
MINIMAL FAITHFUL REPRESENTATIONS OF REDUCTIVE LIE
ALGEBRAS

DIETRICH BURDE AND WOLFGANG MOENS

Abstract. We prove an explicit formula for the invariant µ(g) for finite-dimensional semisim-
ple, and reductive Lie algebras g over C. Here µ(g) is the minimal dimension of a faithful
linear representation of g. The result can be used to study Dynkin’s classification of maximal
reductive subalgebras of semisimple Lie algebras.

1. Introduction

Let g be an n-dimensional Lie algebra over a field K. Denote by µ(g) the minimal dimension
of a faithful linear representation of g. By Ado’s theorem this is an integer valued invariant
of g, which has been introduced in [1]. We consider K as given by g, so that we need not
refer to K in the notation µ(g). In general it is not known how to determine this invariant. In
particular, this seems to be very hard in general for a given solvable Lie algebra.
The invariant µ(g) plays an important role in the theory of affinely flat manifolds and affine
crystallographic groups, see [2]. In particular, the following two results are known:

Proposition 1.1. Let G be an n-dimensional Lie group with Lie algebra g. If G admits a
left-invariant affine structure then µ(g) ≤ n+ 1.

Proposition 1.2. Let Γ be a torsionfree finitely generated nilpotent group of rank n and GΓ

its real Malcev-completion with Lie algebra gΓ. If Γ is the fundamental group of a compact
complete affine manifold then µ(gΓ) ≤ n+ 1.

A semisimple Lie groupG does not admit any left-invariant affine structures. IfG is reductive,
the existence problem of such structures has not been solved in general. The problem is even
harder for solvable and nilpotent Lie groups. For details and references see [2].
If g has trivial center Z(g), the adjoint representation is faithful and hence we have µ(g) ≤
dim(g) = n. If g is nilpotent, the adjoint representation is not faithful, and such a result is
not even true in general. Since the classification of representations of nilpotent Lie algebras is
a wild problem, it seems reasonable to expect difficulties in determining µ(g). In this case one
tries to obtain good upper and lower bounds for µ(g). There is the following result, see [2]. Let
g be a nilpotent Lie algebra of dimension n and nilpotency class k. Denote by p(j) the number
of partitions of j and let

p(n, k) =
k∑
j=0

(
n− j
k − j

)
p(j).

Then µ(g) ≤ p(n, k). In particular, with α = 113
40

, we have µ(g) < α√
n

2n. If g is reductive,

however, the situation is much better. There are explicit formulas for µ(g), in case g is abelian
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or g is simple. We will always assume that K = C, unless specified otherwise. The aim of this
paper is to show the following result:

Theorem 1.3. Let g be a complex reductive Lie algebra and g = s1 ⊕ · · · ⊕ s` ⊕ Ck its decom-
position into simple ideals si and center Ck. Then the following formula holds:

µ(g) = µ(s1) + . . .+ µ(s`) + µ(Ck−`),

where the µ(si) are listed in section 2.2, µ(Ck−`) = 0 for k − ` ≤ 0, µ(Ck−`) = d2
√
k − `− 1e

for k − ` > 1, and µ(C) = 1.

2. Faithful representations

We start with two simple lemmas.

Lemma 2.1. Let h be a subalgebra of g. Then µ(h) ≤ µ(g). Furthermore, if a and b are two
Lie algebras, then µ(a⊕ b) ≤ µ(a) + µ(b).

Proof. The composition of the embedding h ↪→ g and a faithful representation g→ gln(C) is a
faithful representation of h of degree n. If ϕ and ψ are faithful representations of a respectively
b, then ϕ⊕ ψ is a faithful representation of a⊕ b. �

Lemma 2.2. Let g be a Lie algebra with trivial center. Then µ(g⊕ C) = µ(g).

Proof. We have µ(g) ≤ µ(g ⊕ C). Conversely, let ρ : g → gln(C) be a faithful representation
of minimal dimension n = µ(g). Suppose that there is an x ∈ g such that ρ(x) = In is the
identity. Then, for all y ∈ g,

ρ([x, y]) = [ρ(x), ρ(y)] = [In, ρ(y)] = 0.

