DERIVATION DOUBLE LIE ALGEBRAS
DIETRICH BURDE

ABSTRACT. We study classical R-matrices D for Lie algebras g such that D is also a derivation
of g. This yields derivation double Lie algebras (g, D). The motivation comes from recent work
on post-Lie algebra structures on pairs of Lie algebras arising in the study of nil-affine actions
of Lie groups. We prove that there are no nontrivial simple derivation double Lie algebras, and
study related Lie algebra identities for arbitrary Lie algebras.

1. INTRODUCTION

Let g be a finite-dimensional Lie algebra over a field K of characteristic zero. Motivated by
studies in post-Lie algebras [9], [I0] we are interested in the following question.

Question 1. Let g be a Lie algebra. For which derivations D of g does the skew-symmetric
bilinear map

[z,y]p = D([z,y])
satisfy the Jacobi identity ¢

In other words, for which derivations D defines [z, y]p another Lie algebra, denoted by gp 7
If [z,y]p is a Lie bracket, then the linear map D is also an example of a classical R-matriz for
g, i.e., a linear transformations R: g — g such that

[z, ylr = [R(x),y] + [z, R(y)]

defines a Lie bracket. Classical R-matrices [I9] have been studied by many authors. Our
main result here is that for simple Lie algebras g of rank » > 2 over an algebraically closed
field of characteristic zero, [z,y]p = D([z,y]) is a Lie bracket only for the trivial derivation
D =0, see Theorem [3.2] On the other hand, for sly(K) this is a Lie bracket for all derivations
D € Der(sly(K)).

Post-Lie algebra structures have been introduced in the context of nil-affine actions of Lie groups
in [9], and also in connection with homology of partition posets and the study of Koszul operads
in [15], [20]. Such structures are important in many areas of algebra, geometry and physics.
They generalize both LR-structures and pre-Lie algebra structures, which we have studied in
[, 5], [6], [7], [8]. Related topics are Poisson structures and Lie bialgebra structures, which
have been studied as well in connection with classical R-matrices and double Lie algebras, see

.

Let us explain the motivation for question [1| in terms of post-Lie algebra structures. In [10],
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2 D. BURDE

Theorem 6.4 we have determined all complex semisimple Lie algebras g with Lie bracket [, |,
and all A € C, z € g such that

[z, ylr = [2 [2, 4]l + @A+ Dz, Y]
defines a Lie bracket, and at the same time the Lie bracket [, ] satisfies

[z 2], [, 9] = [, [z, [z, 9] + @A + D[z, [2,9]] + (A + N[z, 9]
for all x,y € g. It turned out that this always implies z = 0, except for the case where A = —%,
and the Lie algebra is isomorphic to a direct sum of sl(C)’s. For A = —% the second Lie bracket
is given by [z,y|p = [z, [z,y]] = D([z,y]) with the inner derivation D = ad(z). This motivated
the question for which z € g the endomorphism D = ad(z) is a classical R-matrix.
Instead of D = ad(z) we consider here an arbitrary derivation D of any Lie algebra g, and
study the Jacobi identity for the skew-symmetric bilinear map [z, y|p = D([z,y]).

Question [l naturally leads to another question, which is in particular also interesting for solvable
and nilpotent Lie algebras:

Question 2. Which Lie algebras g have the property that [x,y|p = D([x,y]) satisfies the Jacobi
identity for all derivations D € Der(g) ¢

This is related to the theory of Lie algebra identities, and in particular to the variety
var(sly(K)), see [12], [13], [I4). We study this question together with the related identities

, , and for some general classes of Lie algebras, and in particular for all complex
nilpotent Lie algebras of dimension n < 7. A Lie algebra has the property given in question [2] if
and only if identity holds for it, for all derivations. We show that every almost abelian Lie
algebra satisfies the Hom-Jacobi identity , and hence also , see Proposition . Finally
we prove that every complex CNLA (characteristically nilpotent Lie algebra) of dimension 7 is
a derivation double Lie algebra for all derivations, see Proposition [4.12]

2. PRELIMINARIES

Let g be a finite-dimensional Lie algebra over a field K of characteristic zero. Let g° = g, and
g = [g,g" Y] for all i > 1. We say that g is nilpotent if there exists an index ¢ > 1 such that
g° = 0. In that case, the smallest such index is called the nilpotency class of g and is denoted
by c(g). Let g = g, and g = [gtY [g~Y)] for all i > 1. We say that g is solvable if there
exists an index d > 1 such that g(d) = 0. In that case, the smallest such integer is called the
solvability class and is denoted by d(g).

