POST-LIE ALGEBRA STRUCTURES ON PAIRS OF LIE ALGEBRAS
DIETRICH BURDE AND KAREL DEKIMPE

ABSTRACT. We study post-Lie algebra structures on pairs of Lie algebras (g, n), which describe
simply transitive nil-affine actions of Lie groups. We prove existence results for such structures
depending on the interplay of the algebraic structures of g and n. We consider the classes of
simple, semisimple, reductive, perfect, solvable, nilpotent, abelian and unimodular Lie algebras.
Furthermore we consider commutative post-Lie algebra structures on perfect Lie algebras. Us-
ing Lie algebra cohomology we can classify such structures in several cases. We also study
commutative structures on low-dimensional Lie algebras and on nilpotent Lie algebras.

1. INTRODUCTION

Post-Lie algebras and post-Lie algebra structures are an important generalization of left-
symmetric algebras (also called pre-Lie algebras) and left-symmetric algebra structures on Lie
algebras, which arise in many areas of algebra and geometry [6], such as left-invariant affine
structures on Lie groups, affine crystallographic groups, simply transitive affine actions on Lie
groups, convex homogeneous cones, faithful linear representations of Lie algebras, operad the-
ory and several other areas. A particular interesting problem with a long history concerns
crystallographic groups and crystallographic structures on groups. Here a Euclidean crystal-
lographic structure on a group I' is a representation p: I' — Isom(R™) letting I" act properly
discontinuously and cocompactly on R™. By the Bieberbach theorems, the groups admitting a
Euclidean crystallographic structure are precisely the finitely generated virtually abelian groups.
The torsion-free crystallographic groups, called Bieberbach groups, are exactly the fundamen-
tal groups of compact flat Riemannian manifolds. John Milnor addressed the question how
this result can be generalized to affine crystallographic structures for T', i.e., for representa-
tions p: I' — Aff(R") letting I' act properly discontinuously and cocompactly on R"™. More
precisely he asked whether or not every virtually polycyclic group admits an affine crystallo-
graphic structure. Although there was a lot of evidence for Milnor’s question having a positive
answer, counterexamples were found [3], [4], in particular in terms of left-symmetric structures
on Lie algebras. For the history and references see [6]. Another natural question then was
whether one could find a reasonable class of generalized affine structures on I' such that Mil-
nor’s question would have a positive answer. This was indeed possible and lead to the notion
of a so-called nil-affine crystallographic structure for I, i.e., a representation p: I' — Aff(V),
letting I" act properly discontinuously and cocompactly on a simply connected, connected nilpo-
tent Lie group N. Here Aff(N) = N x Aut(NV) denotes the affine group of N. It was shown in
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[13] and [I] that every virtually polycyclic group admits a nil-affine crystallographic structure.
The natural generalization of left-symmetric structures, which correspond to the case N = R",
are exactly the post-Lie algebra structures on pairs of Lie algebras. This is the reason that
these structures are so fundamental for nil-affine crystallographic structures. In the nilpotent
case, these structures can also be formulated by nil-affine actions of a nilpotent Lie group G
on another nilpotent Lie group N, and such Lie group actions can be translated to the level of
Lie algebras leading directly to post-Lie algebra structures [7, [10].

As in the case of left-symmetric structures, the existence question of post-Lie algebra structures
is very important (and very hard in general). We already studied an intermediate case, the
so-called LR-structures on Lie algebras in [8, 0], and have obtained first results for the general
case in [I0, 12]. In this paper we are able to prove more general results. One result concerns
perfect Lie algebras g, i.e., satisfying [g,g] = g. It has been proved in [21] that a perfect Lie
algebra over a field of characteristic zero does not admit a left-symmetric structure. We extend
this result and show that if g is perfect and n is solvable and non-nilpotent, then there is no
post-Lie algebra structure on (g,n). We will also prove that if (g,n) is a pair of Lie algebras,
where g is simple, and n is not isomorphic to g, then there is no post-Lie algebra structure on
(g,n). This shows that the assumption that g is simple is very strong. Already the case that n
is semisimple has strong implications. For example, there are no post-Lie algebra structure on
(g,n) with n semisimple and g solvable.

In the last part of the paper we study commutative post-Lie algebra structures. A post-Lie
algebra structure on a pair (g,n) is called commutative, if the Lie algebras g and n coincide,
so that the product is commutative. In this case we just write g instead of the pair (g,g). In
this special case one could perhaps hope for a good classification result. We first show that
any commutative post-Lie algebra structure on a semisimple Lie algebra is trivial, i.e., is given
by the zero product. Then we consider commutative post-Lie algebra structures on perfect Lie
algebras. This involves the study of the outer derivation algebra of a perfect Lie algebra, and
more generally its Lie algebra cohomology. It is known that cohomological questions for perfect
Lie algebras can be difficult, e.g., see [2], [I9]. We prove that commutative post-Lie algebra
structures on perfect Lie algebras are trivial in several cases, and conjecture that this is always
the case. We also classify commutative post-Lie algebra structures in low dimension.

Finally we mention that post-Lie algebra structures have become more popular also in other
areas. As an example, post-Lie algebras have been studied by Vallette and Loday in connection
with homology of partition posets and the study of Koszul operads [22], [I7]. Also, post-
Lie algebras have been studied in connection with isospectral flows, Yang-Baxter equations,
Lie-Butcher Series and Moving Frames [14].