Since ρ is faithful, we have x ∈ Z(g) = 0, which is a contradiction. It follows that the identity
In is not in ρ(g), and hence ρ(g)⊕C · In yields a faithful representation of g⊕C of dimension
n. �

2.1. Faithful representations of abelian Lie algebras. If g is abelian then there exists an
explicit formula for µ(g), which only depends on the dimension of g. If V is a d-dimensional
vector space, then any faithful representation ϕ : g → gl(V ) turns ϕ(g) into an n-dimensional
commutative subalgebra of the matrix algebra Md(K). Jacobson [8] proved:

Proposition 2.3. Let M be a commutative subalgebra of Md(K) over an arbitrary field K.
Then dimM ≤ bd2/4c+ 1 and the bound is attained.

For K = C the result was first proved by I. Schur. The proposition implies the following
result, see [1]:

Proposition 2.4. Let g be an abelian Lie algebra of dimension n > 1 over a field K. Then
µ(g) = d2

√
n− 1e.

For n = 1 we have µ(g) = 1.
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2.2. Faithful representations of simple Lie algebras. Let g be a finite-dimensional com-
plex simple Lie algebra. Then every non-trivial representation ρ : g → gln(C) is faithful, since
ker(ρ) is an ideal in g. Hence any simple non-trivial g-module is faithful. Then µ(g) is the
smallest dimension of a non-trivial simple module. Note that such a module is not unique in
general. For example, for type An we have two fundamental simple modules of minimal di-
mension: L(ω1) and L(ωn) ' L(ω1)∗. With some exceptions the natural module is of minimal
dimension. The dimensions are well known, see for example [4], [9]:

g dim(g) µ(g)
An, n ≥ 1 (n+ 1)2 − 1 n+ 1

B2 10 4
Bn, n ≥ 3 2n2 + n 2n+ 1
Cn, n ≥ 3 2n2 + n 2n
Dn, n ≥ 4 2n2 − n 2n

E6 78 27
E7 133 56
E8 248 248
F4 52 26
G2 14 7

2.3. Faithful representations of semisimple Lie algebras. The result for semisimple Lie
algebras is as follows.

Proposition 2.5. Let g = s1 ⊕ · · · ⊕ s` be a semisimple Lie algebra and si simple ideals of g.
Then

µ(g) = µ(s1) + . . .+ µ(s`).

Assume first that g = s1 ⊕ s2 with Lie algebras s1 and s2. Let (ρi, Vi) be a representation of
si for i = 1, 2. Then ρi ◦ πi is a representation of g, where πi is the projection from g to si. Let
(x, y) ∈ s1 ⊕ s2. Recall that the tensor product ρ1 ◦ π1 ⊗ ρ2 ◦ π2, which we denote also simply
by ρ1 ⊗ ρ2, for vi ∈ Vi is defined by

(ρ1 ⊗ ρ2)(x, y)(v1, v2) = ρ1(x)(v1)⊗ v2 + v1 ⊗ ρ2(y)(v2).

Lemma 2.6. Let g = s1 ⊕ s2 with s1 simple. Then ker(ρ1 ⊗ ρ2) = ker(ρ1)⊕ ker(ρ2).

Proof. Obviously ker(ρ1) ⊕ ker(ρ2) ⊆ ker(ρ1 ⊗ ρ2). Conversely choose an element (x, y) ∈
s1 ⊕ s2 = g which lies in the kernel of ρ1 ⊗ ρ2, i.e., ρ1(x)(v1) ⊗ v2 + v1 ⊗ ρ2(y)(v2) = 0 for all
vi ∈ Vi. Using explicit bases for V1, V2 and V1 ⊗ V2 one easily obtains

ρ1(x) = α id|V1 , ρ2(y) = −α id|V2

with a constant α ∈ C. Since s1 is simple and ρ1(x) is a traceless linear operator, it follows
α = 0 and (x, y) ∈ ker(ρ1)⊕ ker(ρ2). �

We can extend the above easily to the case g = s1 ⊕ · · · ⊕ s` with representations (ρi, Vi) for
i = 1, 2, . . . , `. We have the following result, see [7]:

Theorem 2.7. Let g be a semisimple Lie algebra and g = s1 ⊕ · · · ⊕ s` be a decomposition of
g into ideals of g. Then every irreducible representation (ρ, V ) of g is equivalent to the tensor
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product of ` irreducible representations (ρ1 ◦ π1, V1), . . . , (ρ` ◦ π`, V`). Conversely, if (ρi, Ui) are
arbitrary irreducible representations of si for i = 1, . . . `, then

(ρ1 ◦ π1 ⊗ · · · ⊗ ρ` ◦ π`, U1 ⊗ · · · ⊗ U`)

is an irreducible representation of g.

Let g = s1⊕· · ·⊕ s` be semisimple and ρ be a representation of g. Then, by Weyl’s theorem,
ρ = ρ1 ⊕ · · · ⊕ ρn, with irreducible representations ρi of g. Each of the ρi is the tensor product
ρi = ρi,1 ⊗ · · · ⊗ ρi,` where ρi,j is an irreducible representation of sj. This gives

ρ =
n⊕
i=1

⊗̀
j=1

ρi,j(1)

For the dimension of ρ we obtain

dim ρ =
n∑
i=1

∏̀
j=1

dim ρi,j.(2)

To ρ we associate a matrix “of dimensions” Φρ = (dim ρi,j)i,j ∈Mn,`(N).

Lemma 2.8. Let g = s1 ⊕ · · · ⊕ s` be a complex semisimple Lie algebra. A finite-dimensional
representation ρ of g is faithful iff the matrix Φρ has no column consisting only of 1’s.

Proof. As before, write ρ =
⊕n

i=1

⊗`
j=1 ρi,j. By lemma 2.6 we have ker(ρi) =

⊕`
j=1 ker(ρi,j) for

i = 1, . . . n. Furthermore ker(ρ) = ∩ni=1 ker(ρi). If there is a column consisting only of 1’s, say
colum j, then sj ⊂ g is contained in ker(ρ), so that ρ is not faithful. Conversely, suppose that
there is no column with only 1’s. Choose an element z = ⊕izi ∈ ker(ρ). Fix a coordinate, say
zj. Because there is no 1-column there must be an i such that ρi,j is faithful. By assumption
we have 0 = ρi(z) = ⊗kρi,k(zj). Again by lemma 2.6 we have ρi,j(zj) = 0, and hence zj = 0.
This follows for all j, hence z = 0. �

We will use the above lemma to prove proposition 2.5:

Proof. LetM be the space of all dimension matrices Φρ for faithful representations ρ of a fixed
semisimple Lie algebra g. According to (1) and (2) let dij = dim ρi,j. The determination of
µ(g) is equivalent to minimizing the function

f : M 7→ N, Φρ 7→
n∑
i=1

∏̀
j=1

dij.

By lemma 2.8 no column of a matrix Φρ ∈ M contains only 1’s. Denote by P the matrix in
M, which has diagonal elements dii = µ(si) and all other elements equal to 1. Then

f(P ) =
∑̀
i=1

µ(si).

We will show that this is the minimal value of f , i.e., µ(g) = f(P ). Suppose D = (dij) ∈ M
is a matrix with minimal value f(D). If there is a row, say row i, with more than one element
unequal to 1, say dij and dik, then construct a new matrix C, by replacing the ith row

(d1, . . . , dij, dj+1, . . . , dik, dk+1, . . . , d`)
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of D by two new rows (
d1, . . . , dij, dj+1, . . . , 1, dk+1, . . . , d`
d1, . . . , 1, dj+1, . . . , dik, dk+1, . . . , d`

)
.

