COMMUTATIVE POST-LIE ALGEBRA STRUCTURES ON LIE ALGEBRAS
DIETRICH BURDE AND WOLFGANG ALEXANDER MOENS

ABSTRACT. We show that any CPA-structure (commutative post-Lie algebra structure) on
a perfect Lie algebra is trivial. Furthermore we give a general decomposition of inner CPA-
structures, and classify all CPA-structures on complete Lie algebras. As a special case we
obtain the CPA-structures of parabolic subalgebras of semisimple Lie algebras.

1. INTRODUCTION

Post-Lie algebras have been introduced by Vallette [22] in connection with the homology of
partition posets and the study of Koszul operads. Loday [17] studied pre-Lie algebras and post-
Lie algebras within the context of algebraic operad triples. We rediscovered post-Lie algebras
as a natural common generalization of pre-Lie algebras [13] 15, 20, 4, B, 6] and LR-algebras
[8,9] in the geometric context of nil-affine actions of Lie groups. We then studied post-Lie alge-
bra structures in general, motivated by the importance of pre-Lie algebras in geometry, and in
connection with generalized Lie algebra derivations [7, [0, 1], T2]. In particular, the existence
question of post-Lie algebra structures on a given pair of Lie algebras turned out to be very
interesting and quite challenging. But even if existence is clear the question remains how many
structures are possible. In [12] we introduced a special class of post-Lie algebra structures,
namely commutative ones. We conjectured that any commutative post-Lie algebra structure,
in short CPA-structure, on a complex, perfect Lie algebra is trivial. For several special cases we
already proved the conjecture in [12], but the general case remained open. One main result of
this article here is a full proof of this conjecture, see Theorem [3.3] Furthermore we also study
inner CPA-structures and give a classification of CPA-structures on parabolic subalgebras of
semisimple Lie algebras.

In section 2 we study ideals of CPA-structures, non-degenerate and inner CPA-structures. In
particular we show that any CPA-structure on a complete Lie algebra is inner. We give a
general decomposition of inner CPA-structures, see Theorem [2.14] This implies, among other
things, that any Lie algebra g admitting a non-degenerate inner CPA-structure is metabelian,
i.e., satisfies [[g, ¢, [g,9]] = 0.

In section 3 we prove the above conjecture and generalize the result to perfect subalgebras
of arbitrary Lie algebras in Theorem [3.4, This also implies that any Lie algebra admitting a
non-degenerate CPA-structure is solvable. Conversely we show that any non-trivial solvable
Lie algebra admits a non-trivial CPA-structure.

In section 4 we classify CPA-structures on complete Lie algebras satisfying a certain techni-
cal condition. As an application we obtain all CPA-structures on parabolic subalgebras of
semisimple Lie algebras.
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2. PRELIMINARIES

Let K always denote a field of characteristic zero. Post-Lie algebra structures on pairs of Lie
algebras (g,n) over K are defined as follows [10]:

Definition 2.1. Let g = (V,[,]) and n = (V,{,}) be two Lie brackets on a vector space V'
over K. A post-Lie algebra structure on the pair (g,n) is a K-bilinear product z - y satisfying
the identities:

(1) roy—y-x=ry —{z,y}
(2) [Tyl z=2-(y-2)—y- (v 2)
(3) z-{y, 2z} ={x -y, 2z} +{y,x -z}

for all z,y,z € V.

Define by L(z)(y) = = -y and R(z)(y) = y - x the left respectively right multiplication
operators of the algebra A = (V,-). By (3)), all L(x) are derivations of the Lie algebra (V,{, }).
Moreover, by , the left multiplication

L:g— Der(n) C End(V), z+— L(x)

is a linear representation of g. A particular case of a post-Lie algebra structure arises if the
algebra A = (V) is commutative, i.e., if x -y = y - x is satisfied for all z,y € V. Then the
two Lie brackets [z,y] = {z,y} coincide, and we obtain a commutative algebra structure on V'
associated with only one Lie algebra [12].

Definition 2.2. A commutative post-Lie algebra structure, or CPA-structure on a Lie algebra
g is a K-bilinear product x - y satisfying the identities:

(4) Ty=y-z
(5) [zyl-z=2-(y-2)—y-(x-2)
(6) x-[y,z]:[x-y,z]—l—[y,x-z]

for all x,y,z € V. The associated algebra A = (V) is called a CPA.

There is always the trivial CPA-structure on g, given by x-y = 0 for all z,y € g. However, in
general it is not obvious whether or not a given Lie algebra admits a non-trivial CPA-structure.
For abelian Lie algebras, CPA-structures correspond to commutative associative algebras:

Example 2.3. Suppose that (A,-) is a CPA-structure on an abelian Lie algebra g. Then A is
commutative and associative.

