included
non-irreducible modules.
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Furthermore, Kimura et al. [13, §3], [14, §5] studied the prehomogeneity of modules for
two-simple groups,

(GLk
1 × S1 × S2, %1 ⊕ . . .⊕ %k, V1 ⊕ . . .⊕ Vk),

where S1 and S2 are simple groups, under the assumption that one independent scalar multi-
plication acts on each irreducible component. This assumption is a non-trivial simplification of
the problem, especially for the modules studied in [14], as it is far from obvious if one of these
modules could be prehomogeneous with less than k factors GL1 acting on the module. They
studied two types of two-simple modules, I and II, and we will label them KI n and KII n,
where n is their number in [13] or [14], respectively.

1.2. Étale representations and LSA-structures. It is clear that dimG ≥ dimV holds for
any prehomogeneous module. If equality holds, dimG = dimV , we say that the representation
% (the module V ) is an étale representation (an étale module). More generally, one considers
affine étale representations for arbitrary algebraic groups. For reductive groups they can always
be assumed to be linear [2, Corollary 3.9].

The existence of étale representations for a reductive algebraic group G implies the existence
of LSA-structures on the reductive Lie algebra g of G. More precisely, if %′ = (d%)1 denotes
the induced representation of %′ ∶ g→ gl(V ) (also called an étale representation) and v ∈ V is a
point in the open orbit of %(G), then

x ⋅ y = ev−1v (%′(x)evv(y)), x, y ∈ g

defines an LSA-structure on g. Here, evv ∶ g → V denotes the evaluation map x ↦ %′(x)v at
the point v. It is invertible since dimg = dimV for an étale representation. In addition the
LSA-structure determines a left-invariant flat torsion-free affine connection ∇ on G, by setting

∇xy = x ⋅ y.

Conversely, an LSA-structure on g, or a left-invariant flat torsion-free affine connection on G,
gives rise to an étale representation of g.

1.3. Overview and results. The aim is, as said, to make progress on the structure of étale
modules for reductive algebraic groups with one-dimensional center. We briefly recall the theory
of prehomogeneous modules as developed by Sato and Kimura [19] in Section 2. We study some
combinatorial aspects of castling transforms of irreducible reductive prehomogeneous modules
in Section 3. We find a rather strong constraint on which groups can appear as castling
transforms:

Theorem A. Let (G,%, V ) be an irreducible prehomogeneous module for a reductive algebraic
group. Then:

(G,%, V ) = (L × SLm1 ×⋯ × SLmk
, σ ⊗ ω1 ⊗⋯⊗ ω1, V

n ⊗Cm1 ⊗⋯⊗Cmk),

where L is a reductive algebraic group with one simple factor, σ is irreducible, and
n,m1, . . . ,mk ≥ 1 such that

(1) gcd(mi,mj) = 1 for 1 ≤ i < j ≤ k.
(2) gcd(n,mi) = 1 for all but at most one index i0 ∈ {1, . . . , k}.

Moreover, if (G,%, V ) is castling-equivalent to a one-simple irreducible module, then part (2)
holds for all i ∈ {1, . . . , k}.
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Some general properties of étale representations (not just for reductive groups) are reviewed
in Section 4. We show that every reductive étale module is regular, and that unipotent and
semisimple algebraic groups do not admit (linear) étale representations. In Section 5 we identify
the étale modules among certain classifications of prehomogeneous modules due to Sato and
Kimura [19] and Kimura et al. [12, 13]. In Section 6 we derive criteria for reductive algebraic
groups G with one-dimensional center to admit étale representations. By Lemma 4.3, an étale
module for G is a regular prehomogeneous module (in the sense of Section 2). A main tool for
the investigation of reducible modules is the following theorem proved by Baues.

Theorem B (Baues). Let G = GL1 × S with S semisimple and let (G,%, V ) be an étale mo-
dule. Suppose (G,%,W ) is a proper submodule of (G,%, V ). Then (G,%,W ) is a non-regular
prehomogeneous module.

