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Abstract. We describe three methods to determine a faithful representation of
small dimension for a finite-dimensional nilpotent Lie algebra over an arbitrary
field. We apply our methods in finding bounds for the smallest dimension µ(g) of
a faithful g-module for some nilpotent Lie algebras g. In particular, we describe
an infinite family of filiform nilpotent Lie algebras fn of dimension n over Q and
conjecture that µ(fn) > n+1. Experiments with our algorithms suggest that µ(fn)
is polynomial in n.

1. Introduction

The Ado-Iwasawa theorem asserts that every finite-dimensional Lie algebra over
an arbitrary field has a faithful finite-dimensional representation. A constructive
proof for this theorem in characteristic 0 has been given in [5]. It has been imple-
mented as an algorithm in the computer algebra systems GAP and Magma.

Here we consider a variation on this theme: we introduce three algorithms for com-
puting a faithful finite-dimensional representation for a finite-dimensional nilpotent
Lie algebra over an arbitrary field. They take as input a nilpotent Lie algebra g
given by a structure constants table and can be briefly summarized as follows.

• Our first algorithm uses an action of g on a quotient of the universal enveloping
algebra of g. It is based on ideas in [2].

• The second algorithm constructs a finite-dimensional faithful submodule of the
dual of the universal enveloping algebra of g. The resulting module is minimal
in the sense that it has no faithful quotients or submodules.

• The third algorithm uses a randomised method to try to construct a faithful
representation in dimension dim(g) + 1. It uses induction on a central series
of g, in each step extending the representation by means of a cohomological
construction.

The methods described here are practical. In particular, all three methods are
usually more efficient than the general algorithm given in [5]. We include a report
on various applications of our GAP implementation of our algorithms below.
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A central aim in the design of our algorithms was the idea to try to construct a
faithful representation of possibly small dimension of a given nilpotent Lie algebra.
In particular, our three algorithms usually determine representations which are a lot
smaller than the representation obtained by the algorithm from [5]. Our algorithms
can therefore be used to determine good upper bounds for the minimal possible
dimension µ(g) of a faithful module of the nilpotent Lie algebra g.

The interest in the invariant µ(g) is motivated, among other things, by problems
from geometry and topology. For example, Milnor and Auslander studied general-
izations of crystallographic groups; these are related to µ(g) as follows: let Γ be a
finitely-generated, torsion-free nilpotent group of rank n with real Malcev comple-
tion GΓ. Then, if Γ is the fundamental group of a compact complete affinely-flat
manifold, it follows that µ(gΓ) ≤ n+ 1 for the Lie algebra gΓ of GΓ. Another moti-
vation for studying µ(g) is based on the result that the Lie algebra g of a Lie group
G admitting a left-invariant affine structure satisfies µ(g) ≤ n + 1. In the context
of these two results Milnor conjectured that any solvable Lie group should admit a
left-invariant affine structure. The algebraic formulation of this conjecture implies
that µ(g) ≤ dim(g) + 1 should hold for the Lie algebra g of G.

There are counter-examples known to Milnor’s conjecture. Indeed, there are in-
finitely many filiform nilpotent Lie algebras of dimension 10 which do not have any
faithful module of dimension n+ 1. We refer to [3] for details and background.

Here we describe an infinite family of Lie algebras fn of dimension n for n ≥ 13
and we use our algorithms to study the invariant µ(fn) for these Lie algebras. We
conjecture that these Lie algebras do not have a faithful representation of dimension
n + 1. But our experiments suggest that µ(fn) is polynomial in n for these Lie
algebras.

2. Using quotients of the universal enveloping algebra

Let g be a finite-dimensional nilpotent Lie algebra over an arbitrary field. By gm,
m ≥ 1, we denote the terms of the lower central series of g. If x1, . . . , xd is a basis
of g, then the formal products xα1

1 · · ·xαd
d with αi ∈ N form a basis of the universal

enveloping algebra U(g).
We define the weight wgt(x) of an element x ∈ g as the maximal m with x ∈ gm.

The weight of a basis element of U(g) is then defined by

wgt(xα1
1 · · ·xαd

d ) =
d∑

i=1

αiwgt(xi)

Let Um(g) = 〈xα | wgt(xα) ≥ m〉 the ideal in U(g) generated by all basis elements
of weight at least m for some m ≥ 1. The following theorem is proved in [1],[2].

