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Abstract. We study ideals of Novikov algebras and Novikov structures on finite-dimensional
Lie algebras. We present the first example of a three-step nilpotent Lie algebra which does not
admit a Novikov structure. On the other hand we show that any free three-step nilpotent Lie
algebra admits a Novikov structure. We study the existence question also for Lie algebras of
triangular matrices. Finally we show that there are families of Lie algebras of arbitrary high
solvability class which admit Novikov structures.

1. Introduction

A Novikov algebra is a special kind of a pre-Lie algebra, or left-symmetric algebra, arising in
many contexts in mathematics and physics. Pre-Lie algebras already have been introduced by
Cayley in 1896 via rooted tree algebras. Vinberg classified convex homogeneous cones using
pre-Lie algebras, Milnor and Auslander discovered the connection to affinely flat manifolds
and their fundamental groups. Recently Connes, Kreimer and Kontsevich introduced pre-Lie
algebras in mathematical physics, for quantum field theory and renormalization theory. Also
Bakalov and Kac have used pre-Lie algebras in the study of vertex algebras. For a survey on
this topic see [3].
On the other hand, Novikov algebras in particular were introduced in the study of Hamiltonian
operators in the context of integrability of certain nonlinear partial differential equations. They
also appear in the study of Poisson brackets of hydrodynamic type, see [1], and operator Yang-
Baxter equation. Since then the algebraic structure of Novikov algebras has been studied by
many authors. One of the first results here has been obtained by Zelmanov, see [6]. It is our
aim to continue this study.
Let k be a field of characteristic zero. A Novikov algebra and, more generally, an LSA is defined
as follows:

Definition 1.1. An algebra (A, ·) over k with product (x, y) 7→ x · y is called a left-symmetric
algebra (LSA), if the product is left-symmetric, i.e., if the identity

(1) x · (y · z)− (x · y) · z = y · (x · z)− (y · x) · z
is satisfied for all x, y, z ∈ A. The algebra is called Novikov, if in addition

(2) (x · y) · z = (x · z) · y
is satisfied.

Denote by L(x), R(x) the left, respectively right multiplication operator in the algebra (A, ·).
Then an LSA is a Novikov algebra if the right multiplications commute:

[R(x), R(y)] = 0.
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It is well known that LSAs are Lie-admissible algebras: the commutator

(3) [x, y] = x · y − y · x
defines a Lie bracket. The associated Lie algebra is denoted by gA. The adjoint operator can
be expressed by ad(x) = L(x)−R(x).
If A is a Novikov algebra, then we obtain, by expanding the condition 0 = [R(x), R(y)] =
[L(x)− ad(x), L(y)− ad(y)], the following operator identity:

(4) L([x, y]) + ad([x, y])− [ad(x), L(y)]− [L(x), ad(y)] = 0.

Definition 1.2. An affine structure on a Lie algebra g over k is a left-symmetric product
g × g → g satisfying (3) for all x, y ∈ g. If the product is Novikov, we say that g admits a
Novikov structure.

A given Lie algebra need not admit a Novikov structure, or an affine structure. The existence
question for affine structures is very hard in general. It is more accessible for Novikov structures.
For results, background and references see, for example, [2],[3] and [4].

2. Ideals in Novikov algebras

In this section we will present some structure theory concerning ideals in Novikov algebras. For
related results in this direction see also [1], [6]. We start with two identities which are similar
to the Jacobi identity for Lie algebras.

Lemma 2.1. Let (A, ·) be a Novikov algebra. Then we have, for all x, y, z ∈ A:

[x, y] · z + [y, z] · x + [z, x] · y = 0,

x · [y, z] + y · [z, x] + z · [x, y] = 0.

The proof is straightforward.
Next we show that the product of two ideals is again an ideal.

Lemma 2.2. Let (A, ·) be a Novikov algebra and I, J be two-sided ideals of A. Then I · J is
also a two-sided ideal of A.

Proof. Let a ∈ A, x ∈ I and y ∈ J . Then the identity

a · (x · y) = (a · x) · y + x · (a · y)− (x · a) · y
shows that a · (x · y) ∈ I · J . Because of (x · y) · a = (x · a) · y we also have (x · y) · a ∈ I · J . �

We also show that the commutator of two ideals is again an ideal.