2. PRELIMINARIES

All Lie algebras are assumed to be finite-dimensional over a field k. For the structure results
we usually assume that £ is the field of complex numbers. Post-Lie algebra structures on pairs
of Lie algebras (g,n) are defined as follows, see [10]:
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Definition 2.1. Let g = (V,[,]) and n = (V,{,}) be two Lie brackets on a vector space V. A
post-Lie algebra structure on the pair (g,n) is a k-bilinear product x -y satisfying the identities:

(1) zoy—y-z=[z,y] —{r,y}
(2) [z, yl-z2=2-(y-2)—y-(x-2)
(3) Ay, 2} ={v-y, 2} +{y, v 2}

forall z,y,z € V.

We denote by L(z) the left multiplication operators of the algebra A = (V,-), and by R(z)
the right multiplication operators. So we have L(z)(y) = z -y and R(x)(y) = y - « for all
z,y € V. By (@), all L(z) are derivations of the Lie algebra (V,{, }). Moreover by (2), the left

multiplication
L:g— Der(n) C End(V), z +— L(x)

is a linear representation of g. Suppose that z -y is a post-Lie algebra structure on the pair
of Lie algebras (g,n) such that n is centerless and satisfies Der(n) = ad(n). Then there is a
unique ¢ € End(V') such that

z-y={p) y}

for all z,y € V, see Lemma 2.9 in [10]. This means L(x) = ad(¢(z)) for the linear operators
L(z). In this case the axioms of a post-Lie algebra structure can be formulated as follows, see
[10]:

Proposition 2.2. Let n be a semisimple Lie algebra and ¢ € End(V). Then the product
x-y={p(x),y} is a post-Lie algebra structure on (g,n) if and only if

e[z, y]) = {e(), v(y)}
forallz,y € V.

The second condition says that ¢: g — n is a Lie algebra homomorphism.

3. EXISTENCE RESULTS WITH RESPECT TO g

We study the existence question of post-Lie algebra structures on pairs (g,n), where the
algebraic structure of g is given.

Case 1: Assume, that g is a simple Lie algebra. It turns out that this assumption is very strong.
We will show that a post-Lie algebra structure on (g,n) with g simple exists if and only if n is
isomorphic to g. This generalizes Proposition 4.9 in [I0]. Furthermore, if n = g then either the
product x -y is trivial and [z,y] = {z,y}, or we have [z,y] = —{x,y} = = - y, see Proposition
4.6 in [10].

Theorem 3.1. Let (g,n) be a pair of Lie algebras, where g is simple and n is arbitrary. Suppose
that (g,n) admits a post-Lie algebra structure. Then n is isomorphic to g.

Proof. Denote by rad(n) the solvable radical of n. Consider the Levi decomposition n = s x
rad(n) with a semisimple subalgebra s = n/rad(n). We have s # 0 by Theorem 4.2 of [12],
which is a non-trivial result. For any derivation D € Der(n) we have D(rad(n)) C rad(n).
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Hence there is a natural projection of Lie algebras p: Der(n) — Der(s) = s. Consider the
composition
poL:g— Der(s) = s,

where L: g — Der(n) is the representation given by the left multiplication maps L(x). Either
p o L is injective or it is the zero map, because its kernel is an ideal in g. Suppose that po L
is injective. Then dim(g) < dim(s) < dim(n), hence dim(s) = dim(n). It follows that n = s,
and po L: g — n is an isomorphism. So we are done. Otherwise we have po L = 0, so that
0=p(L(z)(y)) = p(x - y) for all x,y € g. This implies z - y € rad(n) for all z,y € g. But then

.yl =x-y—y-x—{z,y}

implies that rad(n) is also an ideal in g. Hence either rad(n) = 0 and n = s as before, or
rad(n) = g, which means s = 0, a contradiction. O

In other words, if (g, n) is a pair of Lie algebras, such that g is simple, and n is a Lie algebra
which is not isomorphic to g, then there is no post-Lie algebra structure on (g, n).

Case 2: Assume, that g is a semisimple Lie algebra. Then we have the following result, see
Theorem 4.2 of [12]:

Theorem 3.2. Let (g,n) be a pair of Lie algebras, where g is semisimple and n is solvable.
Then there is no post-Lie algebra structure on (g,n).

Case 3: Assume, that g is a perfect Lie algebra, i.e., [g,g] = g.

Proposition 3.3. Let (g,n) be a pair of Lie algebras over a field of characteristic zero, where
g is perfect and n is abelian or 2-step nilpotent. Then there is no post-Lie algebra structure on

(g,n).

Proof. Assume that there exists a post-Lie algebra structure on (g,n) with abelian n. By
definition this is a compatible left-symmetric structure on the perfect Lie algebra g. However,
it has been shown in [21], Theorem 1 and Proposition 1, that any Lie algebra admitting such
a structure must be solvable. This is a contradiction. For the field of complex numbers, the
solvability of g has been already shown in [15], Proposition 20.

Now assume that n is 2-step nilpotent. By Proposition 4.2 of [I0] it follows that g admits a
left-symmetric structure. This is impossible, as we have just seen. 0

We recall Proposition 4.4 of [10]:

Proposition 3.4. Let (g,n) be a pair of Lie algebras, where g is perfect and n is solvable and
non-nilpotent. Then there is no post-Lie algebra structure on (g, n).

