
CLASSIFICATION OF NOVIKOV ALGEBRAS

DIETRICH BURDE AND WILLEM DE GRAAF

Abstract. We describe a method for classifying the Novikov algebras with a given associated
Lie algebra. Subsequently we give the classification of the Novikov algebras of dimension
3 over R and C, as well as the classification of the 4-dimensional Novikov algebras over C
whose associated Lie algebra is nilpotent. In particular this includes a list of all 4-dimensional
commutative associative algebras over C.

1. Introduction

Novikov algebras arise in many areas of mathematics and physics. They form a special class
of pre-Lie algebras which arise among other things in the study of rooted trees (Cayley), convex
homogeneous cones (Vinberg), affinely flat manifolds and their fundamental groups (Auslan-
der, Milnor) and renormalization theory (Connes, Kreimer, Kontsevich). Novikov algebras in
particular were considered in the study of Hamiltonian operators, Poisson brackets of hydro-
dynamic type (Balinskii, Novikov), operator Yang-Baxter equations and left-invariant affine
structures on Lie groups [5]. We refer to [4], and the references therein, for more information
on these topics.

The theory of Novikov algebras and its classification has been started by Zelmanov [15].
Further structure theory has been developed in [6]. There have been several efforts to classify
complex Novikov algebras in low dimensions: Bai and Meng classify the Novikov algebras over
C of dimension up to 3 in [1], and complete Novikov algebras over C that have a nilpotent
associated Lie algebra in [2]. We recall that a Novikov algebra is said to be complete, or
transitive, if the right multiplication by any element is a nilpotent linear map. Also we note
that Novikov algebras are Lie admissible algebras, i.e., the commutator defines the structure
of a Lie algebra on them. In this paper we outline a systematic method to classify the Novikov
algebras with a given associated Lie algebra. Using it we obtain classifications that extend the
ones by Bai and Meng in several ways. Firstly, we get the classification of the 3-dimensional
Novikov algebras over R and C (Section 4). Secondly (Section 5) we have classified all 4-
dimensional Novikov algebras over C that have a nilpotent associated Lie algebra (not just the
complete ones). Furthermore, using our method we obtain a list of Novikov algebras that is
ordered with respect to the associated Lie algebra, i.e., all Novikov algebras with the same Lie
algebra are grouped together.

If the associated Lie algebra of a Novikov algebra is abelian, then the Novikov algebra is
nothing other than a commutative and associative algebra. This is an interesting class of al-
gebras in its own. It also appears as a subclass of other classes of algebras being of interest
in geometry; as an example we name LR-algebras [7]. Hence an explicit classification of asso-
ciative, commutative algebras in low dimension is also very desirable. Over the past century
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many classifications of commutative associative algebras have appeared in the literature. Here
we mention [3], [12], [13], [14]. The last three of these references have classifications of nilpotent
associative algebras. In Section 3 we describe an elementary way to obtain the classification
of all commutative associative algebras from the classification of the nilpotent commutative
associative algebras. We apply this method to obtain a list of commutative associative algebras
of dimensions 3 (over R and C) and 4 (over C; the latter is contained in Section 5). The
list of commutative associative algebras of dimension 3 over C is also contained in [3]. For
completeness we also include it in this paper. Although the classification of the commutative
associative algebras can be deduced from the classification of the nilpotent commutative asso-
ciative algebras, no such classification in dimension 4 has explicitly been done, to the best of
our knowledge.

We start, in the next section, by describing the method that we use for classifying Novikov
algebras. In order to compute isomorphisms between these algebras, we rely on computer
calculations, using the technique of Gröbner bases. Using this technique we have also established
the correspondence between our list of 3-dimensional Novikov algebras over C and the list in
[1]; therefore, the two classifications are equivalent.

Finally we remark that it turned out that the problem of classifying all 4-dimensional Novikov
algebras is far too complex to be undertaken. Therefore, we have restricted ourselves to the
Novikov algebras with a nilpotent associated Lie algebra. We remark that many of the Novikov
algebras that we get are not complete (for example N h1

17 in Table 10). Therefore our classification
substantially extends the one in [2].

2. Classifying Novikov algebras with given Lie algebra

Let F be a field. An algebra A over F is called Novikov if

x · (y · z)− (x · y) · z = y · (x · z)− (y · x) · z(1)

(x · y) · z = (x · z) · y,(2)

for all x, y, z ∈ A. Let A be a Novikov algebra, and define a bracket on A by

[x, y] = x · y − y · x.
Then it is straightforward to see that (A, [ , ]) is a Lie algebra. The problem considered here
is to find, up-to isomorphism, all Novikov algebras that have a given Lie algebra as associated
Lie algebra.