We can combine Theorems A and B to find a non-existence result for a certain class of
reductive groups. We show:

Theorem C. Let G = GL1 ×S ×
k
⋯×S, where S is a simple algebraic group and k ≥ 2. Then G

has no étale representations.

Notations and conventions. We write V m to emphasize that the dimension of a vector space
V is m.

The unit element of a group G is denoted by 1 or 1G. For matrix groups, we also use In to
denote the identity matrix. When writing GLn (resp. SLn, Spn, SOn, Spinn), we always assume
the complex numbers as the coefficient field.

For convenience, we will often denote a module (%, V ) by the representation % only. In this
case, we also write dim% for dimV . The dual representation (or module) is denoted by (%∗, V ∗).
The notation %(∗) means either % or its dual %∗.

It is well-known that an irreducible representation % of a semisimple Lie algebra g is uniquely
determined by its highest weight ω. After the choice of a Cartan subalgebra of g, ω is a unique
integral linear combination m1ω1 + . . . +mnωn of the fundamental weights ω1, . . . , ωn of g. For
brevity we often write ω when we mean the “representation % with highest weight ω”. The
representation of gl1 (or GL1) by scalar multiplication on a vector space is denoted by µ. The
trivial representation for any group is denoted by 1.

Acknowledgements. Dietrich Burde acknowledges support by the Austrian Science Founda-
tion FWF, grant P28079 and grant I3248. Wolfgang Globke is supported by the Australian
Research Council grant DE150101647. He would also like to thank Oliver Baues for introducing
him to this subject several years ago.

2. Basics of prehomogeneous modules

2.1. Prehomogenous modules and relative invariants. Let (G,%, V ) be a prehomogene-
ous module. The points v in the open orbit of G are called generic points, and the stabilizer
Gv = {g ∈ G ∣ gv = v} at a generic point v is called the generic isotropy subgroup, its Lie algebra
gv is called the generic isotropy subalgebra. The singular set V0 = V /%(G)v is the complement
of the open orbit in V .

Prehomogeneity is equivalent to

dimGv = dimG − dimV
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and to V = {d%(A)v ∣ A ∈ g}. In particular, if % is étale, then Gv is a finite (since algebraic)
subgroup and d%(⋅)v ∶ g→ V is a vector space isomorphism.

Prehomogeneous modules are to a large extent characterized by their relative invariants, that
is, those rational functions f ∶ V → C satisfying

f(gv) = χ(g)f(v),

where g ∈ G and χ ∈ X(G) = {χ ∶ G → C× ∣ χ is a rational homomorphism}. Prehomogeneity of
(G,%, V ) is equivalent to the fact that any absolute invariant (that is, with character χ = 1) is
a constant function.

Given a relative invariant f of (G,%, V ), define a map

ϕf ∶ V /V0 → V ∗, x↦ grad log f(x).

If the image of ϕf is Zariski-dense in V ∗, then we call f a non-degenerate relative invariant,
and (G,%, V ) a regular prehomogeneous module. For reductive algebraic groups G, we have
the following characterization of regular prehomogeneous modules (see Kimura [11, Theorem
2.28]).

Theorem 2.1. Let G be a reductive algebraic group and (G,%, V ) a prehomogeneous module.
Then the following are equivalent:

(1) (G,%, V ) is a regular prehomogeneous module.
(2) The singular set V0 is a hypersurface.
(3) The open orbit %(G)v = V /V0 is an affine variety.
(4) Each generic isotropy subgroup Gv for v ∈ V /V0 is reductive.
(5) Each generic isotropy subalgebra gv for v ∈ V /V0 is reductive in g = Lie(G).

2.2. Castling and promotion. Two modules (G1, %1, V1) and (G2, %2, V2) (or representations
%1 and %2) are called equivalent if there exists an isomorphism of groups ψ ∶ %1(G1) → %2(G2)

and a linear isomorphism ϕ ∶ V1 → V2 such that ψ(%1(g))ϕ(x) = ϕ(%1(g)x) for all x ∈ V1 and
g ∈ G1.

Remark 2.2. If G is reductive, then the dual representation %∗ ∶ G → GL(V ∗) of any given
representation % ∶ G→ GL(V ) is equivalent to %. This follows from a result by Mostow [16].