Indeed, using (4), (f)) and [z, y] = 0 we have
v (zry)=x-(y-2)=y-(z-2)=(x-2)y
for all z,y, z € g.
It is easy to see that there are examples only admitting trivial CPA-structures:

Example 2.4. Every CPA-structure on sly(K) is trivial.

This follows from a direct computation, but also holds true more generally for every semisim-
ple Lie algebra, see Proposition 3.1} One main aim of this paper is to show that this is even
true for all perfect Lie algebras, see Theorem [3.3]
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Definition 2.5. A CPA-structure (A, -) on g is called nondegenerate if the annihilator
Anny =ker(L) = {x € g | L(x) =0}
is trivial.
Note that Anny, is an ideal of the CPA as well as an ideal of the Lie algebra. Here a
subspace I of V is an algebra ideal if A- I C I, and a Lie algebra ideal if [g,I] C I. An ideal

is defined to be an ideal for both A and g. Let [xy,...,2,] := [x1, [2e, [23,...,2,]]] - -] and
I = [I,[I,[I,---]]] - - -] for an ideal I.
Proposition 2.6. Suppose that (A,-) is a CPA-structure on g. Then there exists an ideal I,
such that
(1) M c Anny C I for all k large enough.
(2) The CPA-structure on g/l is nondegenerate.
Proof. Define an ascending chain of ideals I, by I =0 and I, = {z € A|z-A C I,,,} for
n > 1. We have I; = Anny, and each I, is indeed an ideal because of I,- A C I,,_; C I,,, and
g[nA"i_g[nfl
g In—1~
So for z € [I,,g] and a € A we have x - a € I,_1, hence x € I,,. Since g is finite-dimensional,
this chain stabilizes, i.e., there exists a minimal & such that I, = I, for all / > k. Then
define I, := I;. By construction we have A-I; =0, A-(A-L) C A-I; =0, etc., so that
right-associative products in I, of length at least k + 1 vanish. Using we have

[T1, . X1, @] - 2 =[x, T ] - (T 2) — X - ([0, Tpa] - 2)
for all z4,...,x,,2z € V. By induction we see that the elements [z1,...,x,] - z are spanned by
the right-associative elements (1) * Zr(2) " ** Tr(n) - 2, Where m runs over all permutations in .S,,.

This yields LL’ZH] -g = 0, and hence ILIZH] C Anny. We also have Anny = I C I,,. Furthermore
x-g C I, implies x € I, so that the induced CPA-structure on g/, is nondegenerate. Note
that I is in fact the minimal ideal with this property. 0

Definition 2.7. A CPA-structure on g is called weakly inner, if there is a ¢ € End(V) such
that the algebra product is given by

z-y = [p(x),y].
It is called inner, if in addition ¢ is a Lie algebra homomorphism, i.e., ¢ € End(g).

In terms of operators this means that we have L(z) = ad(p(x)) for all x € V. We have
ker(y) C ker(L) with equality for Z(g) = 0.

Lemma 2.8. Let g be a Lie algebra with trivial center. Then any weakly inner CPA-structure
on g 1s inner.

Proof. A product z -y = [p(z),y] with some ¢ € End(V') defines a CPA-structure on g, if and
only if
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for all z,y,z € g. In case that Z(g) = 0 the last condition says that ¢ is a Lie algebra
homomorphism. O

Corollary 2.9. Let g be a complete Lie algebra. Then any CPA-structure on g is inner.

Proof. By definition we have Der(g) = ad(g) and Z(g) = 0. Hence L(x) € Der(g) implies that
L(z) = ad(p(x)) for some ¢ € End(g). O

In general not all CPA-structures on a Lie algebra are inner or weakly inner. This is trivially
the case for abelian Lie algebras, which do admit nonzero CPA-structures, which cannot be
weakly inner. The Heisenberg Lie algebra h; = (e1, eq, €3 | [e1, €2] = e3) admits a family A(u)
of CPA-structures given by ey - e; = es, €1 - €3 = €5 - €1 = ez for u € K, see Proposition 6.3 in
[12]:

Example 2.10. The CPA-structure A(u) on the Heisenberg Lie algebra by, is not weakly inner.

Indeed, all ad(p(z)) map by into its center, whereas L(e;) does not. Hence L(x) = ad(p(z))
cannot hold for all x € bh;.

Lemma 2.11. Suppose that (A, ") is an inner CPA-structure on g. Then the ascending chain
of ideals I,, is invariant under ¢, and all Lie algebra ideals of g are ideals of A. Conversely, if
the structure is nondegenerate, all ideals of A are Lie algebra ideals.