Note that the new matrix C really is in M. It has one more row than D and satisfies f(C) ≤
f(D) since a + b ≤ ab for integers a, b ≥ 2. By assumption f(C) = f(D). After repeating
this finitely many times we arrive at a matrix B ∈ M where every row has at most one
element different from 1. In fact, a row (1, . . . , 1) is impossible, because otherwise we remove
this row and still obtain a matrix in A ∈ M with f(A) < f(D), which is a contradiction.
Thus every row of B has a unique entry different from 1. Similarly it is impossible that a
column of B contains more than one of these unique entries. This implies that the number of
rows and columns of B coincides. Now f(B) is just the sum of these unique entries. Because
the value f(B) is minimal, the unique entries must correspond to the numbers µ(si). Hence

f(B) =
∑`

i=1 µ(si) = f(P ). �

2.4. Faithful representations of reductive Lie algebras. Let g = s1 ⊕ · · · ⊕ s` ⊕ Ck be a
reductive Lie algebra over C. Denote by ` the length of g, i.e., the number of simple ideals si.

Lemma 2.9. Let g be a reductive Lie algebra of length ` and center Ck. Then

µ(g) ≤ µ([g, g]) + µ(Ck−`).

Proof. If ` ≤ k then g = (s1 ⊕ C)⊕ · · · ⊕ (s` ⊕ C)⊕ Ck−` and we obtain

µ(g) ≤
∑̀
i=1

µ(si ⊕ C) + µ(Ck−`) =
∑̀
i=1

µ(si) + µ(Ck−`)

= µ(s1 ⊕ · · · ⊕ s`) + µ(Ck−`) = µ([g, g]) + µ(Ck−`).

by lemma 2.1, lemma 2.2 and proposition 2.5. If k ≤ ` then µ(Ck−`) = 0 and g can be embedded
in s1 ⊕ · · · ⊕ s` ⊕ C`. Then we have, using the above argument for k = `,

µ(g) ≤ µ(s1 ⊕ · · · ⊕ s` ⊕ C`) ≤ µ([g, g]) + µ(Ck−`).

�

The statement of theorem 1.3 is that the inequality of the above lemma is in fact an equality.

Definition 2.10. Denote by Cϕ = {A ∈ gln(C) | [A,ϕ(x)] = 0 ∀ x ∈ g} the centralizer of a
Lie algebra representation ϕ : g→ gln(C).

Note that Cϕ is a Lie subalgebra of gln(C).

Definition 2.11. A pair of two Lie algebra representations ϕ : g1 → gln(C) and ψ : g2 → gln(C)
is said to commute, if [ϕ(x), ψ(y)] = 0 ∀ x ∈ g1, y ∈ g2.

Lemma 2.12. Let g1, g2 be two Lie algebras and suppose that g1 has trivial center. There is a
bijective correspondence between representations as follows:

(1) A faithful representation ϕ : g1 ⊕ g2 → gln(C) induces a pair of commuting representa-
tions (ϕ1, ϕ2) by inclusion, given by ϕj = ϕ ◦ ιj : gj → gln(C) for j = 1, 2, where ιj is
the natural inclusion of gj into g1 ⊕ g2.

(2) Conversely a pair of commuting faithful representations ϕj : gj → gln(C) induces a
faithful representation ϕ : g1 ⊕ g2 → gln(C) by ϕ = ϕ1 ◦ π1 + ϕ2 ◦ π2, where πj is the
natural projection of g1 ⊕ g2 onto gj.
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Proof. It is clear that ϕ1, ϕ2 are faithful representations. We have

[ϕ1(x), ϕ2(y)] = [ϕ(x, 0), ϕ(0, y)] = ϕ([(x, 0), (0, y)]) = 0.

This shows (1). For (2), note that ϕ is a representation. Let (x, y) ∈ ker(ϕ). This means
ϕ1(x) + ϕ2(y) = 0, so that

ϕ1(x) = −ϕ2(y) ∈ ϕ1(g1) ∩ ϕ2(g2) ⊆ Z(ϕ1(g1)) = Z(g1) = 0.

Since ker(ϕ1) = ker(ϕ2) = 0 we have (x, y) = (0, 0), and ϕ is faithful. �

Fix a semisimple Lie algebra g = s1 ⊕ · · · s` of length `, and an integer n ≥ µ(g). We will
construct a certain faithful representation ϕ : g → gln(C) for each n ≥ µ(g). Let σi : si →
glµ(si)(C) be faithful representations of minimal dimension µ(si) for i = 1, . . . `. Denote by ϕ0

the one-dimensional trivial representation of g, and let mϕ0 = ϕ0 ⊕ · · · ⊕ ϕ0.