Let m > n ≥ 1 and % ∶ G → GL(V m) be a finite-dimensional rational representation of an
algebraic group G. Then we say the modules

(G ×GLn, %⊗ ω1, V
m ⊗Cn) and (G ×GLm−n, %∗ ⊗ ω1, V

m∗ ⊗Cm−n)

are castling transforms of each other. More generally, we say two modules (G1, %1, V1) and
(G2, %2, V2) are castling-equivalent if (G1, %1, V1) is equivalent to a module obtained after a
finite number of castling transforms from (G2, %2, V2).

We say a module (G,%, V ) is reduced (or castling-reduced) if dimV ≤ dimV ′ for every castling
transform (G,%′, V ′) of (G,%, V ).

Theorem 2.3 (Sato & Kimura [19]). Let m > n ≥ 1 and % ∶ G→ GL(V m) be a finite-dimensional
rational representation of an algebraic group G. Then

(G ×GLn, %⊗ ω1, V
m ⊗Cn)

is a prehomogeneous module (with generic isotropy subgroup H(n)) if and only if its castling
transform

(G ×GLm−n, %∗ ⊗ ω1, V
m∗ ⊗Cm−n)
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is prehomogeneous (with generic isotropy subgroup H(m−n)). Furthermore, H(n) and H(m−n)

are isomorphic.
Addendum: If G is reductive and its center acts by scalar multiplication on V m ⊗Cn, then

we can replace every occurrence of GLn by SLn in the above statement, and prehomogeneity of

(G × SLn, (σ ⊗ 1) ⊕ (%⊗ ω1), V
k ⊕ (V m ⊗Cn))

is equivalent to prehomogeneity of

(G × SLm−n, (σ∗ ⊗ 1) ⊕ (%⊗ ω1), V
k∗ ⊕ (V m ⊗Cm−n)).

Remark 2.4. Castling transforms regular prehomogeneous modules into regular prehomogeneous
modules, and étale modules into étale modules (because H(n) ≅H(m−n)).

Example 2.5. Castling allows to add additional factors to the group. Let (G,%, V m) be a
reductive prehomogeneous module. We can interprete it as

(G,%, V m) = (G × SL1, %⊗ ω1, V
m ⊗C1).

The castling transform of this module is

(G × SLm−1, %⊗ ω1, V
m ⊗Cm−1).

We call a castling transform of this particular type a promotion of the module (G,%, V m).

3. Castling transforms of irreducible prehomogeneous modules

In this section we do not assume that the prehomogeneous modules are étale modules. Our
aim is to prove Theorem A.

Lemma 3.1. Let L be a reductive algebraic group with one simple factor and let

(L × SLm, σ ⊗ ω1, V
n ⊗Cm)

be a module with (L,σ) ≠ (SLn, ω1), σ irreducible and m,n ≥ 1. Let

(L × SLm1 ×⋯ × SLmk
, σ ⊗ ω1 ⊗⋯⊗ ω1, V

n ⊗Cm1 ⊗⋯⊗Cmk)

be castling-equivalent to the first module, with k ≥ 2. Then:

(1) gcd(mi,mj) = 1 for 1 ≤ i < j ≤ k.
(2) gcd(n,mi) = 1 for all but at most one index i0 ∈ {1, . . . , k}.
(3) gcd(n,mi0) = gcd(n,m) for this index i0.

Proof. Any sequence of castling transforms of the original module will start with a promotion,
adding a factor (SLnm−1, ω1,Cnm−1) to the module. But clearly, gcd(m,nm−1) = 1 = gcd(n,nm−
1), and for m1 =m, gcd(n,m1) = gcd(n,m).