Classical R-matrices and double Lie algebras have been defined in [19] as follows.

Definition 2.1. Let V' be a vector space over a field K, and g = (V,[,]) be a Lie bracket on
V. A linear transformation R: g — g is called a classical R-matriz, if

defines a Lie bracket, i.e., satisfies the Jacobi identity. In this case, the pair (g, R) is called a
double Lie algebra.

It is useful to set

Then the Jacobi identity for [z, y|r can be formulated as follows [19]:
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Proposition 2.2. Let g be a Lie algebra with Lie bracket [, ]. The bracket [z,y|r = [R(x),y] +
[z, R(y)] satisfies the Jacobi identity if and only if

[BR(‘T’ y)7w] + [BR<va>7x] + [BR(w’ "L‘)7 y] =0
for all x,y,w € g.

Definition 2.3. Let A € K. The identity Bgr(z,y)+ A|x,y] = 0 for all z,y € g is called MYBE,
the modified Yang-Bazter equation.

It is obvious that every solution R of MYBE is a classical R-matrix. The converse, however,
need not be true in general.

Concerning question [1| we have the following result.

Proposition 2.4. Let g be a Lie algebra and D € Der(g) be a derivation. Then [z,y|p =
D([z,y]) = [D(x),y] + [z, D(y)] satisfies the Jacobi identity if and only if

1) D([D(@), [y, w]] + [D(y), [w, ] + [D(w), [z.y]] ) =0
for all x,y,w € g.
Proof. We have
[z, y]p, wlp = [D(z),y] + [z, D(y)], wp
= D([[D(x), y), w]) + D([[z, D(y)], w])
This yields

[z, ylp, wip + [ly, wlp, b + [[w, 2], ylp = D([D(x),y], w]) + D([[z, D(y)], w])
+ D([[D(y), w], 2]) + D([ly, D(w)], ])
+ D([[D(w), 2], y]) + D([[w, D(x)], y])

In the last step we have used the Jacobi identity three times, i.e.,
[[D(2), yl, w] + [ly, w], D(x)] + [[w, D(z)], 4] = 0,
and similarly for the terms with D(y) and D(w). O
Note that identity can also be stated as follows: for all z,y,w € g we have

0= [z,[D(y), D(w)]] + [y, [D(w), D(x)]] + [w, [D(x), D(y)]]
+[D*(y), [z, wl] + [D*(w), [y, 2] + [D* (@), [w, y]].

Definition 2.5. Let g be a Lie algebra and D € Der(g) be a derivation, such that [z,y]p =
D([x,y]) defines another Lie bracket gp. Then the pair (g, D) is called a derivation double Lie
algebra.

The identity within the brackets of for a linear map D: g — g is called the Hom-Jacob:
identity, see [IT] for further references. It says that

(2) [D(z), [y, 2]l + [D(y), [z, 2]] + [D(2), [z, 4] = 0
for all z,y, 2z € g.
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Corollary 2.6. Let g be a Lie algebra with Lie bracket |, ]| and z € g. Then the bracket
[z, y|p = [z, [z, y]] satisfies the Jacobi identity if and only if

(3) (2, [l2, 21, [y, wll + 2, [[2, 9], [w, 2]]] + [z, [[2, w], [2,9]]] = O

for all x,y,w € g.

Proof. This follows from Proposition 2.4 with D = ad(z). O
For w = z the identity implies, for 2 # 0

(4) [z, [z, 2], [z, 9]l = O

for all z,y € g.

Lemma 2.7. Let g be a Lie algebra and suppose that D = ad(z) is a classical R-matriz, so
that [x,y]p = [z, [x,y]] defines a second Lie bracket. Then ad(z)? is a derivation of g.

Proof. For D = ad(z) identity gives
0= D([D(x), D(y)])
= [D*(z), D(y)] + [D(), D*(y)].
This yields
D*([z,y]) = [D°(x),y] + 3[D*(x), D(y)] + 3[D(x), D*(y)] + [z, D*(y)]
= [D*(2),y] + [z, D (y)].
Hence D? = ad(z)? is a derivation. O

Conversely, if ad(z)? is a derivation of g, and 3 # 0, then identity holds for z.