Lemma 2.3. Let (A, ·) be a Novikov algebra and assume that I, J are two-sided ideals of A.
Then [I, J ] is also a two-sided ideal of A.

Proof. Let a ∈ A, x ∈ I and y ∈ J . The operator identity (4) implies that

0 = [x, y] · a + [[x, y], a]− [x, y · a] + y · [x, a]− x · [y, a] + [y, x · a]

= [x, y] · a + [[x, y], a]− [x, y · a] + [y, x · a] + (y · [x, a] + x · [a, y] + a · [y, x])− a · [y, x]

= [x, y] · a + [[x, y], a]− [x, y · a] + [y, x · a] + a · [x, y]

= [x, y] · a + [[x, y], a]− [x, y · a] + [y, x · a] + [x, y] · a + [a, [x, y]]

= 2[x, y] · a + [y, x · a]− [x, y · a].
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The term in brackets above vanishes because of lemma 2.1. From this we deduce

[x, y] · a =
1

2
([x, y · a]− [y, x · a]) ∈ [I, J ],

a · [x, y] = [x, y] · a + [a, [x, y]] ∈ [I, J ],

which was to be shown. �

Let (A, ·) be a Novikov algebra. Denote by

γ1(A) = γ1(gA) = A

γi+1(A) = γi+1(gA) = [A, γi(A)]

the terms of the lower central series of A, respectively gA. Furthermore denote by

A(0) = g
(0)
A = A

A(i+1) = g
(i+1)
A = [A(i), A(i)]

the terms of the derived series of A, respectively gA. Then the above lemma immediately
implies the following result:

Corollary 2.4. Let (A, ·) be a Novikov algebra. Then all γi(A), and all A(i) are two-sided ideals
of A.

The ideals of the lower central series satisfy the following property.

Lemma 2.5. Let (A, ·) be a Novikov algebra. Then we have

γi+1(A) · γj+1(A) ⊆ γi+j+1(A)

for all i, j ≥ 0.

Proof. We will show this by induction on i ≥ 0. The case i = 0 follows from the fact that
γj+1(A) is an ideal in A, see corollary 2.4. Assume now that γk(A) · γj+1(A) ⊆ γk+j(A) for all
k = 1, . . . , i.
Let x ∈ γ1(A), y ∈ γi(A) and z ∈ γj+1(A). We have to show that [x, y] · z ∈ γi+j+1(A). The
first identity of lemma 2.1 says, that [x, y] · z + [y, z] · x + [z, x] · y = 0. By (3) we have

[z, x] · y = y · [z, x] + [[z, x], y].

Then y · [z, x] ∈ γi+j+1(A) by induction hypothesis, and [[z, x], y] ∈ γi+j+2(A). It follows that
[z, x] · y ∈ γi+j+1(A). Similarly we obtain [y, z] · x ∈ γi+j+1(A). Now the first identity of lemma
2.1 implies [x, y] · z ∈ γi+j+1(A). �

Denote the center of a Novikov algebra A by Z(A) = {x ∈ A | x · y = y · x for all y ∈ A}. Note
that Z(A) is also the center of the associated Lie algebra gA.

Lemma 2.6. Let (A, ·) be a Novikov algebra. Then Z(A) · [A, A] = [A, A] · Z(A) = 0.

Proof. Let a, b ∈ A and z ∈ Z(A). Again by lemma 2.1 we have

z · [a, b] + a · [b, z] + b · [z, a] = 0.

Since z is also in the center of the associated Lie algebra of A we obtain z·[a, b] = 0. Furthermore
we have

0 = [z, [b, a]] = z · [b, a]− [b, a] · z
= [a, b] · z.

�
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Lemma 2.7. Let (A, ·) be a Novikov algebra. Then Z(A) is a two-sided ideal of A.

Proof. Let z ∈ Z(A). For any b ∈ A we have the following two identities

[L(b), L(z)] = L([b, z]) = 0,

[R(b), R(z)] = 0.

Because z ∈ Z(A) we have R(z) = L(z). Hence we also have [L(b), R(z)] = 0, so that

0 = [L(b)−R(b), R(z)] = [ad(b), R(z)].