This naturally leads to the following question:

Question 3.5. Let (g,n) be a pair of Lie algebras, where g is perfect and n is nilpotent. Does
there exist a post-Lie algebra structure on (g,n) ¢

We obtain examples of perfect non-semisimple Lie algebras as follows. Let s be a semisimple
Lie algebra with irreducible representation V' (m) of dimension m > 2 and form g = s x V(m)
with Lie brackets

(2, 0), (y, w)] = ([, y], 2.0 = y.v)
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forall z,y € s and v,w € V(m). Then g is a perfect Lie algebra with radical rad(g) = V(m) and
g/rad(g) = s. We will write g = s x V(m). The first interesting example is g = sl5(C) x V(2) =
(e1,e9,e3) X (€4, e5) with Lie brackets

le1, e2] = e3, [e1,e3] = —2e1, [e1, e5] = ey,
[627 63] = 262, [62, 64] = €5,

€3, e4] = €4, [e3,e5] = —e5.
We have the following result.

Proposition 3.6. Let (g,n) be a pair of Lie algebras, where g = sly(C) x V(2) and n is
nilpotent. Then there is no post-Lie algebra structure on (g,n).

Proof. The result is clear for n being abelian or 2-step nilpotent by the above results. Note
that dim(n) = 5, because it has the same underlying vector space as g. If n is 4-step nilpotent,
then the Lie algebra Der(n) is solvable. Assume that (g, n) admits a post-Lie algebra structure
in this case. Then by Proposition 2.11 of [I0] g is a subalgebra of the solvable Lie algebra
n x Der(n). It follows that g is solvable, which is a contradiction. Up to isomorphism there is
only one nilpotent Lie algebra of dimension 5 for which its derivation algebra is not solvable,
namely the free 3-step nilpotent Lie algebra on 2 generators. Hence it remains to consider this
case, and we may assume that n is isomorphic to this nilpotent Lie algebra of dimension 5,
given by the brackets

{61,62} = €3, {6’1,63} = €4, {62763} = €5.

Denote the lower central series of n by n® =n, n’ = [n,n"!] for i > 1. Then n' = C3, n? = C?,
and n® = 0. Furthermore, n/n! = C? and n/n? = b, the 3-dimensional Heisenberg Lie algebra.
With respect to the above basis of n, an arbitrary derivation D € Der(n) is given by

a1 Qo 0 0 0
B Bo 0 0 0
D=1m 7 a+pb 0 0

01 0o Y2 2001 + B %)

€1 &2 -N B ay + 28,
o o a1 Q9 0
Let 0, = {(Bi BE) | ay, B; € C} and 09 = b1 Po 0 | i, Bi,vi € C 3. There

Moy art B
are natural projections of Der(n) to 9; and 9. This induces epimorphisms

(n x Der(n))/n' — (n/n') x 0, and (n x Der(n))/n® — (n/n?) x 0,.

Suppose that there exists a post-Lie algebra structure on (g, n). Then there is a monomorphism
p: g — nx Der(n) given by x — (z, L(z)). It induces morphisms p;: g — 0; for i = 1,2. We
claim that im(p;) = sl,(C), and hence ker(p;) = C? for i = 1,2. This is easy to see for
i = 1. Indeed, the only non-trivial ideal of g is V(2) = C?, so if the image of p; would not be
isormorphic to sly(C) it would either be 0 or isomorphic to g. This last case is not possible
because the dimension of g is too big, while the first case case would imply that the image of
p would be solvable, which is also not possible.
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Consider now im(p2) C 05. Suppose that the image is not isomorphic to sly(C). Then

0 0 0
p2(V(2) =910 0 0f[reC,Cim(p)
7 o2 0

But then we have a morphism ¢: g — Der(n) such that ¢(V(2)) contains matrices A and B of
the form

00 0 0O 0 00 0O
00 0 0O 0 00 0O
A=11 0 0 0 0l andB=[0 1 0 0 O
* x 0 0 0 x x 1 0 0
*x x —1 0 0 x x 00 0

The matrices A and B do not commute, but on the other hand, ¢(V(2)) must be an abelian
Lie algebra, so we have a contradiction.
Now consider the composition

p3: g — (nx Der(n))/n® — (n/n?) x 0y.

We claim that ps must be faithful. Otherwise p3(C?) = 0, and the morphism n/n? x Der(n) —
n/n? would have a 3-dimensional image. This would imply that p3 induces a post-Lie algebra
structure on the pair (sly(C),n/n?), which is impossible by Theorem [3.1]

Because ps is faithful, p3(C?) is a 2-dimensional abelian subalgebra of the Heisenberg algebra
n/n%. Hence p3(C?) contains the center of n/n?  which is n' /n%. But then the composition

ps: g — (nx Der(n))/n' — (n/n') x 0,

has a 4-dimensional image, so that g has a 1-dimensional ideal. However, this is impossible,
because V' (2) is a 2-dimensional irreducible sly(C)-module. This gives a contradiction. O

Remark 3.7. The above result cannot be easily generalized to the case of sl,(C) x V(m), since
the classification of all nilpotent Lie algebras of dimension n?—1+m with solvable automorphism
group was used in the proof, for n = 2, m = 2. The same problem had already appeared in
connection with the generalized Auslander conjecture, i.e., in the proof of Theorem 4.1 in [5].