Theorem 2.1. If g is nilpotent of class c, then g acts faithfully on U(g)/U c+1(g)
by multiplication from the left. If the considered basis of g contains bases for gm for
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every m ≥ 1, then the resulting representation has the dimension

ν(d, c) =
c∑

j=0

(
d− j

c− j

)
p(j),

where p(j) is the number of partitions of j with p(0) = 1.

This theorem yields a straightforward algorithm to construct a faithful module
for g. We consider a basis of g which contains bases of gm for every m. We form
the space V spanned by all basis elements of weight at most c in U(g). An element
x ∈ g acts on V by left multiplication, where we treat any element of weight at least
c+ 1 as zero. We demonstrate this algorithm in the following example.

Example 2.2. Let g be the 3-dimensional Heisenberg Lie algebra spanned by x, y, z
with non-zero bracket [x, y] = z. The nilpotency class of g is 2. We form the space
spanned by the basis elements of U(g) of weight at most 2. These are

1, x, y, z, x2, xy, y2.

Thus we obtain a 7-dimensional representation for g. It is straightforward to deter-
mine this representation explicitly by computing actions. For example, y · x = yx =
xy − z and x · xy = x2y = 0.

The modules resulting from this simple and very efficient algorithm still have
rather large dimension. In the remainder of this section, we describe two methods
to determine a module of smaller dimension from this given module. As a first step,
we note that a nilpotent Lie algebra g acts faithfully on a module if and only if its
center Z(g) acts faithfully. Thus if I is an ideal in U(g) such that I ∩ Z(g) = 0,
then L acts faithfully on U(g)/I.

For our first method we assume that the considered basis of g additionally contains
a basis for the center Z(g). We wish to determine an ideal I in U(g) which has
possibly small codimension and satisfies that I ∩ Z(g) = 0. Let B be the set of
all basis elements of weight at least c + 1 in U(g) and initialise I = 〈B〉. We now
iterate the following procedure: let a be one of the finitely many basis elements of
U(g) not contained in I and not contained in Z(g). If xa ∈ I for all x ∈ g, then we
add a to B and thus enlarge I without destroying the property I ∩ Z(g) = 0. This
approach usually yields a rather small dimensional faithful representation of g. We
demonstrate this in the following example.

Example 2.3. We continue Example 2.2. We initialise B as the basis elements of
weight at least c + 1. Note that Z(g) = 〈z〉. Thus we consider for a the elements
x, y, x2, xy, y2. Of those, the elements x2, xy and y2 satisfy the condition of the
algorithm and thus we move these into B. Now also y satisfies the condition and
we also move y into B. Now I is an ideal of codimension 3 in U(g) and hence we
obtain a 3-dimensional faithful representation of g.

So we now have a procedure to construct a possibly small set of monomials, that
yields a faithful g-module: we first carry out the procedure of Theorem 2.1, and
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then the procedure outlined above, to make the set of monomials smaller. In the
sequel this algorithm will be called Regular.

A second method, that can be tried for any faithful g-module V , is to perform
the following algorithm on V .

(1) Compute the space S = {v ∈ V | x · v = 0 for all x ∈ g}.
(2) Compute the space C = {x · v | v ∈ V, x ∈ Z(g)}.
(3) Set M = S ∩ C and let W be a complement to M in S.
(4) If W = 0 then the algorithm stops, and the output is V . Otherwise, set

V := V/W , and return to (1).

We note that any subspace of S is a g-submodule of V . Therefore the quotient
V/W is a g-module. Let U be a complement to W in V such that C ⊂ U . Then
x · V ⊂ U for all x ∈ Z(g). So since Z(g) acts faithfully on V it acts faithfully on
V/W . Hence V/W is a faithful g-module.

Example 2.4. We consider the module of Example 2.2. Here we get

S = 〈z, x2, xy, y2〉
C = 〈z〉
W = 〈x2, xy, y2〉.

After taking the quotient we get a module spanned by (the images of) 1, x, y, z. For
this module we can perform the algorithm again. We get S = 〈y, z〉, C = 〈z〉,
W = 〈y〉. So we end up with a faithful module of dimension 3.

Now the complete algorithm to construct a small-dimensional faithful g-module
consists of first performing the algorithm Regular, followed by the quotient procedure
described above. This algorithm will be called Quotient.