Proof. Let I be a Lie algebra ideal. Then g -1 = [p(g),I] C [g,I] C I. Conversely, let I be
an algebra ideal and (A, -) be nondegenerate, given by x -y = [¢(x), y] with ¢ being invertible.
Then ¢(g) = g, so that

9. 1] = [p(g), I]=9g-1C I
The ideals I,, were defined by Iy = 0 and I, = {z € A|z-A C I, 1} for n > 1. Clearly
©(1y) = Iy. Using induction we obtain
g- () = [¢(9), p(Ln)]
(g, 1))
o

Iha) C Ly
Hence ¢(1,,) C I, for all n. O

N

Lemma 2.12. Suppose that x-y = [p(x),y] is an inner CPA-structure on a complex Lie algebra
g, and let g = €, 9o be the generalized eigenspace decomposition of g with respect to . Then
we have

[nggﬁ] g gaﬂu
[8a, 98] # 0 implies a+ 5 = 0.

Proof. The first statement is well-known, so that we only need to prove the second one. Using
[o(x),y] = —[x, p(y)] we obtain

p([z,9]) = [o(z), 0(y)] = —[¥*(2), ).
By induction on £ > 0 this yields

(¢ +7id)*([z,9]) = (=1)* - [(¢* — yid)*(z), y].



POST-LIE ALGEBRA STRUCTURES 5

The RHS vanishes for v := o? and k large enough, since if ¢ has a generalized eigenvector
x with generalized eigenvalue a, then ¢? has generalized eigenvalue o? for z. This yields
(80, 98] C 942, and similarly [g., gs] € g_p2, hence

[G0s 98] € 9-02 N Gap N g_p2.
If [ga, 93] # 0 then all three spaces coincide, so that —3*? = aff = —a?, i.e.,, a+ = 0. 0

Definition 2.13. A CPA-structure on g is called nil-inner, if it can be written as z-y = [p(z), y|
with a nilpotent Lie algebra homomorphism ¢ € End(g).

The trivial CPA-structure is an example of a nil-inner structure. We can now obtain a general
decomposition of complex inner CPA-structures.

Theorem 2.14. Let g be a complex Lie algebra and suppose that it admits an inner CPA-
structure with ¢ € End(g). Then g decomposes into the sum of p-invariant ideals

g=ndb
with the following properties:

(1) @ln s a nilpotent endomorphism of n such that the CPA-structure on n is nil-inner.
(2) ¢y is an automorphism of b, and we have [[h,b], [, b]] = 0.

Proof. Consider the eigenspace decomposition

s=Po.=ne@Pa.
@ a#0
of g with respect to the Lie algebra homomorphism ¢, with n = gp and h = ©,.09,. Both n and
b are Lie ideals, and hence ideals by Lemma since [ga, 85 C g_,2 implies that [n,g] Cn
and [h, g] C h. Moreover, both n and h are invariant under ¢, so that the restrictions of ¢ to n
and h are well-defined. Clearly the restriction of ¢ to n is nilpotent, and since all generalized
eigenvalues of b are nonzero, the restriction of ¢ to f is an automorphism. It remains to show
that b is metabelian, i.e., to show that

Hga’gﬂ]’ [g’yag&“ =0
for all a, B,7,6 # 0. Suppose this is not the case. Then Lemma yields

a+B=0,
v+ =0,
af + v =0.

Setting B = —a, ¥ = i and 6 = —ai with i> = —1 the bracket takes the form

Hgaa g,a], [gaia g—ai“ 7é O
We may apply the Jacobi identity here in two ways:

[[80s 8-als [8ai» 8—ail] € [Bais [0-ais [8as 9-al]] + [9-ais [[8a) 9-al, Gaill,
and

Hgom g—a]7 [ga’i7 g—ai]] g [[g—ocv [gaia g—ai”a ga] + [Hgaia g—ai]a ga]v g—a] .

In each case, at least one of the terms on the right hand side must be nonzero. The first case
gives us that either 0 # [g_as, [a, 0-al] C [0-ai> 9—a2], SO that —ai — a? = 0 by Lemma [2.12]
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or 0 # [Gais [a, 0-a)] € [ais §_a2), SO that ai —a? = 0. This means a = +i. The second case
gives us that either 0 # [g_a, [§ai, 9—ai)] C [0-a, Ga2], 0 that a®> — a = 0 by Lemma [2.12] or
0 # [Ga, [Bai> 9—ai)] C [8a, 8az], s0 that a? + o = 0. This means o = £1. So we must have both
a = +i and a = £1, which is impossible. O

Corollary 2.15. Let g be a Lie algebra over K admitting a non-degenerate inner CPA-
structure. Then g is metabelian.

Proof. Complexifying g the above Theorem implies that g = n @ h and b is metabelian. Since
ker(¢) C ker(L) = 0 we have n = 0 and g = h. Now g is metabelian over C if and only if g is

metabelian over K. O
Let b be the standard Borel subalgebra of sly(K) with basis e; = Eja, es = Ej3 — Eay and Lie
bracket [e1, ea] = —2e;. Here E;; denotes the matrix with entry 1 at position (4, j), and entries

0 otherwise. Note that b is isomorphic to the 2-dimensional non-abelian Lie algebra to(K).

