A REMARK ON AN INEQUALITY FOR THE PRIME COUNTING FUNCTION

DIETRICH BURDE

Abstract. We note that the inequalities $0.92 \frac{x}{\log (x)}<\pi(x)<1.11 \frac{x}{\log (x)}$ do not hold for all $x \geq 30$, contrary to some references. These estimates on $\pi(x)$ came up recently in papers on algebraic number theory.

1. Chebyshev's estimates for $\pi(x)$

Let $\pi(x)$ denote the number of primes not greater than x, i.e.,

$$
\pi(x)=\sum_{p \leq x} 1
$$

One of the first works on the function $\pi(x)$ is due to Chebyshev. He proved (see [2]) in 1852 the following explicit inequalities for $\pi(x)$, holding for all $x \geq x_{0}$ with some x_{0} sufficiently large:

$$
\begin{aligned}
c_{1} \frac{x}{\log (x)} & <\pi(x)<c_{2} \frac{x}{\log (x)}, \\
c_{1} & =\log \left(2^{1 / 2} 3^{1 / 3} 5^{1 / 5} 30^{-1 / 30}\right) \approx 0.921292022934, \\
c_{2} & =\frac{6}{5} c_{1} \approx 1.10555042752 .
\end{aligned}
$$

This can be found in many books on analytic number theory (see for example [1], [3], [11] and [14]). But it seems that this result is sometimes cited incorrectly: it is claimed that the estimates are valid for all $x \geq 30$. For example, in [6], page 21 we read that

$$
c_{1} \frac{x}{\log (x)}<\pi(x)<c_{2} \frac{x}{\log (x)}, \quad \forall x \geq 30 .
$$

But a quick numerical computation shows that this is wrong. To give an example, take $x=100$. Then we have $\pi(x)=25$ and

$$
c_{2} \frac{x}{\log (x)} \approx 24.00672250690558538515780234<25
$$

Actually, the inequality is far from true for small x. We have the following result:
Date: October 9, 2006.

Theorem 1.1. Let $c_{2} \approx 1.10555042752$ be Chebyshev's constant. Then the inequality

$$
\pi(x)<c_{2} \frac{x}{\log (x)}
$$

is true for all $x \geq 96098$. For $x=96097$ it is false.
Proof. In [10] it is shown that

$$
\pi(x)<\frac{x}{\log (x)-1.11}, \quad x \geq 4
$$

The RHS is less or equal to $c_{2} x / \log (x)$ if and only if

$$
x \geq \exp \left(\frac{1.11 \cdot c_{2}}{c_{2}-1}\right) \approx 112005.18
$$

This shows the claim for $x \geq 112006$. Since $x / \log (x)$ is a monotonously increasing function it is enough to check the claimed estimate for intergers x in the intervall $[96098,112006]$ by computer. For $x=96097$ we have $\pi(96097)=9260$ and $c_{2} x / \log (x) \approx 9259.92$.

The incorrect inequality was also used in a former version of Khare's proof of Serre's modularity conjecture for the level one case, see [8], [9]. Let \mathbb{F} be a finite field of characteristic p. The conjecture stated that an odd, irreducible Galois representation $\rho: G a l(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow G L_{2}(\mathbb{F})$ which is unramified outside p is associated to a modular form on $S L_{2}(\mathbb{Z})$. Khare's proof is an elaborate induction on p. Starting with a p for which the conjecture is known one wants to prove the conjecture for a larger prime P. Kahre's arguments do only work if P and p are not Fermat primes, and if

$$
\frac{P}{p} \leq a
$$

for certain values $a>1$, close to 1 . At this point Khare used the incorrect estimate on $\pi(x)$, as explained above. Fortunately the proof easily could be repaired by using better estimates on $\pi(x)$ provided by Rosser and Schoenfeld [12], and Dusart [4].
Indeed, P. Dusart proved inequalities for $\pi(x)$ which are much better than Chebyshev's estimates. He verifies this for smaller x numerically. Nevertheless he claims in his thesis [5], that Chebyshev gave the following inequality