Remark 2.8. An element z of a Lie algebra g is called extremal, if there is a linear map f,: g — K
such that
[Z’ [Z7$H = fz({l?)Z

for all z € g. For the study of extremal elements see [I1] and the references therein. It is a
well known result of Premet, that every simple Lie algebra over an algebraically closed field
of characteristic different from 2 and 3 has a nontrivial extremal element. Note that for every
extremal element z € g we have ad(z)? = 0, so that identity holds for all extremal elements
z € g by the above Lemma.

3. SIMPLE DERIVATION DOUBLE LIE ALGEBRAS

We will give here an answer to question [1| for simple Lie algebras g over an algebraically
closed field of characteristic zero. In terms of classical R-matrices, the question is, for which
z € g the linear map R = ad(z) is a classical R-matrix. We will show that for rank one every
ad(z) is a classical R-matrix, and that for rank r > 2 only the zero transformation is a classical
R-matrix. In other words, there are no nontrivial simple derivation double Lie algebras of rank
r> 2.

One should remark that simple Lie algebras always admit nontrivial classical R-matrices, but
not of the form ad(z). An easy example is given by R = AI,, with the identity matrix I,. In
general there are much more possibilities, see [2].

Denote by t31(C) the 3-dimensional solvable Lie algebra given by [e1, ea] = €2 and [ey, e3] = e,
see table 1.
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Proposition 3.1. Let g = s((2,C). Then R = ad(z) is a classical R-matriz for all z € g. The
Lie algebra gg is isomorphic to v31(C) for all z # 0.

Proof. The claim follows by a direct computation. Let (eq,es,e3) be the standard basis of
s[(2,C) with [eq, e5] = e3, [e1, e3] = —2ey, [ea, e3] = 2ey, and write 2z = z1e1 + 29e9 + 23e3. Using
[z, y|r = [2, [z, y]] we have

[61, 62]3 = [Z, [61762]] = [2763] = —2z1e1 + 2269,

le1, es]r = [z, [e1, €3]] = [z, —2e1] = —2z3€1 + 22963,

lea, e3]r = [z, [e2, €3]] = [2,2€2] = —223€9 + 227 6€3,

and
[61, [62, 63]R]R = [61, —2z3€9 + 22’163]R = —4zyz3e9 + 421 29€3,
[e2, [e3, e1|r|r = [€2, 22361 — 220e3]p = 4212561 — 421 20€3,
[63, [61, QQ]R]R = [63, —22’161 + 22’262]3 = —42’12361 -+ 4222’362.
Hence

le1, [e2, s rlr + [€2, (€3, e1]r]r + [e3, [e1, e2]r]r = 0.

It is easy to see that the resulting Lie algebra gp is isomorphic to t31(C), except for z = 0.
OJ

Theorem 3.2. Let g be a simple Lie algebra of rank r > 2 over an algebraically closed field K
of characteristic zero, and z € g. Suppose that R = ad(z) is a classical R-matriz. Then z =0
and R = 0.

Proof. Let G be the identity component of the algebraic group Aut(g), i.e., G = Aut(g)°. Then
G acts on g and the set of z € g satisfying the identity is a G-invariant closed set. Denote
by z = s + n the Jordan-Chevalley decomposition of z, with semisimple part s and nilpotent
part n. We have ad(z) = ad(z)s + ad(z), = ad(s) + ad(n), since g is simple. Since the identity
holds also for the orbit closure and G's C Gz is closed, we may apply a standard limit
argument and pass to the semisimple part s of z. But for semisimple elements s we will show
that the identity forces s = 0. Hence we obtain that z = n must be nilpotent.

Let z = s # 0 be semisimple. Let «, 8 be roots such that a4 f is again a root. We may assume
that (a4 f)(z) # 0, since g has rank at least 2. Now we take (z,y,w) = (h, e,, eg) for identity
, with h € b, the Cartan subalgebra of g. We have [e,, €3] = nageats With n.g # 0, since
a + [ is a root. Furthermore [h,e,] = a(h)e, and [h, eg] = S(h)esz. We have

[z, 2], [y, w]] + [[z, 9], [w, z]] + [[2, w], [z, y]] = [[2, 1], [€a, es]] + [[2, €al, [es, B]] + [[2, e5], R, €al]
= —(a(2)B(h) = B(z)a(h))eq; €]
= —nag(a(z)B(h) — B(z)a(h))eass.
Applying ad(z) on the left-hand side we obtain by (3),
0 = nag(a + B)(2)(a(2)B(h) — f(z)a(h))
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for all h € h. This means (a(z)B(h)—B(z)a(h)) = 0 for all h € §. This implies a(z) = 5(z) =0,
so that (a + f)(z) = 0, a contradiction.