Definition 2.13. Let g be as above and m = n−µ(g). Define a representation σ : g→ gln(C)
by

σ = mϕ0 ⊕ σ1 ⊕ · · · ⊕ σ`.
Then σ is called a standard block representation of degree n for g.

We are interested in determining the centralizer of a faithful representation of g. We have
the following result.

Proposition 2.14. Let g be as above and fix an integer n ≥ µ(g). The centralizer of any
faithful representation ϕ : g → gln(C) can be embedded into the centralizer of a standard block
representation of degree n for g.

The proof is split up into three lemmas. Let ϕ : g→ gln(C) be a faithful representation. Since
centralizers of equivalent representations are isomorphic we may assume, by Weyl’s theorem,
that ϕ = ⊕kj=0mjϕj for irreducible, inequivalent representations ϕj of g, and some mj ∈ N.
Again let ϕ0 denote the 1-dimensional trivial representation.
The following lemma is well known, and follows easily from Schur’s lemma.

Lemma 2.15. Let ϕ = ⊕kj=0mjϕj as above. Then, as Lie algebras,

Cϕ ∼=
k⊕
j=0

glmj
(C).

Corollary 2.16. The centralizer of a standard block representation σ of degree n = m + µ(g)
is isomorphic to glm(C)⊕ C`.

Denote by dj the degree of the representation ϕj. Now associate to ϕ = ⊕kj=0mjϕj the
representation

ϕ̃ = mϕ0 ⊕

(
k⊕
j=1

ϕj

)
,(3)

so that ϕ and ϕ̃ have the same degree, equal to n. This means, that m = m0 +
∑k

j=1(mj−1)dj.
Note that ϕ̃ is again faithful by lemma 2.8.

Lemma 2.17. Let ϕ = ⊕kj=0mjϕj as above. Then the centralizer Cϕ can be embedded into the
centralizer Cϕ̃.
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Proof. By permuting the summands in ϕ we may assume that m1 = . . . = mr = 1 for some
0 ≤ r ≤ k, and mj ≥ 2 for j > r. By lemma 2.15, and using gl1(C) ∼= C, the centralizer Cϕ is
isomorphic to glm0(C)⊕Cr⊕

(
⊕kj=r+1glmj

(C)
)
, which can be embedded into glp(C)⊕Cr, where

p = m0+
∑k

j=r+1mj. On the other hand, Cϕ̃ ∼= glm(C)⊕Ck, where m = m0+
∑k

j=r+1(mj−1)dj.

Certainly Cr can be embedded into Ck since r ≤ k. To prove the claim of the lemma it remains
to show that p ≤ m. This is true because of mj, dj ≥ 2 for j ≥ r + 1, so that dj ≥ mj

mj−1
. �

Lemma 2.18. Let ϕ and ϕ̃ be as above. Then Cϕ̃ can be embedded into the centralizer of a
standard block representation of degree n.

Proof. Consider the decomposition (3) of ϕ̃. Then ρ = ⊕kj=1ϕj is a faithful representation of g.
We claim that we can choose r representations ϕj, denoted again by ϕ1, . . . , ϕr, such that their
direct sum ρ′ = ⊕rj=1ϕj is still a faithful representation of g, where r is at most `, the length
of g. Since ρ is faithful its dimension matrix has no columns consisting only of 1’s. Hence for
every column j of our ` columns we may choose a row i such that the entry (i, j) is different
from 1. To every such row i corresponds a representation ϕi. Then we have chosen ` rows,
but not necessarily distinct ones. Pick out the ϕi for the distinct rows. Their direct sum is a
faithful representation of g, since its dimension matrix again has no columns consisting only of
1’s. Now rewrite ϕ̃, using ρ′, as ϕ̃ = mϕ0 ⊕ ρ′ ⊕

(
⊕kj=r+1ϕj

)
. Comparing dimensions, we have

n = m+ dim(ρ′) +
∑k

j=r+1 dj. Since ρ′ is a faithful representation of g we have dim(ρ′) ≥ µ(g).