3. Using the dual of the universal enveloping algebra

Now g acts on the dual U(g)∗ by x ·f(a) = f(−xa). Let z1, . . . , zr be a basis of the
center of g, which we assume to be a subset of the basis x1, . . . , xn. Let ψi ∈ U(g)∗

for 1 ≤ i ≤ r be defined by ψi(zi) = 1 and ψi(a) = 0 for any PBW-monomial not
equal to zi (note that this definition depends on the choice of basis of g).

Let ¯ : U(g) → U(g) be the antiautomorphism induced by x̄ = −x for x ∈ g.
Then for a, b ∈ U(g), f ∈ U(g)∗ we get a · f(b) = f(āb). (In other words, ¯ is the
antipode of U(g).) Note that ¯̄a = a.

Theorem 3.1. Let V be the g-submodule of U(g)∗ generated by ψ1, . . . , ψr. Then V
is a faithful finite-dimensional g-module. Moreover, V has no faithful g-submodules,
nor has it faithful quotients.

Proof. For k ≥ 1 let Uk(g) be as in Theorem 2.1. Let W = {f ∈ U(g)∗ |
f(U c+1(g)) = 0}. Then W is finite-dimensional (since U c+1(g) has finite codimen-
sion), and a g-submodule of U(g)∗ (since U c+1(g) is an ideal). Now V ⊂ W ; hence
V is finite-dimensional. Let z =

∑
i µizi be an element of the center of g. Then
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z · ψi(1) = −ψi(z) = −µi. So z acts as zero if and only if all µi are zero. So V is a
faithful module.

Let ψ0 ∈ U(g)∗ be defined by ψ0(1) = 1 and ψ0(a) = 0 for PBW-monomials a 6= 1.
Then ψ0 = −z1 · ψ1, so ψ0 ∈ V . Let f ∈ V , and suppose there is a PBW-monomial
a 6= 1 such that f(a) 6= 0. Then ā · f(1) = f(a) 6= 0. The conclusion is that ψ0

spans the space of elements that are killed by g. Set M = V/〈ψ0〉. Then M is not
a faithful g-module. Indeed, V has a basis consisting of a · ψi for 1 ≤ i ≤ r, and
various PBW-monomials a. Let z lie in the center of g; then for all PBW-monomials
b we get z · (a · ψi)(b) = ψi(ābz̄) which is zero unless a = b = 1 (note that z̄ = −z
also lies in the center of g). Furthermore, z · ψi = −µiψ0 (where z =

∑
j µjzj). It

follows that the center of g acts trivially on V/〈ψ0〉. In particular it is not a faithful
g-module. Now, since every g-submodule of V must contain ψ0, it follows that V
has no faithful quotients.

Let M ⊂ V be a faithful g-submodule. Let bij ∈ U(g) be such that {bijψi} is a
basis of V . We assume that bi1 = 1, and that the bij ∈ gU(g) if j > 1 (i.e., they
have no constant term). Then zi · bi1ψi = −ψ0 and zi · bkjψk = 0 if k 6= i or j > 1.
So since the center acts faithfully on M it follows that M contains elements of the
form

ϕi = ψi +
∑
j>1

1≤k≤r

ckjbkjψk,

for 1 ≤ i ≤ r. (Here ckj are coefficients in the ground field.) Now we introduce a
weight function on U(g)∗. For k ≥ 0 set Fk = {f ∈ U(g)∗ | f(Uk(g)) = 0}, where
Uk(g) is as in Theorem 2.1. Then 0 = F0 ⊂ F1 ⊂ · · · . We set wgt(f) = k if f ∈ Fk

but f 6∈ Fk−1. (For example: wgt(ψ0) = 1.) Let f ∈ U(g)∗ have weight k, and let
a ∈ U(g) with wgt(a) = t; then a calculation shows that wgt(a · f) ≤ k − t. Hence
bijϕi is equal to bijψi plus a sum of functions of smaller weight. So if we order the
bijψi according to weight, and express the bijϕi on the basis bijψi we get a triangular
system. We conclude that the bijϕi are linearly independent. Hence dimM = dimV
and M = V . �

The algorithm based on this theorem is straightforward. We illustrate it with an
example.

Example 3.2. Let g be the Lie algebra of Example 2.2. For a monomial a ∈ U(g)
we denote by ψa the element of U(g)∗ that takes the value 1 on a, and zero on all
other monomials. We compute a basis of the submodule of U(g)∗ generated by ψz.
We have x · ψz(a) = −ψz(xa) = 0 for all monomials a. Secondly, y · ψz(x) =
ψz(−yx) = ψz(−xy + z) = 1. So we get y · ψz = ψx. Furthermore, z · ψz = −ψ1

and g · ψ1 = 0, x · ψx = −ψ1, y · ψx = z · ψx = 0. So the result is a 3-dimensional
g-module.