So we may assume that z is nilpotent. By Morozov’s theorem [z,z] = z for some x € g, so
that identity implies ad(z)® = 0. Again by the limit argument we can assume that z lies
in the minimal nilpotent orbit, i.e., z = ey, where 6 is the maximal root, or just a long root.
This implies that we may already assume that g is of type Ay, By or G,. But now a direct
computation with a computer algebra system shows that in all three cases the identity forces
z = 0 and we are done. OJ

Corollary 3.3. Let g be a simple Lie algebra of rank r > 2 over an algebraically closed field K
of characteristic zero, and suppose that R = ad(z) satisfies the modified Yang-Bazter equation,
that is

(5) (2, [2, [z, y]l] = [[z, 2], [z, y]] + Al o]
forall x,y € g. Then 2 =0 and X\ = 0.

Note that the operator form of identity is given by
ad(z)?ad(z) — ad(z) ad(z) ad(z) + ad(z) ad(2)? = X ad(z)

for all . For the rank one case the following result can be shown, for all fields K of characteristic
zero, again by a direct computation.

Proposition 3.4. Let g = sl(2, K) with standard basis (ey, ez, e3), and z = z1e1 + zpe5 + 23€3.
Then R = ad(z) solves MYBE for z € g and X\ € K if and only if A = 4(z122 + 23).

Concerning identity we obtain a result analogous to Theorem , but for all simple Lie
algebras.

Proposition 3.5. Let g be a simple Lie algebra over an algebraically closed field K of charac-
teristic zero, and D be a derivation of g satisfying the identity . Then D = 0.

Proof. The result follows from Theorem [3.2] if g has rank r > 2, and for the rank 1 case by
a direct computation. On the other hand, there is also a direct proof without a computation.
Since every derivation of g is inner, there is an element z € g with D = ad(z). Then identity
(2) gives, with w = z,
2,2, [z 5] = 0

for all z,y € g. As before in Theorem we may assume that z is nilpotent. For z = 0 we
are done. Otherwise, since z is nilpotent, there exists an element x € g with [z,2] = z by
Jacobson-Morozov. This implies [z, [z,y]] = 0 for all y € g, so that z is a sandwich element,

i.e., with ad(z)? = 0. It is well-known that there are no nontrivial sandwich elements in simple
Lie algebras. Hence z =0 and D = 0. 0

We note that for nilpotent Lie algebras we have a quite different behavior. There we always
have a nontrivial solution for and , different from the trivial derivation D = 0.

Proposition 3.6. Let g be nilpotent. Then there exists a nontrivial derivation D € Der(g)
satisfying identities and .

Proof. 1f g is nilpotent of class ¢(g) < 2, then obviously identity , and hence also , holds
for every derivation. Consider the lower central series of g. Suppose that g¢¥ = 0 and g~ #£ 0,
with & > 3, i.e., ¢(g) > 3. Choose an element w in g€¥=2 which is not in the center of g. This
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is possible, because otherwise g"~2 C Z(g), and hence g*~! = [g, "% = 0, a contradiction. It
follows that D = ad(w) is a nontrivial derivation satisfying identity , because each term is
zero. Tndeed, ([, z], [y, 2]] € [g", '] C g* = 0. 0

4. LIE ALGEBRA IDENTITIES
In this section we study Lie algebras g satisfying one of the identities , , , , ie.,

D([D(x), [y, z]] + [D(y), [z, z]] + [D(z), [x,y]]) =0,

D). [y, 2]] + (D), [2,]] + [D(2), [z, 9] = 0,

2, [[2, 2], [y, wl]] + [z, [[2, 9], [w, ]]] + [z, [[2,w], [z, y]]] = 0,

2, (12,2l [z, 4] = 0
for all x,y,z,w € g and not just for a given derivation, but for all derivations D € Der(g).
This leads us to the theory of Lie algebra identities, which has a large literature. Clearly we
have the implications = = = . Concerning question , identity holds if and

only if [x,y]p = D([x,y]) is a Lie bracket for all derivations D € Der(g).