Example 2.16. Every CPA-structure on the Borel subalgebra b of slo(K) is inner, and is of

the form
we= (5 ) v =5 )

for o, B € K such that oo — 2) = 0.

Indeed, since b is complete, every CPA-structure on b is inner by Corollary 2.9 A short
computation shows that we have L(z) = ad(p(z))) with

_1(-a -5
L ( 0 « )
and a(a —2) = 0. Note that ¢? = 0 for a = 0, and ¢* = I for « = 2. The latter structure is

non-degenerate, so that b is metabelian according to Corollary [2.15] Of course, this is obvious
anyway.

3. CPA-STRUCTURES ON PERFECT AND SOLVABLE LIE ALGEBRAS

For this section we will assume that all Lie algebras are complex. We start with CPA-
structures on semisimple Lie algebras, where we give another proof of Proposition 5.4 and
Corollary 5.5 in [12], without using the structure results of [16]:

Proposition 3.1. Any CPA-structure on a semisimple Lie algebra is trivial. Furthermore any
CPA-structure on a Lie algebra g satisfies g - g C rad(g).

Proof. Let (A, -) be a CPA-structure on a semisimple Lie algebra s. Then it is inner by Corollary
, i.e., given by L(z) = ad(¢(x)). We have I . s = 0 for the ideal I, of Proposition
2.6| Since I, is invariant by Lemma the quotient CPA-structure on s/[, is also inner,
and nondegenerate. Theorem implies that the Lie algebra s/l is metabelian, hence
solvable. Since s is perfect, any solvable quotient is trivial. Hence we have s = I, and
0=1I¥.5 =5k .5=5.5 Hence the CPA-structure on s is trivial. The second part follows by
considering the semisimple quotient g/ rad(g). O

Lemma 3.2. Let s be a semisimple Lie algebra. Then there exist Lie algebra generators {s; |
1 <1< m} of s such that for every linear representation v : s — gl(V'), all ¥(s;) are nilpotent.
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Proof. Let {e;, fi,hi | 1 <i <k} be the Chevalley-Serre generators for s. Each triple (e;, fi, h;)
generates a subalgebra isomorphic to sly(C), and 1 restricted to it is a representation. By
the classification of representations of sly(C) we know that v(e;) and 1 (f;) are nilpotent. It
follows that {e;, f; | 1 <i < k} is a set of generators for s such that all ¢(e;) and all ¥(f;) are
nilpotent. U

We are now able to prove Conjecture 5.21 of [12].
Theorem 3.3. Any CPA-structure on a perfect Lie algebra g is trivial, i.e., satisfies g-g = 0.

Proof. Let g be a perfect Lie algebra with Levi subalgebra s and solvable radical rad(g) = a.
We have g = s x a. Denote by Der(g,a) the space of those derivations D € Der(g) satisfying
D(g) C a. For the proof it is sufficient to show that s - g = 0, since g is perfect and hence s
generates g as a Lie ideal by Lemma 5.15 in [I2]. By Corollary 5.17 in [12] we may assume
that a is abelitan. Decompose a into irreducible s-modules a = a; & --- & a,,. By Proposition
3.1 we have g - g C a, i.e., L(g)(g) C a, and hence L(g) C Der(g,a). Lemma 5.18 in [I2] gives
a natural splitting

Der(g, a) = Der,(a) x Z'(s,a),
where
Der,(a) = {d € Der(a) | ¢(x)d(a) = d(p(z)a) Vz € 5,a € a}
with L(x) = ad(p(z)). Since s is semisimple, Whitehead’s first Lemma implies that
s-g=g-s

= Z'(s,a)(s)

= B'(s,a)(s)

= [s,q]

=[s,m]+ -+ [s,an)
for all s € s. On the other hand, we have the natural embeddings of vector spaces

Der,(a) € Homg(a) C @Homs(ai, a;).
2¥)

Hence for every s € s there exist linear maps f;; € Homg(a;, a;) such that

m
SV = Zflfz(vz)
k=1

for all v; € a;, for every i. Altogether we obtain f7;(a;) C [s, a;] for all j,i € {1,...,m}.

Suppose that s € s is an element such that [s,a;] C a; for all j. Then Schur’s Lemma applied
to the simple s-modules a; implies that f7; = 0 for all 4,7, so that s-a = 0. Now Lemma
applied to the linear representations 1; = ad,; gives us a set of generators {si,..., sz} of
s such that im(¢;(s;)) = [s;,a;] € a; for all ¢, 7, since all ¢;(s;) are nilpotent. Thus we have
s;-a =0 for all 7. Since the s; generate s this means that s - a = 0, and hence L(s) C Z'(s, a).
By Lemma 5.18 in [12] Z'(s, a) is abelian, so that L(s) is both abelian and semisimple, hence
trivial. We obtain L(s) = 0, so that s - g = 0 and the proof is finished. O

We can generalize the last result as follows.