Let g be a finite-dimensional Lie algebra. Let θ : g × g → g be a bilinear map. Then we
define an algebra A(g, θ) as follows. The underlying vector space of A(g, θ) is g. Furthermore,
for x, y ∈ g we set x · y = θ(x, y). We define T (g) to be the set of all bilinear θ such that
[x, y] = θ(x, y)− θ(y, x) for all x, y ∈ g and such that A(g, θ) is a Novikov algebra.

The automorphism group, Aut(g), of g acts on T (g) by φθ(x, y) = φ−1(θ(φ(x), φ(y))), for
φ ∈ Aut(g), and θ ∈ T (g).

Lemma 2.1. Let θ1, θ2 ∈ T (g). Then A(g, θ1) and A(g, θ2) are isomorphic if and only if there
is a φ ∈ Aut(g) with φθ1 = θ2.

Proof. If φθ1 = θ2, then φ(θ2(x, y)) = θ1(φ(x), φ(y)). Hence φ : A(g, θ2) → A(g, θ1) is an
isomorphism.

On the other hand, if φ : A(g, θ2) → A(g, θ1) is an isomorphism of Novikov algebras, then
φθ2(x, y) = θ1(φ(x), φ(y)) for all x, y ∈ g. Hence φθ1 = θ2. This also implies that φ is an
automorphism of g. �
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Set n = dim g, and let e1, . . . , en be a basis of g. Then an element in T (g) is given by a
sequence of n × n-matrices L1, . . . , Ln, where Li describes the left multiplication of ei. More
precisely, if θ ∈ T (g) satisfies θ(ei, ej) =

∑n
k=1 c

k
ijek, then for the Li we have Li(k, j) = ckij.

This way we view T (g) is an affine variety in F n3
. We get equations for this variety by

plugging x = ei, y = ej, z = ek in (1) and (2), for 1 ≤ i, j, k ≤ n, and by requiring that
ei · ej − ej · ei = [ei, ej] for i < j. The equations corresponding to this last requirement will
be linear. The equations corresponding to (1) and (2) will be polynomial; however we can
reformulate (2) such that it leads to linear equations as well. This works as follows. Let A be
an algebra. For x ∈ A let L(x) : A→ A be the linear map given by L(x)(y) = x · y. Similarly
we define R(x)(y) = y · x. The adjoint map is defined by ad(x) = L(x) − R(x). Now assume
that A satisfies (1). Then (2) holds as well if and only if [R(x), R(y)] = 0 for all x, y ∈ A.
Furthermore, (1) implies that [L(x), L(y)] = L([x, y]). Now, using R(x) = L(x)− ad(x) we get
that [R(x), R(y)] = 0 is equivalent to

(3) L([x, y]) + ad([x, y])− [L(x), ad(y)]− [ad(x), L(y)] = 0.

If in this equation we set x = ei, y = ej, and noting that the maps adek are given by the Lie
multiplication on g, we get that (3) is equivalent to a set of linear equations.

Example 2.2. Consider the 2-dimensional Lie algebra g over F = C with basis e1, e2 and Lie
bracket [e1, e2] = e1. Write Li = L(ei) and

L1 =

(
a11 a12
a21 a22

)
, L2 =

(
b11 b12
b21 b22

)
.

Then (3) with x = e1, y = e2 is equivalent to the equations a21 = 0, a11 = b21, a22 = −b21,
b22 = b11 + 1. Furthermore, L(e1)(e2) − L(e2)(e1) = [e1, e2] is tantamount to a22 = b21, a12 =
b11 + 1. So the linear equations that we get imply that

(4) L1 =

(
0 b22
0 0

)
, L2 =

(
b22 − 1 b12

0 b22

)
.

These matrices already define a Novikov structure, i.e., (1) is automatically satisfied.

By Lemma 2.1, classifying the Novikov algebras with associated Lie algebra equal to g is
the same as listing the Aut(g)-orbits on T (g). In order to carry this out we write an element
of Aut(g) as an n × n-matrix, with indeterminates as entries that satisfy some polynomial
equations. Then we try and work out what the orbits are. We illustrate this by example.

Example 2.3. We consider the situation of Example 2.2. An element of Aut(g) is given by

φ =

(
a b
0 1

)
,

where a 6= 0. (Here we use the column convention, so φ(e1) = ae1, φ(e2) = be1 + e2.) Let a
θ ∈ T (g) be given by the matrices (4). Then a short calculation shows that φθ corresponds to
two matrices of the same shape, where b22 is unchanged, but where b12 is changed into

a−1(b(b22 − 1) + b12).

We now distinguish two cases. In the first case b22 6= 1. Then we can choose b so that b12 is
mapped to 0. So we get a 1-parameter family of Novikov algebras given by

e1 · e2 = b22e1, e2 · e1 = (b22 − 1)e1, e2 · e2 = b22e2.