We start with the identity [[z, ], [z, y]] = 0, which is a consequence of by taking D = ad(z).
A Lie algebra satisfying this identity is metabelian, i.e., satisfies g® = 0. This is known but

rarely mentioned. Therefore it seems useful to give a proof here. We always assume that the
field K has characteristic zero, if not said otherwise.

Lemma 4.1. Let g be a Lie algebra over a field K of characteristic not 2. Then g is metabelian
if and only if it satisfies the identity
[z, 2], [2,9]] = 0
forall x,y,z € g.
Proof. Suppose that g is metabelian, i.e., satisfies the identity [[z, z], [w, y]] = 0. Setting w = z

we obtain the required identity. Conversely, if we assume [[z, z], [z, y]] = 0 and formally replace
z by u + v we obtain

Hu’ 93], [U’ y” = Hu’ y]’ [Uv :BH
for all z,y,u,v. Now we use this identity and skew-symmetry twice to obtain

[z, 2], [w, y]] = [[w, 4], [, 2]
= [[w, 2], [z, y]]
= [[z w], [y, 2]
= [[z 2], [y, w]].
This implies 2[[z, z], [w, y]] = 0. O

For Lie algebras satisfying the strongest identity, namely , we obtain the following neces-
sary condition.

Proposition 4.2. Let g be a Lie algebra satisfying identity . Then g is metabelian.
Proof. Applying identity for D = ad(w) we obtain
[w, 2], [y, 2]] + [[w, ], [z, 2]] + [[w, 2], [=, 9] = 0
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for all z,y, z,w € g. Setting w = z this implies
[z, 2], [z, 94]] = 0
for all z,y,2 € g. By Lemma[4.1] g is metabelian. O

The converse is not true in general, but of course true for all inner derivations.

Corollary 4.3. A Lie algebra g satisfies identity for all inner deriwations if and only if it
1s metabelian.

The problem for the converse in general are the outer derivations of a metabelian Lie algebra.
They need not satisfy identity . The following example demonstrates this, and is of minimal
dimension with this property.

Example 4.4. Let g be the non-nilpotent metabelian Lie algebra of dimension 4 with basis
{e1,...,e4}, defined by the brackets

[e1, €2] = €9, [e1,e3] = ea, [e1,e4] = €4, [ea, €3] = €4.
Then the outer derivations D = diag(0, A\, A\, 2)) satisfy if and only if A = 0. They also
satisfy if and only if A = 0.
Indeed, we have
[D(e1), [e2, es]] + [D(e2), [e3, e1]] + [Des), [er, ea]] = —2Aes.

There are also sufficient conditions for a Lie algebra g to satisfy identity , such as g =
g,[9,9]] = 0. One would like to find more interesting conditions, of course. A view on low-
dimensional Lie algebras already shows that it is not so easy.

Proposition 4.5. All complex Lie algebras of dimension n < 4 satisfy identity with the
exception of sly(C), gla(C), g5 and gs(«), which are listed in table 1.

Note that the algebra given in Example [4.4]is g5(0).
A finite-dimensional Lie algebra g is called almost abelian, if it has an abelian ideal a of codi-
mension 1. We may choose a basis {ej,...,e,} of g such that a = (ey,...,e,) and g ~ a x (e;).

Proposition 4.6. Any almost abelian Lie algebra satisfies identity .

Proof. Let g = a x (e;) be an almost abelian Lie algebra of dimension n. Since a is an ideal of
codimension 1 we know that [g, g] C a. Consider the annihilator of [g, g] in g,

h={zrcg|lz o 0] =0}
Since [g, g] is a characteristic ideal of g, i.e., D([g,g]) C [g, g] for all derivations D of g, we have
[D(b), (g, 8l = D([b, [g, 6]]) + [b, D([g, g])]
C 0+ b9 all

This shows D(h) C b for all D € Der(g). Taking D = ad(z) we see that b is an ideal of g. So
h is a characteristic ideal of g with a C . We have h = g if and only if ¢(g) < 2. However, for
Lie algebras of nilpotency class at most 2 we are done. Otherwise we have h = a, i.e., D(a) C a
for all D € Der(g). Now it is easy to see that the identity

[D(ei), lej, ex]] + [D(e)), lex, ei]] + [D(ex), e, e5]] =0
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holds for all 4,5, k. If all 4,5,k > 2, then all [e,, es] € [a,a] = 0 for r,s € {i,7,k}. Hence we
may assume that ¢+ = 1. If both j,k > 2, then

