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Abstract. We introduce post-Lie algebra structures on pairs of Lie algebras (g, n) defined on
a fixed vector space V . Special cases are LR-structures and pre-Lie algebra structures on Lie
algebras. We show that post-Lie algebra structures naturally arise in the study of NIL-affine
actions on nilpotent Lie groups. We obtain several results on the existence of post-Lie algebra
structures, in terms of the algebraic structure of the two Lie algebras g and n. One result is,
for example, that if there exists a post-Lie algebra structure on (g, n), where g is nilpotent,
then n must be solvable. Furthermore special cases and examples are given. This includes a
classification of all complex, two-dimensional post-Lie algebras.

1. Introduction

Post-Lie algebras have been introduced recently by Vallette in [17], in connection with homol-
ogy of partition posets, and the study of Koszul operads. Moreover, they have been discussed
in several articles of Loday, see for example [15] and the references given therein. Further-
more, post-Lie algebras also turned up in relation with the classical Yang-Baxter equation
in [1]. In this paper, we will show that these algebras also naturally appear in yet another
context, namely in that of affine actions on Lie groups. Let N be a real, connected and sim-
ply connected nilpotent Lie group. Then the group Aff(N) = N o Aut(N) acts by so called
NIL-affine transformations on N via the rule (m,α)n = m · α(n) for all m,n ∈ N and for all
α ∈ Aut(N). For the special case where N = Rn, we obtain the usual group of affine trans-
formations Aff(Rn) = Rn o GLn(R) acting by affine transformations on Rn. Suppose that G
is a connected and simply connected solvable Lie group of dimension n. In the seventies J.
Milnor posed a famous question in [16], whether or not any such G would admit a representa-
tion ρ : G → Aff(Rn), letting G act simply transitively on Rn. This question received a lot of
attention, including several articles trying to prove a positive answer. However, finally it turned
out that the answer was negative [3, 4]. The main ingredient in this study was the notion of
a pre-Lie algebra. On the other hand, it was shown [2, 12] that for any such G there exists
a nilpotent Lie group N and an embedding ρ : G ↪→ Aff(N), letting G act simply transitively
on N . This result was, among other things, a motivation to study pairs of Lie groups (G,N)
where G acts simply transitively via NIL-affine transformations on N . In [9],[10] and [11] we
have obtained results for several cases. Just as in the usual affine setting, the translation of the
problem to the Lie algebra level plays a crucial role. As we will explain at the end of section
2, it turns out that in this more general setting, one is naturally led to study post-Lie algebra
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structures on a pair (g, n) of Lie algebras. In particular, the notion of a post-Lie algebra appears
again.

Not only motivated by this geometric context, but also because of the usefulness in several
other mathematical fields, it is our aim to start in this paper a more detailed algebraic study
of post-Lie algebra structures.

2. Post-Lie algebra structures

Pre-Lie algebras play an important role in many areas, in particular in geometry and physics,
see [5] for a survey. Novikov algebras are an important special case of pre-Lie algebras, see [7].
A post-Lie algebra is a certain generalization of a pre-Lie algebra. It has been defined by Valette
in [17]. We give here the definition such that the associated pre-Lie algebra is a left pre-Lie
algebra (also known as left symmetric algebra), whereas Valette uses right pre-Lie algebras
instead. In this paper all algebras will be finite dimensional over a field k of characteristic 0.

Definition 2.1. A post-Lie algebra (V, ·, { , }) is a vector space V over a field k equipped with
two k-bilinear operations x · y and {x, y}, such that (V, {, }) is a Lie algebra and

{x, y} · z = (y · x) · z − y · (x · z)− (x · y) · z + x · (y · z)(1)

x · {y, z} = {x · y, z}+ {y, x · z}(2)

for all x, y, z ∈ V .

If the bracket {x, y} is zero, then a post-Lie algebra is just a pre-Lie algebra. Condition
(2) says, that the left multiplication L(x), defined by L(x)y = x · y, is a derivation of the Lie
algebra (V, {, }).

Proposition 2.2. A post-Lie algebra (V, ·, {, }) has another associated Lie bracket, defined by
the formula

[x, y] = x · y − y · x+ {x, y}.(3)

Proof. We have [x, y] = −[y, x] and

[x, [y, z]] = [x, y · z − z · y + {y, z}]
= [x, y · z]− [x, z · y] + [x, {y, z}]
= x · (y · z)− (y · z) · x+ {x, y · z}
− x · (z · y) + (z · y) · x− {x, z · y}
+ x · {y, z} − {y, z} · x+ {x, {y, z}}.

It follows that
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[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = {x, {y, z}}+ {y, {z, x}}+ {z, {x, y}}
+ x · {y, z}+ {z, x · y} − {y, x · z}
+ y · {z, x}+ {x, y · z} − {z, y · x}
+ z · {x, y}+ {y, z · x} − {x, z · y}
+ (y · x) · z − y · (x · z)− (x · y) · z + x · (y · z)− {x, y} · z
+ (x · z) · y − x · (z · y)− (z · x) · y + z · (x · y)− {z, x} · y
+ (z · y) · x− z · (y · x)− (y · z) · x+ y · (z · x)− {y, z} · x
= 0.

�

It is also straightforward to verify the following statement.