Suppose the claim holds after ` ≥ 1 castling transforms of the original module. We may
assume the groups are ordered such that i0 = 1. Apply another castling transform. If the
transform is a promotion, then we obtain a new factor SLnm1⋯mk−1, and the claim clearly holds
for the new module. Otherwise, consider two cases:

First, suppose that SLm1 is replaced by SLm′1
with m′

1 = nm2⋯mk −m1. By the induction
hypothesis, for i = 2, . . . , k, we have gcd(n,mi) = 1 and also gcd(m′

1,mi) = 1, since every divisor
of mi divides nm2⋯mk but not m1. Suppose d is a common divisor of n and m1. Then d divides
both nm2⋯mk and m1, hence d divides m′

1. Similarly, every divisor of n and m′
1 divides m1.

Hence gcd(n,m1) = gcd(n,m′
1).
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Now consider the case that a factor other than SLm1 , say SLmk
, is replaced by the castling

transform. The new factor is SLm′
k

with m′
k = nm1⋯mk−1 −mk. By the induction hypothesis,

every divisor of mi with i ≠ k divides nm1⋯mk−1 but not mk, hence not m′
k. It follows that

gcd(mi,m′
k) = 1 for all i ≠ k. Similarly, gcd(n,m′

k) = 1. Moreover, gcd(n,mi) = 1 for all 2 ≤ i < k
and gcd(n,m1) = gcd(n,m) by the induction hypothesis.

So the claim holds after ` + 1 castling transforms, and the lemma follows. �

Lemma 3.2. For m,n ≥ 1, let

(L ×GLm, σ ⊗ ω1, V
n ⊗Cm)

be a module with (L,σ) = (SLn, ω1) or (L,σ) = (SL3 × SL3, ω1 ⊗ ω1). In the latter case, assume
additionally that gcd(3,m) = 1. Let

(SLm1 ×⋯ × SLmk
, ω1 ⊗⋯⊗ ω1, C

m1 ⊗⋯⊗Cmk)

be castling-equivalent to the first module, with k ≥ 2. Then gcd(mi,mj) = 1 for all 1 ≤ i < j ≤ k
but at most one pair of indices i0, j0 ∈ {1, . . . , k}.

The proof is mutatis mutandis identical to the proof of Lemma 3.1.

Theorem A. Let (G,%, V ) be an irreducible prehomogeneous module for a reductive algebraic
group. Then:

(G,%, V ) = (L × SLm1 ×⋯ × SLmk
, σ ⊗ ω1 ⊗⋯⊗ ω1, V

n ⊗Cm1 ⊗⋯⊗Cmk),

where L is a reductive algebraic group with one simple factor, σ is irreducible, and
n,m1, . . . ,mk ≥ 1 such that

(1) gcd(mi,mj) = 1 for 1 ≤ i < j ≤ k.
(2) gcd(n,mi) = 1 for all but at most one index i0 ∈ {1, . . . , k}.

Moreover, if (G,%, V ) is castling-equivalent to a one-simple irreducible module, then part (2)
holds for all i ∈ {1, . . . , k}.

Proof. Every irreducible reductive prehomogeneous module is castling-equivalent to one of those
classified by Sato and Kimura [19, §7], so it is enough to prove the theorem for those modules.
Lemma 3.2 proves the theorem for the irreducible modules SK I-1 (with (SLm, ω1)), SK I-12,
SK III-1 and SK III-2. From the classification it is clear that every other reduced irreducible
module is of the form assumed in Lemma 3.1, and so the theorem follows from this lemma in
these cases. �

Remark 3.3. Every reductive prehomogeneous module decomposes into irreducible ones, but
since such a decomposition can be obtained by taking direct sums (that is, (G1, %1, V1) ⊕
(G2, %2, V2) = (G1 ×G2, %1 ⊕ %2, V1 ⊕ V2)), it is not true that every castling transform of non-
irreducible prehomogeneous modules is of the form described in Theorem A.

4. General properties of étale representations

Étale modules were introduced in Section 1. Here we present some structural results on
étale modules, whereas in the next section we provide many new examples of étale modules for
reductive groups.

Proposition 4.1. The following conditions are equivalent:

(1) (G,%1 ⊕ %2, V1 ⊕ V2) is an étale module.
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(2) (G,%1, V1) is prehomogeneous and (H,%2∣H , V2) is an étale module, where H denotes the
connected component of the generic isotropy subgroup of (G,%1, V1).

Equivalence also holds if each “étale” is replaced by “prehomogeneous”.