4. EXISTENCE RESULTS WITH RESPECT TO n

[f we assume that n is simple, no such strong result holds as in the case where g is simple. In
fact, given a semisimple Lie algebra n, there exists always a solvable, non-nilpotent Lie algebra
g such that there is a post-Lie algebra structure on (g,n), see Proposition 3.1 in [12]. Hence n
and g need not be isomorphic in general. On the other hand, if n is simple and g is nilpotent,
then there is no post-Lie algebra structure on (g,n). This follows from Theorem 3.3 of [12],
which we recall here for convenience:

Theorem 4.1. Let n be a semisimple Lie algebra, and g be a solvable, unimodular Lie algebra.
Then there is no post-Lie algebra structure on (g,n).

One might ask, given a simple Lie algebra n, for which Lie algebras g there exists a post-Lie
algebra structure on (g, n). For example, for n = sl,(C) there exists a post-Lie algebra structure
on (g,n) exactly for g = sl3(C), and for all 3-dimensional solvable Lie algebras, which are not
unimodular, see Proposition 4.7 in [I0] and except for t3(C). For n = sl3(C) we may even take
Lie algebras g which are neither solvable nor semisimple:
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Example 4.2. Let n = sl3(C), with standard basis {e1,...,es} as given in [12], and g be the
Lie algebra defined by the brackets

le1, e4] = e, [e1,e7] = —2e1, [e1, e8] = e,
lea, e6) = e1, [ea, 7] = —ea, [e, e8] = —eo,
leq, 6] = es, [eq, e7] = eq, [eq, e5] = —2ey,
[66767] = —€g, [66768] = 2¢g.

Then there exists a post-Lie algebra structure on (g,n), given by the following non-zero products
€3-€1 =€y, €369 = —€4, €3 €5 = €5, €3 €7 = —2€3, €3 €3 = €3,
€5 €1 = —€g, €5 €3 = €7+ €3, €5 €4 = €3, €5 €7 = —€5, €5 €3 = —€5.
The linear map ¢ with x -y = {p(z),y} is given by
¢ = diag(0,0,—-1,0,—1,0,0,0).

The construction of this example arises by an easy modification of example 6.3 in [12]. We have
g = a+ b with the abelian subalgebra a = (e3, e5) and the subalgebra b = (ey, €9, €4, €6, €7, €5).
The Lie algebra g is not semisimple, because gt = [g, g] # g. We have g® = [gi), g®V)] = gV,
hence g is not solvable.

5. COMMUTATIVE POST-LIE ALGEBRA STRUCTURES

A post-Lie algebra structure on a pair of Lie algebras (g, n) is commutative, if the algebra
product is commutative, i.e., x -y = y - x for all ,y. This means [z,y] = {z,y}, so that the
two Lie algebras are identical. We only write g instead of the pair (g, g) in this case.

Definition 5.1. A commutative post-Lie algebra structure on a Lie algebra g is a k-bilinear
product z - y satisfying the identities:

(4) rT-y=y-x
(5) [yl 2=z (y-2)—y-(v-2)
(6) x-[y,z]:[x-y,z]—l—[y,x-z]

for all x,y,z € V.

There is always the trivial commutative post-Lie algebra structure on g, given by x -y =0
for all z,y € g.

Example 5.2. Let g be an abelian Lie algebra. Then a commutative post-Lie algebra structure
on g corresponds to a commutative, associative algebra.

Using (), (5) and [z,y] = 0 we have
v-(zry)=w-(y-2) =y (r-2)=(z-2)-y
for all x,y,z € g.

Definition 5.3. Two commutative post-Lie algebra structures (A, ) and (B, o) on g are called
isomorphic, if there is a bijective linear map ¢: g — g satisfying

p(z-y) = o(z) o p(y)

e[z, y]) = le(x), o(y)]
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for all z,y € g.

Note that this is in general more than just an isomorphism of the commutative algebras (A, -)
and (B,0). We require in addition that the algebra isomorphism is also an automorphism of
the Lie algebra g.

We start with an important result on commutative post-Lie algebra structures.

Proposition 5.4. Any commutative post-Lie algebra structure on a semisimple Lie algebra g
15 trivial.
Proof. Since g is semisimple, we have L(z) = ad(p(z)) for some ¢ € End(g), such that z -y =
[o(x), y] and

[o(x), y] = [o(y), 2]

for all z,y € g, see Proposition It follows ¢ € D(0,1,1) = 0 by Proposition 5.10 in [I2], or
Lemma 6.1 in [16]. Hence -y =0 for all z,y € g. O

Corollary 5.5. Let x -y be a commutative post-Lie algebra structure on a Lie algebra g. Then
g-g Crad(g).
Proof. Since the left multiplication operators L(x) are derivations of g for all x € g, we have
L(z)(r) Ct, where v = rad(g) denotes the solvable radical of g. It follows that g -t C v, and of
course also t- g C v. Therefore, there is an induced product o on the semisimple Lie algebra
s = g/t which is given by

o:sxs—s:(x+ry+e)—»(x+v)o(y+r)=a-y+r.