[D(e1), lej, ex]] = [D(e;), [ex, ex]] = [Dex), [e1, ¢5]] = 0,

since [e;,ex] = 0 and D(e;), D(ex) € a because of D(a) C a. Hence we may assume that
1 =7 = 1. But then we obtain
[D(e1), [er, ex]] + [D(er), [ex, e1]] + [D(ex), [e1, e]] = 0,

so that identity is satisfied.
OJ

An example for an almost abelian Lie algebra is the standard graded filiform Lie algebra f,
of dimension n > 3, with basis {ey,...,e,} and Lie brackets [e1, ;] = ;4 for i =2,...,n—1.

Corollary 4.7. The filiform nilpotent Lie algebra §, satisfies identity for every n > 3.

Remark 4.8. The above result shows that the nilpotency class of a Lie algebra satisfying identity
(2) can be arbitrarily large, whereas the solvability class is bounded by 2.

It is easy to verify the following result for low-dimensional nilpotent Lie algebras. The
notation is taken from Magnin [16].

Proposition 4.9. Fvery complex nilpotent Lie algebra of dimension n < 5 satisfies identity
. In dimension 6 all nilpotent algebras satisfy with the exception of g6.9, 96,13, 96,15, 96,18,
96,19, and g620-

One can obtain a similar result for dimension 7 by using the classification list of Magnin -
see table 2. We have shortened Magnin’s notation there by omitting the dimension index 7.
There is one interesting infinite family of Lie algebras, depending on a complex parameter A,
where identity holds precisely for one singular value of A. The family is g71.2¢;,) in Magnin’s
notation:

Example 4.10. For A € C let g, denote the following complex T-dimensional nilpotent Lie
algebra given by the Lie brackets

[1'1,372] = T4, [1'1,1'3] = T¢, [$1,$4] = Ts, [xlaxi')] = T,

[1172,$3] = AT, [952,$4] = Tg, [fza%‘] = I, [$3,$4] = (1 - )\)xr

Then holds < holds < X\ =1.
Note that we have ¢(gy) = 4, d(g)) = 2 for all A € C, and

13, for A = —1

dMDﬂwﬂz{ufmA¢—1

One might ask for invariants which differ exactly for A = 1 and A # 1. For the (¢, 1, 1)-space of
generalized derivations with ¢ # 0,1, —1,2 we have

12, for A =1

dim Der(m,l)(g)\) = {11 for A #£ 1 ’
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see [10], [2I] for more on generalized derivations. However, there seems to be no relation in
general between these spaces and identity or .

Identity is weaker than identity in general. Indeed, a Lie algebra satisfying identity
need not be metabelian as we have already seen in the cases of sly(C) and gl(C), see table
1. However, for nilpotent Lie algebras of dimension n < 6 they are equivalent, and also for
nilpotent Lie algebras of dimension 7 which are not CNLAs. This follows from an easy but
lengthy computation, see table 2.

Proposition 4.11. A complex nilpotent Lie algebra of dimension n < 6 satisfies identity
if and only it satisfies identity . In dimension 7 this holds true for all complex nilpotent Lie
algebras which are not a CNLA.

For CNLAs of dimension 7 identity always holds, but identity does not.
Proposition 4.12. Fvery complex CNLA of dimension 7 satisfies identity .
In general, the last result is not true in higher dimension.

Example 4.13. Let g be the filiform nilpotent Lie algebra of dimension 8 defined by the brackets
[T, 2] = xig1, 1 =2,...,7,
(T2, 23] = 5 + X6, (T2, T4] = 76 + 27, [T, 5] = 227 + 15,
[T, x6] = 3xs, [T3,24] = —7, [23,75] = —s.

Then g is a CNLA which does not satisfy identity .
In fact, g does not even satisfy identity , since we have
[z1, [[w1, 2], [w1, 25]]] = —as.
We have ¢(g) = 7 and d(g) = 3.

Let us finally discuss the identities and . They have been studied by many authors in
connection with identities in sly(K). Identity appears in the basis for identities of sly(K)
found by Razmyslov [I8]:

Theorem 4.14. Let K be a field of characteristic zero. A finite basis of identities for the Lie
algebra sly(K) is given by identity and the standard identity of degree 5,

> (D) [y, [#@), [T(3), [Ty, zol]] = 0

TESy

for all x; € sly(K).