Remark 3.3. Since we are working in the dual of an infinite-dimensional space it is
not immediately clear how to implement this algorithm. We proceed as follows. Let
V be as in Theorem 3.1. From the proof of Theorem 3.1 it follows that f(U(g)c+1) =
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0 for all f ∈ V . In other words, for all monomials a with wgt(a) ≥ c + 1 and all
f ∈ V we have f(a) = 0. It follows that we can represent an f ∈ V by the vector
containing the values f(a), where a runs through the monomials of weight ≤ c. This
enables us to perform the operations of linear algebra (testing linear dependence,
constructing bases of subspaces and so on) with the elements of V . Furthermore,
we can compute the action of elements of g on V .

The disadvantage of this approach is that the number of monomials that have to
be considered can be very large. So in the same way as in the previous section we
try to throw some monomials away. Let A be the set of monomials relative to which
we represent the elements of U(g)∗. At the start this will be the set of monomials of
weight ≤ c. Let B be the set of all other monomials. So at the outset B spans a left
ideal of U(g) and f(b) = 0 for all f ∈ V and b ∈ B. We move elements from A to
B, without changing this last property. Let a ∈ A be such that a 6∈ Z(g) and xa is
a linear combination of elements of B for all x ∈ g. Then we claim that f(a) = 0 for
all f ∈ V . In order to see this we use the basis {bijψi} used in the proof of Theorem
3.1. If j = 1 then bijψi(a) = ψi(a) = 0 as a 6∈ Z(g). If j > 1 then bij ∈ gU(g) and
hence b̄ija is a linear combination of elements in B. Hence bijψi(a) = 0. Also the
span of B along with a continues to be a left ideal. We conclude that we can move
a from A to B. We continue this process until we we do not find such monomials
any more. The resulting set is usually a lot smaller than the initial one.

We note that the procedure described in the previous remark is exactly the same
as the second phase of the algorithm Regular (see Section 2). So we first perform
the algorithm Regular, and use the resulting set of monomials to represent elements
of the dual of U(g). The resulting algorithm is called Dual.

4. Affine representations at random

Let g be a nilpotent Lie algebra of dimension d. A homomorphism ρ : g →
aff(Kd) ⊆ gld+1(K) into the Lie algebra of affine transformations

aff(Kd) ' gl(Kd) nKd

is called an affine representation of g. In this section we describe a method that tries
to determine a faithful affine representation of g of dimension d+ 1. If the method
succeeds, then it returns such a faithul representation of dimension d+ 1. However,
it may also happen that the method fails and does not return a representation. Also,
it is worth noting that the algorithm uses random methods and hence different runs
of the algorithm may produce different results.

The method uses induction on a central series in g. Thus we assume by induction
that we have given a central ideal I in g with dim(I) = 1 and a faithful affine
representation

ρ : g/I →Md(K).

Let {a1, . . . , ad} be a basis of g with I = 〈ad〉 and let Mi = ρ(ai+I) for 1 ≤ i ≤ d−1.
We assume that everyMi is a lower triangular matrix. Clearly, we can readily extend
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ρ to an affine representation of g with ρ(ai) = Mi for 1 ≤ i ≤ d where we set Md = 0
(so that ρ(ad) = 0). This extended representation has kernel I.

Our aim is to extend ρ to a faithful affine representation

ψ : g →Md+1(K)

such that

ψ(ai) =

(
Mi vi

0 0

)
for 1 ≤ i ≤ d,

for certain vectors vi ∈ Kd. The following lemma shows that the possible values for
vi can be determined using a cohomology computation. Recall that

Z1(g, Kd) = {ν : g → Kd linear | ν([x, y]) = ρ(x)ν(y)− ρ(y)ν(x)}

is the space of 1-cocycles with values in the ρ(g)-module Kd.

Lemma 4.1. ψ is a representation of g if and only if vi = δ(ai) for 1 ≤ i ≤ d for
some δ ∈ Z1(g, Kd).