We have [z,y]; +t = [z + v,y + t];, and it is obvious that o is a commutative post-Lie algebra
structure on (s,s). By Proposition o is the trivial zero product. But this exactly means
that g-g C ¢ ([l

Corollary 5.6. Let g = s & ¢ be a direct Lie algebra sum of a semisimple Lie algebra s and
a solvable Lie algebra v. Then for any commutative post Lie structure on g we have that
s-g=g-5=0.
Proof. Let x € g and y, 2z € s, then
€z - [y,Z] = [.Ty,Z] + [y,a:Z] S ['C,ﬁ] + [S,Y] =0.

As [s,s] = s, the result follows. O

In the following we want to generalize Proposition [5.4l For this reason we need to study
derivations of semidirect products of Lie algebras. Let s be a semisimple Lie algebra, v a

solvable Lie algebra, and consider a representation ¢: § — Der(r). Following [I8] we define for
this section the semidirect product g = v x s with ¢ by

(7) [(a7 $), (bv y)] = ([a'> b] + gO(%)b - @(y)a’ [ZE, y])

for all (a,z),(b,y) € t xs. We have v = rad(g), so that a derivation D € Der(g) satisfies
D(r) C t. Hence there exist linear maps di: t — t, ds: § — s and f: § — t such that

(8) D(a,z) = (di(a) + f(z), da(x)).

The fact that D is a derivation of g now imposes certain conditions on dy,dy and f. We

have the following lemma, which is similar to Proposition 1.5 in [I8], but has slightly different
assumptions.
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Lemma 5.7. The linear map D: g — g given by (a,x) — (di(a) + f(z),ds(z)) is a derivation
of g if and only if the following four conditions are satisfied:
(a) dy € Der(r).
(b) dy € Der(s).
() f([z,y]) = o(x)f(y) — ¢(y) f(x) for all x,y € s, i.e., f is a 1-cocycle.
(d) [d, p(2)] = ade(f(x)) + ¢ (da(2)) for all 2 € 5.

Here ad, denotes the adjoint representation of t.
Proof. The map D is a derivation if and only if
(9) D([a, 0] + ¢(z)b = ¢(y)a, [z, y]) = [D(a, ), (b,y)] + [(a, z), D(b, y)]

for all a,b € v and x,y € 5. Assume that D is a derivation. Then @ applied toa =b =10
yields

because

D, [z,y]) = (f([z, y]), d2([z, 1)),
[D(0,2), (0,9)] = [(f (), d2(2)), (0,9)] = (¢ () f(x), [da(2), ),
[(0,2), [D(0,y)] = [(0,z), (f(y), d2(y))] = (@(x)f (), [z, d2(y)]).

The s-component gives (b), and the v-component gives (¢). In the same way we obtain (a) from
(9) with z =y = 0. Setting a =y =0 in (9) gives

di(p(2)b) = [f (%), b] + ¢(da())b + @(x)d1 (D),
which is equivalent to
(dip(x) — @(x)d1)(b) = [f(x), b] + @(da(x))d.
Since this must hold for all b € t, this implies that
[di, p(z)] = ad:(f(2)) + p(d2(2)),

which is condition (d). Conversely it is easy to see that the four conditions imply that D is a
derivation. 0

We will say that the map D in (8)) is determined by the triple (dy, f, ds).
Definition 5.8. Denote by
Der,(r) = {d € Der(t) | p(x)d(a) = d(¢(x)a) Vz € 5,a € t}
the set of derivations of v which are simultaneously s-morphisms.
Corollary 5.9. A triple (d,0,0) determines a derivation of g if and only if d € Der(t).

Proof. Condition (d) in Lemma just says then that d is an s-morphism, while the other
conditions (a), (b), (c) are automatically satisfied when d € Der(t). O

In case that v = a is an abelian Lie algebra, we write Der,(v) = Homg(a, a) = Ends(a). Any
d € End,(a) corresponding to the triple (d,0,0) determines a derivation of g = a x s.

Lemma 5.10. Let g = a x s be the semidirect product of a semisimple Lie algebra s and an
abelian Lie algebra a. Suppose that d € Ends(a) determines an inner derivation D of g. Then
D =0 and hence d = 0.
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Proof. Suppose that D = adg4(a,z) for some (a,z) € g, and assume that x # 0. Then there
exists a y € s with [z, y] 3& 0, so that also (ad4(a,x))(0,y) # (0,0). But this is a con-
tradiction since D(0,y) = (0, ) for the triple (d,0,0) by (§). It follows that z = 0 and
D = ady(a,0). We already have (ady(a,0))(0,y) = D(0,y) = (0,0). Since a is abelian we also
have (adg(a, 0))(b,0) = (0,0) for all b € a. We conclude that D = ady(a,0) is the zero map,
and hence d = 0. U

The space of outer derivations of g is the space of derivations Der(g) = Z'(g, g) modulo the
inner derivations ad(g) = B'(g,g). We denote this space by Out(g) = H'(g,g). The above
lemma shows that we have an injective linear map

¢: Endy(a) = H'(g,9),

mapping an s-morphism d to the class of the derivation D modulo inner derivations determined
by the triple (d,0,0).

Proposition 5.11. The map ¢: Ends(a) — H'(g,g) is an isomorphism.