This theorem was generalized by Fillipov [I3] to arbitrary fields K of characteristic not 2.
Moreover he showed that all such identities for sly(K) are a consequence of one single identity,
namely

(6) (2, [[w, 2], [w, y]]] = [w, [z, w], [z, y]]].
This is related to our identity as follows.
Proposition 4.15. Identity @ s a consequence of identity .
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Proof. Formally replacing z by z 4+ v in gives

0=T[z+v(lz+v,2 [y, wll] + [z + v, [[z + v, 9], [w, 2]]] + [z + v, [z + v, w], [z, ]]]
= [z [lz 2], [y, W]l + [, [[o, 2], [y, wil] + [v, [[2, 21, [y, w]] + [v, [[v, 2], [y, w]]]
+ [z [z, 9], [w, ] + [z [[v, o, [w, 2]]] + o, [[2, 9] [w, 2]} + [v, [[v, 9], [w, 1]
+ [z [z, w], [z, 9] + [z, [[v, @], [, 9]]] + [o, [[2, w], [z, y11] + o, [[o, w], [z, 1]

Applying for the first and last column of terms we obtain
0= [z [[v,2], [y, w]]] + [, [[v, y], [w, 2]]] + [z, [[v, w], [z, y]]]
+ [v, [z, 2], [y, wl]] + v, [[2, 9], [w, 2]]] + [v, [z, w], [=, y]]]-
Setting v = w and applying with z and w interchanged, i.e., in the form

[w, [[w, ], [y, 2]I] + [w, [[w,y], [z, 2] = [w, [z, w], [z, y]],
we obtain
0 =2[z, [[w, ], [y, w]]] + [w, [[z, 2], [y, w]]
+ [w, [[2, 9], [w, 2]]] + [w, [z, w], [z, y]]
= 2[z, [[w, z], [y, w]]] + 2[w, [z, w], [z, y]]].
This is identity (6. O

Identity (4] has been studied further, but mostly for simple and semisimple algebras. Filippov
[14] termed algebras satisfying identity also hg-algebras, and algebras satisfying identity @
also h-algebras. Another term for the variety of h-algebras is given by var(sly(K')). This variety
and its subvarieties have also been studied by several authors, see [12] and the references therein.
A study of identities and for solvable and nilpotent Lie algebras seems to be less known.
Table 1 shows the result for complex Lie algebras of dimension n < 4.

Proposition 4.16. All complex Lie algebras of dimension n < 4 satisfy identity , and hence
also (), except for g3 and g5(a) with o # 0, —1.

There is a trivial reason in low dimensions, why these identities are often satisfied. Every
center-by-metabelian Lie algebra g satisfies identity and . By definition, center-by-
metabelian means that g C Z(g). This immediately implies that every term in is zero.
Indeed, all low-dimensional nilpotent Lie algebras are center-by-metabelian. More precisely, we
have the following result:

Proposition 4.17. Every nilpotent Lie algebra g of dimension n < 7 over a field of character-
istic zero is center-by-metabelian, and hence satisfies identity and .

Proof. The claim follows from results in [3]. We have g® = 0 because of n < 7. Suppose
that g® # 0. Then dimg/dimg® > 2, dimg®/dimg® > 3, and n > 6. Moreover, if
dim g™ / dim g® = 3, then dim g® < 1, see [3]. Otherwise we have dim gt/ dim g® > 4 and

n = dim g/ dim g™ + dim g™ / dim g®® + dim g
> 6 + dim g
This gives again dim g < 1. Because g is nilpotent, g®* NZ(g) # 0, and hence g® C Z(g). O
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The result does not hold in higher dimensions. Indeed, the 8-dimensional nilpotent Lie
algebra of Example is not center-by-metabelian. It does not satisfy identity or (4).
Recall that a Lie algebra g satisfying identity , or need not be center-by-metabelian, e.g.,
consider sly(K).