In particular it follows [b, a · z]− [b, a] · z = 0 for all a ∈ A. By Lemma 2.6 we have [b, a] · z = 0,
hence [b, a · z] = 0. Because this is true for every b ∈ A, we can conclude that a · z ∈ Z(A).
Since z ∈ Z(A) we also have z · a ∈ Z(A). �

Let Z1(A) = Z(A) and define Zi+1(A) by the identity Zi+1(A)/Zi(A) = Z(A/Zi(A)). Note
that the Zi(A) are the terms of the upper central series of the associated Lie algebra gA. As
an immediate consequence of the previous lemma, we obtain

Corollary 2.8. Let (A, ·) be a Novikov algebra. Then all terms Zi(A) of the upper central
series of A are two-sided ideals of A.

Denote by (x, y, z) = x · (y · z)− (x · y) · z the associator of three elements in A.

Lemma 2.9. Let A be a Novikov algebra and one of the elements x, y, z in Z(A). Then
(x, y, z) = 0.

Proof. In any LSA we have the identity

(x, y, z) = x · [y, z] + [z, x · y] + [x, z] · y.

If z ∈ Z(A), then this implies (x, y, z) = 0. If y ∈ Z(A) then also x · y ∈ Z(A) by lemma 2.7,
and [A, A] · Z(A) = 0 by lemma 2.6. Hence the above identity implies (x, y, z) = 0. The same
argument shows the claim for x ∈ Z(A). �

3. Novikov structures on 3-step nilpotent Lie algebras

In [4, Remark 4.11] it was questioned whether or not there exists a 3-step nilpotent Lie algebra
not admitting a Novikov structure. In the same paper it was shown that a Novikov structure
does exist when the 3-step nilpotent Lie algebra g can be generated by at most 3 elements.
This result was obtained by first considering a Novikov structure on the free 3-step nilpotent
Lie algebra f on 3 generators and then it was shown that g could be realized as a quotient
g = f/I, where I is an ideal of f seen as a Novikov algebra.

Having this in mind, we first study the free 3-step nilpotent case.

Proposition 3.1. Let g be a free 3-step nilpotent Lie algebra on n generators x1, x2, . . . , xn.
Then g admits a Novikov structure.

Proof. As a vector space, g has a basis

x1, x2, . . . , xn,

yi,j = [xi, xj], (1 ≤ i < j ≤ n),

zi,j,k = [xi, yj,k], (1 ≤ j < k ≤ n, 1 ≤ i ≤ k ≤ n).

Note that in case i > k, we have that

zi,j,k = [xi, yj,k] = [xi, [xj, xk]] = −[xj, [xk, xi]]− [xk, [xi, xj]] = −zj,k,i + zk,j,i.
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A Novikov structure on g is defined by

• If n ≥ i > j ≥ 1 then xi · xj = −yj,i.

• If 1 ≤ i ≤ j < k ≤ n then xi · yj,k =
zi,j,k

2
.

If 1 ≤ j < i < k ≤ n then xi · yj,k = − zj,i,k

2
+ zi,j,k.

If 1 ≤ j < k ≤ i ≤ n then xi · yj,k = zi,j,k.

• If 1 ≤ i ≤ j < k ≤ n, then yj,k · xi = − zi,j,k

2
.

If 1 ≤ j < i < k ≤ n, then yj,k · xi = − zj,i,k

2
.

All other products are zero.

By considering each of the above cases it is easy to see that the identity [a, b] = a · b − b · a
holds for all basis elements a and b. We have to show the following two other identities:

(a · b) · c− a · (b · c)− (b · a) · c + b · (a · c) = 0,

(a · b) · c− (a · c) · b = 0,

for all basis elements a, b and c. It is clear that we only have to consider the case where a = xi,
b = xj and c = xk: otherwise the two identities will be trivially satisfied, because any product
of the form yi,j · yk,l is zero, and any product that involves an element zi,j,k is also zero. For the
first condition we will consider the case 1 ≤ k < i < j ≤ n. We have

(xi · xj) · xk − xi · (xj · xk)− (xj · xi) · xk + xj · (xi · xk)

= −xi · (−yk,j)− (−yi,j) · xk + xj · (−yk,i)

= −zk,i,j

2
+ zi,k,j −

zk,i,j

2
− zj,k,i

= −zk,i,j + zi,k,j + zk,i,j − zi,k,j

= 0.

Similarly the other cases can be treated. For the second condition we consider the case 1 ≤
j < k < i ≤ n. We have

(xi · xj) · xk − (xi · xk) · xj = −yj,i · xk + yk,i · xj

=
zj,k,i

2
− zj,k,i

2
= 0.