Using
∑k

j=r+1 dj ≥ k − r we obtain

µ(g) ≤ dim(ρ′) = n−m−
k∑

j=r+1

dj

≤ n−m− k + r.

Note that r ≤ k, so that Ck−r makes sense. By lemma 2.15 it follows, that

Cϕ̃ ∼= glm(C)⊕ Ck−r ⊕ Cr

↪→ glm+k−r(C)⊕ Cr

↪→ gln−µ(g)(C)⊕ C`

∼= Cσ.

�

Now we can prove proposition 2.14: we have Cϕ ↪→ Cϕ̃ ↪→ Cσ by the two preceding lemmas.

Corollary 2.19. Let g be a semisimple Lie algebra as above, and a be a Lie algebra. Then
g⊕ a can be embedded into gln(C) if and only if a can be embedded into gln−µ(g)(C)⊕ C`.

Proof. Suppose a can be embedded into gln−µ(g)(C) ⊕ C` ∼= Cσ. Then we have a pair of
commuting embeddings σ : g ↪→ gln(C) and τ : a ↪→ Cσ ↪→ gln(C). Lemma 2.12, (2) gives an
embedding g⊕ a ↪→ gln(C). The converse direction follows from part (1) of lemma 2.12. �

Now we turn to the proof of theorem 1.3. Let g = s1 ⊕ · · · ⊕ s` ⊕Ck be a complex reductive
Lie algebra. We write g = s ⊕ a, where s is semisimple and a = Ck. Given any embedding
g ↪→ gln(C), the above corollary implies that there is an embedding a ↪→ gln−µ(g)⊕C`. Denote
by α(g) the maximal dimension of a commutative subalgebra of g. We have α(a) = k and

α(glm(C)⊕ C`) = α(glm(C)) + α(C`) = bm2/4c+ 1 + `,
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since α is additive, see [9]. If a is a subalgebra of b then α(a) ≤ α(b). It follows that

k ≤ b(n− µ(s))2/4c+ 1 + `.

This implies n ≥ d2
√
k − `− 1e+µ(s) = µ(Ck−`)+µ(s). Together with lemma 2.9 the formula

of theorem 1.3 follows. �
Finally, the following result can be derived from the above corollary in a similar way.

Proposition 2.20. Let s be a semisimple Lie algebra and g be a perfect Lie algebra, i.e.,
satisfying [g, g] = g. Then we have µ(s⊕ g) = µ(s) + µ(g).

Remark 2.21. Theorem 1.3 can be used to classify all reductive subalgebras, up to isomorphism,
of gln(C). As an example, for n = 4 we obtain (note that µ(C5) = 4)

Ci, i = 1, . . . , 5

Ak ⊕ Ci, k = 1, 2, 3, 0 ≤ i ≤ 4− k
A1 ⊕ A1 ⊕ Ci, i = 0, 1, 2

C2 ⊕ Ci, i = 0, 1.

2.5. Maximal reductive subalgebras. If we have a faithful representation ϕ : g → gln(C)
then ϕ(g) lies in a maximal reductive subalgebra of gln(C), or g ∼= gln(C). There is a complete
classification of all maximal reductive Lie subalgebras in semisimple Lie algebras, due to Malcev
[9], Dynkin [5], [6] and Borel [3]. Hence one might wonder if one can use this classification to
give another proof of theorem 1.3. However it turns out that this may be quite complicated in
general. In some cases, we can give a nice, short proof. Consider the following easy example.

Example 2.22. We have µ(A1 ⊕ C4) = 5.

In fact, it is obvious that g = A1⊕C4 has a faithful representation of dimension 5: the direct
sum of the natural representations of A1⊕C = gl2(C) and C3. It remains to show that g cannot
be faithfully embedded into gl4(C). Suppose it can, i.e., g is a subalgebra of gl4(C). Denote by
π : gl4(C)→ gl4(C)/Z the natural projection, where Z is the center of gl4(C) with dimZ = 1.
Then we claim that π(g) is a reductive Lie subalgebra of A3, which is either isomorphic to g, or
to A1⊕C3: let z ∈ Z∩g. Then [x, z] = 0 for all x ∈ g, i.e., Z∩g ⊆ Z(g) and dim(Z∩g) ≤ 1. It
follows that π(g) ∼= A1 ⊕Z(g)/(Z ∩ g). If Z ∩ g = 0, then π(g) ∼= g, otherwise dim(Z ∩ g) = 1,
so that π(g) ∼= A1 ⊕C3. So A1 ⊕C4 or A1 ⊕C3 is a reductive subalgebra of A3, hence lies in a
maximal one. But these are exactly the following ones:

C2, A2 ⊕ C, A1 ⊕ A1, A1 ⊕ A1 ⊕ C.
Here A1 ⊕ A1 is not contained in the last one. Consider again α(g), the maximal dimension
of a commutative subalgebra of g. Malcev computed α(g) for reductive Lie algebras. For
a new proof of this result see the nice article of Suter [10]. We have α(A1 ⊕ C3) = 4 but
α(C2) = α(A2 ⊕ C) = α(A1 ⊕ A1 ⊕ C) = 3 and α(A1 ⊕ A1) = 2. If h1 ⊂ h2 for reductive Lie
algebras then α(h1) ≤ α(h2). It follows that A1 ⊕ C3 and hence also g cannot be a subalgebra
of one of the maximal reductive subalgebras of A3. This is a contradiction. �

In this way one can also prove more generally that

µ(A1 ⊕ Ck) = 2 + d2
√
k − 2e, k ≥ 3.

The following example, however, shows that this method of using Dynkin’s results will become
very complicated in general.
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Example 2.23. Show that µ(A1 ⊕ C3 ⊕ C6) = 12.

Assume that g = A1 ⊕ C3 ⊕ C6 could be embedded into gl11(C) = A10 ⊕ C. Then we may
assume that A1 ⊕ C3 ⊕ C5 is a reductive subalgebra of A10. Passing to maximal reductive
subalgebras we may assume that A1⊕C3⊕C5 is a reductive subalgebra of one of the following
algebras:

A9 ⊕ C, A1 ⊕ A8 ⊕ C, A2 ⊕ A7 ⊕ C, A3 ⊕ A6 ⊕ C, A4 ⊕ A5 ⊕ C, B5.

The invariant α of these Lie algebras is given by 26, 22, 19, 17, 16, 11 respectively, whereas
α(A1 ⊕C3 ⊕C5) = 12. Unfortunately, the only possibility which can be excluded immediately
then is B5. Then we have to treat all the other cases, which ramify to even more cases in the
next step, repeating this kind of argument. Moreover, the maximal reductive subalgebras of
other types, different from An, play a role.

References

[1] D. Burde: A refinement of Ado’s Theorem. Archiv Math. 70 (1998), 118-127.
[2] D. Burde: Left-symmetric algebras, or pre-Lie algebras in geometry and physics. Central European J. of

Math. 4, Nr. 3 (2006), 323-357.
[3] A. Borel, J. de Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment.

Math. Helv. 23 (1949), 200-221.
[4] R. Carter: Lie Algebras of Finite and Affine Type. Cambridge studies in advanced mathematics 96 (2005).
[5] E. B. Dynkin: Semisimple subalgebras of semisimple Lie algebras. AMS Transl. 6 (1957), 111-244.
[6] E. B. Dynkin: Maximal subgroups of classical groups. AMS Transl. 6 (1957), 245-379.
[7] N. Iwahori: On real irreducible representations of Lie algebras. Nagoya Math. J. 14 (1959), 59-83.
[8] N. Jacobson: Schur’s theorem on commutative matrices. Bull. Amer. Math. Soc. 50 (1944), 431-436.
[9] A. Malcev: On semi-simple subgroups of Lie groups. Izvestia Akad. Nauk SSSR 8 (1944), 143-174.

[10] R. Suter: Abelian ideals in a Borel subalgebra of a complex simple Lie algebra. Invent. Math. 156 (2004),
175-221.

Fakultät für Mathematik, Universität Wien, Nordbergstr. 15, 1090 Wien, Austria
E-mail address: dietrich.burde@univie.ac.at
E-mail address: wolfgang.moens@univie.ac.at