Algebras corresponding to different values of the parameter b22 are not isomorphic.
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In the second case we have b22 = 1. Here we have two subcases. If b12 = 0 then we get an
algebra which is included in the above parametric family. On the other hand, if b12 6= 0 then we
can choose a = b12 and we see that it is changed to 1. So we get one more algebra, given by

e1 · e2 = e1, e2 · e2 = e1 + e2.

Summarising, our procedure to classify the Novikov algebras with given associated Lie algebra
g consists of two steps:

(1) Find the equations for T (g).
(2) List the orbits of Aut(g) on T (g).

The last step is by far the most difficult one. And we are not always able to carry it out in
full; in other words, sometimes we obtain two Novikov algebras that are isomorphic without us
being able to show that the corresponding bilinear maps in T (g) lie in the same Aut(g)-orbit.
To deal with a situation of this kind we use a method based on the algorithmic technique
of Gröbner bases (cf. [9]). For this again we write an element of Aut(g) as a matrix with
entries that are indeterminates, satisfying some polynomial equations. Let R denote the ring
containing these indeterminates. Let θ1, θ2 ∈ T (g) be given. Then we compute the matrices Li
corresponding to φθ1; they have entries that are polynomials in the coefficients of φ (which are
indeterminates). Then the requirement that φθ1 = θ2 leads to a set of polynomial equations
p = 0 where p ∈ P ⊂ R. Let I be the ideal of R generated by P . Now, solving p = 0 for p ∈ P is
the same as solving g = 0 for any generating set G of I. For this a Gröbner basis is particularly
convenient. In particular if the Gröbner basis is computed relative to a lexicographical order,
then the resulting polynomial equations have a triangular structure, which makes them easier to
solve. A second feature of this method is that if the algebras corresponding to the θi happen not
to be isomorphic, then the reduced Gröbner basis is {1}. So in this case no hand calculations
are necessary. For the computation of the Gröbner bases we used the computer algebra system
Magma ([8]). We illustrate this with an example.

Example 2.4. Let g be the 3-dimensional Lie algebra with basis e1, e2, e3 and nonzero bracket
[e1, e2] = e3. Consider a family of Novikov algebras Nα

1 given by e1 ·e2 = (α+1)e3, e2 ·e1 = αe3.
Denote the corresponding element of T (g) by θα. The elements of Aut(g) are given by

φ =

x11 x12 0
x21 x22 0
x31 x32 δ

 ,

with δ = x11x22 − x12x21. The Novikov algebra corresponding to φθα has nonzero products

e1 · e1 = (2Dx11x21α +Dx11x21)e3

e1 · e2 = (2Dx12x21α +Dx12x21 + α + 1)e3

e2 · e1 = (2Dx12x21α +Dx12x21 + α)e3

e2 · e2 = (2Dx12x22α +Dx12x22)e3,

where D = δ−1.
Now let Nβ

2 be the family of Novikov algebras given by e1 · e1 = βe3, e1 · e2 = e3, e2 · e2 = e3.

Then Nα
1
∼= Nβ

2 if and only if the following polynomial equations are satisfied

2Dx11x21α +Dx11x21 − β = 0

2Dx12x21α +Dx12x21 + α = 0

2Dx12x22α +Dx12x22 − 1 = 0.
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We let I be the ideal of the polynomial ring C[D, x11, x12, x21, x22, α, β] generated by the left hand
sides of these equations along with the polynomial D(x11x22 − x12x21)− 1. A reduced Gröbner
basis of I with respect to the lexicographical order with D > x11 > x12 > · · · > α > β consists
of the polynomials

Dx12x22α + 1
2
Dx12x22 − 1

2
,

Dx12x22β − 1
4
Dx12x22 + 1

2
α + 1

4
,

x11 − x12α− x12,
x21 + x22α,

α2 + α + β.

It follows that Nα
1
∼= Nβ

2 if and only if these polynomial equations have a solution. So from the

last polynomial we see that Nα
1
∼= Nβ

2 implies that β = −α2−α. Conversely, suppose that this is
satisfied. From the third and fourth elements of the Gröbner basis we get that an isomorphism
φ has to be of the form (α + 1)u u 0

−αv v 0
x31 x32 δ

 .

The determinant of the 2× 2-block in the upper left corner is (2α+ 1)uv. Now if α 6= −1
2

then

we choose u = v = 1, and x31 = x32 = 0 and get the linear map φ : N−α2−α
2 → Nα

1 given byα + 1 1 0
−α 1 0
0 0 2α + 1

 .

It is straightforward to check that in fact this is an isomorphism.
There remains the case where α = −1

2
. Adding the polynomial α + 1

2
to the generating set

of the ideal we get that the Gröbner basis is {1}. Hence in this case the algebras are not
isomorphic.