Similarly the other cases can be shown. It follows that the product defines a Novikov structure
on g. �

As a motivation for what follows, we provide a detailed description in the four generator case.

Example 3.2. Let n = 4. Then dim g = 30. The nonzero Lie brackets and Novikov products
are given as follows.

[x1, x2] = y1,2

[x1, x3] = y1,3

[x1, x4] = y1,4

[x1, y1,2] = z1,1,2

[x1, y1,3] = z1,1,3

[x1, y1,4] = z1,1,4

[x1, y2,3] = z1,2,3

[x1, y2,4] = z1,2,4

[x1, y3,4] = z1,3,4
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[x2, x3] = y2,3

[x2, x4] = y2,4

[x2, y1,2] = z2,1,2

[x2, y1,3] = z2,1,3

[x2, y1,4] = z2,1,4

[x2, y2,3] = z2,2,3

[x2, y2,4] = z2,2,4

[x2, y3,4] = z2,3,4

[x3, x4] = y3,4

[x3, y1,2] = −z1,2,3 + z2,1,3

[x3, y1,3] = z3,1,3

[x3, y1,4] = z3,1,4

[x3, y2,3] = z3,2,3

[x3, y2,4] = z3,2,4

[x3, y3,4] = z3,3,4

[x4, y1,2] = −z1,2,4 + z2,1,4

[x4, y1,3] = −z1,3,4 + z3,1,4

[x4, y1,4] = z4,1,4

[x4, y2,3] = −z2,3,4 + z3,2,4

[x4, y2,4] = z4,2,4

[x4, y3,4] = z4,3,4

x1 · y1,2 = z1,1,2

2

x1 · y1,3 = z1,1,3

2

x1 · y1,4 = z1,1,4

2

x1 · y2,3 = z1,2,3

2

x1 · y2,4 = z1,2,4

2

x1 · y3,4 = z1,3,4

2
x2 · x1 = −y1,2

x2 · y1,2 = z2,1,2

x2 · y1,3 = −z1,2,3

2
+ z2,1,3

x2 · y1,4 = −z1,2,4

2
+ z2,1,4

x2 · y2,3 = z2,2,3

2

x2 · y2,4 = z2,2,4

2

x2 · y3,4 = z2,3,4

2
x3 · x1 = −y1,3

x3 · x2 = −y2,3

x3 · y1,2 = −z1,2,3 + z2,1,3

x3 · y1,3 = z3,1,3

x3 · y1,4 = −z1,3,4

2
+ z3,1,4

x3 · y2,3 = z3,2,3

x3 · y2,4 = −z2,3,4

2
+ z3,2,4

x3 · y3,4 = z3,3,4

2
x4 · x1 = −y1,4

x4 · x2 = −y2,4

x4 · x3 = −y3,4

x4 · y1,2 = −z1,2,4 + z2,1,4

x4 · y1,3 = −z1,3,4 + z3,1,4

x4 · y1,4 = z4,1,4

x4 · y2,3 = −z2,3,4 + z3,2,4

x4 · y2,4 = z4,2,4

x4 · y3,4 = z4,3,4

y1,2 · x1 = − z1,1,2

2

y1,3 · x1 = − z1,1,3

2

y1,3 · x2 = − z1,2,3

2

y1,4 · x1 = − z1,1,4

2

y1,4 · x2 = − z1,2,4

2

y1,4 · x3 = − z1,3,4

2

y2,3 · x1 = − z1,2,3

2

y2,3 · x2 = − z2,2,3

2

y2,4 · x1 = − z1,2,4

2

y2,4 · x2 = − z2,2,4

2

y2,4 · x3 = − z2,3,4

2

y3,4 · x1 = − z1,3,4

2

y3,4 · x2 = − z2,3,4

2

y3,4 · x3 = − z3,3,4

2

When trying to find an example of a 3-step nilpotent Lie algebra without a Novikov structure,
we know from [4] that such an example must have at least 4 generators. Any 3-step nilpotent
Lie algebra on 4 generators is a quotient g/I of the Lie algebra g described in example 3.2,
where I is an ideal of g. So, in order to find such a Lie algebra g/I without Novikov structure,
we have to choose an I which is certainly not an ideal of g, seen as a Novikov algebra. The
following proposition uses such an example.