Proof. Let δ ∈ Z1(g, Kd) with δ(ai) = vi. The linearity of δ implies that ψ is
linear. The defining condition for maps in Z1(g, Kd) implies that ψ is a Lie algebra
representation. The converse follows with similar arguments. �

Note that Z1(g, Kd) is a vector space over K and can be computed readily using
linear algebra methods. The computation of Z1(g, Kd) allows to describe all affine
representations of g extending ρ. It remains to determine the faithful representation
among these.

Lemma 4.2. ψ is faithful if and only if vd+1 6= 0.

Proof. If ψ is faithful, then vd+1 6= 0. Conversely, suppose that vd+1 6= 0. As ρ is
faithful, it follows that ker(ψ) ⊆ I. As vd+1 6= 0, we find that ker(ψ) = 0. �

These ideas can be combined to the following algorithm.

(1) Choose a central series g = g0 > g1 > . . . > gd > gd+1 = 0 of ideals in g such
that dim(gi/gi+1) = 1.

(2) by induction, extend a faithful affine representation from g/gi to g/gi+1:
- Compute Z1(g/gi+1, K

i).
- Choose a δ ∈ Z1(g/gi+1, K

i) with δ(ai) 6= 0.
- If no such δ exists, then return fail.
- If δ exists, then extend ρ to g/gi+1.

If g has a faithful affine representation of dimension d+1, then this algorithm can
in principle find it. However, it may be that a “wrong” choice of a δ at a certain
step may cause the algorithm to fail at a later step.

The algorithm is based on linear algebra only and hence is very effective. It often
suceeds in finding a faithful representation in dimension d+ 1 if it exists.
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5. A series of filiform nilpotent Lie algebras

LetK be a field of characteristic zero. In this section we define a filiform Lie algeba
fn in each dimension n ≥ 13 having interesting properties concerning Lie algebra
cohomology, affine structures and faithful representations. In fact, we believe that
the algebras fn are counter examples to the conjecture of Milnor mentioned in the
introduction, i.e., that µ(fn) ≥ n + 2 holds. Hence it is interesting to compute the
invariants µ(fn).

Define an index set In by

I0
n = {(k, s) ∈ N× N | 2 ≤ k ≤ [n/2], 2k + 1 ≤ s ≤ n},

In =

{
I0

n if n is odd,

I0
n ∪ {(n

2
, n)} if n is even.

Now fix n ≥ 13. We define a filiform Lie algebra fn of dimension n over K as
follows. For (k, s) ∈ In let αk,s be a set of parameters, subject to the following
conditions: all αk,s are zero, except for the following ones:

α`,2`+1 =
3(

`
2

)(
2`−1
`−1

) , ` = 2, 3, . . . , bn−1
2
c,

α3,n−4 = 1,

α4,n−2 =
1

7
+

10

21

(n− 7)(n− 8)

(n− 4)(n− 5)
,

α4,n =

{
22105
15246

, if n = 13,

0 if n ≥ 14,

and

α5,n =
1

42
− 70(n− 8)

11(n− 2)(n− 3)(n− 4)(n− 5)
+

25

99

(n− 6)(n− 7)(n− 8)

(n− 2)(n− 3)(n− 4)

+
5

66

(n− 5)(n− 6)

(n− 2)(n− 3)
− 65

1386

(n− 7)(n− 8)

(n− 4)(n− 5)
.

Let (e1, . . . , en) be a basis of fn and define the Lie brackets as follows:
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[e1, ei] = ei+1, i = 2, . . . , n− 1

[ei, ej] =
n∑

r=1

( b j−i−1
2

c∑
`=0

(−1)`

(
j − i− `− 1

`

)
αi+`, r−j+i+2`+1

)
er, 2 ≤ i < j ≤ n.

In order to show that this defines a Lie bracket we need the following lemma
which follows from the Pfaff–Saalschütz sum formula:

Lemma 5.1. We have the following identities for all n ≥ 13:

bn−1
2

c∑
`=3

(−1)`−1

(
n− `− 5

`− 2

)
α`,2`+1 =

(n− 7)(n− 8)

(n− 4)(n− 5)
,

bn−1
2

c∑
`=5

(−1)`

(
n− `− 5

`− 4

)
α`,2`+1 = − 1

70
+

12(n− 8)

(n− 2)(n− 3)(n− 4)(n− 5)
,

bn−1
2

c∑
`=3

(−1)`

(
n− `− 3

`− 2

)
α`,2`+1 = −(n− 5)(n− 6)

(n− 2)(n− 3)
.

Proposition 5.2. The Jacobi identity is satisfied, so that fn is a Lie algebra for any
n ≥ 13.