3. Novikov algebras with an abelian Lie algebra

If the associated Lie algebra of a Novikov algebra is abelian, then the Novikov algebra is
a commutative associative algebra (CAA). Conversely, every CAA is a Novikov algebra with
abelian Lie algebra. In this section we describe how to obtain a classification of the CAA’s of
dimension 3 over R and C.

First we introduce some notation, and recall some facts on associative algebras. We refer to
[10] for an in-depth account of these matters.

Let A be an associative algebra over a field F of characteristic 0. If A does not have a 1, then

we write Ã for the algebra A⊕ 〈1〉 (with a · 1 = 1 · a = a for all a ∈ A). If there are nontrivial
proper ideals B,C of A such that A = B ⊕ C (direct sum of vector spaces), then A is said to
be a direct sum. (Note that necessarily BC = CB = 0.) The algebra A is said to be nilpotent
if there is an m > 0 such that a1 · · · am = 0 for all a1, . . . , am ∈ A. The radical R of A is its
largest nilpotent ideal; and A is said to be semisimple if R = 0. More generally, if A has a one,
then there exists a semisimple subalgebra S of A such that A = S ⊕ R (direct sum of vector
spaces), and S ∼= A/R. Furthermore, if S is a semisimple commutative algebra, then it is a
direct sum: S = K1 ⊕ · · · ⊕Km, where each Ki is a field extension of F . This decomposition
corresponds to a decomposition of the identity element: 1 = ε1 + · · · + εm, where the εi are
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orthogonal primitive idempotents and Ki = εiS. In particular, if the base field is R, then Ki

is either isomorphic to R or to C. We write C for the commutative associative algebra over R
with basis e1, e2 and non-zero products e21 = e1, e1e2 = e2e1 = e2, e

2
2 = −e1.

Lemma 3.1. Let A be a commutative associative algebra over R. Suppose that A is not a direct
sum of proper non-trivial ideals. Then A is either

• nilpotent, or

• equal to B̃ for a nilpotent B, or
• equal to C⊕R, where R is the radical.

Proof. If A has a 1 then A = S ⊕ R, where S is semisimple, and R is the radical. As above
S = K1 ⊕ · · · ⊕ Km, where the Ki are field extensions of R. Let 1 = ε1 + · · · + εm be the
corresponding decomposition of 1, where Ki = εiS. Then A is the direct sum of the ideals εiA.
If m > 1, they are all nontrivial and proper. Hence it follows that m = 1 and S is a field. If

S ∼= R then A ∼= R̃. If S ∼= C then we are in the third case.
If A has no 1, then we consider Ã. Again we get a decomposition Ã = S ⊕ R, and m

orthogonal idempotents εi. Writing εi = µi · 1 + ai, with µi ∈ R and ai ∈ A we see that the fact
that the εi are orthogonal idempotents with sum 1 implies that m−1 of them (say ε1, . . . , εm−1)
lie in A, and εm does not. Again we get that A is the direct sum of the ideals εiA. If εiA = A
for some i ≤ m− 1 then εi is an identity element in A. So this cannot happen. Again it follows
that m = 1. If S ∼= R then A is nilpotent. If S ∼= C then a basis of S is e1 = 1, e2 with
e22 = −e1. However, we can also write e2 = µ · 1 + a for some µ ∈ R and a ∈ A. From this we
get that µ2 = −1. We conclude that this case cannot occur. �

From [12] we get all real nilpotent CAA’s of dimensions ≤ 3. They are

Table 1: Nilpotent CAA’s of dimensions ≤ 3 over R.

dim name multiplication table
0 A0

1 A1

2 A2,1

2 A2,2 e21 = e2
3 A3,1

3 A3,2 e21 = e2
3 A3,3 e21 = e2, e1e2 = e3
3 A3,4 e21 = e3, e

2
2 = e3

3 A3,5 e21 = −e3, e22 = e3

Here, over C the algebras A3,4 and A3,5 are isomorphic.
Now, using Lemma 3.1, we get all CAA’s of dimension 3 over R. They are: A3,i for 1 ≤ i ≤ 5,

Ã2,i, i = 1, 2, Ã0 ⊕ Ã0 ⊕ Ã0, Ã0 ⊕ Ã0 ⊕ A1, Ã0 ⊕ A1 ⊕ A1, Ã1 ⊕ A1, Ã1 ⊕ Ã0, C⊕ A1, C⊕ Ã0,

A2,2 ⊕ Ã0.
So we get 15 algebras in total. Over C we get 12 of them, as the pairs A3,4, A3,5 and

Ã0 ⊕ Ã0 ⊕ Ã0, C ⊕ Ã0 and Ã0 ⊕ Ã0 ⊕ A1, C ⊕ A1 become isomorphic and there are no other
isomorphisms.
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4. Novikov algebras of dimension three over R and C

A simple Lie algebra of dimension 3 does not have Novikov structures. The Novikov algebras
of dimension 3 with abelian Lie algebra were classified in the previous section. So this leaves
the classification of the Novikov algebras of dimension 3, where the associated Lie algebra is
solvable and non-abelian.