Proposition 2.3. Let (V, ·, { , }) be a post-Lie algebra. The second Lie bracket satisfies the
identity

[x, y] · z = x · (y · z)− y · (x · z).(4)

This says that the map L : V → End(V ) given by x 7→ L(x) is a linear representation of
the Lie algebra (V, [ , ]). Since we have two Lie algebras (g, [ , ]) and (n, { , }) with the same
underlying vector space V , it is useful to call (g, n) a pair of Lie algebras. As sets or vector
spaces, g = n = V . The following structure arises in the study of NIL-affine actions of nilpotent
Lie groups, see theorem 2.15:

Definition 2.4. Let (g, n) be a pair of Lie algebras. A post-Lie algebra structure on the pair
(g, n) is a k-bilinear product x · y on V satisfying the following identities:

x · y − y · x = [x, y]− {x, y}(5)

[x, y] · z = x · (y · z)− y · (x · z)(6)

x · {y, z} = {x · y, z}+ {y, x · z}(7)

for all x, y, z ∈ V .

Evidently this just means that (V, ·, { , }) is a post-Lie algebra with associated second Lie
algebra g = (V, [ , ]). We can derive some more consequences of the above identities.

Lemma 2.5. The axioms of definition 2.4 imply the following identities:

{x, y} · z = (y · x) · z − y · (x · z)− (x · y) · z + x · (y · z)(8)

z · [x, y] = z · (x · y)− z · (y · x) + z · {x, y}(9)

[x · y, z] + [y, x · z]− x · [y, z] = (x · y) · z − (x · z) · y + y · (x · z)− x · (y · z)(10)

+ x · (z · y)− z · (x · y)

x · {y, z}+ y · {z, x}+ z · {x, y} = {[x, y], z}+ {[y, z], x}+ {[z, x], y}(11)

{x, y} · z + {y, z} · x+ {z, x} · y = {[x, y], z}+ {[y, z], x}+ {[z, x], y}(12)

+ [{x, y}, z] + [{y, z}, x] + [{z, x}, y]

for all x, y, z ∈ V .
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Proof. Using (5) and (6) we obtain

{x, y} · z = ([x, y]− x · y + y · x) · z
= [x, y] · z − (x · y) · z + (y · x) · z
= (y · x) · z − y · (x · z)− (x · y) · z + x · (y · z).

This gives (8) which is just (1). Identity (9) follows directly by (5). Using (5) and (7) we obtain

x · (y · z)− x · (z · y) = x · ([y, z]− {y, z})
= x · [y, z]− x · {y, z}
= x · [y, z]− {x · y, z} − {y, x · z}
= x · [y, z]− ([x · y, z] + z · (x · y)− (x · y) · z)

− ([y, x · z] + (x · z) · y − y · (x · z)).

This gives (10). Using (5),(7) and the Jacobi identity for { , } we have

0 = {{x, y}, z}+ {{y, z}, x}+ {{z, x}, y}
= {[x, y]− x · y + y · x, z}+ {[y, z]− y · z + z · y, x}+ {[z, x]− z · x+ x · z, y}
= {[x, y], z} − {x · y, z}+ {y · x, z}+ {[y, z], x} − {y · z, x}+ {z · y, x}
+ {[z, x], y} − {z · x, y}+ {x · z, y}
= {[x, y], z}+ {[y, z], x}+ {[z, x], y} − x · {y, z} − y · {z, x} − z · {x, y}.

This is (11). For (12) use (5) in the following way:

0 = {{x, y}, z}+ {{y, z}, x}+ {{z, x}, y}
= [{x, y}, z]− {x, y} · z + z · {x, y}+ [{y, z}, x]− {y, z} · x+ x · {y, z}
+ [{z, x}, y]− {z, x} · y + y · {z, x}.

By applying (11) the identity (12) follows. �

Let us give some easy, but useful examples of post-Lie structures.

Example 2.6. Suppose that the post-Lie algebra structure on (g, n) is given by the zero product.
Then (g, [ , ]) = (n, { , }).

Indeed, x · y = 0 implies [x, y] = {x, y} for all x, y ∈ V .

Example 2.7. If n is abelian, then a post-Lie algebra structure on (g, n) corresponds to a
pre-Lie algebra structure on g.

If {x, y} = 0 for all x, y ∈ V , then the conditions reduce to

x · y − y · x = [x, y],

[x, y] · z = x · (y · z)− y · (x · z),

i.e., x · y is a pre-Lie algebra structure on the Lie algebra g. Conversely, a pre-Lie algebra
structure on a Lie algebra g induces a post-Lie algebra structure on the pair of Lie algebras
(g, n), where n is the abelian Lie algebra on the same underlying vector space as g.
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Example 2.8. If g is abelian, then a post-Lie algebra structure on (g, n) corresponds to an
LR-structure on n.

If g is abelian, then the conditions reduce to

x · y − y · x = −{x, y}
x · (y · z) = y · (x · z),

(x · y) · z = (x · z) · y,
i.e., −x · y is an LR-structure on the Lie algebra n ([10]). This follows from (5), (6) and (10).
Conversely, an LR-structure on a Lie algebra n induces a post-Lie algebra structure on the pair
of Lie algebras (g, n), where g is the abelian Lie algebra on the same underlying vector space
as n.
If the Lie algebra n is complete, then we can say more on post-Lie algebra structures on (g, n).
Recall that a Lie algebra n is called complete, if Der(n) = ad(n) and Z(n) = 0.