$$
0.92 \frac{x}{\log (x)}<\pi(x)<1.11 \frac{x}{\log (x)}, \quad x \geq 30
$$

which is equally wrong.
The question is: where lies the origin for this error ? Chebyshev himself proved inequalities in [2] with his constants c_{1} and $c_{2}=\frac{6}{5} c_{1}$ indeed for all $x \geq 30$, but for inequalities involving $\psi(x)=\sum_{n \leq x} \Lambda(n)$ instead of $\pi(x)$. His estimates concerning $\psi(x)$ seem to be correct for all
$x \geq 30$. For example, he shows by elementary means that, for all $x \geq 30$,

$$
\begin{aligned}
& \psi(x)<\frac{6}{5} c_{1} x+\frac{5}{4 \log (6)} \log ^{2}(x)+\frac{5}{4} \log (x)+1, \\
& \psi(x)>c_{1} x-\frac{5}{2} \log (x)-1 .
\end{aligned}
$$

To derive from this inequalities on $\pi(x)$ for $x \geq 30$, we have to estimate

$$
\psi(x)=\sum_{p \leq x}\left[\frac{\log (x)}{\log (p)}\right] \log (p)
$$

Using the estimates $[y] \leq y<[y]+1 \leq 2[y]$ for $y \geq 1$ we obtain

$$
\psi(x) \leq \pi(x) \log (x) \leq 2 \psi(x), \quad x \geq 2
$$

On the RHS we cannot do easily much better than $2 \psi(x)$. Hence we obtain

$$
c_{1} \frac{x}{\log (x)}<\pi(x)<2 c_{2} \frac{x}{\log (x)}, \quad x \geq 30
$$

On the other hand we know that

$$
\pi(x)=\frac{\psi(x)}{\log (x)}+O\left(\frac{x}{\log ^{2}(x)}\right), \quad x \geq 2
$$

so that we obtain, as x tends to infinity,

$$
\left(c_{1}+o(1)\right) \frac{x}{\log (x)} \leq \pi(x) \leq\left(c_{2}+o(1)\right) \frac{x}{\log (x)}
$$

Chebyshev used these estimates to prove Bertrand's postulate: each interval ($n, 2 n$] for $n \geq 1$ contains at least one prime. Moreover his results were a first step towards the proof of the prime number theorem.

2. Other estimates for $\pi(x)$

There are many interesting inequalities on the function $\pi(x)$. Let us first consider inequalities of the form

$$
A \frac{x}{\log (x)}<\pi(x)<B \frac{x}{\log (x)}
$$

for all $x \geq x_{0}$, where x_{0} depends on the constant $A \leq 1$ and respectively on $B>1$. On the LHS we can choose A equal to 1 , if $x \geq 17$. In fact, we have [5]

$$
\frac{x}{\log (x)}<\pi(x), \quad \forall x \geq 17
$$

Note that for $x=16.999$ we have $x / \log (x) \approx 6.0000257$, but $\pi(x)=6$. Consider the RHS of the above inequalities: if we want to hold such inequalities on $\pi(x)$ for all $x \geq x_{0}$ with a smaller x_{0}, we need to enlarge the constant B. Conversely, if we need this inequality for smaller B, we have to enlarge x_{0}. The prime number theorem ensures that we can choose B as close to 1 as we want, provided x_{0} is sufficiently large. The following result of Dusart [4] enables us to derive adjusted versions for the above inequalities:

Theorem 2.1 (Dusart). For real x we have the following sharp bounds:

$$
\begin{array}{ll}
\pi(x) \geq \frac{x}{\log (x)}\left(1+\frac{1}{\log (x)}+\frac{1.8}{\log ^{2}(x)}\right), & x \geq 32299 \\
\pi(x) \leq \frac{x}{\log (x)}\left(1+\frac{1}{\log (x)}+\frac{2.51}{\log ^{2}(x)}\right), & x \geq 355991
\end{array}
$$

One can derive, for example, the following inequalities.