From [11] we get that over R and C there are the following solvable Lie algebras:

name nonzero brackets
g1 [e1, e2] = e2, [e1, e3] = e3
gα2 [e1, e2] = e3, [e1, e3] = αe2 + e3
g3 [e1, e2] = e3
g4 [e1, e2] = e3, [e1, e3] = e2
g5 [e1, e2] = e3, [e1, e3] = −e2

Among these algebras there are no isomorphisms, except that g4 and g5 are isomorphic over
C, but not over R.

Next are the tables of Novikov algebras that we get. On some occasions we give a parametrised
class of algebras. In those cases, if nothing is stated about isomorphisms, then different val-
ues of the parameter give non-isomorphic Novikov algebras. Moreover, the classification that
we give is over R. Over C some isomorphisms between elements of the list arise, and those
are explicitly given. The Novikov algebras with associated Lie algebra g will be denoted N g

i ,
i = 1, 2, . . .. For the Lie algebra gα2 we have three tables with associated Novikov algebras. In
Table 3 we list the Novikov algebras that we get for generic values of the parameter α. Table
4 contains the extra Novikov algebras that we get when α = −2

9
. And in Table 5 we give the

extra algebras that arise when α = 0.

Table 2: Novikov algebras with Lie algebra g1.

name multiplication table
N g1

1 (a) e1e1 = ae1, e1e2 = (a+ 1)e2, e1e3 = (a+ 1)e3, e2e1 = ae2, e3e1 = ae3
N g1

2 e1e1 = −e1 + e2, e2e1 = −e2, e3e1 = −e3

Table 3: Novikov algebras with Lie algebra gα2 .

name multiplication table

N
gα2
1 (a) e1e1 = ae1, e1e2 = ae2 + e3, e1e3 = αe2 + (a+ 1)e3, e2e1 = ae2, e3e1 = ae3

N
ga

2+a
2

2 (a) e1e1 = ae1 + e2, e1e2 = ae2 + e3, e1e3 = (a2 + a)e2 + (a+ 1)e3, e2e1 = ae2,
e3e1 = ae3

Table 4: Novikov algebras with Lie algebra g
−2
9

2 .

name multiplication table

N
g
−
2
9

2
3 e1e1 = −1

3
e1, e1e2 = 8

3
e2 − 8e3, e1e3 = 7

9
e2 − 7

3
e3, e2e1 = 8

3
e2 − 9e3,

e3e1 = e2 − 10
3
e3
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Novikov algebras corresponding to g
−2
9

2 .

N
g
−
2
9

2
4 e1e1 = −1

3
e1 + e2, e1e2 = 8

3
e2 − 8e3, e1e3 = 7

9
e2 − 7

3
e3, e2e1 = 8

3
e2 − 9e3,

e3e1 = e2 − 10
3
e3

N
g
−
2
9

2
5 (a) e1e1 = 3ae1 + (−3a2 − 1

3
a)e2, e1e2 = 6ae2 + (−9a+ 1)e3,

e1e3 = (a− 2
9
)e2 + e3,e2e1 = 6ae2 − 9ae3, e2e2 = −3e2 + 9e3,

e2e3 = −e2 + 3e3, e3e1 = ae2, e3e2 = −e2 + 3e3, e3e3 = −1
3
e2 + e3

N
g
−
2
9

2
6 e1e1 = −2

3
e1 − 8

27
e2 + 2

3
e3, e1e2 = −4

3
e2 + 3e3, e1e3 = −4

9
e2 + e3,

e2e1 = −4
3
e2 + 2e3, e2e2 = −3e2 + 9e3, e2e3 = −e2 + 3e3, e3e1 = −2

9
e2,

e3e2 = −e2 + 3e3, e3e3 = −1
3
e2 + e3

N
g
−
2
9

2
7 e1e1 = −2

3
e1 − 11

27
e2 + e3, e1e2 = −4

3
e2 + 3e3, e1e3 = −4

9
e2 + e3,

e2e1 = −4
3
e2 + 2e3, e2e2 = −3e2 + 9e3, e2e3 = −e2 + 3e3, e3e1 = −2

9
e2,

e3e2 = −e2 + 3e3, e3e3 = −1
3
e2 + e3

Remarks:

• The algebras from Table 3, N
gα2
1 (a) for α = −2

9
and N

ga
2+a

2
2 (a) for a2 +a = −2

9
are not in

Table 4. The latter condition means a = −1
3

or a = −2
3
. This yields two non-isomorphic

algebras.