Proof. Let n ≥ 14 and choose the parameters αk,s as follows. Consider αk,2k+1,
k = 3, . . . , bn−1

2
c and α4,n−2, α5,n as free variables. Let the remaining parameters be

zero, except for α2,5 = 1, α3,7 6= 0 and α3,n−4 = 1. The Jacobi identity is equivalent
to a system of polynomial equations in the free parameters. First we obtain the
equation α3,7(10α3,7 − α2,5) = 0, so that α3,7 = 1

10
. More generally we see that

(`− 1) · α`,2`+1 = (4`+ 2) · α`+1,2`+3, ` = 2, 3, . . . , bn−1
2
c.

This implies the given explicit formula for all α`,2`+1. Secondly we obtain

α4,n−2 =
α4,9

α3,7

+
α4,9

3α2
3,7

bn−1
2

c∑
`=3

(−1)`−1

(
n− `− 5

`− 2

)
α`,2`+1,
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α5,n =
1

α4,9 + α3,7 − 2α2,5

−4α4,9 +

bn−1
2

c∑
`=5

(−1)`

(
n− `− 5

`− 4

)
α`,2`+1



+
1

α4,9 + α3,7 − 2α2,5

α4,n−2

13α4,9 +

bn−1
2

c∑
`=3

(−1)`

(
n− `− 3

`− 2

)
α`,2`+1

 .

This amounts to the given formulas in the definition of fn, if we substitute the
identities from Lemma 5.1. Conversely this also shows that the Jacobi identity is
satisfied if the free parameters are given in this way.
For n = 13 there is one difference. The parameter α4,n coincides with the parameter
α4,13, which is given by

α4,13 =
α3,9(−α5,13 + 6α4,11 − 5α3,9)

α3,7 + 2α2,5

,

and cannot be chosen to be zero. For n ≥ 14 the choice α4,n = 0 is consistent with
the Jacobi identity. �

Example 5.3. The parameters for f13 are given as follows:

α2,5 = 1, α3,7 =
1

10
, α4,9 =

1

70
, α5,11 =

1

420
, α6,13 =

1

2310
,

α3,9 = 1, α4,11 =
43

126
, α4,13 =

22105

15246
, α5,13 =

313

3388
.

The algebras fn belong to the family of filiform Lie algebras A2
n(K) defined in [3].

Let us recall the following definition.

Definition 5.4. Let g be a filiform nilpotent Lie algebra of dimension n. A 2–
cocycle ω ∈ Z2(g, K) is called affine, if ω : g ∧ g → K does not vanish on z(g) ∧ g.
A class [ω] ∈ H2(g, K) is called affine if every representative is affine.

The cohomology class [ω] ∈ H2(g, K) of an affine 2-cocycle ω is affine and nonzero.
If a filiform Lie algebra g of dimension n ≥ 6 has second Betti number b2(g) = 2,
then there exists no affine cohomology class.
We have shown in [3] that a filiform Lie algebra g which has an affine cohomology
class, admits a central extension

0 → a
ι−→ h

π−→ g → 0

with some Lie algebra h and ι(a) = z(h), and has an affine structure. In particular,
such a Lie algebra has a faithful representation of dimension n+ 1.
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We can conclude from the results in [3] that the Lie algebras fn do not have an affine
structure arising this way.

Proposition 5.5. The algebras fn, n ≥ 13 have second Betti number b2(fn) = 2.
Hence there exists no affine cohomology class [ω] ∈ H2(g, K). In particular there is
no central Lie algebra extension as above.

For Lie algebras in A2
n(K) the second Betti number is 3 or 2, depending on whether

a certain polynomial identity α3,n−4 = P in the free parameters does hold or does
not hold. For fn we have chosen the parameters in such a way that P ≡ 0 and
α3,n−4 = 1. This implies that b2(fn) = 2.

It follows that a very natural way to obtain a faithful representation of dimension
n + 1 does not work. In fact, we believe that there is no such representation at all
for these algebras:

Conjecture 5.6. The Lie algebras fn, n ≥ 13 do not have any faithful representation
of dimension n+ 1, i.e., µ(fn) ≥ n+ 2.

For n = 13 a very complicated analysis of possible faithful representations seems
to confirm this conjecture. In general our methods are not sufficient to prove this
for all n ≥ 14. Even more difficult of course is the determination of µ(fn).