8 D. BURDE AND W. MOENS

Theorem 3.4. Let p be a perfect subalgebra of a Lie algebra g. Then every CPA-structure on
g satisfies p-g = 0.

Proof. Let t be a Levi complement of p. Then p-g = 0 if and only if t- g = 0, again by Lemma
5.15 in [12] and the fact that for a set X C ker(L) the ideal in g generated by X also lies in
ker(L). We have t-g C s g for some Levi complement s of g. Hence it is enough to show
that s- g = 0 for all Levi complements s of g. Suppose first that g has no proper characteristic
ideal I with 0 € I C rad(g). Then rad(g) is abelian, because otherwise [rad(g),rad(g)] would
be a proper characteristic ideal. Furthermore g is of the form g = s x V" with an irreducible
s-module. If V' is the trivial module, then g is reductive and we have s - g = 0 by Corollary 5.6
of [12]. Otherwise g = s x V™ is perfect, and s - g = 0 by Theorem [3.3]

It remains to study the case where g admits a proper characteristic ideal 0 C I C rad(g).
Either we have s-g = 0 and we are done, or there exists a Lie algebra g with s-g # 0. We may
choose g so that it is of minimal dimension. By Proposition we have s - g C rad(g), so that
rad(g) # 0. Since s is semisimple, the g-module g given by the representation x +— L(x) has a
g-module complement U with g = U @ rad(g). Using s - g C rad(g) we obtain s - U = 0. Since
I is invariant under the s-action, we have a module complement K with rad(g) = K @& . The
quotient algebra g/I then is isomorphic to s x K /I, and the minimality of g implies s - g C I,
so that s- K C KNI =0. We see that the Lie algebra s x I is closed under the CPA-structure:
since [ is a characteristic ideal of g we have g- I C I, and

(sxI)- (sxI)Cs-g+g-1Csxl.
Since g is minimal it follows that s - [ = 0, and
s-g=5-(U+K+I)=s-U+s-K+s-1=0.
This is a contradiction, and the proof is finished. O

Corollary 3.5. Suppose that g admits a nondegenerate CPA-structure. Then g is solvable.

Proof. Let s be a Levi subalgebra of g. Then s-g = 0 by Theorem so that s C ker(L) = 0.
Hence rad(g) = g, and g is solvable. O

Since we know that a perfect Lie algebra only admits the trivial CPA-structure, it is natural
to ask for the converse. Given a non-perfect Lie algebra g. Can we construct a non-trivial
CPA-structures on g ? The following example shows that this is not always possible.

Example 3.6. Let g denote the Lie subalgebra of sl3(C) of dimension 6 with basis
(6’1, ceey 66) = (E12, Evs, Egn, Eag, Ery — Eag, Eag — E33).
Then g is not perfect and admits only the trivial CPA-structure.
The Lie brackets are given by

le1, e3] = es, [e1,e4] = €9, [e1,€5] = —2e1, [e1, €6] = €1,
[62,6’3] = —é€y4, [62765] = —é€y, [62766] = —€2, [63,65] = 2es,
[63766] = —é€g, [64765] = €4, [647 66] = _264-

We have dim|[g, g] = 5, so that g is not perfect. For a given CPA-structure we know by Theorem
that p - g = 0 for the perfect subalgebra p = span{ey, ..., e5}. It is now easy to see that the
CPA-structure on g is trivial.
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On the other hand we will show that every solvable Lie algebra g admits a non-trivial CPA-
structure. Here we distinguish two cases, namely whether or not g has trivial center.

Proposition 3.7. Let g be a solvable Lie algebra with trivial center. Then g admits a non-trivial
nil-inner CPA-structure.

Proof. By Lie’s theorem there exists a nonzero common eigenvector v € g and a linear functional
A: g — C such that [z,v] = A(x)v for all z € g. We have

Az, yl)v = [[z, yl, o]

= [, [y, o] = [y, [, v]]

= (M@)AY) = My)A(2))v

= 0.
Hence x -, y := [z, [y, v]] = AM2)\(y)v defines a CPA-structure on g. It is non-trivial, because
otherwise the center of g were non-trivial. O

Proposition 3.8. Let g be a non-perfect Lie algebra with non-trivial center. Then g admits a
non-trivial CPA-structure.

