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Abstract. We study symplectic structures on characteristically nilpotent Lie algebras (CN-
LAs) by computing the cohomology space H2(g, k) for certain Lie algebras g. Among these Lie
algebras are filiform CNLAs of dimension n ≤ 14. It turns out that there are many examples
of CNLAs which admit a symplectic structure. A generalization of a sympletic structure is an
affine structure on a Lie algebra.

1. Introduction

Invariant symplectic structures on Lie groups and on nilmanifolds play an important role in
symplectic and complex geometry. Many questions about symplectic structures on Lie groups
can be reduced to problems in terms of the tangent Lie algebra. This leads to the study of Lie
algebras admitting a symplectic structure. Symplectic Lie algebras (i.e., Lie algebras admitting
a symplectic structure) have been classified in several cases. There is also a construction, called
double extension, which yields all symplectic nilpotent Lie algebras by successive application
[4]. In [10] symplectic structures on N-graded filiform Lie algebras were determined. Moreover
a criterion for the existence of symplectic structures on filiform Lie algebras was proposed.
In this article we study symplectic structures on characteristically nilpotent Lie algebras (CN-
LAs). Such algebras do not admit an N-grading since all derivations of CNLAs are nilpotent.
Symplectic CNLAs are interesting for many reasons. One of them is the study of Riemannian
metrics compatible with a given invariant geometric structure on a nilpotent Lie group: in [9]
the concept of a minimal left-invariant Riemannian metric on a nilpotent Lie group endowed
with an invariant geometric structure is discussed. For the symplectic case, such a nice minimal
metric need not always exist. In fact, there is an obstruction if the Lie algebra is symplectic
and a CNLA. Symplectic Lie algebras are also special cases of Lie algebras admitting affine
structures. Lie algebras with affine structures are the infinitesimal analogue of Lie groups with
a left-invariant affine structure. There have been made many efforts to solve the difficult exis-
tence question of affine structures for a given Lie algebra [1], [2], [15]. From this point of view
the determination of sympletic Lie algebras is also interesting. Finally, symplectic Lie algebras
play a role in superconformal field theories, see for example [13].
The paper is organized as follows. In section two we introduce CNLAs and symplectic struc-
tures on Lie algebras using Lie algebra cohomology. We recall results on the cohomology groups
H1 with the coadjoint module and H2 with the trivial module. We explain the relation between
affine and symplectic structures. In section three we classify all complex symplectic filiform
CNLAs of dimension n ≤ 10. Here we do not use the classification of symplectic filiform Lie
algebras [8], since there are some mistakes in it. In section four we determine certain symplectic
filiform CLNAs of dimension n ≥ 12.
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2. Preliminaries

Characteristically nilpotent Lie algebras were introduced by Dixmier and Lister in 1957,
answering a question of Jacobson in the negative. Jacobson had asked whether any finite-
dimensional nilpotent Lie algebra admits a non-singular derivation. Dixmier and Lister con-
structed a 3-step nilpotent Lie algebra of dimension 8 possessing only nilpotent derivations [5].
Then they defined the class of of characteristically nilpotent Lie algebras (CLNAs in short) as
follows:

Definition 2.1. Let g be a Lie algebra over a field k and Der(g) its derivation algebra. Let
g[1] = Der(g)g = {

∑
iDi(xi) | xi ∈ g, Di ∈ Der(g)} and define g[k+1] = Der(g)g[k] inductively.

Then g is called a CNLA if there exists an integer n such that g[n] = 0.

It is easy to see that g is a CNLA if and only if all derivations of g are nilpotent. Moreover
g is a CNLA if and only if the algebra Der(g) is nilpotent and g is not 1-dimensional. If k is
algebraically closed then g is a CNLA if and only if all semisimple automorphisms of g are of
finite order. The class of CNLAs forms an interesting subclass of nilpotent Lie algebras, which
has been studied extensively later on. This class is particularly interesting for the topological
analysis of the irreducible components of the variety of nilpotent Lie algebra laws. As we have
mentioned, it is also of interest in the study of Riemannian metrics on nilpotent Lie groups.