Lemma 2.9. Suppose that x · y is a post-Lie algebra structure on (g, n), where n is complete.
Then there is a unique linear map ϕ : V → V such that x · y = {ϕ(x), y}, i.e., satisfying
L(x) = ad(ϕ(x)).

Proof. For any x ∈ V , we have L(x) ∈ Der(n) = ad(n). As n has trivial center, there is a
unique element ϕ(x) ∈ n such that L(x) = ad(ϕ(x)), which defines the map ϕ : V → V . For
x, x′, y ∈ V we have

{ϕ(x+ x′), y} = (x+ x′) · y
= x · y + x′ · y
= {ϕ(x) + ϕ(x′), y}.

It follows ϕ(x + x′) = ϕ(x) + ϕ(x′), because n has trivial center. In the same way we obtain
ϕ(λx) = λϕ(x), hence ϕ is linear. �

Inspired by the above, we now show the following result, which applies in particular for n
being semisimple.

Proposition 2.10. Let (g, n) be a pair of Lie algebras such that n has trivial center. Let
ϕ ∈ End(V ). Then the product x · y = {ϕ(x), y} is a post-Lie algebra structure on (g, n) if and
only if

{ϕ(x), y}+ {x, ϕ(y)} = [x, y]− {x, y},
ϕ([x, y]) = {ϕ(x), ϕ(y)}

for all x, y ∈ V .

Proof. Assume that x · y = {ϕ(x), y} is a post-Lie algebra structure on (g, n). Then the first
identity follows immediately from (5). The second one follows from (6) and the Jacobi identity
for n. For x, y, z ∈ V we have

{ϕ([x, y]), z} = [x, y] · z
= x · (y · z)− y · (x · z)

= x · {ϕ(y), z} − y · {ϕ(x), z}
= {ϕ(x), {ϕ(y), z}} − {ϕ(y), {ϕ(x), z}}
= {{ϕ(x), ϕ(y)}, z}.
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Since Z(n) = 0 the claim follows, i.e., the map ϕ : g→ n is a Lie algebra homomorphism.
Conversely, one can also show that when the two identities are satisfied, the product x · y =
{ϕ(x), y} does define a post-Lie algebra structure on (g, n). �

The next result shows that we have a correspondence between post-Lie algebra structures on
(g, n) and embeddings g ↪→ n o Der(n), where we recall that the Lie bracket on n o Der(n) is
given by

[(x,D), (x′, D′)] = ({x, x′}+D(x′)−D′(x), [D,D′]).

Proposition 2.11. Let x · y be a post-Lie algebra structure on (g, n). Then the map

ϕ : g→ noDer(n), x 7→ (x, L(x))

is an injective homomorphism of Lie algebras. Conversely any such embedding, with the identity
map on the first factor yields a post-Lie algebra structure onto (g, n).

Proof. Let x · y be a post-Lie algebra structure on (g, n). We have

[ϕ(x), ϕ(y)] = [(x, L(x)), (y, L(y))]

= ({x, y}+ x · y − y · x, [L(x), L(y)])

= ([x, y], L([x, y]))

= ϕ([x, y]),

where we have used (5),(6),(7). Conversely, if we have a given embedding ϕ(x) = (x, L(x)) with
a derivation L(x), define x · y by L(x)y. Then the identities (5),(6),(7) follow as above. �

We obtain the following result.

Proposition 2.12. There is a 1-1 correspondence between the post-Lie algebra structures on
(g, n) and the subalgebras h of noDer(n) for which the projection p1 : noDer(n)→ n onto the
first factor induces a Lie algebra isomorphism of h onto g.

Note that as vector spaces n = V = g, so that p1 can indeed be seen as a map onto g.

Proof. Assume that there exists a post-Lie algebra structure on (g, n), and denote by ϕ the
corresponding embedding as above. Then h = imϕ = {(x, L(x)) | x ∈ g} is the Lie subalgebra
corresponding to g. It is obviously a subalgebra of n o Der(n) and ϕ induces an isomorphism
of g onto h. It is clear that the restriction of p1 to h is the inverse of this isomorphism, and so
is itself an isomorphism.

Conversely, let h be a subalgebra of n o Der(n), for which p1|h : h → g is an isomorphism.
Then the inverse map

ϕ = (p1|h)
−1 : g→ h ≤ noDer(n)

is an embedding inducing the identity on the first factor. Hence, by proposition 2.11, ϕ deter-
mines a post-Lie algebra structure on (g, n).

In the above, we showed how to assign a subalgebra h to a post-Lie algebra structure and
vice versa. It is obvious that these two operations are each others inverse. �

Remark 2.13. Given a Lie algebra n, let h be any subalgebra of n o Der(n) for which the
projection p1 onto the first factor is a bijection. Then, for any x ∈ n, there is exactly one
L(x) ∈ Der(n) such that (x, L(x)) ∈ h. We can define a new Lie bracket on n by

[x, y] := p1([(x, L(x)), (y, L(y))])
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and denote the corresponding Lie algebra by g. Now, ϕ : g → h, x 7→ (x, L(x)) is an isomor-
phism of Lie algebras, and x·y := L(x)y is the post-Lie algebra structure on (g, n) corresponding
to h.