Proof. Suppose first that Z(g) N[g, g] # 0, and select a nonzero z from it. Since g is not perfect
we may choose a 1-codimensional ideal I of g with I D [g,g]. Fix a basis (ey,...,e,) for T
and a generator e; for the vector space complement of I in g. Then g is a semidirect product
Ce; x I. Using the nonzero z € Z(g) N [g, g| define a non-trivial CPA-structure on g by

<Z Oti@i) : (Z ﬁi@) =Bz
i=1 i=1

Now assume that Z(g) N [g,g] = 0. Then g admits an abelian factor, because Z(g) # 0. So

we can write g = Ce; @ b for some ideal h in g. Let (eg,...,e,) be a basis of h and define a
non-trivial CPA-structure on g as before but replacing z by e; on the RHS. Note that in both
cases the CPA-structure is even associative. O

Corollary 3.9. Let g be a non-trivial solvable Lie algebra. Then g admits a non-trivial CPA-
structure.
4. CPA-STRUCTURES ON COMPLETE LIE ALGEBRAS

For this section we will assume that all Lie algebras are complex. The following definition is
given in [I8].
Definition 4.1. A complete Lie algebra g is called simply-complete, if no non-trivial ideal in g
is complete.

Meng [18] reduced the study of complete Lie algebras to that of simply-complete Lie algebras.
He showed the following decomposition.

Proposition 4.2. (1) Let g1,...,0, be simply-complete Lie algebras. Then the direct sum
g=0g1D---Dg, 1s also a complete Lie algebra.
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(2) Let g be a complete Lie algebra. Then there exist simply-complete ideals g1, . .., @, such
that g=g1 @ -+ ® gn.

(3) Such a decomposition of a complete Lie algebra is unique up to a permutation of the
simply-complete ideals.

We can reduce CPA-structures on complete Lie algebras to CPA-structures on simply-
complete Lie algebras as follows.

Proposition 4.3. Let gq,...,8, be simply-complete Lie algebras, each with a CPA-structure.
Then the direct Lie algebra sum admits a CPA-structure, which is given componentwise:

(1, @n) (Y1y ey Yn) = (1 - Y1y ooy Ty - Yn)-

Conversely, for any complete Lie algebra g = g1 @ - - - & g, with simply-complete ideals g;, any
CPA-structure on g is given as above.

Proof. The first part is clear. For the second part we need only show that g, - g; C g; N g;.
Because all derivations of g are inner, we have g; - g; C Der(g)(g;) € g;, and because the
CPA-structure is commutative also g; - g; C g;. O

For the description of CPA-structures on complete Lie algebras g we will have two cases,
namely g metabelian or not.

Proposition 4.4. The only simply-complete metabelian Lie algebra is isomorphic to to(C),
the Borel subalgebra of slo(C). The classification of all CPA-structures on ty(C) is given in
Ezxample [2.16]

Proof. 1t follows from [21] that every finite-dimensional metabelian Lie algebra g with Der(g) =
ad(g) is isomorphic to a direct sum to(C)@- - -Pry(C). Since g is assumed to be simply-complete,
we have that g = ty(C). The CPA-structures on this algebra have been classified in Example
216 O

For the non-metabelian case we will need the following result.

Proposition 4.5. Let I be an ideal in g with center 3 = Z(I) such that g/I is abelian. Then
every 1-cocycle f € Z'(g/I,3) defines an associative nil-inner CPA-structure on g by

z-y=[f(Z),y]
forall z,y € g.

Proof. Note that 3 is a characteristic ideal of I, and hence an ideal of g. Therefore g acts on j
by the adjoint action z oz = [z, z| for all x € g and z € 3. Since [ acts trivially on 3 we obtain
an induced action on the quotient g/I on 3 by Toz = [z, 2]. Now Z'(g/I,3) consists of linear
maps f: g/I — 3 satisfying

f(Zy) ==y f@+T ()
Since g/ is abelian, the condition reduces to [f(Z),y] = [f(¥), z] for all x,y € g. We claim that
z -y = [f(T),y] satisfies the axioms (@), (5), (6), of a CPA-structure. By the last remark we
have z-y = y -z, so that (4)) is satisfied. All products x-(y-z) = [f(Z), [f(©), z]] C [3,3] = 0 are
zero, so that the CPA-structure is nil-inner and associative. Furthermore we have [z,y] - z =
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f([Z,7]), 2] = 0, and hence is satisfied. Finally the Jacobi identity for the bracket on I
implies that
z- [y, 2] = [f(2), [y, 2]

= [lf@), 9l 2 + ly, [ (), 2]

=[xy 2]+ yz- 2
Hence also @ is satisfied. ([l
Remark 4.6. Proposition once more implies that every non-trivial solvable Lie algebra g
with trivial center admits a non-trivial CPA-structure. In fact, take I = [g,g|, so that the
quotient g/I is abelian. By assumption I # 0, and [ is nilpotent, so that 3 := Z(I) is non-

trivial. Since g has trivial center we have [[3,¢],g]] # 0, so that = -y := [[z,z],y] defines a
non-trivial CPA-structure for any z # 0 in 3.