Proposition 3.3. Consider the following 3-step nilpotent Lie algebra g on 4 generators of
dimension 13, with basis (x1, . . . , x13) and non-trivial Lie brackets

[x1, x2] = x5, [x3, x4] = −x5,

[x1, x4] = x6, [x3, x5] = −x11,

[x1, x6] = x10, [x3, x8] = x9,

[x1, x7] = x11, [x4, x5] = −x12,

[x1, x8] = x12, [x4, x6] = x9,

[x2, x3] = x7, [x4, x7] = x9 + x13.

[x2, x4] = x8,

[x2, x5] = x13,

[x2, x7] = x13,

This Lie algebra does not admit a Novikov structure.
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Note that g admits an affine structure since it is positively graded.

Proof. We will assume that g admits a Novikov structure and show that this leads to a con-
tradiction. We express the adjoint operators ad(xi) and the left (resp. right) multiplication
operators L(xi) (resp. R(xi)) as matrices with respect to the basis x1, x2, . . . , x13. The adjoint
operators ad(xi) are given by the Lie bracktes of g, while the left multiplication operators are
unknown. We denote the (j, k)-th entry of L(xi) by

L(xi)j,k = xi
j,k.

We use the convention that the j-th column of L(xi) gives the coordinates of L(xi)(xj). Note
that once the entries of the left multiplication operators are chosen, the right multiplication
operators are given by R(xi)j,k = xk

j,i. We have to satisfy all relations given by (1), (2) and (3),
where x, y and z run over all basis vectors. This leads to a huge system of quadratic equations
in the variables xi

j,k for 1 ≤ i, j, k ≤ 13, summing up to a total of 133 = 2197 variables. We
need to show that these equations are contradictory. At first sight, this seems to be a rather
hopeless task. However, we can use our knowledge on ideals in a Novikov algebra. Then we
find that a lot of unknowns xi

j,k already have to be zero. In the table below, we list the triples

(i, j, k) for which we already know that xi
j,k = 0:

1 ≤ i ≤ 13, 1 ≤ j ≤ 4, 5 ≤ k ≤ 13, because γ2(g) is an ideal.
1 ≤ i ≤ 13, 5 ≤ j ≤ 8, 9 ≤ k ≤ 13, because γ3(g) is an ideal.
5 ≤ i ≤ 13, 1 ≤ j ≤ 4, 1 ≤ k ≤ 4, because γ2(g) is an ideal.
5 ≤ i ≤ 13, 5 ≤ j ≤ 8, 5 ≤ k ≤ 8, because γ2(g) · γ2(g) ⊆ γ3(g).
5 ≤ i ≤ 13, 9 ≤ j ≤ 13, 9 ≤ k ≤ 13, because γ2(g) · γ3(g) = 0.
9 ≤ i ≤ 13, 5 ≤ j ≤ 8, 1 ≤ k ≤ 4, because γ3(g) is an ideal.
9 ≤ i ≤ 13, 9 ≤ j ≤ 13, 5 ≤ k ≤ 8, because γ3(g) · γ2(g) = 0.

It follows that 1421 of the xi
j,k have to be zero, leaving us with 776 variables.

On the other hand the conditions

ad(xi) = L(xi)−R(xi), 1 ≤ i ≤ 13.

yield a (large but very simple) system of linear equations; allowing us to determine 352 variables
xi

j,k in dependance of the remaining 776− 352 = 424 ones.
To get a further reduction we use that

xi · [xj, xk] + xj · [xk, xi] + xk · [xi, xj] = 0, 1 ≤ i < j < k ≤ 13,

which is the same as

L(xi)(ad(xj)xk) + L(xj)(ad(xk)xi) + L(xk)(ad(xi)xj) = 0, 1 ≤ i < j < k ≤ 13.

Again this leads to a system of linear equations, this time specifying 156 unknowns in terms of
the other ones, leaving 424− 156 = 268 variables.
Now, we consider the operator identity (4), i.e.,

L([xi, xj]) + ad([xi, xj])− [ad(xi), L(xj)]− [L(xi), ad(xj)] = 0, 1 ≤ i < j ≤ 13.