In the special case where n is semisimple we can say more on the above 1-1 correspondence.
Then Der(n) = ad(n) = n, and the Lie algebra no Der(n) = no n is isomorphic to the direct
sum n⊕n. Indeed, the map ψ : non→ n⊕n, (x, y) 7→ (x+ y, y) is a Lie algebra isomorphism.

Proposition 2.14. Let n be a semisimple Lie algebra. Then there is a 1-1 correspondence
between the post-Lie algebra structures on (g, n) and the subalgebras h of n ⊕ n for which the
map p1−p2 : n⊕n→ n : (x, y) 7→ x−y induces an isomorphism of h onto g. Here pi : n⊕n→ n
denotes projection onto the i-th factor (i = 1, 2).

Proof. This follows from proposition 2.12 by noting that a subalgebra h of n o n for which p1
induces an isomorphism of h on g corresponds via ψ to a subalgebra h′ = ψ(h) of n ⊕ n such
that p1 − p2 : n⊕ n → n, (x, y) 7→ x− y induces an isomorphism of h′ on g. This is visualized
by the following diagram:

h ≤ no n
p1 //

ψ
��

n

h′ ≤ n⊕ n.

ψ−1

OO

p1−p2

99ssssss

�

We conclude this section by showing how post-Lie algebra structures arise naturally in the
study of NIL-affine actions of Lie groups. We say here that a post-Lie algebra structure is
complete if all left multiplications are nilpotent.

Theorem 2.15. Let G and N be connected, simply connected nilpotent Lie groups with associ-
ated Lie algebras g and n. Then there exists a simply transitive NIL-affine action of G on N if
and only if there is a Lie algebra g′ ' g, with the same underlying vector space as n, such that
the pair of Lie algebras (g′, n) admits a complete post-Lie algebra structure.

Proof. Let G and N be connected, simply connected nilpotent Lie groups with corresponding
Lie algebras respectively g and n. Let ρ : G→ Aff(N) be a representation with corresponding
differential dρ : g → n o Der(n) : x 7→ (t(x), D(x)). Recall that aff(n) = n o Der(n) is the Lie
algebra of the Lie group Aff(N). Then ρ induces a simply transitive NIL-affine action of G on
N if and only if dρ is a complete NIL-affine structure on g ([9, Theorem 3.1]). This means that
dρ is a Lie algebra homomorphism such that t : g → n : x 7→ t(x) is bijective and such that
D(x) is nilpotent for all x ∈ g.

Now suppose we have a complete post-Lie algebra structure on a pair of Lie algebras (g′, n)
where g′ is isomorphic to g, say via ψ : g→ g′. Hence, by proposition 2.11, we have that

ϕ : g′ → noDer(n), x 7→ (x, L(x))

is an injective Lie algebra homomorphism such that all L(x) are nilpotent. The composition
ϕ ◦ ψ : g→ noDer(n) is then clearly a complete NIL-affine structure on g.

For the converse statement suppose that dρ : g → n o Der(n) : x 7→ (t(x), D(x)) is a
complete NIL-affine structure on g. Then h = dρ(g) is a Lie subalgebra of noDer(n) for which
the projection on the first factor induces a bijection of h on n since t is bijective. By remark
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2.13 this gives rise to a post-Lie algebra structure on (g′, n), where the Lie bracket on g′ is given
by

(x, y) = p1([(x,D(t−1(x))), (y,D(t−1(y)))]),

and p1 is the projection on the first factor. The left multiplications are given by L(x) =
D(t−1(x)), so these are all nilpotent and hence the post-Lie structure is complete. Note that g
is isomorphic to h which is in its turn isomorphic to g′. �

3. Special cases and examples

Before studying more structural results concerning post-Lie algebras in the next section, it
might be useful to present some obvious examples.

Proposition 3.1. Suppose (g, n) is a pair of Lie algebras and let λ 6∈ {0, 1}. Then x·y = λ[x, y]
defines a post-Lie algebra structure on (g, n) if and only if {x, y} = (1 − 2λ)[x, y], and both g
and n are nilpotent of class at most 2.

Proof. Suppose that x · y = λ[x, y] defines a post-Lie algebra structure on (g, n). Then (5)
implies {x, y} = (1− 2λ)[x, y]. By (6) and the Jacobi identity for g we obtain

λ[[x, y], z] = [x, y] · z
= x · (y · z)− y · (x · z)

= λ2[x, [y, z]]− λ2[y, [x, z]]
= λ2[[x, y], z].

Because λ 6= 0, 1 this yields [[x, y], z] = {{x, y}, z} = (x · y) · z = 0.
Conversely, let (g, n) be a pair of nilpotent Lie algebras of class ≤ 2 with {x, y} = (1−2λ)[x, y],
and x · y = λ[x, y]. Obviously, the identities (5), (6) are satisfied. To show (7), we use that
{x, y} = µx · y with µ = 1−2λ

λ
:

x · {y, z} = µx · (y · z)

= µλ2[x, [y, z]]

= µλ2[[x, y], z] + µλ2[y, [x, z]]

= µ (x · y) · z + µ y · (x · z)

= {x · y, z}+ {y, x · z}.
�

Note that for λ = 1
2

we have x · y = 1
2
[x, y] and {x, y} = 0. Hence n is abelian, and the

product defines a pre-Lie algebra structure (even a Novikov structure) on g (still assuming g is
nilpotent of class ≤ 2), see example 2.7.