• Over C the algebra N
g
−
2
9

2
7 is isomorphic to N

g
−
2
9

2
5 (−2

9
). To describe the isomorphism, let

ei be the basis elements of N
g
−
2
9

2
5 (−2

9
) and yi those of N

g
−
2
9

2
7 . Then

e1 7→ y1 +
−2−

√
−2

9
y2

e2 7→
1− 2

√
−2

2
y2 +

−3 + 3
√
−2

2
y3

e3 7→
1−
√
−2

3
y2 +

−2 +
√
−2

2
y3

defines an isomorphism N
g
−
2
9

2
5 (−2

9
)→ N

g
−
2
9

2
7 . Over R they are not isomorphic.

Table 5: Novikov algebras with Lie algebra g02.

name multiplication table

N
g02
8 (a) e1e1 = ae1, e1e2 = (a+ 1)e3, e1e3 = (a+ 1)e3, e2e1 = ae3, e3e1 = ae3

N
g02
9 e1e1 = −e1 + e3, e2e1 = −e3, e3e1 = −e3

N
g02
10 (a) e1e1 = ae1, e1e2 = ae2 + e3, e1e3 = (a+ 1)e3, e2e1 = ae2, e2e2 = −e2 + e3,

e3e1 = ae3

N
g02
11 e1e1 = −e1 + e3, e1e2 = −e2 + e3, e2e1 = −e2, e2e2 = −e2 + e3, e3e1 = −e3

Remark: N
g02
8 (0) is N

g02
1 (0); so for the first algebra we take a 6= 0.
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Table 6: Novikov algebras with Lie algebra g3.

name multiplication table
N g3

1 (a) e1e1 = e2, e1e2 = (a+ 1)e3, e2e1 = ae3
N g3

2 (a) e1e1 = ae3, e1e2 = e3, e2e2 = e3
N g3

3 e1e1 = e3, e1e2 = e1, e2e1 = e1 − e3, e2e2 = e2, e2e3 = e3, e3e2 = e3
N g3

4 e1e2 = e1, e2e1 = e1 − e3, e2e2 = e2, e2e3 = e3, e3e2 = e3
N g3

5 e1e2 = 1
2
e3, e2e1 = −1

2
e3

Table 7: Novikov algebras with Lie algebra g4.

name multiplication table
N g4

1 (a) e1e1 = ae1, e1e2 = ae2 + e3, e1e3 = e2 + ae3, e2e1 = ae2, e3e1 = ae3
N g4

2 e1e1 = e1 + e3, e1e2 = e2 + e3, e1e3 = e2 + e3, e2e1 = e2, e3e1 = e3

Remark: N g4
1 (a) is isomorphic to N g4

1 (b), if and only if a = b or a = −b. (In the latter
case, φ(e1) = −x1, φ(e2) = x2, φ(e3) = −x3 defines an isomorphism. Here the xi are the basis
elements of N g4

1 (b).)

Table 8: Novikov algebras over R with Lie algebra g5.

name multiplication table
N g5

1 (a) e1e1 = ae1, e1e2 = ae2 + e3, e1e3 = −e2 + ae3, e2e1 = ae2, e3e1 = ae3

Remarks:

• Let ei denote the basis elements of N g5
1 (a), and let the base field be C. Then setting

x1 = ie1, x2 = e2, x3 = ie3, we see that the xi satisfy the multiplication table of
N g4

1 (ia). Hence, over C we have that N g5
1 (a) is isomorphic to N g4

1 (ia). Over R such an
isomorphism does not exist as the underlying Lie algebras are not isomorphic.
• Table 8 gives a list of all Novikov algebras over R, with Lie algebra g5. Over C there

would be an extra algebra isomorphic to N g4
2 ; however over R this algebra does not

exist.
• Also here N g5

1 (a) is isomorphic to N g5
1 (b) if and only if a = b or a = −b.

5. Novikov algebras over C of dimension four with a nilpotent Lie algebra

In this section we give the classification of the 4-dimensional Novikov algebras over C such
that the associated Lie algebra is nilpotent.