Proof. By Kimura [11, Lemma 7.2], %1⊕%2 is prehomogeneous if and only if %1 and %2∣H are. The
representation %1 ⊕ %2 is étale if and only if it is prehomogeneous and dimG = dimV1 + dimV2.

Suppose %1 ⊕ %2 is étale. So (G,%1, V1) and (H,%2∣H , V2) are prehomogeneous, and since
dimG − dimH = dimV1, we have dimH = dimV2, so (H,%2∣H , V2) is étale.

Conversely, if we assume (G,%1, V1) to be prehomogeneous and (H,%2∣H , V2) to be étale, then
(G,%1 ⊕ %2, V1 ⊕ V2) is obviously prehomogenous and as

dimG − dimV1 = dimH = dimV2,

it is even étale. �

Corollary 4.2. Let (G,%1, V1) be a prehomogeneous module with reductive generic isotropy
subgroup. Then (G,%1⊕%2, V1⊕V2) is étale if and only if (G,%1⊕%∗2, V1⊕V

∗
2 ) is étale, and then

their generic isotropy subgroups are isomorphic.

Proof. For a reductive group G, (G,%, V ) is equivalent to (G,%∗, V ∗), see Remark 2.2. The
corollary now follows from Proposition 4.1. �

4.1. Regularity of étale modules. First, we note that non-regular prehomogeneous modules
are not étale modules for a reductive algebraic group.

Lemma 4.3. Let G be a reductive algebraic group. If (G,%, V ) is an étale module, then it is a
regular prehomogeneous module.

Proof. The generic isotropy subgroup of an étale module is finite, hence reductive. By Theorem
2.1, the module is regular. �

This lemma does not imply that any irreducible component of an étale module must be
regular. In fact, it will follow from Theorem B that for groups with one-dimensional center, an
étale module that contains a regular irreducible component must be irreducible itself.

4.2. Groups with trivial character group. Let X(G) denote the character group of G
(the group of rational homomorphisms χ ∶ G → C×). The following proposition is possibly
well-known. Since we do not know a reference for it, we will give a proof here.

Proposition 4.4. Let G be an algebraic group with X(G) = {1}. Then G does not admit a
rational linear étale representation.

Proof. Assume that % ∶ G → V is a linear étale representation. Let n = dimG = dimV > 0. By
Kimura [11, Proposition 2.20], the prehomogeneous module (G,%, V ) has a relative invariant
f of degree n, so f is not constant. As X(G) = {1}, the associated character χ of f must be
χ = 1, which means that f is an absolute invariant. But this is a contradiction to the fact that
prehomogeneous modules do not admit non-constant absolute invariants. �

We conclude that unipotent groups and semisimple groups do not admit linear étale repre-
sentations, since their respective groups of rational characters are trivial.

Corollary 4.5. There is no rational linear étale representation for a semisimple algebraic
group.
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Corollary 4.6. There is no rational linear étale representation for a unipotent algebraic group.

On the other hand, a unipotent algebraic group may admit an affine étale representation.
This is not the case for a semisimple algebraic group S. An affine étale representation of S is
automatically linear and vice versa ([2, Corollary 3.9]). It is already known that S does not
admit an affine étale representation, because of the correspondence to LSA-structures on the
semisimple Lie algebra s of S. Indeed, a semisimple Lie algebra s of characteristic zero does not
admit an LSA-structure, because H1(s,M) = 0 for all finite-dimensional s-modules M by the
first Whitehead Lemma on Lie algebra cohomology. However, the argument with the character
group here gives an independent proof.

Remark 4.7. The vanishing of the Lie algebra cohomology Hn(g,g) for all n ≥ 0 with the adjoint
module g alone is not enough to ensure that G does not admit an affine étale representation.
For example, the linear algebraic group G = Aff(V ) for a vector space V has a cohomologically
rigid Lie algebra g = aff(V ), which satisfies Hn(g,g) = 0 for all n ≥ 0. But the coadjoint
representation of G is étale.