6. Practical experiences

We implemented all the algorithms described above in the computer algebra sys-
tem GAP. In this section we report on the application of these implementations to
various examples. From Section 2 we have the algorithms Regular and Quotient.
From Section 3 we have the algorithm Dual. Finally the algorithm of Section 4 is
called Affine.

In all our experiments Quotient and Dual returned faithful representations of the
same dimension (with Dual being slightly faster). This is illustrated in Table 3.
We believe that there must be an intrinsic reason for this to happen, such as one
module being the dual of the other. But we have no proof of that. We only exhibit
the results of Dual in Tables 1 and 2, noting that the results for Quotient are similar
in all cases.

All computations were done on a 2GHz processor with 1GB of memory for GAP.

6.1. Upper triangular matrix Lie algebras. The upper triangular matrices in
Mn(F) form a nilpotent Lie algebra Un(F) with n−1 generators and class n−1. We
applied our algorithms to some Lie algebras of this type. The results are recorded
in Table 1.

Table 1 exhibits that the underlying field does not have much impact on the
runtime or the result. The larger the dimension of the considered Lie algebra is,
the more superior is Affine. It yields small dimensional representations and is the
fastest of all methods.
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n F dim(Un(F)) Regular Dual Affine
time dim time dim time dim

4 F2 6 0.0 7 0.1 5 0.0 7
5 F2 10 0.25 15 0.3 11 0.3 11
6 F2 15 3.4 35 3.6 17 3.5 16
7 F2 21 65 79 66 35 45 22
4 F3 6 0.0 7 0.0 5 0.0 7
5 F3 10 0.2 15 0.3 11 0.3 11
6 F3 15 3.4 35 3.6 17 3.7 16
7 F3 21 65 79 67 35 46 22
4 Q 6 0.0 7 0.0 5 0.0 7
5 Q 10 0.2 15 0.3 11 0.3 11
6 Q 15 3.0 35 3.2 17 3.6 16
7 Q 21 66 79 67 35 45 22

Table 1. Running times (in seconds) for Un(F).

6.2. Free nilpotent Lie algebras. Next we consider the free nilpotent Lie algebras
with n generators of class c over the field F, denoted Nn,c(F).

n c F dim(Nn,c(F)) Regular Dual Affine
time dim time dim time dim

2 5 Q 14 0.2 20 0.3 20 0.5 15
2 6 Q 23 0.9 34 1.3 34 8.4 24
2 7 Q 41 3.2 65 4.8 65 / /
2 8 Q 71 14 117 21 117 / /
3 4 Q 32 0.8 41 1.7 41 54 33
3 5 Q 80 11.5 113 17.5 113 / /
4 3 Q 30 0.9 36 1.3 36 37 31
4 4 Q 90 13 113 19.7 113 / /

Table 2. Running times (in seconds) for Nn,c(Q).

Table 2 displays the time in seconds for the three algorithms, with input Nn,c. The
/ in the last two columns indicates that the algorithm Affine did not succeed, either
because it made the “wrong” choice at some stage, or due to Memory problems: for
its cohomology computation it has to solve a system of linear equations which is of
the size O(dim(g)2) and this can be time-and space consuming.

6.3. The Lie algebras fn. Finally, we consider the Lie algebras fn of the previous
section. The results of that are contained in Table 3.
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n Regular Quotient Dual Affine
time dim time dim time dim

13 8.6 85 14 43 12.3 43 /
14 17 105 28 53 24.7 53 /
15 33 145 63 64 50 64 /
16 64 185 125 77 102 77 /
17 123 256 323 94 218 94 /
18 234 316 731 111 461 111 /
19 487 433 1844 134 1162 134 /
20 920 538 4009 158 3039 158 /

Table 3. Running time (in seconds) for the Lie algebras fn.

Table 3 displays the time in seconds for the algorithms Quotient and Dual, with
input fn. The / in the last column indicates that the algorithm Affine did not
succeed. In this case, this was due to the fact that Affine did not find any possible
faithful representation of dimension n+ 1. Of course, if our conjecture on fn holds,
then it cannot succeed.

Note that the dimensionals of the determined modules for fn are significantly
larger than n + 1. However, they do not seem to grow very fast. Some naive tests
with least squares fits seem to suggest that the dimensions grow quadratically or
cubically.

6.4. Some comments. From the above tables we conclude that if Affine succeeds,
then it usually finds a module of significantly smaller dimension than Regular, Quo-
tient or Dual. This supports the suggested strategy to try this algorithm first.
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