It is easy to discuss the cases λ = 0, 1 which we have excluded above. For λ = 0 we have the
zero product x · y = 0 with [x, y] = {x, y}, see example 2.6. It gives a trivial post-Lie algebra
structure on (g, g) for any g. For λ = 1 we have x ·y = [x, y] = −{x, y}. This defines a post-Lie
algebra structure on (g,−g) for any g.

Remark 3.2. We have an analogous result for post-Lie algebra structures defined by x · y =
µ{x, y}. For µ 6∈ {0,−1} this means that [x, y] = (1+2µ){x, y}, and both g and n are nilpotent
of class at most 2. In fact, we obtain the same post-Lie algebra structures as above, except
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for the case µ = −1
2
, where g is abelian, and x · y = −1

2
{x, y} defines an LR-structure on a

nilpotent Lie algebra n of class ≤ 2.

Another special case arises if {x, y} = ρ[x, y] for some nonzero scalar ρ.

Example 3.3. Let ρ 6∈ {0, 1} and {x, y} = ρ[x, y]. Then x·y defines a post-Lie algebra structure
on (g, n) if and only if

x · y − y · x = (1− ρ)[x, y]

(1− ρ)(x · (y · z)− y · (x · z)) = (x · y) · z − (y · x) · z
x · (y · z)− y · (x · z) = (x · y) · z − z · (x · y)− (x · z) · y + x · (z · y).

This says that x · y is a certain deformed pre-Lie product on g. In general, it seems difficult
to classify such products. For semisimple Lie algebras however it is possible, see [8].
There is also the interesting case ρ = 1, i.e., {x, y} = [x, y].

Example 3.4. Let {x, y} = [x, y]. Then x · y defines a post-Lie algebra structure on (g, n) if
and only if

x · y = y · x
[x, y] · z = x · (y · z)− y · (x · z)

x · [y, z] = [x · y, z] + [y, x · z].

Hence x · y is a commutative product on g such that the operators L(x) are derivations, and
L([x, y]) = [L(x), L(y)]. For semisimple Lie algebras this can be classified, see [8]. In general,
this seems to be difficult. Already for the Heisenberg Lie algebra n3(C) there are many such
structures: let (e1, e2, e3) be a basis of C3 and define the non-zero Lie brackets of g and n by
[e1, e2] = e3, {e1, e2} = e3.

Example 3.5. Let g = n = n3(C) and α, β, γ ∈ C with β 6= 0. Then

e1 · e1 = e1 − β−1e2 + αe3

e1 · e2 = e2 · e1 = βe1 − e2 +
γ + αβ2

2β
e3

e2 · e2 = β2e1 − βe2 + γe3

defines a commutative post-Lie algebra structure on (g, n), where we did not write down the
zero products between basis vectors.

In the following we want to classify all complex two-dimensional post-Lie algebras (V, ·, { , }).
Of course, two post-Lie algebras (V, ·, { , }) and (W, ·, { , }) are isomorphic if and only if there
exists a bijective linear map ϕ : V → W , which preserves both products:

ϕ(x · y) = ϕ(x) · ϕ(y),

ϕ({x, y}) = {ϕ(x), ϕ(y)},
for all x, y ∈ V . It is obvious that isomorphic post-Lie algebras have isomorphic associated Lie
algebras g and n.

Now, if (V, ·, { , }) is a two-dimensional complex post-Lie algebra, then the associated Lie
algebras are either C2, or r2(C), the non-abelian Lie algebra of dimension 2. In our classification,
we distinguish between four cases, depending on the isomorphism types of these associated Lie
algebras.
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Case 1: (g, [ , ]) and (n, { , }) are abelian.

There is a basis (e1, e2) of V such that [e1, e2] = {e1, e2} = 0. Then (5) says that x · y = y · x
for all x, y ∈ V , (6) says that x · (y · z) = y · (x · z) for all x, y, z ∈ V , and (7) says 0 = 0. This
implies

x · (z · y) = x · (y · z) = y · (x · z) = (x · z) · y,
so that post-Lie algebra structures on (C2,C2) correspond to 2-dimensional commutative and
associative algebras. The classification is well known, see for example [6]:

V Products [ , ] { , }
V1 − [e1, e2] = 0 {e1, e2} = 0
V2 e1 · e1 = e1 [e1, e2] = 0 {e1, e2} = 0
V3 e1 · e1 = e1, e2 · e2 = e2 [e1, e2] = 0 {e1, e2} = 0
V4 e1 · e2 = e1, e2 · e1 = e1, [e1, e2] = 0 {e1, e2} = 0

e2 · e2 = e2
V5 e2 · e2 = e1 [e1, e2] = 0 {e1, e2} = 0

Case 2: (g, [ , ]) is abelian, and (n, { , }) is not abelian.

We may choose a basis (e1, e2) of V such that [e1, e2] = 0 and {e1, e2} = −e1. Then post-Lie
algebra structures on (C2, r2(C)) are just LR-structures on n, which we have classified in [9]:

V Products [ , ] { , }
V6 e1 · e1 = e1, e2 · e1 = −e1 [e1, e2] = 0 {e1, e2} = −e1
V7 e1 · e2 = e1 [e1, e2] = 0 {e1, e2} = −e1
V8 e2 · e1 = −e1 [e1, e2] = 0 {e1, e2} = −e1

Note that (V8, ·) is also an LSA (left-symmetric algebra).