Note that for any pair (i, j), we can write [xi, xj] as a linear combination of the xk, 1 ≤ k ≤ 13.
Hence we can also write L([xi, xj]) as the corresponding linear combination of the L(xk). Doing
this, we obtain another system of linear equations, determining 210 extra variables, leaving
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268− 210 = 58 free variables.
Finally we use that the right multiplications have to commute, i.e.,

R(xi)R(xj)−R(xj)R(xi) = 0, 1 ≤ i < j ≤ 13.

This yields a system of quadratic equations, which is immediately contradictory. In fact, when
taking i = 1 and j = 2, one obtains the equation 0 = 1

8
, which is the desired contradiction. �

4. The (non) existence of Novikov structures on triangular matrix algebras

One of the most fundamental examples for solvable, resp. nilpotent Lie algebras are the Lie
algebras of upper-triangular, resp. strictly upper triangular matrices of size n over a field k,
which we denote by t(n, k), resp. n(n, k). It is therefore natural to ask, which of those Lie
algebras admit a Novikov structure. It turns out that such structures exist only in very small
dimensions.

Proposition 4.1. The Lie algebra n(n, k) admits a Novikov structure if and only if n ≤ 4.

Proof. If n ≤ 4, the Lie algebra n(n, k) is abelian (n = 2), 2-step nilpotent (n = 3) or 3-step
nilpotent and generated by 3 elements (n = 4). In any of these cases, we know that a Novikov
structure exists.
Now let n > 4 and suppose that n(n, k) admits a Novikov structure. Denote by ei,j the
elementary matrices, which have a 1 on the (i, j)-th position and a zero elsewhere. The ei,j

with 1 ≤ i < j ≤ n form a basis of n(n, k). The Lie bracket is given by

[ei,j, ek,l] = δj,kei,l − δi,lek,j.

Assume that (A, ·) defines a Novikov structure on n(n, k). Then some easy calculations, using
lemma 2.1 and identity (3) yield:

e1,2 · [e3,4, e4,5] + e3,4 · [e4,5, e1,2] + e4,5 · [e1,2, e3,4] = 0 ⇒ e1,2 · e3,5 = 0

e3,4 · [e4,5, e1,3] + e4,5 · [e1,3, e3,4] + e1,3 · [e3,4, e4,5] = 0 ⇒ e1,3 · e3,5 = −e4,5 · e1,4

e3,4 · [e4,5, e2,3] + e4,5 · [e2,3, e3,4] + e2,3 · [e3,4, e4,5] = 0 ⇒ e2,3 · e3,5 = −e4,5 · e2,4

e1,2 · [e4,5, e2,4] + e4,5 · [e2,4, e1,2] + e2,4 · [e1,2, e4,5] = 0 ⇒ e1,2 · e2,5 = −e4,5 · e1,4 = e1,3 · e3,5

e1,2 · [e2,3, e3,5] + e2,3 · [e3,5, e1,2] + e3,5 · [e1,2, e2,3] = 0 ⇒ e1,2 · e2,5 = −e3,5 · e1,3 = e1,3 · e3,5

[e1,3, e3,5]− e1,3 · e3,5 + e3,5 · e1,3 = 0 ⇒ e1,3 · e3,5 = e1,5/2 = −e3,5 · e1,3

[e1,4, e4,5]− e1,4 · e4,5 + e4,5 · e1,4 = 0 ⇒ e1,4 · e4,5 = e1,5/2 = −e4,5 · e1,4.

Applying the operator identity (4) for x = e1,2, y = e2,3 to z = e3,5, and using the above
computations, we find

0 = (L([e1,2, e2,3]) + ad[e1,2, e2,3]− [L(e1,2), ad(e2,3)]− [ad(e1,2), L(e2,3)])(e3,5)

= e1,3 · e3,5 + e1,5 − e1,2 · e2,5 − [e1,2, e2,3 · e3,5]

= e1,5 + [e1,2, e4,5 · e2,4]

= e1,5 + [e1,2, e2,4 · e4,5 + [e4,5, e2,4]].

It follows that [e1,2, e2,4 · e4,5] = 0. Furthermore it follows that

0 = (L([e1,2, e2,4]) + ad[e1,2, e2,4]− [L(e1,2), ad(e2,4)]− [ad(e1,2), L(e2,4)])(e4,5)

= e1,4 · e4,5 + e1,5 − e1,2 · e2,5 + [e2,4, e1,2 · e4,5]− [e1,2, e2,4 · e4,5]

= e1,5 + [e2,4, e1,2 · e4,5].
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However, this is impossible, since e1,5 6∈ [e2,4, n(n, k)]. This contradiction shows that there is
no Novikov structure on n(n, k) when n ≥ 5. �

As a consequence we can easily prove the following result.