First of all there are the Novikov algebras that have an abelian associated Lie algebra. Again
those are commutative associative algebras. They can be classified using the same procedure as
in Section 3, using the classification of nilpotent CAA’s up to dimension 4. This can be obtained
from [14], or [12]. For the nilpotent CAA’s of dimensions up to 3 we use the multiplication
tables of Table 1. The multiplication tables of the nilpotent CAA’s of dimension 4 are taken
from [12]. We get the following list of CAA’s of dimension 4.
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Table 9: CAA’s of dimension 4.

name multiplication table
A4,1

A4,2 e21 = e2
A4,3 e21 = e3, e

2
2 = e3

A4,4 e21 = e2, e1e2 = e3
A4,5 e21 = −e3, e1e2 = e4, e

2
2 = e3

A4,6 e1e2 = e4, e
2
2 = e3

A4,7 e21 = e4, e
2
2 = e4, e

2
3 = e4

A4,8 e21 = e2, e1e2 = e4, e
2
3 = e4

A4,9 e21 = e2, e1e2 = e3, e1e3 = e4, e
2
2 = e4

4Ã0 e21 = e1, e
2
2 = e2, e

2
3 = e3, e

2
4 = e4

2Ã0 + Ã1 e21 = e1, e
2
2 = e2, e

2
3 = e3, e3e4 = e4

2Ã1 e21 = e1, e1e2 = e2, e
2
3 = e3, e3e4 = e4

Ã0 + Ã2,1 e21 = e1, e
2
2 = e2, e2e3 = e3, e2e4 = e4

Ã0 + Ã2,2 e21 = e1, e
2
2 = e2, e2e3 = e3, e2e4 = e4, e

2
3 = e4

Ã3,1 e21 = e1, e1e2 = e2, e1e3 = e3, e1e4 = e4
Ã3,2 e21 = e1, e1e2 = e2, e1e3 = e3, e1e4 = e4, e

2
2 = e3

Ã3,3 e21 = e1, e1e2 = e2, e1e3 = e3, e1e4 = e4, e
2
2 = e3, e2e3 = e4

Ã3,4 e21 = e1, e1e2 = e2, e1e3 = e3, e1e4 = e4 e
2
2 = e4, e

2
3 = e4

3Ã0 + A1 e21 = e1, e
2
2 = e2, e

2
3 = e3

Ã0 + Ã1 + A1 e21 = e1, e
2
2 = e2, e2e3 = e3

Ã2,1 + A1 e21 = e1, e1e2 = e2, e1e3 = e3
Ã2,2 + A1 e21 = e1, e1e2 = e2, e1e3 = e3, e

2
2 = e3

2Ã0 + A2,1 e21 = e1, e
2
2 = e2

2Ã0 + A2,2 e21 = e1, e
2
2 = e2, e

2
3 = e4

Ã1 + A2,1 e21 = e1, e1e2 = e2
Ã1 + A2,2 e21 = e1, e1e2 = e2, e

2
3 = e4

Ã0 + A3,1 e21 = e1
Ã0 + A3,2 e21 = e1, e2e3 = e4
Ã0 + A3,3 e21 = e1, e

2
2 = e3

Ã0 + A3,4 e21 = e1, e
2
2 = e3, e2e3 = e4

There are the following non-abelian nilpotent Lie algebras of dimension 4:

name nonzero brackets
h1 [e1, e2] = e3
h2 [e1, e2] = e3, [e1, e3] = e4

Tabel 10 contains the Novikov algebras with associated Lie algebra h1. Table 11 has those
with Lie algebra h2.
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Table 10: Novikov algebras with Lie algebra h1.

name multiplication table

N h1
1 (α) e1e2 = (α + 1)e3, e2e1 = αe3

N h1
2 (α) e1e2 = (α + 1)e3, e2e1 = αe3, e2e2 = e4

N h1
3 (α) e1e2 = (α + 1)e3, e2e1 = αe3, e2e2 = e1

N h1
4 e1e1 = e3, e1e2 = e3, e2e2 = e4

N h1
5 e1e2 = e3, e2e2 = e4, e2e4 = e3, e4e2 = e3

N h1
6 e1e2 = e3, e2e4 = e3, e4e2 = e3

N h1
7 (α) e1e2 = e3, e2e2 = e1 + αe4, e2e4 = e3, e4e2 = e3

N h1
8 e1e1 = e3, e1e2 = e3, e2e2 = e4, e2e4 = e3, e4e2 = e3

N h1
9 e1e1 = e3, e1e2 = e3, e2e4 = e3, e4e2 = e3

N h1
10 (α) e1e2 = (α + 1)e3, e2e1 = αe3, e4e4 = e3

N h1
11 e1e2 = 1

2
e3, e2e1 = −1

2
e3, e2e2 = e3, e4e4 = e3

N h1
12 (α) e1e2 = (α + 1)e3, e2e1 = αe3, e2e2 = e1, e4e4 = e3

N h1
13 e1e2 = e3 + e4, e2e1 = e4

N h1
14 e1e2 = e3 + e4, e2e1 = e4, e2e2 = e1

N h1
15 (α) e1e1 = e3, e1e2 = e3 + e4, e2e1 = e4, e2e2 = αe3

N h1
16 e1e1 = e3, e1e2 = e3 + e4, e2e1 = e4, e2e2 = e1, e2e4 = e3, e4e2 = e3

N h1
17 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3, e2e1 = e2, e2e2 = e3, e3e1 = e3