5. Étale modules for groups with one or two simple factors

As stated in the introduction, certain classification results for étale modules are immediately
obtained from the classification of prehomogeneous modules. These classifications have been
collected in a convenient reference in [9].

Remark 5.1. In Kimura et al. [12], [13], the prehomogeneous modules are always stated with one
scalar multiplication µ acting on each irreducible component, that is, (GLk

1×G,%1⊕. . .⊕%k), and
in this case we do not explicitely state the scalar multiplications, as it is understood that each %i
stands for µ⊗%i. But in some cases, we do not need an independent scalar multiplication on each
component to achieve prehomogeneity. Consider for example the prehomogeneous module Ks
A-2, (GLn

1 ×SLn, ω
⊕n
1 ). For ω⊕n1 we need only the operation of SLn and one scalar multiplication

GL1 acting on all components to obtain a prehomogeneous module, that is (GL1×SLn, µ⊗ω
⊕n
1 ).

Finding the étale modules of type SK, Ks and KI is rather easy, as the generic isotropy
subgroup is known in each case. Thus we can just pick the modules with G○

v ≅ {1} from
the known classification tables. Finding étale modules in the class KII is significantly more
complicated and will be done in a forthcoming article.

Proposition 5.2. The following irreducible reduced prehomogeneous modules are all étale mod-
ules in the list SK:

● SK I-4: (GL2,3ω1,Sym3
C2).

● SK I-8: (SL3 ×GL2,2ω1 ⊗ ω1,Sym2
C3 ⊗C2).

● SK I-11: (SL5 ×GL4, ω2 ⊗ ω1,⋀
2
C5 ⊗C4).

Proposition 5.3. The following non-irreducible one-simple prehomogeneous modules are all
étale modules in the list Ks:

● Ks A-1 for n = 2: This is equivalent to Ks A-4 with n = 2.
● Ks A-2: (GL1 × SLn, µ⊗ ω

⊕n
1 , (Cn)⊕n).

● Ks A-3: (GLn+1
1 × SLn, ω

⊕n+1
1 , (Cn)⊕n+1).

● Ks A-4: (GLn+1
1 × SLn, ω

⊕n
1 ⊕ ω∗1 , (Cn)⊕n ⊕Cn∗).

● Ks A-11 for n = 2: (GL2
1 × SL2,2ω1 ⊕ ω1,Sym2

C2 ⊗C2).
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● Ks A-12 for n = 2: Equivalent to Ks A-11 with n = 2.
● Ks A-20 for n = 1: Equivalent to Ks A-2 with n = 2.

Corollary 5.4. If (GLk
1 × S, %, V ) for k ≥ 1 and a simple group S is an étale module, then

S = SLn for some n ≥ 1.

Proposition 5.5. The following two-simple prehomogeneous modules of type I are all étale
modules in the list KI:

● KI I-1: (GL2
1 × SL4 × SL2, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ ω1), (⋀

2
C4 ⊗C2) ⊕ (C4 ⊗C2)).

● KI I-2: (GL2
1 × SL4 × SL2, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (ω1 ⊗ 1), (⋀2

C4 ⊗C2) ⊕C4 ⊕C4).

● KI I-6: (GL3
1 × SL5 × SL2, (ω2 ⊗ω1) ⊕ (ω∗1 ⊗ 1) ⊕ (ω

(∗)
1 ⊗ 1), (⋀2

C5 ⊗C2) ⊕C5∗ ⊕C5(∗)).
● KI I-16: (GL2

1 × Sp2 × SL3, (ω1 ⊗ ω1) ⊕ (ω2 ⊗ 1) ⊕ (1⊗ ω∗1), (C4 ⊗C3) ⊕ V 5 ⊕C3).
● KI I-18: (GL3

1 × Sp2 × SL2, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1⊗ ω1), (V 5 ⊗C2) ⊕C4 ⊕C2).
● KI I-19: (GL3

1 × Sp2 × SL4, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1⊗ ω∗1), (V 5 ⊗C4) ⊕C4 ⊕C4).

6. Étale modules for groups with one-dimensional center

In this section we study étale modules for algebraic groups G = GL1×S, where S is semisimple.