Let us briefly recall the cohomology of Lie algebras. We will assume that k is a field of
characteristic zero and g a Lie algebra over k. For a g-module M the space of p–cochains is
defined by

Cp(g,M) =

{
HomK(Λpg,M) if p ≥ 0,

0 if p < 0.

The standard cochain complex {C•(g,M), d} yields the space Zp(g,M) of p-cocycles, the space
Bp(g,M) of p-coboundaries and Hp(g,M) = Zp(g,M)/Bp(g,M), the p-th cohomology space.
Let M = k denote the trivial g-module. In that case the space of 2–cocycles and 2–coboundaries
is given explicitely by

Z2(g, k) = {ω ∈ Hom(Λ2g, k) | ω([x1, x2] ∧ x3)− ω([x1, x3] ∧ x2)

+ ω([x2, x3] ∧ x1) = 0}
B2(g, k) = {ω ∈ Hom(Λ2g, k) | ω(x1 ∧ x2) = f([x1, x2])

for some f ∈ Hom(g, k)}

Definition 2.2. A Lie group G is said to have a left-invariant symplectic structure if it has a
left-invariant non-degenerate closed 2-form ω.

Example 2.3. The Lie group H3×R, where R is the abelian Lie group (with coordinate t) and
H3 is the Heisenberg group consisting of all real matrices of the form1 x z

0 1 y
0 0 1


admits a left-invariant symplectic structure given by the form

ω = dx ∧ (dz − xdy) + dy ∧ dt
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Definition 2.4. A Lie algebra g over k is called symplectic if there is an nondegenerate ω ∈
Z2(g, k), i.e., if there exists a nondegenerate skew-symmetric bilinear form B : g × g → k
satisfying

(1) B([x, y], z)−B(x, [y, z]) +B(y, [x, z]) = 0

If ωG is a left-invariant symplectic form on G, then ωG defines a symplectic structure on the
Lie algebra g of G. Conversely any symplectic form ωg of g defines a left-invariant symplectic
structure on G. Note that a finite-dimensional symplectic Lie algebra has even dimension.

Remark 2.5. A symplectic Lie algebra is also called a quasi-Frobenius Lie algebra. This is a nat-
ural generalization of a Frobenius Lie algebra. A Lie algebra is called Frobenius if there exists a
nondegenerate ω ∈ B2(g, k), i.e., a linear functional f ∈ Hom(g, k) such that B(x, y) = f([x, y])
is nondegenerate. Hence Frobenius Lie algebras are symplectic. They have been studied in var-
ious contexts, see [6], [12]. Many properties are known: they have trivial center, no non-zero
semisimple ideals and a non-nilpotent solvable radical, see [12]. Moreover, a Lie algebra g of a
linear algebraic group G over an algebraically closed field of characteristic zero is Frobenius if
and only if the universal enveloping algebra U(g) is primitive, and if and only if G admits an
open orbit in the coadjoint module.
Quasi-Frobenius Lie algebras have been studied in connection with rational solutions of the
classical Yang-Baxter equation (CYBE) [14] (there is a correspondence between rational solu-
tions of CYBE for a simple Lie algebra g and quasi-Frobenius subalgebras of g). They appear
also in superconformal field theories (see [13]) and related subjects.

Example 2.6. Clearly any abelian Lie algebra of even dimension is symplectic.
In dimension 2 over the complex numbers there are two Lie algebras, C2 and the non-abelian
Lie algebra r2(C), which is given by [e1, e2] = e1 where (e1, e2) denotes a basis of C2. The
algebra r2(C) is Frobenius, and hence symplectic.

Example 2.7. Let n4 be the 4-dimensional nilpotent Lie algebra with basis (e1, e2, e3, e4) defined
by the brackets

[e1, e2] = e3, [e1, e3] = e4

Clearly this Lie algebra is not Frobenius since it has a non-trivial center. It is easy to see that
the space H2(n4, k) is spanned by the classes of ω1 and ω2 which are defined by

ω1(e1 ∧ e4) = 1

ω2(e2 ∧ e3) = 1

With respect to the given basis, the matrix of ω1 + ω2 is given by
0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0


Since ω1 + ω2 is nondegenerate, n4 is quasi-Frobenius, or symplectic.