Proof. We have to show that the map v is onto. Let D be a derivation of g representing a
given class of H'(g,g). Then D is determined by a triple (di, f,ds) satisfying the conditions
of Lemma . Since s is semisimple, the derivation dy is inner, so that dy = ads(x) for some
x € 5. By replacing D with D — ady(x) we may assume that dy = 0. Hence D is determined
by a triple (dy, f,0). By condition (¢) of Lemma[5.7) we know that f: s — a is a 1-cocycle. By
Whitehead’s first Lemma we have H'(s,a) = 0, since s is semisimple. So f is a 1-coboundary,
and there is a b € a such that f(z) = —p(z)b for all z € s. On the other hand we have

adEl(b? 0)(&, I) = [(b7 0)7 (a7 $)] - <_§0(x)b= O) = (f($), 0)

hence by considering D — ady(b,0) we may assume that D is determined by a triple (d, 0, 0).
But this just means that the cohomology class of D is equal to ¥(d;), so that v is onto. O

Corollary 5.12. Let g = a x s be a perfect Lie algebra with nonzero abelian radical a, which as
an s-module is irreducible. Assume that D(0,1,1) = 0. Then any commutative post-Lie algebra
structure on g s trivial.

Proof. By Schur’s Lemma we have End;(a) = C-id. Using Proposition we can write every
derivation of g as d + Aid with an inner derivation d. Since the left multiplications L(z) given
by L(x)(y) = = - y are derivations of g, there exist linear maps ¢: g — g and A: g — C such
that

L(z) = ad(e(z)) + A(z)id.
Because g is perfect and L([z,y]) = [L(x), L(y)] for all z,y € g we have tr(L(z)) = 0 for all

x
x € g, ie., dim(a) - A(z) = 0 for all z € g. Since dim(a) > 0 it follows that A\(xz) = 0 for all
T Eg. Then the map ¢ satisfies, for all z,y € g,

O=z-y—y-z=I[p()yl + [z, o(y)]-
This means ¢ € D(0,1,1) =0, so that ¢ = 0 and L(x) = 0. O

Remark 5.13. For many Lie algebras g we can show that the space D(0, 1,1) is trivial, e.g., for
g = sl,(C) x V(m). However, in general this is a problem. Instead we will use other arguments
which do not depend on the space D(0,1,1).
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The aim still is to study commutative post-Lie algebra structures on perfect Lie algebras.
We can always write a perfect Lie algebra as g = s x n with Levi subalgebra s and nilpotent
radical n. We still need some more lemmas.

Lemma 5.14. Let n be a nilpotent Lie algebra and assume that b is a subalgebra of n for which
h+[n,n]=n. Then h=n.

Proof. For any integer i > 0, we define h; = b + n’, where the n’ denote the terms of the lower
central series of n, with n® = n. By assumption we have h; = b+ [n,n] =n and h; = b for all i
bigger or equal than the nilpotency class of n.

It is easy to see that b, is an ideal of b; for any ¢, and that the quotient b, /b;; is abelian. Now
assume that h # n. Then there exists a positive integer ¢ with h; = n and h; 1 # n. For this ¢
we have that b;/h; 11 = n/b;41 is abelian and hence [n,n] C ;1. But then n = h+[n,n] C b4
which is a contradiction. 0

Lemma 5.15. Suppose that I is an ideal of a perfect Lie algebra g = s x n with s C [. Then
it follows that I = g.

Proof. We first consider the case where n is abelian. Since I contains s, we have that
I'=s+(INn).

Now, I Nn is also an ideal of g and so I Nn is an s—submodule of n. As s is semisimple, there
exist a complementary s-submodule a of n so that n = (I Nn) @ a. It follows that a is also
an ideal of g and that g = I @ a. But then [I,a] = 0, which gives [g,a] = 0. This implies
g=1g,9] C[I,I] CI,sothat I =g.

Now we consider the general case. When g = n x s is perfect, then also g/[n,n] = (n/[n,n]) x s
is perfect. From the previous case, we then find that

(I + [n,n])/([n,n]) = g/[n, n]
and hence I + [n,n] = g. It follows that

g=s+n=s5+(INn)+[nnl.

Hence we obtain (I Nn) + [n,n] = n. By the previous lemma we have (I Nn) = n. From this,
it follows that I = g. 0

Assume that z-y defines a commutative post-Lie structure on the perfect Lie algebra g = sxn.
Note that [n, n] is both a Lie ideal of g and an ideal for the post-Lie product, because all left and
right multiplications are derivations of g. It follows that there is an induced post-Lie product
on g/[n,n]. We have the following reduction result:

Proposition 5.16. Let x-y be a commutative post-Lie product on a perfect Lie algebra g = sxn.
If the induced product on g/[n,n] is the zero product, then also the product on g is zero.

Proof. Recall that when D is a derivation of a nilpotent Lie algebra n for which D(n) C [n,n],
then D(n’) C n**!. For the left multiplication operator L(z) of the commutative post-Lie
algebra product x -y on g we have by assumption that L(z)(g) C [n,n]. Now, L(z) acts as a
derivation on [n,n]. Hence we find that L'(z)(g) C n*™! for all i > 1. It follows that L(z) is
a nilpotent map. Hence L: g — Der(g) is a morphism of Lie algebras, where each element of
L(g) is a nilpotent map. By Engel’s theorem it follows that L(g) is a nilpotent Lie algebra. But
then we must have s C ker(L). But as the kernel of L is an ideal of g containing s, it follows
that ker(L) = g and so the product z - y is the zero product. O
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Corollary 5.17. If there exists a perfect Lie algebra with a non-trivial commutative post Lie
algebra structure, then there also exists such an example with an abelian radical.