Definition 4.7. For a Lie algebra g let g' = g, and g’ = [g, g'"!] for ¢+ > 2 define the charac-
teristic ideal
o= =(¢"

teN

We have g*° = 0 if and only if g is nilpotent. For the other extreme we have g* = g if and
only if g is perfect.

Lemma 4.8. Let g be a Lie algebra with nilradical n = nil(g). If n = [g,n] then we have
n C g™ =[g,g]. Conversely, if n C g>° = [g, 9] and g is algebraic, then n = [g,n].

Proof. Let v = rad(g) and s a Levi complement to ¢ in g. Then n = [g,n] implies n = [g,t] =
rad(g?). By induction we obtain rad(g’) = n for all ¢ € N. Hence we have rad(g™) = n, and
sXnCg®Clg g Csxn This means that [g,g] = g =s x n.

Conversely, n admits a complementary subalgebra q in g acting fully reducibly on g, since g is
algebraic. We have v = Z(q) X n, and, by assumption, n C [g, g] so that n = [g, t|. This implies

n=lg,v =[g, Z(q) +n]

= lg,n] + [9, Z(q)]
= [g.n] + [n, Z(q)]
= [g,ﬂ].

O

Lemma 4.9. Let z -y = [p(z),y] be a nil-inner CPA-structure on g. Then ¢(g) C nil(g) and
(™) =0.

Proof. We already have seen that x-y = y-x is equivalent to the identity [p(z),y] = —[z, ¢(y)].
This yields ad(p(2))™(y) = —ad(x)™(¢*" ~1(y)) by induction on m. Since ¢ is nilpotent, this
implies ¢(g) C nil(g). By a similar induction we obtain the identity

90([x17 SR 7xt’y]) = _[xh s ,l‘t,QOQt(y)]

for all ¢ > 1 and z;,y € g. Since ¢ is nilpotent we obtain p(g') = 0 for ¢ large enough. In
particular we have p(g*>) = 0.
0
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Theorem 4.10. Let g be a simply-complete non-metabelian Lie algebra. Suppose that g satisfies
the condition nil(g) = [g, nil(g)]. Denote by 3 the center of the ideal I = [g,g]. Then there is a
bijective correspondence between CPA-structures on g and elements z € 3, given by

Proof. We first show that every CPA-structure on g comes from a l-cocycle in Z'(g/I,3).
By Corollary any CPA-structure on g is inner. Since simply-complete Lie algebras are
indecomposable by Theorem 3.2 of [I8], and g is not metabelian, any CPA-structure on g is

nil-inner by Theorem Let ¢ be a nilpotent endomorphism of g such that z -y = [p(z), y]
for all x,y € g. By Lemma 4.8 we have

nClggl=90"=1,
By Lemma 4.9 we have ¢(I) = 0. The commutativity of the CPA-structure then gives

[p(g), []Cg-I=1-g=[p(I), 0] =0.

Again by Lemma we obtain ¢(g) C nil(g) C I. Both conditions together yield ¢(g) C 3.
Denote by g = g/I the abelianization of g. Since ¢(I) = 0 we may identify ¢ with B: g — 3
given by ¢(x) = B(z) for all z € g. In particular we have = -y = [¢(Z), y| for all z,y € g. Now
3 becomes a g-module by Z o z := [z, 2] for all z € g and 2z € 3. Furthermore, @ is a 1-cocycle
of the abelian Lie algebra g with coefficients in 3:

P([79]) =2(0) =0=2-y—y-v=—[r,0W)] + [y, p(2)] =T 2(y) —y°p(T).

Conversely, any l-cocycle f € Z(g,3) defines a CPA-structure on g by = -y = [f(Z),y] by
Proposition [4.5]

Next we show that all such 1-cocycles are 1-coboundaries. Since g has trivial center we have
H°(g,3) = 0. Since g is abelian, this implies that H'(g,3) = 0 by Lemma 3 of [I], so that
Z'8,3) = B'@.3) ={f 83|77z =[za]y]}

We have shown that the elements z € 3 give CPA-structures on g, and that there are no
others. Let us finish the proof by showing that the correspondence is bijective. Suppose that

21, 2o define the same CPA-structure on g. Then [[zq,z],y] = [[22,z],y] for all z,y, and hence
[21,x] — [22,2] € Z(g) = 0 for all € g. This means that z; — 2o € Z(g) = 0, and we are
done. 0

Remark 4.11. It is possible that the condition nil(g) = [g, nil(g)] of the Theorem is automatically
satisfied for complete Lie algebras g. We can formulate this condition in terms of the nilpotent
radical n(g) of a Lie algebra g , which is defined to be the intersection of all kernels of finite-
dimensional irreducible representations of g. It is known that

n(g) = [g, g Nrad(g)] = [g,rad(g)] C nil(g).