There is a large literature on symplectic Lie algebras. In [4] it was shown that all symplectic
nilpotent Lie algebras can be obtained by a consecutive procedure, called double extensions,
starting with the Lie algebra {0}. The classification of complex symplectic filiform Lie algebras
of dimension n ≤ 10 up to symplecto-isomorphism was given in [8]. (However, it is known
that there are some mistakes in it. The reader may compare the results with our results in the
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next section.) Also, the classification of all symplectic Lie algebras in dimension n ≤ 4 is well
known. Let us recall the result for n = 4 over the complex numbers.

Proposition 2.8. Any 4-dimensional complex quasi-Frobenius Lie algebra is isomorphic to one
and only one Lie algebra of the following list:

g Defining Lie brackets
C4 −

n3(C)⊕ C [e1, e2] = e3
r2(C)⊕ C2 [e1, e2] = e1

r3,−1(C)⊕ C [e1, e2] = e2, [e1, e3] = −e3
r2(C)⊕ r2(C) [e1, e2] = e1, [e3, e4] = e3

n4(C) [e1, e2] = e3, [e1, e3] = e4
g1(−1) [e1, e2] = e2, [e1, e3] = e3, [e1, e4] = −e4
g2(α, α) [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = αe2 − αe3 + e4

g6 [e1, e2] = e2, [e1, e3] = e3, [e1, e4] = 2e4, [e2, e3] = e4
g8(α) [e1, e2] = e3, [e1, e3] = −αe2 + e3, [e1, e4] = e4, [e2, e3] = e4

Proof. Using the classification of 4-dimensional Lie algebras given in [3] we determine the
spaces Z2(g,C). The result follows by computing the determinants. We want to demonstrate
the details by taking one example, the Lie algebra g = r3,λ ⊕ C. It is defined by the brackets
[e1, e2] = e2, [e1, e3] = λe3 where λ ∈ C, 0 < |λ| ≤ 1. The space Z2(g,C) is represented by the
subspace of matrices of the form 

0 α β γ
−α 0 δ 0
−β −δ 0 0
−γ 0 0 0


with determinant (γδ)2 and the condition (λ + 1)δ = 0. Hence g is symplectic if and only if
λ = −1. Note that the Lie algebra sl2(C)⊕C is not symplectic. It follows that all 4-dimensional
symplectic Lie algebras are solvable. �

A further generalization of a symplectic Lie algebra is a Lie algebra admitting an affine
structure.

Definition 2.9. A vector space A over k together with a k-bilinear product A×A→ A, (x, y) 7→
x · y is called left-symmetric algebra or LSA, if

(2) x · (y · z)− (x · y) · z = y · (x · z)− (y · x) · z

for all x, y, z ∈ A.

The left-multiplication L in A is given by L(x)y = x · y.

Definition 2.10. An affine structure on a Lie algebra g over k is a k–bilinear product g×g → g
satisfying (2) and

(3) [x, y] = x · y − y · x

for all x, y, z ∈ g. A Lie algebra over k admitting an affine structure is also called affine.
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The term affine Lie algebra is also used differently in the literature. Note that we have two
different bilinear products in the above definition: the Lie bracket and the dot product.
The conditions may be reformulated as follows: there exists a bilinear product x · y on g × g
which defines a g-module structure on g itself, denoted by gL, such that the identity mapping
ι : g → gL is a 1-cocycle in Z1(g, gL). In other words, (2) and (3) are equivalent to the following
identities:

[x, y] · z = x · (y · z)− y · (x · z)
ι([x, y]) = x · ι(y)− y · ι(x)

In general it is very difficult for a given Lie algebra to decide whether it is affine or not.
It is well known that a Lie algebra g over charactristic zero satisfying g = [g, g] is not affine.
Hence the existence problem mainly arises for solvable Lie algebras. In low dimensions this
problem has a positive solution. All complex Lie algebras of dimension n ≤ 4 are affine
except for sl2(C), and all complex nilpotent Lie algebras of dimension n ≤ 7 are affine. There
exist already examples of nilpotent Lie algebras of dimension 10 which are not affine, see [2].
Geometrically this means that there are nilmanifolds which are not affine.