$$
\begin{aligned}
& \pi(x)<1.095 \cdot \frac{x}{\log (x)}, \quad x \geq 284860 \\
& \pi(x)<1.25506 \cdot \frac{x}{\log (x)}, \quad x \geq 17
\end{aligned}
$$

Among other inequalities on $\pi(x)$ we mention the following ones:

$$
\frac{x}{\log (x)-m}<\pi(x)<\frac{x}{\log (x)-M}
$$

for all $x \geq x_{0}$ with real constants m and M. They have been studied by various authors. A good reference is the article [10]. There it is shown, for example, that

$$
\begin{aligned}
& \pi(x)>\frac{x}{\log (x)-\frac{28}{29}}, \quad x \geq 3299 \\
& \pi(x)<\frac{x}{\log (x)-1.11}, \quad x \geq 4
\end{aligned}
$$

The second inequality can also be used to obtain results on our estimate $\pi(x)<B \frac{x}{\log (x)}$, in particular for smaller x, where the second inequality of Theorem 2.1 is not valid. However we have

$$
\frac{x}{\log (x)}\left(1+\frac{1}{\log (x)}+\frac{2.51}{\log ^{2}(x)}\right)<\frac{x}{\log (x)-1.11}, \quad x \geq 28516
$$

For $x>10^{6}$ and $a=1.08366$ we can use [10]

$$
\pi(x)<\frac{x}{\log (x)-a}
$$

Here the upper bound of Dusart is better only as long as $x \geq 2846396$.
Finally we mention the book [13], providing many references on inequalities on $\pi(x)$, and the recent article [7], where lower and upper bounds for $\pi(x)$ of the form $\frac{n}{H_{n}-c}$ are discussed, where $H_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}$.

3. ACKNOWLEDGEMENT

We are grateful to the referee for drawing our attention to several approximations of $\pi(x)$. We thank J. Sándor for helpful remarks.

References

[1] T. Apostol: Introduction to analytic number theory. Springer Verlag, fünfte Auflage 1998.
[2] P. L. Chebyshev: Mémoire sur les nombres premiers. Journal de Math. Pures et Appl. 17 (1852), 366-390.
[3] K. Chandrasekharan: Introduction to analytic number theory, Moscow 1974.
[4] P. Dusart: Inégalités explicites pour $\psi(X), \theta(X), \pi(X)$ et les nombres premiers. C. R. Math. Acad. Sci. Soc. R. Can. 21 (1999), no. 2, 53-59.
[5] P. Dusart: Autour de la fonction qui compte le nombre de nombres premiers. Thése de Doctorat de l'Université de Limoges (1998).
[6] W. and F. Ellison: Prime numbers. Wiley Interscience 1985.
[7] M. Hassani: Approximation of $\pi(x)$ by $\Psi(x)$. J. of Inequ. in Pure and Apl. Math. 7(1) (2006), 1-7.
[8] C. Khare: On Serre's modularity conjecture for 2 -dimensional mod p representations of $G a l(\overline{\mathbb{Q}} / \mathbb{Q})$ unramified outside p. ArXiv math.NT/0504080 (2005).
[9] C. Khare: Serre's modularity conjecture: the level one case. To appear in Duke Math. J.
[10] L. Panaitopol: Several approximations of $\pi(x)$. Math. Inequal. \& Appl. 2 No. 3 (1999), 317-324.
[11] K. Prachar: Primzahlverteilung. Grundlehren der Mathematischen Wissenschaften 91, Springer-Verlag, Berlin-New York, 1978.
[12] J. B. Rosser, L. Schoenfeld: Sharper bounds for the Chebyshev functions $\theta(x)$ and $\psi(x)$. Math. Comp. 29 (1975), 243-269.
[13] J. Sándor, D. S. Mitrinovic, B. Crstici: Handbook of number theory I. Springer, 2006.
[14] G. Tenenbaum: Introduction to analytic and probabilistic number theory. Cambridge studies in advanced mathematics 46 (1995).
E-mail address: dietrich.burde@univie.ac.at
Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15, 1090 Wien