Case 3: (g, [ , ]) is not abelian, and (n, { , }) is abelian.

We may choose a basis (e1, e2) of V such that [e1, e2] = e1 and {e1, e2} = 0. Then post-Lie
algebra structures on (r2(C),C2) are just LSA-structures (pre-Lie algebra structures) on g,
which we have classified in [6]:

V Products [ , ] { , }
V9(α) e2 · e1 = −e1, e2 · e2 = αe2 [e1, e2] = e1 {e1, e2} = 0
V10(β) e1 · e2 = βe1, e2 · e1 = (β − 1)e1, [e1, e2] = e1 {e1, e2} = 0
β 6= 0 e2 · e2 = βe2
V11 e2 · e1 = −e1, e2 · e2 = e1 − e2 [e1, e2] = e1 {e1, e2} = 0
V12 e1 · e1 = e2, e2 · e1 = −e1 [e1, e2] = e1 {e1, e2} = 0

e2 · e2 = −2e2
V13 e1 · e2 = e1, e2 · e2 = e1 + e2 [e1, e2] = e1 {e1, e2} = 0

Note that (V9(0), ·) is also a complete LR-algebra.

Case 4: (g, [ , ]) and (n, { , }) are not abelian.

We may choose a basis (e1, e2) of V such that [e1, e2] = α1e1 + α2e2 with (α1, α2) 6= (0, 0), and
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{e1, e2} = e1. Note that we cannot make further assumptions on α1 or α2. On the other hand,
the conditions (5), (6), (7) become very restrictive. They immediately imply that α2 = 0, and
hence α1 6= 0. We can easily list all possible products in this case, regardless of post-Lie algebra
isomorphism. We obtain two families of algebras, the first one given by

e2 · e1 = (1− α1)e1, e2 · e2 = αe1,

where α is an arbitrary complex number, and the second one given by

e1 · e2 = −e1, e2 · e1 = −α1e1, e2 · e2 = βe1,

where β is an arbitrary complex number. Let ϕ = (ϕij) ∈ End(V ). It is an automorphism of
n if and only if ϕ21 = 0, ϕ22 = 1 and det(ϕ) = ϕ11 6= 0. Applying these automorphisms we
obtain the classification of the above products as post-Lie algebras:

V Products [ , ] { , }
V14,α1 , α1 6= 0 e2 · e1 = (1− α1)e1 [e1, e2] = α1e1 {e1, e2} = e1

V15 e2 · e2 = e1 [e1, e2] = e1 {e1, e2} = e1
V16,α1 , α1 6= 0 e1 · e2 = −e1, e2 · e1 = −α1e1 [e1, e2] = α1e1 {e1, e2} = e1

V17 e1 · e2 = −e1, e2 · e1 = e1 [e1, e2] = −e1 {e1, e2} = e1
e2 · e2 = e1

The algebras (V14,α1 , ·) and (V15, ·) are LR and LSA, but the algebras (V16,α1 , ·) and (V17, ·) are
not. They satisfy a new identity, namely

x · (y · z) + y · (x · z) + z · (x · y) = (y · z) · x+ (x · z) · y + (x · y) · z

for all x, y, z ∈ V .

4. Structure results for g and n

The existence of post-Lie algebra structures on a pair of Lie algebras (g, n) imposes certain
algebraic conditions on g and n. In particular, the algebraic structures of g and n depend on
each other in a certain way. We will show, for example, that if g is nilpotent and (g, n) admits
a post-Lie algebra structure, then n must be solvable. But first we study the situation in which
n is 2–step nilpotent.

Lemma 4.1. Let n be a 2-step nilpotent Lie algebra and m be the abelian Lie algebra with the
same underlying vector space as n. Then

ψ : noDer(n)→ moDer(m) = mo gl(m),

(x,D) 7→
(
x,

1

2
ad(x) +D

)
is an embedding of Lie algebras.

Proof. The map is obviously an injective linear map. It remains to show that it is a Lie
algebra homomorphism. Since n is 2-step nilpotent we have ad([x, y]) = 0. Using the identity
[D, ad(x)] = ad(D(x)) we obtain



12 D. BURDE, K. DEKIMPE, AND K. VERCAMMEN

ψ([(x1, D1), (x2, D2)]) = ψ(([x1, x2] +D1(x2)−D2(x1), [D1, D2]))

=
(

[x1, x2] +D1(x2)−D2(x1),
1

2
ad(D1(x2))

−1

2
ad(D2(x1)) + [D1, D2]

)
.

On the other hand we have

[ψ((x1, D1)), ψ((x2, D2))] =
[(
x1,

1

2
ad(x1) +D1

)
,
(
x2,

1

2
ad(x2) +D2

)]
=

(1

2
ad(x1)(x2)−

1

2
ad(x2)(x1) +D1(x2)−D2(x1),[1

2
ad(x1) +D1,

1

2
ad(x2) +D2

])
=

(
[x1, x2] +D1(x2)−D2(x1),

1

2
[ad(x1), D2]

+
1

2
[D1, ad(x2)] + [D1, D2]

)
=

(
[x1, x2] +D1(x2)−D2(x1),

1

2
ad(D1(x2))

−1

2
ad(D2(x1)) + [D1, D2]

)
.