Lemma 2.11. A Lie algebra g is affine if and only if there exists a g-module structure M on
the vector space of g such that there is a linear map ϕ ∈ Z1(g,M) satisfying detϕ 6= 0.

Proof. Let ϕ be a nonsingular 1-cocycle in Z1(g,M) and denote the action of g on M by
(x,m) 7→ x •m. Then define a bilinear product on g by

x · y := ϕ−1(x • ϕ(y))

This product is left-symmetric, since it defines a g-module structure on g, obtained by conju-
gation with ϕ from M , satisfying x ·y−y ·x = ϕ−1(x •ϕ(y)−y •ϕ(x)) = ϕ−1(ϕ([x, y])) = [x, y].
Conversely, an affine structure on g yields a nonsingular 1-cocycle ι ∈ Z1(g, gL). �

Denote by g the adjoint module and by g∗ = Hom(g, k) the coadjoint module of g. The
coadjoint action is given by (x, f) 7→ x • f where (x • f)y = −f([x, y]) for x ∈ g and f ∈ g∗. A
derivation D ∈ Der(g) is just a 1–cocycle in Z1(g, g). The following two corollaries are easily
derived from lemma 2.11:

Corollary 2.12. Any Lie algebra g admitting a nonsingular D ∈ Der(g) is affine.

Corollary 2.13. Any Lie algebra g admitting a nonsingular ϕ ∈ Z1(g, g∗) is affine.

For the cohomology with coefficients in the dual module we have the following well-known
result.

Proposition 2.14. H2(g, k) may be regarded as a subspace of H1(g, g∗). If g does not have a
non-zero invariant bilinear form then H2(g, k) ' H1(g, g∗).

Proof. The space Z1(g, g∗) may be interpreted as the space of bilinear forms B : g × g → k
satisfying condition (1), i.e., B([x, y], z)−B(x, [y, z])+B(y, [x, z]) = 0. Indeed, if ϕ ∈ Z1(g, g∗),
then define B by B(x, y) = ϕ(x)y. The condition ϕ([x, y]) = x •ϕ(y)−y •ϕ(x) is just equivalent
to the condition (1) on B. Conversely, given a B which sastifies identity (1), ϕ defined by
ϕ(x)y = B(x, y) will be a 1-cocycle in Z1(g, g∗). Now the subspace formed by those B which
are skew-symmetric, i.e., satisfy B(x, y) = −B(y, x), corresponds exactly to the space Z2(g, k).
Since obviously B2(g, k) ' B1(g, g∗), H2(g, k) becomes a subspace of H1(g, g∗). To prove
the second claim, let B be a bilinear form in Z1(g, g∗) and define B∗ by B∗(x, y) = B(y, x).
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Then β = B + B∗ is an invariant bilinear form on g, i.e., satisfies β([x, y], z) = β(x, [y, z]).
Assume that g does not have a non-zero invariant bilinear form. Then β is zero, hence B is
skew-symmetric and contained in Z2(g, k). �

We obtain the following corollary.

Corollary 2.15. Any symplectic Lie algebra is affine.

Proof. Let ω ∈ Z2(g, k) be nondegenerate. Then by Proposition 2.14, ϕ defined by ϕ(x)y =
ω(x ∧ y) is a nonsingular 1-cocycle in Z1(g, g∗) since ker(ϕ) = {x ∈ g | ω(x ∧ y) = 0 for all y ∈
g} = 0. The claim follows from Corollary 2.13. �

The corollary is well known. A different proof can be found in [8]. Clearly an affine Lie
algebra need not be symplectic, since there exist affine Lie algebras of odd dimension. There
are also affine Lie algebras of even dimension which are not symplectic (see the example below).
Although Lie algebras of odd dimension admit no nonsingular ω ∈ Z2(g, k), there may be a
nonsingular ϕ ∈ Z1(g, g∗). Easy examples are the Heisenberg Lie algebra or a filiform Lie
algebra of dimension 5. Hence there exist nilpotent Lie algebras with a non-zero invariant
bilinear form.