6.1. Non-regularity of submodules. Below, let C[V ]G denote the ring of G-invariant poly-
nomial functions on V , and let V �G denote the algebraic quotient of the G-action on V , that
is, the algebraic variety with coordinate ring C[V ]G which parameterizes the closed orbits of
G.

Theorem B. Let G = GL1×S with S semisimple and let (G,%, V ) be an étale module. Suppose
(G,%,W ) is a proper submodule of (G,%, V ). Then (G,%,W ) is a non-regular prehomogeneous
module.

In the terminology of Rubenthaler [18], this theorem states that (G,%, V ) is quasi-irreducible.

Proof. Denote the étale module by (GL1×S, %, V ) and let W be a non-trivial S-submodule and
U an invariant complement in V .

Assume dimW = dimS. Then dimU = 1, so the action of S on U is trivial by the semisimplic-
ity of S. It follows that S has an open orbit on W , which contradicts the fact that semisimple
groups do not admit étale modules. So dimW < dimS.

By Baues [2, Proposition 3.3], the submodule W must be contained in the fiber over the
orbit {0} of the algebraic quotient map π ∶ V → V �S, and by Baues [2, Proposition 3.2],
V �S is isomorphic to the affine line C, and C[V ]S is generated by an irreducible non-constant
homogeneous polynomial f .

Consider h ∈ C[W ]S. Then h is also an element of C[V ]S and h = f0 + c with c ∈ C and
f0 ∈ ⟨f⟩. As any w ∈W is contained in the fiber over {0}, we have h(w) = f0(w) + c = c, that is,
h = c and thus C[W ]S = C. So trdeg

C
C[W ]S = 0, and now a formula by Rosenlicht [17],

trdeg
C
C[W ]S = dimW −max{dim%(S)w ∣ w ∈W},

implies
dimW = max{dim%(S)w ∣ w ∈W}.

This means W is a prehomogeneous module for S.
As S is semisimple, any non-constant relative invariant of GL1 × S on W is an absolute

invariant for S on W . Then C[W ]S = C implies that there are no non-constant relative
invariants for GL1 × S on W , so W is a non-regular prehomogeneous module. �
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A simple example illustrates the statement of Theorem B:

Example 6.1. The module Ks A-2, (GL1 × SLn, µ ⊗ ω⊕n1 , (Cn)⊕n) is an étale module. We
identify (Cn)⊕n = Matn, and then a relative invariant is given by the determinant of n × n-
matrices. This module decomposes into n irreducible and non-regular summands of type SK
III-2, (GL1 × SLn, µ⊗ ω1,Cn) corresponding to action by matrix-vector multiplication on each
column of matrices in Matn.

Theorem B does not hold if the center of G has dimension ≥ 2:

Example 6.2. Consider the module KI I-2,

(GL2
1 × SL4 × SL2, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (ω1 ⊗ 1), (⋀

2
C

4 ⊗C2) ⊕C4 ⊕C4).

The first irreducible component of this module, ω2 ⊗ ω1, corresponds to the regular irreducible
module SK I-15 with parameters n = 6, m = 2 (recall that over the complex numbers, SO6 and
SL4 are locally isomorphic).

6.2. Groups with copies of one simple factor only. We now want to study reductive
groups of the form

(6.1) G = GL1 × S ×
k
⋯× S,

where S is simple and k ≥ 2 (for k = 1 see Section 5). If there are any irreducible étale modules
for such a group, each of them must be castling-equivalent to one of the modules in Proposition
5.2,

● SK I-4: (GL2 × SL1,3ω1 ⊗ ω1,Sym3
C2).

● SK I-8: (SL3 ×GL2,2ω1 ⊗ ω1,Sym2
C3 ⊗C2).

● SK I-11: (SL5 ×GL4, ω2 ⊗ ω1,⋀
2
C5 ⊗C4).

Remark 6.3. As castling only adds additional factors SLm, this list shows that no irreducible
étale representation for (6.1) with S ≠ SLm can exist.