�

Proposition 4.2. Suppose that there exists a post-Lie algebra structure on (g, n), where n is
2-step nilpotent. Then g admits a pre-Lie algebra structure. In particular, g is not semisimple.

Proof. Proposition 2.11 and the above lemma imply that also (g,m) admits a post-Lie algebra
structure. Since m is abelian, g admits a pre-Lie algebra structure, see example 2.7. A complex
semisimple Lie algebra does not admit a pre-Lie algebra structure, see [5], [8]. �

If we assume that g is nilpotent, we obtain the following result.

Proposition 4.3. Suppose that there exists a post-Lie algebra structure on (g, n), where g is
nilpotent. Then n is solvable.

Proof. Consider the map

ϕ : g→ noDer(n), x 7→ (x, L(x))

induced by the post-Lie algebra structure. Then h = L(g) is a nilpotent Lie algebra. We claim
that no h = ϕ(g)⊕ h. Indeed, for (x, y) ∈ no h we have

(x, y)− ϕ(x) = (x, y)− (x, L(x)) = (0, y − L(x)).

Hence (x, y) = ϕ(x) + (0, y − L(x)) ∈ ϕ(g) ⊕ h. Conversely, for (x, y) ∈ ϕ(g) ⊕ h there exist
a, b ∈ g such that

(x, y) = ϕ(a) + (0, L(b)) = (a, L(a) + L(b)) = (a, L(a+ b)) ∈ no h.
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It follows that no h is the direct vector space sum of two nilpotent Lie algebras. Goto [13] has
shown that the sum of two nilpotent Lie algebras is solvable. Hence no h is solvable, and so n
itself is solvable. �

Proposition 4.4. Suppose that there exists a post-Lie algebra structure on (g, n), where n is
solvable and non-nilpotent. Then g is not perfect.

Proof. By assumption the nilradical nil(n) of n is different from n. We have to show that
g 6= [g, g]. For all x ∈ n the left multiplication L(x) is a derivation of n. Any derivation D
satisfies D(rad(n)) ⊆ nil(n). Since n is solvable we have D(n) ⊆ nil(n). In particular we have
n · n ⊆ nil(n). It follows that for any x, y ∈ g we have

[x, y] = x · y − y · x+ {x, y} ∈ nil(n).

This implies [g, g] ⊆ nil(n)  n = g as vector spaces, so that g 6= [g, g]. �

Corollary 4.5. Suppose that there exists a post-Lie algebra structure on (g, n) with g = sl2(C).
Then n is isomorphic to sl2(C).

Proof. Suppose that n is nilpotent. Because of dim(n) = 3, this would mean that it is 2-step
nilpotent or abelian. This is a contradiction to proposition 4.2 and example 2.7. On the other
hand, n cannot be solvable, non-nilpotent by proposition 4.4. It follows that n is isomorphic to
sl2(C). �

On a pair of simple Lie algebras (g, n) only trivial post-Lie algebra structures are possible:

Proposition 4.6. Let x · y be a post-Lie algebra structure on (g, n), where both g and n are
simple. Then either x · y = 0 for all x and y and [x, y] = {x, y}, or x · y = [x, y] = −{x, y}.

Proof. By proposition 2.14, any such post-Lie algebra structure corresponds to a subalgebra h
of n⊕ n for which the map p1 − p2 : n⊕ n→ n induces an isomorphism of h onto g. Since g is
simple, h is simple too. Both projections maps p1 and p2 are Lie algebra homomorphisms onto
n. Hence the kernels ker(p1(h)) and ker(p2(h)) are ideals in h, and hence must be either 0 or h.
This yields three possible cases:

Case 1: p2(h) = 0: Then we have h = {(x, 0) | x ∈ n}. Because L(x) = ad(0) = 0 for all x ∈ n
we have x · y = 0 and [x, y] = {x, y} for all x, y ∈ n. In particular, g = n.

Case 2: p1(h) = 0: Then we have h = {(0, x) | x ∈ n}, and L(x) = − ad(x). It follows that
[x, y] = −{x, y} for all x, y ∈ n. Hence g = −n.

Case 3: p1(h) 6= 0 and p2(h) 6= 0: Then we have ker(p1|h) = ker(p2|h) = 0. Hence p1 and
p2 are both bijective when restricted to h. This implies that there is a bijective linear map
ϕ : n → n such that h = {(x, ϕ(x)) | x ∈ n}. As h is a subalgebra of n ⊕ n, we know that
[(x, ϕ(x)), (y, ϕ(y))] ∈ h for all x, y ∈ n. So ({x, y}, {ϕ(x), ϕ(y)}) = (z, ϕ(z)) for some z ∈ n. It
follows that z = {x, y} and hence

ϕ({x, y}) = ϕ(z) = {ϕ(x), ϕ(y)}.
This shows that ϕ ∈ Aut(n). By a result of Jacobson [14], λ = 1 must be an eigenvalue of
ϕ. But then p1 − p2 : h → g : (x, ϕ(x)) 7→ x − ϕ(x) cannot be an isomorphism. This is a
contradiction. Hence this case cannot occur. �

The next result classifies the possible 3-dimensional Lie algebras g for which the pair (g, n)
with n = sl2(C) admits a post-Lie algebra structure. We denote by r3,λ(C) the series of solvable,
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non-nilpotent Lie algebras with basis (e1, e2, e3) and Lie brackets [e1, e2] = e2, [e1, e3] = λe3.
Here λ ∈ C is a parameter. For λ = 0 we obtain the decomposible Lie algebra r2(C)⊕ C.