Example 2.16. Let g be the 6-dimensional nilpotent Lie algebra with basis (e1, . . . , e6) defined
by the brackets

[e1, ei] = ei+1, 2 ≤ i ≤ 5

[e2, e5] = −e6
[e3, e4] = e6

Then H2(g, k) is spanned by the classes of ω1 and ω2, which are defined by

ω1(e2 ∧ e3) = 1

ω2(e2 ∧ e5) = 1, ω2(e3 ∧ e4) = −1

For ω ∈ Z2(g, k) define ϕω by ϕω(x)y = ω(x ∧ y). If z ∈ Z(g), then ϕω(z) = 0 for any
ω ∈ B2(g, k). In our case Z(g) is spanned by e6, and any linear combination ω of ω1 and ω2

satisfies ϕω(e6) = 0. Hence there is no nondegenerate ω ∈ Z2(g, k) and the Lie algebra is not
symplectic. Nevertheless g admits an affine structure induced by a nonsingular derivation. In
fact, it is easy to see that the linear map d : g → g given by d(ei) = iei, i = 1, . . . , 5 and
d(e6) = 7e6 defines a nonsingular derivation.

3. Symplectic filiform CNLAs of dimension n < 12

In this section we classify characteristically nilpotent symplectic filiform Lie algebras of di-
mension n < 12. There is a classification of complex symplectic filiform Lie algebras of di-
mension n < 12 up to symplecto-isomorphism [8]. However, there are some mistakes in it;
see also the remark in [15]. We use a different method which does not rely on the explicit
classification: in [1] we have computed the cohomology space H2(g, k) for filiform nilpotent Lie
algebras. Consequently we can use the knowledge of Z2(g, k) to determine symplectic filiform
Lie algebras.

Definition 3.1. Let g be a nilpotent Lie algebra and {gk} its lower central series defined by
g0 = g, gk = [gk−1, g] for k ≥ 1. There exists an integer p such that gp = 0 and gp−1 6= 0, called
nilindex of g. A nilpotent Lie algebra of dimension n and nilindex p = n− 1 is called filiform.
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We divide the set An of filiform Lie algebra laws of dimension n into subsets An,i such
that algebras from different subsets are non-isomorphic (but may be isomorphic if they belong
to the same subset), and algebras belonging to the same subset have the same second scalar
cohomology. If g is a filiform Lie algebra of dimension n, then there exists an adapted basis
(e1, . . . , en) for g, see [1]. We write An for the set of elements which are the structure constants
of a filiform Lie algebra with respect to an adapted basis. The brackets of such a filiform Lie
algebra with respect to the basis (e1, . . . , en) are then given by

[e1, ei] = ei+1, i = 2, . . . , n− 1(4)

[ei, ej] =
n∑

r=1

( [(j−i−1)/2]∑
`=0

(−1)`

(
j − i− `− 1

`

)
αi+`, r−j+i+2`+1

)
er, 2 ≤ i < j ≤ n.(5)

with constants αk,s which are zero for all pairs (k, s) not in the index set In. Here In is given
by

I0
n = {(k, s) ∈ N× N | 2 ≤ k ≤ [n/2], 2k + 1 ≤ s ≤ n},

In =

{
I0

n if n is odd,

I0
n ∪ {(n

2
, n)} if n is even.

Let f = 3α4,10(α2,6 + α3,8) − 4α2
3,8. The above mentioned subsets An,i are given as follows,

for n = 4, 6, 8, 10:

Class Conditions
A4,1 −
A6,1 α3,6 6= 0
A6,2 α3,6 = 0
A8,1 α4,8 6= 0, 2α2,5 + α3,7 = 0
A8,2 α4,8 = 0, 2α2,5 + α3,7 6= 0
A8,3 α4,8 = 0, 2α2,5 + α3,7 = 0, α2,5 6= 0
A8,4 α2,5 = α3,7 = α4,8 = 0
A10,1 α5,10 6= 0, 2α2,5 + α3,7 6= 0
A10,2 α5,10 6= 0, 2α2,5 + α3,7 = 0
A10,3 α5,10 = 0, 2α2,5 + α3,7 6= 0, α2