By Theorem B, any reducible étale module decomposes into irreducible components, each of
which is a non-regular prehomogeneous module for G. Therefore, by the Sato-Kimura classifi-
cation [19, III on p. 147] (or [9, Section 1]), each irreducible component is castling-equivalent
to one of the following:

● SK III-1: (L × GLm, % ⊗ ω1, V n ⊗ Cm), where % ∶ L → GL(V n) is an n-dimensional
irreducible representation of a semisimple algebraic group L (≠ SLn) with m > n ≥ 3.

● SK III-2: (SLn ×GLm, ω1 ⊗ ω1,Cn ⊗Cm) for 1
2m ≥ n ≥ 1.

● SK III-3: (GL2n+1, ω2,⋀
2
C2n+1) for n ≥ 2.

● SK III-4: (GL2 × SL2n+1, ω1 ⊗ ω2,C2 ⊗⋀
2
C2n+1) for n ≥ 2.

● SK III-5: (Spn ×GL2m+1, ω1 ⊗ ω1,C2n ⊗C2m+1) for n > 2m + 1 ≥ 1.
● SK III-6: (GL1 × Spin10, µ⊗ halfspinrep,C⊗ V 16).

Now it is obvious that any castling transform of one of these modules will have a group which
has at least one factor SLm with m ≥ 2. So among these there is not even a prehomogeneous
module for a group (6.1) with S ≠ SLm. Combined with Remark 6.3, we have:

Corollary 6.4. Let G = GL1 × S ×⋯ × S, where S is a simple algebraic group other than SLm

for any m ≥ 2. Then there exist no étale modules for G.

Lemma 6.5. G = GL1 × SLm ×
k
⋯× SLm has no irreducible étale representations.
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Proof. If G has an irreducible étale module (G,%, V ), then it is castling-equivalent to one of
the modules SK I-4, SK I-8 or SK I-11 above. But in each of these cases, we have two factors
SLm1 , SLm2 with m1 ≠ m2. Any non-trivial castling transform of these modules would have
at least three simple factors. By Theorem A, this means there are at least two simple factors
SLm1 , SLm2 with gcd(m1,m2) = 1, which again means m1 ≠m2. �

Theorem C. Let G = GL1 ×S ×
k
⋯×S, where S is a simple algebraic group and k ≥ 2. Then G

has no étale representations.

Proof. Consider G = GL1×S1×⋯×Sk. As we are interested in the case where all simple factors
are identical, by Corollary 6.4, we only need to consider the case where all Si = SLmi

for mi ≥ 2.
Let (G,%, V ) be an étale module. First, observe that the étale representation has at least one
irreducible factor on which at least two of the factors, say S1 and S2, act non-trivially. In fact,
otherwise (G,%, V ) would be a direct sum of étale modules (GL1 × Si, %i, Vi), which is regular
for GL1 × Si by Lemma 4.3, hence for G, as the stabilizer on Vi is the product of the Sj with
j ≠ i. But the center of G is one-dimensional, so by Theorem B, an (G,%, V ) does not have
proper regular submodules. This would imply k = 1, contradicting our assumption that k ≥ 2.

Let (G,%1, V1) be an irreducible factor on which at least two simple factors of G act non-
trivially. By Lemma 6.5, there are no irreducible étale representations of G if all simple factors
are identical, so we may assume the étale representation is reducible, and by Theorem B,
(G,%1, V1) must be a non-regular irreducible prehomogeneous module for G. After remov-
ing simple factors contained in the generic stabilizer of (%1, V1) from G, we can assume that
(G,%1, V1) is castling equivalent to one of the reduced irreducible modules SK III-1 (with
(L,%) ≠ (SLn, ω1)), SK III-2, SK III-3, and SK III-4. In each of these cases the group is of
the form GL1 × SLm × SLn with m ≠ n. By Theorem A, any of its castling transforms has at
least two factors SLm1 and SLm2 with m1,m2 > 1 and gcd(m1,m2) = 1. In particular, it is not
possible that all simple factors of the group G are identical. �

Remark 6.6. If we admit a center GLk
1, then we trivially obtain étale modules with semisimple

part SLn ×⋯ × SLn by taking direct sums of étale modules for GL1 × SLn.
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