Proposition 4.7. Suppose that there exists a post-Lie algebra structure on (g, n), where n is
sl2(C). Then g is isomorphic to sl2(C) or to one of the Lie algebras r3,λ(C) for λ 6= −1.
Moreover, all these possibilities do occur.

Proof. Assume first that there exists a post-Lie algebra structure on (g, n) for n = sl2(C). Then
g cannot be nilpotent by proposition 4.3. As we have seen, the case g = sl2(C) is possible.
It remains to consider the 3-dimensional solvable, non-nilpotent Lie algebras. They are given
by the Lie algebras r3,λ(C), and the Lie algebra r3(C), with Lie brackets [e1, e2] = e2 and
[e1, e3] = e2 + e3. By proposition 2.14 a post-Lie algebra structure on (g, n) corresponds to a
subalgebra h of n⊕ n for which the map p1− p2 : n⊕ n→ n : (x, y) 7→ x− y induces a bijection
when restricted to h. Note that g is isomorphic to h in this case. In other words, we want
to classify the 3-dimensional solvable, non-nilpotent Lie algebras h for which there exists an
injective Lie algebra homomorphism α such that (p1 − p2) ◦ α is bijective:

h
α //

(p1−p2)◦α ""EEEEEEEEE n⊕ n

p1−p2
��
n

Since both p1 ◦α and p2 ◦α are Lie algebra homomorphisms, their kernels are ideals of h. If one
of them equals h, then the post-Lie algebra product is either zero, or it is given by x ·y = [x, y].
In both cases h is isomorphic to sl2(C), as we have seen before. Suppose that one of these kernels
equals zero. Then this map is an injective Lie algebra homomorphism, so that h ' n is simple.
Hence, if h is not simple, then ker(p1 ◦ α) and ker(p2 ◦ α) are both non-trivial ideals of h. As a
consequence we may assume that h is one of the Lie algebras r3(C) or r3,λ(C). The non-trivial
ideals of r3(C) are represented by 〈e2〉 and 〈e2, e3〉. But then p1(α(e2)) = p2(α(e2)) = 0, so that
((p1− p2) ◦α)(e2) = 0. Hence (p1− p2) ◦α is not bijective when restricted to h = r3(C). Hence
there exists no post-Lie algebra structure on (g, n) with n = sl2(C) and g ' r3(C). Similarly
we see that there is no post-Lie algebra structure for the unimodular Lie algebra r3,−1(C). This
also follows from a general result in [8].
On the other hand it is easy to find a post-Lie algebra structure on (g, n) for n = sl2(C) and
g ' r3,λ(C) for all λ 6= −1 by direct calculation: let α 6= β be two complex parameters. If the
brackets of n are given by

{e1, e2} = e3, {e1, e3} = −2e1, {e2, e3} = 2e2,

then the following product

e2 · e1 = −αe1 + e3, e3 · e1 = 2β
α−βe1,

e2 · e2 = αe2 + α2−β2

4
e3, e3 · e2 = − 2β

α−βe2 − βe3,

e2 · e3 = β2−α2

2
e1 − 2e2, e3 · e3 = 2βe1,
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defines a post-Lie algebra structure on (g, n), where g is given by the Lie brackets

[e1, e2] = αe1,

[e1, e3] = − 2α

α− β
e1,

[e2, e3] =
β2 − α2

2
e1 +

2β

α− β
e2 + βe3.

For β 6= 0 and λ = −α/β 6= −1 it is isomorphic to r3,λ(C). �

Remark 4.8. As we have seen in corollary 4.5, a post-Lie algebra structure on (g, n) with
g = sl2(C) only exists if n is isomorphic to sl2(C). In that case we have just the two post-Lie
algebra structures x · y = 0, or x · y = [x, y], see proposition 4.6. In [8] we show that if there
exists a post-Lie algebra structure on (g, n) with g semisimple, then n cannot be solvable. For
dim(g) = 3 this again yields corollary 4.5.

Proposition 4.9. Let x · y be a post-Lie algebra structure on (g, n), where g is simple and n
is semisimple. Then n is also simple and either x · y = 0 and [x, y] = {x, y}, or x · y = [x, y] =
−{x, y}.

Proof. We know that the map L : g → Der(n) = ad(n) ' n, x 7→ L(x) is a Lie algebra
homomorphism. Its kernel is an ideal in g. If L is the zero map, then x · y = 0 for all x, y ∈ g.
Otherwise L is a monomorphism and g embedds into n, so that n ' g is also simple. The claim
follows from proposition 4.6. �
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[3] Y. Benoist: Une nilvariété non affine. C. R. Acad. Sci. Paris Sér. I Math., 1992, 315 pp. 983–986.
[4] D. Burde, F. Grunewald, Modules for certain Lie algebras of maximal class, J. Pure Appl. Algebra 99

(1995), 239–254.
[5] D. Burde: Left-symmetric algebras, or pre-Lie algebras in geometry and physics. Central European Journal

of Mathematics 4 (2006), no. 3, 323–357.
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