3,7 6= α2
2,5

A10,4 α5,10 = 0, 2α2,5 + α3,7 6= 0, α2
3,7 = α2

2,5

A10,5 α5,10 = 0, 2α2,5 + α3,7 = 0, α4,9 6= 0, α2
2,6 + 2α2,7α4,9 6= 0

A10,6 α5,10 = 0, 2α2,5 + α3,7 = 0, α4,9 6= 0, α2
2,6 + 2α2,7α4,9 = 0

A10,7 α5,10 = 0, 2α2,5 + α3,7 = 0, α4,9 = 0, 2α2,7 + α3,9 6= 0
A10,8 α5,10 = 0, 2α2,5 + α3,7 = 0, α4,9 = 0, 2α2,7 + α3,9 = 0, f 6= 0
A10,9 α5,10 = 0, 2α2,5 + α3,7 = 0, α4,9 = 0, 2α2,7 + α3,9 = 0, f = 0

Definition 3.2. Let g be a filiform Lie algebra and (e1, . . . , en) be an adapted basis of g. Define
ω` ∈ Hom(Λ2g, k) by

ω`(ek ∧ e2`+3−k) = (−1)k for 1 ≤ ` ≤ [(n− 1)/2], 2 ≤ k ≤ [(2`+ 3)/2](6)
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where the values not defined (and which are not a consequence of skew-symmetry) are under-
stood to be zero.

In general, the ω` need not be cocycles for ` ≥ 3. On the other hand we know the following
[1]:

Lemma 3.3. Let g be filiform of dimension n ≥ 5. Then ω1, ω2 ∈ Z2(g, k). Any 2-coboundary
β ∈ B2(g, k) is degenerate. If ` < [(n− 1)/2], then ω` is degenerate.

In fact, for all x ∈ g and z ∈ Z(g) we have β(x ∧ z) = f([x, z]) = 0 for some linear form
f ∈ Hom(g, k). Recall that the center Z(g) is 1-dimensional. Likewise ω` is zero on g ∧ Z(g)
for ` < [(n− 1)/2].

Let n = 4: the cohomology does not depend on the structure constants. Over the complex
numbers there is only one filiform Lie algebra, namely g = n4(C). It is not a CNLA. The result
is as follows, see example (2.7):

Proposition 3.4. We have

H2(n4,C) = span{[ω1], [ω]}
where the 2-cocycles are defined by ω1(e2 ∧ e3) = 1 and ω(e1 ∧ e4) = 1. Since ω + ω1 is
nondegenerate, n4 is symplectic.

Let n = 6. Denote by λ ∈ A6 the law of g. It is well known that all such λ are N-graded.
Hence they are not CNLAs.

Proposition 3.5. In dimension 6 we have

H2(g, k) =

span{[ω1], [ω2]} if λ ∈ A6,1

span{[ω1], [ω2], [ω]} if λ ∈ A6,2

If λ ∈ A6,1 then g is not symplectic. If λ ∈ A6,2 then g is symplectic.

Proof. The 2-cocycles ω1, ω2 are defined as in (6), and ω is defined by

ω(e1 ∧ e6) = 1

ω(e3 ∧ e4) = α2,5

ω(e2 ∧ e4) = α2,6

Computing the determinant we obtain

det(rω2 + sω) = (r − sα2,5)
2r2s2

which is non-zero for a suitable choice of the constants r and s. Hence all λ ∈ A6,2 are
symplectic. �

Using the classification list and the notation of [7] over C we obtain:

Corollary 3.6. Every 6-dimensional complex filiform symplectic Lie algebra is isomorphic to
one of the following:
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µ1
6 : µ0

µ2
6 : µ0 + ψ2,5

µ3
6 : µ0 + ψ2,6

Note that our ψi,j correspond to Ψi−1,j−1 in [7]. For example, the brackets of µ2
6 are given by

(4), (5) with α2,5 = 1, α2,6 = 0, α3,6 = 0.