For a perfect Lie algebra g = s X n denote by Der(g,n) those derivations D of g determined
by a triple (dy, f,0), i.e., those with D(g) C n.

Lemma 5.18. Let g = s X a be a Lie algebra with abelian radical a. Then Der(g,a) is a
Lie subalgebra of Der(g) which contains Z'(s,a) as an abelian ideal and can be written as a

semidirect sum

Der(g,a) = Z'(s,a) x Der,(a).
Proof. Since a is abelian, it follows from Lemma that a triple D = (d, f,0) belongs to
Der(g, a) if and only if f € Z'(s,a) and d € Ders(a). Let D = (d, f,0) and D’ = (d’, f,0) be
two derivations in Der(g,a). For any (a,z) € a x s we have that

[D,D'|(a,z) = D(D'(a,z)) — D'(D(a, ))

= D(d'(a) + f'(2),0) — D'(d(a) + f(2),0)

= ((dd' = d'd)(a) + (df' = d'f)(x),0)
So it follows that the bracket [D, D] is determined by the triple ([d, d'], df" — d'f,0). The rest
of the lemma now follows easily. OJ

Now we can apply the previous lemmas to commutative post-Lie algebra structures.

Theorem 5.19. Let g = a X s be a perfect Lie algebra with an abelian radical a. Assume that
a, as an s—module, decomposes into pairwise nonisomorphic irreducible s—modules. Then any
commutative post-Lie algebra structure on g is trivial.

Proof. Let x - y be a commutative post-Lie algebra structure on g with left multiplication
maps L(z). As g-g C a by Corollary 5.5, we have that L(z) € Der(g,a). Moreover,
Der,(a) = Hom,(a, a) is an abelian Lie algebra, because a decomposes into pairwise noniso-
morphic irreducible s—modules. Hence by Lemma , we have that Der(g, a) is a solvable Lie
algebra. But then L : g — Der(g, a) : x — L(z) is a Lie algebra morphism with solvable image.
Hence L(s) = 0, and so s C ker(L). By Lemma [5.15| we can deduce that ker(L) = g and so the
post-Lie product is trivial. 0

Theorem 5.20. Let g = a x s be a perfect Lie algebra with an abelian radical a and without
outer derwations. Then any commutative post-Lie algebra structure on g is trivial.

Proof. We have that g = a x s, with a abelian and s semisimple. Again, we consider a com-
mutative post-Lie structure on g and let L : g — Der(g, a) denote the left multiplication, using
Corollary 5.5l We claim that Ders(a) is a nilpotent Lie algebra. Let d € Derg(a). Then the
triple (d,0,0) determines a derivation of g, which is inner by assumption. Hence

(d,0,0) = ady(b, z)

for some b € a and some = € 5. As in the proof of Lemma we must have that z = 0. But
then

(dv 0, O) (av 0) = (d(a)v 0) = adg(b7 0) (a’ O) = ([b’ CL], 0) = (ada(b)(a)7 0)
Hence d is an inner derivation of a. It follows that Ders(a) is a Lie subalgebra of the nilpotent
Lie algebra ad,(a) and by Lemma we have that Der(g, a) is a solvable Lie algebra. Hence
L(s) = 0 and as in the previous theorem, we can conclude that L(g) = 0. O
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In view of these results it is natural to formulate the following conjecture:

Conjecture 5.21. Any commutative post-Lie algebra structure on a perfect Lie algebra g is
trivial.

Although there is strong evidence in favor of the conjecture, there might be perhaps a coun-
terexample in higher dimensions. Cohomological questions on perfect Lie algebras are some-
times quite difficult, and it is, for example, already not easy to find a perfect Lie algebra without
center and without outer derivations, which is not semisimple [2].

6. COMMUTATIVE STRUCTURES IN LOW DIMENSIONS

The classification of commutative post-Lie algebra structures on g, where g is abelian corre-
sponds to isomorphism classes of commutative, associative algebras. There are classifications
available in low dimensions over algebraically closed fields, see [11], [20]. Hence we may assume
that g is a non-abelian complex Lie algebra. We may also exclude semisimple Lie algebras,
which admit only trivial structures. The classification in dimension 2 is as follows, see section
3 in [10]:

Proposition 6.1. Let to(C) be the 2-dimensional non-abelian Lie algebra with Lie bracket
le1, ea] = e1. Every commutative post-Lie algebra structure on to(C) is isomorphic to one of
the structures Ay, As, Az given by the left multiplication operators L(e;) as follows:

(1) L(el) == O, L(eg) =0.
(2) L(er) = 0, L(es) = (8 (1))

(3) Ler) = (8 ‘01), L(es) = (‘01 8)

Here Ay is an LR-algebra and a pre-Lie algebra, whereas As is neither LR nor pre-Lie.