Proposition 4.2. The Lie algebra t(n, k) admits a Novikov structure if and only if n ≤ 2.

Proof. It is easy to construct a Novikov structure on t(1, k) ∼= k and on t(2, k). For n = 3
and n = 4 it is not difficult to see by direct calculations that t(n, k) does not admit a Novikov
structure. For n ≥ 5 we can use the above proposition. Assume that t(n, k) admits a Novikov
structure for n ≥ 5. Then also [t(n, k), t(n, k)] = n(n, k) admits a Novikov structure, in
contradiction to our previous proposition. �

5. Novikov structures on k-step solvable Lie algebras

A natural question is, whether there are families of Lie algebras of solvability class k, which
admit Novikov structures for all k ≥ 1. The same question for nilpotency class has an easy
answer. Here the standard filiform nilpotent Lie algebras with basis (e1, . . . , en) and brackets
[e1, ei] = ei+1 for i = 2, . . . , n − 1 admit Novikov structures. Hence they provide examples of
nilpotency class k = n − 1, see [4]. The following result shows that there are indeed filiform
nilpotent Lie algebras of arbitrary solvability class, which admit Novikov structures. Define for
every n ≥ 3 a filiform Lie algebra f 9

10
,n of dimension n by

[e1, ej] = ej+1, 2 ≤ j ≤ n− 1,

[ei, ej] =
6(j − i)

j(j − 1)
(

j+i−2
i−2

)ei+j, 2 ≤ i ≤ j; i + j ≤ n

In particular we have

[e2, ej] =
6(j − 2)

j(j − 1)
ej+2, 3 ≤ j ≤ n− 3,

[ej, ej+1] =
6(j − 1)!(j − 2)!

(2j − 1)!
e2j+1, 2 ≤ j ≤ (n− 1)/2.

Then [e2, e3] = e5, [e2, e4] = e6, [e2, e5] = 9
10

e7, etc. Similar Lie algebras were studied in [2].
To verify the Jacobi identity introduce a new basis (f1, . . . , fn) by

f1 = 6e1,

fj =
1

(j − 2)!
ej, 2 ≤ j ≤ n.

Then the new brackets are given by

[fi, fj] = 6(j − i)fi+j, 1 ≤ i ≤ j; i + j ≤ n.

Here the Jacobi identity is obvious.
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Proposition 5.1. For each n ≥ 3 the Lie algebra f 9
10

,n admits a complete Novikov structure.

It is given by the following multiplication:

e1 · ej = ej+1, 2 ≤ j ≤ n− 1,

ei · ej =
6

j
(

j+i−2
i−2

)ei+j, 2 ≤ i, j ≤ n, i + j ≤ n.

Remark 5.2. Note that f 9
10

,n is k-step solvable if 2k ≤ n + 1 < 2k+1. Indeed,

g(0) = g,

g(1) = [g, g] = 〈e3, . . . , en〉,
g(i) = [g(i−1), g(i−1)] = 〈e2i+1−1, . . . , en〉.

Hence these algebras can have arbitrary high solvability class.

Proof. In the new basis (f1, . . . , fn) the Novikov product is given by

fi · fj = 6(j − 1)fi+j, 1 ≤ i, j ≤ n, i + j ≤ n.

Now it is easy to verify the required identities. We have (using the covention that fm = 0 when
m > n)

fi · fj − fj · fi = 6(j − 1)fi+j − 6(i− 1)fi+j

= 6(j − i)fi+j = [fi, fj], i, j ≥ 1,

so that (3) is satisfied. We have

(fi · fj) · fk = 36(j − 1)(k − 1)fi+j+k,

(fi · fk) · fj = 36(k − 1)(j − 1)fi+j+k,

so that (2) is satisfied. Finally,

fi · (fj · fk)− (fi · fj) · fk = 36 · k(k − 1)fi+j+k,

fj · (fi · fk)− (fj · fi) · fk = 36 · k(k − 1)fi+j+k,

so that (1) is satisfied. �
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