5. TABLES

1.) Complex Lie algebras of dimension n < 4:

g Lie brackets (1) | (2] (14)
tz((C) [61, 62] = €2 v v v v
1’13(@) [61, 62] = €3 v v v v
t37)\(C) [61, 62] = €9, [61, 63] = )\63 v v v v
5[2(((:) [61,62] = €3, [81, 63] = —261, [62,63] = 262 v — v v
‘(13((:) @ C [61, 62] = €3 v v v v
114((C) [61, 62] = €3, [61, 63] = €4 v v v v
'CQ(C) D (C2 [61, 62] = €2 v v v v
tQ(C) & 'CQ(C) [61, 62} = €9, [63, 64] — €4 v v v v
S[Q(C) D C [61, 62] = €3, [61, 63] = —261, [62, 63] = 262 v — v v
g1 [61, 62] = €9, [61, 63] = €3, [61, 64] = €4 v v v v
92(06) [61, 62] = €9, [61, 63] = €3, [61, 64] = e3 1+ ey v v v v
ds [61, 62] = €9, [61, 63] = €3, [61, 64] = 264, [627 63] = €4 - - - -
ga(a, B) le1,ea] = ea, [e1,e3] = ea + ey, [e1,eq) =e3+Pey | V |V |V |V
g5(a), a #£0,—1 le1, ea] = ea, [e1, €3] = ea + aes, - =] =1 -
le1, eq] = (a4 1)ey, [e2,e3] = €4
a=0,-1 — | = |V |V

2.) Indecomposable complex nilpotent Lie algebras of dimension 7, see [16]:
Identity ‘ go.1 ‘ g0.2 ‘ g0.3 ‘ 0.4\ ‘ d0.5 ‘ d0.6 ‘ go.7 ‘ do.8 ‘ 91.01() ‘ 91.01(i1) ‘ g1.02 ‘ 91.03
(]1[) vV I VIV v VI VIV Y v v — —
(12]) v |V — v v —

Identity ‘ 91.1(3iy) ‘ 91.1(:) ‘ 01.1i40) ‘ 91.1(iv) ‘ g1.1(v) ‘ 91.1(vi) ‘ 91.2(ix-1) ‘ 91.2(ix_1) ‘ 91.2(i0)
2)

Pl

Identity | g1.26i) | 91.260) | 91360 | 91360 | 913000) | 91360) | 91300 | 914 | 915 | 916 | 917
@ - | - - -1 v | ¢ v
v

® | - | -1 -1- ool

Identity | g1.s | @10 [ 910 | 9111 | G112 | @113 | @104 | 8115 | 916 [ 9107 | G118 | G119
(1) vV IV |V — — — — v v — v v
(2] vV IV |V v v v v
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g2.2 ‘ 923 | 924 ‘ 925 ‘ 92.6

Identity | 9120 | 91.21 | 92.10) | 92.100) | 921000 | 92100 | 92.100)

| .
® [ -[-1-1-1-1-1=-1-lvl-1-1-
Identity | go.7 | 92.8 | 92.0 | 9210 | 9211 | 9212 | 2.3 | 9214 | 9215 | 9216 | 9247 | G218
(]l[) v — v — v v — — — v — v
H v — v — v v — — — v — v
Identity | g2.19 | 92.20 | 92.21 | 9222 | 9223 | 92.24 | G2.25 | G2.26 | G2.27 | 92.28 | §2.20 | 92.30
(]l[) v v v v v — — — v v v v
2) Viivi|iviviv|i-|-|-|vI v | v|v
Identity | go.31 | 92.32 | 92.33 | 92.34 | 9235 | 92.36 | 92.37 | 92.38 | §2.30 | 9240 | §2.41 | G2.42
(]l[) v v v v — v — v v v — v
2) Sililvi v iv|i-|lv |-l vi v | v ]|-|V
Identity ‘ g2.43 ‘ 92.44 ‘ g2.45 ‘ 93.1(iy) ‘ 93.1(i3) ‘ 93.2 ‘ 93.3 ‘ 93.4 ‘ 93.5 ‘ g3.6 ‘ 93.7 | 938
(]ll) v v v — — v v v — v v v
(12)) v v v — — v v v — v v v
Identity ‘ g3.9 ‘ g3.10 ‘ g3.11 ‘ g3.12 ‘ 93.13 ‘ 93.14 ‘ g3.15 ‘ g3.16 ‘ g3.17 ‘ 93.18 ‘ 93.19 ‘ 93.20
(]l[) v — v v v v v v v v v v
(12)) v — v v v v v ve v v v v
Identity ‘ g3.21 ‘ 93.22 ‘ 03.23 ‘ 93.24 ‘ 941 ‘ 942 ‘ g4.3 ‘ g4.4
(]l[) v — v v v v v v
H v — v v v v v v
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