In dimension 3, the classification of commutative post-Lie algebra structures on g is already
rather long, in particular for the infinite family of solvable, non-nilpotent Lie algebras t3 ,(C)
with brackets [e, es] = ey and [eq, e3] = Aes. Therefore we will only give the classification here
for the remaining Lie algebras g of dimension 3. We already have discussed the cases sly(C)
and C3. Hence there only Lie algebras to consider are t31(C) and nz(C):

Proposition 6.2. Let v3,(C) be the 3-dimensional solvable non-nilpotent Lie algebra with Lie
brackets [eq1, es] = ey and [e1,e3] = ex + e3. Every commutative post-Lie algebra structure on
t31(C) is isomorphic to one of the structures By, By, Bs, By given by the left multiplication
operators L(e;) as follows:

(1) L(er) = 0, L(es) = 0, L(es) = 0.
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000
(2) L(e;) =1 0 0], L(ex) =0, L(eg) =0
000
000
(3) L(er) = [0 0 0], L(e2) =0, L(e3) =0
100
000 000 000
(4) L(e) =0 1 1], L(ea)=1(1 0 O], L(ea) =11 0 0
0 01 000 1 00

Proof. A short computation shows that all structures, regardless of isomorphism, can be rep-
resented by

00 0 0 00 0 00
Lien)=|a v 55|, Llea) =7 0 0, L(es) = | 5575 0 O
g 0 v 000 v 00

subject to the condition v(y — 1) = 0. In particular, we have 2y — 1 # 0. Let us denote these
structures by B(«a, 3,7). Using the automorphisms

1 0 0
Aut(t&l(C)) = Y2 Y5 P8 | ®s5 7é 0
w3 0 5

it is easy to see that we obtain 4 non-isomorphic commutative post-Lie structures B(0,0,0),
B(1,0,0), B(0,1,0), B(0,0,1), which are By, By, B3, By. O

Proposition 6.3. Let by be the 3-dimensional Heisenberg Lie algebra with Lie bracket [e1, es] =
es. Fvery commutative post-Lie algebra structure on by is isomorphic to one of the structures
C1,Cy(p), p € C, Cs, Cy given by the left multiplication operators L(e;) as follows:

1L61 —0 L(eg)—() L(€3) 0.

0 00 0 00

10 0),Le)=[0 0 0], L(es) =0
0 pw O uw 0 0

0 00

0 0 0], L(ex) =0, L(es) =0

1 00

0 00 0 00

00 0),Le)=1{0 0 0, L(es) =0
1 00 010

We have Cy(p) = Co(v) if and only if u = v.
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Proof. A short computation shows that all structures, regardless of isomorphism, can be rep-
resented by

a o 0 0 k 0
Lier)=|B —a 0], L(eg)=|—a —6 0], L(e3) =0,
v € 0 e A 0
subject to the polynomial conditions
ad + Bk =0,
ak — 0% =0,
o’ + 5 =0,

V6 — 2ae — BA =0,
aX + vk — 20e = 0.

Note that the first three equations ensure that all L(z) are nilpotent. In case that a, 8 or & is
nonzero, using the automorphisms

©1 P4 0
Aut(h1(C)) = ¢ [ p2 o5 0 | 105 — p2pa #0
Y3 P P1¥P5 — P24

it is straightforward to see that all structures are isomorphic to some Cy(p). Otherwise we
have o« = 8 = k = 0, and products e; - e; = 7ve3, €1 - e5 = ce3z and e3 - e = Aeg. Up to
post-Lie structure isomorphism, we obtain three different structures, represented by (v,e, ) =
(1,0,0),(1,0,1),(0,0,0). O

7. COMMUTATIVE POST-LIE ALGEBRA STRUCTURES ON NILPOTENT LIE ALGEBRAS

As we have seen in Proposition , the left multiplication operators L(z) are nilpotent for
any commutative post-Lie algebra structure on the Heisenberg Lie algebra f;. We can extend
this observation to all non-abelian 2-generated nilpotent Lie algebras. This includes filiform
nilpotent Lie algebras.

Proposition 7.1. Let n be a non-abelian nilpotent Lie algebra which is generated by two ele-
ments. Then for any commutative post-Lie algebra structure on n the left multiplication oper-
ators L(x) are nilpotent.

Proof. The product on n induces a commutative post-Lie structure on n/n% As n/n? is the
3-dimensional Heisenberg Lie algebra, we know by the previous discussion that the induced left
multiplication maps are nilpotent. This means that for any = € n, the map L(x) € Der(n) is a
derivation which induces a nilpotent map on n/n? and hence also on n/n!, since we have

(n/n')/(n/n?) = n' /n?,
Since any derivation of n which induces a nilpotent derivation on n/n! is itself nilpotent, we
can conclude that indeed all maps L(x) are nilpotent. O

Corollary 7.2. Let x -y be a commutative post-Lie algebra structure on a complex nilpotent
Lie algebra of dimension n < 4 without abelian factor. Then all left multiplication maps L(x)
are nilpotent.

We cannot extend the result to nilpotent Lie algebras with an abelian factor:



16 D. BURDE AND K. DEKIMPE

Example 7.3. Let n = h; & C be the direct sum of the Heisenberg Lie algebra by and the abelian
Lie algebra C. Let (eq,...,e4) be a basis of n with [e1, es] = e3. Then

€1€1 —m €1 €4 =E€4°€1 =€4"€4 =€y
defines a commutative post-Lie algebra structure on n, where not all maps L(x) are nilpotent.

It is also clear that the result holds for all characteristically nilpotent Lie algebras, because
the derivation algebra of such Lie algebras is nilpotent. The above results and some more
computational evidence leads to the following question in general:

Question 7.4. Is it true that all left multiplication maps are nilpotent for every commutative
post-Lie algebra structure on n, where n is a nilpotent Lie algebra without abelian factor ¢
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