N h1
18 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3, e2e1 = e2, e3e1 = e3

N h1
19 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3, e1e4 = e4, e2e1 = e2, e3e1 = e3, e4e1 = e4

N h1
20 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3, e1e4 = e4, e2e1 = e2, e2e2 = e2, e3e1 = e3,

e4e1 = e4
N h1

21 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3, e1e4 = e4, e2e1 = e2, e2e2 = e4, e3e1 = e3,
e4e1 = e4

N h1
22 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3, e1e4 = e4, e2e1 = e2, e2e4 = e3, e3e1 = e3,

e4e1 = e4, e4e2 = e3
N h1

23 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3, e1e4 = e4, e2e1 = e2, e2e2 = e4, e2e4 = e3,
e3e1 = e3, e4e1 = e4, e4e2 = e3

N h1
24 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3, e1e4 = e4, e2e1 = e2, e2e2 = e3, e3e1 = e3,

e4e1 = e4, e4e4 = e3
N h1

25 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3, e1e4 = e4, e2e1 = e2, e3e1 = e3, e4e1 = e4,
e4e4 = e3

N h1
26 (α) e1e2 = (α + 1)e3, e2e1 = αe3, e2e2 = e1, e4e4 = e4

N h1
27 (α) e1e2 = (α + 1)e3, e2e1 = αe3, e4e4 = e4

N h1
28 e1e2 = 1

2
e3, e2e1 = −1

2
e3, e2e2 = e3, e4e4 = e4

N h1
29 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3, e2e1 = e2, e2e2 = e3, e3e1 = e3, e4e4 = e4

N h1
30 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3, e2e1 = e2, e3e1 = e3, e4e4 = e4

Among these algebras there are precisely the following isomorphisms:

• N h1
1 (α) ∼= N h1

1 (β) if and only if α = β or β = −α − 1. In the latter case, φ(e1) = −y2,
φ(e2) = y1, φ(ei) = yi, i = 3, 4 defines an isomorphism φ : N h1

1 (α)→ N h1
1 (−α− 1).
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• N h1
10 (α) ∼= N h1

10 (β) if and only if α = β or β = −α − 1. In the latter case, φ(e1) = −y2,
φ(e2) = y1, φ(ei) = yi, i = 3, 4 defines an isomorphism φ : N h1

10 (α)→ N h1
10 (−α− 1).

Table 11: Novikov algebras with Lie algebra h2.

name multiplication table

N h2
1 e1e2 = e3, e1e3 = e4

N h2
2 e1e1 = e2, e1e2 = e3, e1e3 = e4

N h2
3 e1e2 = e3 + e4, e1e3 = e4, e2e1 = e4

N h2
4 e1e1 = e2, e1e2 = e3 + e4, e1e3 = e4, e2e1 = e4

N h2
5 e1e3 = 1

2
e4, e2e1 = −e3, e3e1 = −1

2
e4

N h2
6 e1e1 = e4, e1e3 = 1

2
e4, e2e1 = −e3, e3e1 = −1

2
e4

N h2
7 e1e1 = e2, e1e3 = 1

2
e4, e2e1 = −e3, e3e1 = −1

2
e4

N h2
8 (α) e1e1 = (2α2 + α)e2, e1e2 = (2α + 1)e3, e1e3 = (α + 1)e4, e2e1 = 2αe3, e2e2 = e4,

e3e1 = αe4
N h2

9 e1e1 = e3, e1e2 = e3, e1e3 = e4, e2e2 = e4
N h2

11 e1e1 = e3, e1e3 = 1
2
e4, e2e1 = −e3, e2e2 = e4, e3e1 = −1

2
e4

N h2
12 e1e1 = e4, e1e2 = e3, e1e3 = e4, e2e2 = 2e3, e2e3 = e4, e3e2 = e4

N h2
13 e1e2 = e3, e1e3 = e4, e2e2 = 2e3, e2e3 = e4, e3e2 = e4

N h2
14 (α) e1e1 = αe4, e1e2 = e3, e1e3 = e4, e2e2 = 2e3 + e4, e2e3 = e4, e3e2 = e4

N h2
15 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3 + e4, e1e4 = e4, e2e1 = e2, e3e1 = e3,

e4e1 = e4
N h2

16 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3 + e4, e1e4 = e4, e2e1 = e2, e2e2 = e4,
e3e1 = e3, e4e1 = e4

N h2
17 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3 + e4, e1e4 = e4, e2e1 = e2, e2e2 = 2e3 + αe4,

e2e3 = e4, e3e1 = e3, e3e2 = e4, e4e1 = e4
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