The above condition for g is equivalent to saying that the nilpotent radical and the nilradical
of g coincide, i.e., that n(g) = nil(g) for complete Lie algebras.

In fact, Proposition 1, part (ii¢) in [14] states that [g,rad(g)] = nil(g) for all complete Lie
algebras, which would imply that nil(g) = [g,nil(g)]. However, we are not sure about this
claim. The proof is referred to the reference [4] in [14], where we could not find it.

For a decomposition g = g, ®- - -@g, in simply-complete ideals it is clear that nil(g) = [g, nil(g)]
holds if and only if nil(g;) = [g;, nil(g,)]
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We can summarize the preceding results as follows.

Theorem 4.12. Let g = g1 ® --- ® g, be a complete Lie algebra satisfying the condition
nil(g) = [g, nil(g)], with simply-complete ideals g;. Then the CPA-structures on g are uniquely
determined by the CPA-structures on the ideals g;, which are given in Proposition [£.4 and
Theorem .10

As an example, one can consider the Lie algebra of affine transformations of a n-dimensional
vector space V over K, given by

aff(V) = {(gl 8) | A€gl,(K),ve K”} .

Corollary 4.13. All CPA-structures on aff(V') are trivial for n > 2.
Proof. Since g = aff(V') is simply-complete by Theorem 4.2 of [18], and
nil(g) =V Csl(V) x V = g*,

and g is not metabelian for n > 2, we can apply the above Theorem. Here we have Z([g,g]) =0
for n > 2, so that all CPA-structures are zero. O

We would also like to apply the results to parabolic subalgebras of semisimple Lie algebras.
The following result is proved in [18], Theorem 4.7.

Proposition 4.14. Let p be a parabolic subalgebra of a semisimple Lie algebra g. Then p is
complete. If g is simple, then p is simply-complete.

It is well known that the condition on the nilradical is satisfied in the parabolic case, e.g.,
see section 2 of [2].

Proposition 4.15. Let p be a parabolic subalgebra of a semisimple Lie algebra g. Then we

have nil(p) = [p, nil(p)].

Corollary 4.16. The CPA-structures on parabolic subalgebras of semisimple Lie algebras are
classified by Proposition[4.4] and Theorem [£.10]

In particular, we can review Example [3.6]in this context.

Example 4.17. The 6-dimensional parabolic subalgebra g of sl3(C) given in Example admits
only the trivial CPA-structure.

With the notations of Theorem we have s = (ey, e3, e5) acting on nil(g) = (e, e4) by the
irreducible action of dimension 2. In particular we have Z(I) = Z(s x nil(g)) = 0, so that all
CPA-structures on g vanish.

Of course there are also parabolic subalgebras of simple Lie algebras admitting non-trivial
CPA-structures. Consider the parabolic subalgebra g of sl3(C) with basis

(617 cee ;65) = (E12, B3, Bag, By — Eag, Foy — E33)-

Then we have [g,g] = (e1,e2,e3) and Z([g,g]) = (e2). Hence all products are given by
x -y = afles, ], y] for a € C.
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Example 4.18. All CPA-structures on the 5-dimensional parabolic subalgebra g of sl3(C) de-
fined above are given by

€4+ €4 = (€9,
€4 €5 = €5 €4 = QE€9,

€5+ €5 = (€9.

Concerning the case distinction of metabelian or non-metabelian, we want to give an explicit
proof that the Borel subalgebra of a simple Lie algebra is metabelian if and only if the simple
Lie algebra has rank 1. The result also follows from [21].

Proposition 4.19. Let s be a simple Lie algebra and p a parabolic subalgebra of s. Then p is
metabelian if and only if 5 is of type Ay and p is a Borel subalgebra.

Proof. Suppose that p is a Borel subalgebra of A;. Then p is metabelian. Conversely suppose
that p is metabelian. Hence p is a solvable parabolic subalgebra of s, hence a Borel subalgebra,
which we denote by b now. Denote by n the nilradical of b. Since [b,b] = n it is enough to
show that n is abelian if and only if s is of type A;. However we have dim Z(n) = 1 for all
simple Lie algebras s, see [19] section 4, so that n is abelian if and only if n is 1-dimensional.
This is true if and only if s is of type Ay, see table 2 in [19], which gives the dimensions of the
nilradicals of b for all simple Lie algebras. ([l

Remark 4.20. One might also wish to extend the results to parabolic subalgebras of reductive Lie
algebras. Let q be a parabolic subalgebra of a reductive Lie algebra g. Then Der(q) = £®ad(q)
as a Lie algebra direct sum, where £ is the set of all linear transformations D: q — Z(q) such
that D([q,q]) = 0, see [3]. Furthermore we have Z(q) = Z(g). However, the situation here is
more complicated than in the semisimple case.
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