Let n = 8. Denote by λ ∈ A8 the law of g.

Proposition 3.7. We have

H2(g, k) =


span{[ω1], [ω2], [ω3]} if λ ∈ A8,1 or λ ∈ A8,3

span{[ω1], [ω2], [ω]} if λ ∈ A8,2

span{[ω1], [ω2], [ω3], [β]} if λ ∈ A8,4

where ω is defined by

ω(e1 ∧ e8) = 1,

ω(e2 ∧ e4) = α2,8, ω(e2 ∧ e6) = α2,6 − 2α3,8, ω(e2 ∧ e7) =
α2,5(2α2,5 − 5α3,7)

2α2,5 + α3,7

,

ω(e3 ∧ e4) = α3,7, ω(e3 ∧ e5) = α3,8, ω(e3 ∧ e6) =
2α3,7(α2,5 − α3,7)

2α2,5 + α3,7

,

ω(e4 ∧ e5) =
3α2

3,7

2α2,5 + α3,7

and β is defined by

β(e1 ∧ e8) = 1

β(e2 ∧ e4) = α2,8, β(e2 ∧ e6) = α2,6 − 2α3,8, β(e2 ∧ e7) = 1

β(e3 ∧ e4) = α3,7, β(e3 ∧ e5) = α3,8, β(e3 ∧ e6) = −1

β(e4 ∧ e5) = 1

Note that β is non-degenerate. Computing determinants we obtain:

Corollary 3.8. If λ ∈ A8,1 or A8,3, then g is not symplectic. If λ ∈ A8,4, then g is symplectic.
If λ ∈ A8,2, then g is symplectic if and only if

α2,5α3,7(α2,5 − α3,7)(5α3,7 − 2α2,5) 6= 0

Again using the classification list of [7] we obtain:

Corollary 3.9. Every 8-dimensional complex symplectic filiform Lie algebra is isomorphic to
one of the following laws:
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µ5
8(α) : µ0 + αψ2,5 + ψ3,7 + ψ3,8, α 6= −1

2
, 0, 1, 5

2

µ6
8(α) : µ0 + αψ2,5 + ψ3,7, α 6= −1

2
, 0, 1, 5

2

µ9
8(α) : µ0 + αψ2,6 + ψ2,7 + ψ3,8

µ10
8 (α) : µ0 + αψ2,6 + ψ3,8

µ11
8 (0) : µ0 + ψ2,7 + ψ2,8

µ15
8 : µ0 + ψ2,6 + ψ2,7

µ16
8 : µ0 + ψ2,6

µ17
8 : µ0 + ψ2,7

µ18
8 : µ0 + ψ2,8

µ19
8 : µ0

It is not difficult to compute the derivations of these algebras. This yields

Corollary 3.10. Every 8-dimensional complex symplectic filiform CNLA is isomorphic to one
of the following laws: µ5

8(α), α 6= −1
2
, 0, 1, 5

2
, or µ9

8(α), µ11
8 (0), µ15

8 .

Let n = 10. Denote by λ ∈ A10 the law of g.

Proposition 3.11. We have

H2(g, k) =



span{[ω1], [ω2], [ω3]} if λ ∈ A10,1, A10,4 or A10,5

span{[ω1], [ω2], [ω3], [ω4]} if λ ∈ A10,2 or A10,8

span{[ω1], [ω2], [ω]} if λ ∈ A10,3

span{[ω1], [ω2], [ω3], [β1]} if λ ∈ A10,6

span{[ω1], [ω2], [ω3], [β2]} if λ ∈ A10,7

span{[ω1], [ω2], [ω3], [ω4], [β3]} if λ ∈ A10,9

The cocycles ω, β1, β2, β3 are too complicated to be listed here. Let p(x, y) denote the fol-
lowing polynomial

p(x, y) = (5y3 − 8y2x+ 16yx2 − 4x3)(5y3 − 16y2x+ 10yx2 − 2x3)

(5y2 − 4yx+ 2x2)(7y − 4x)y

A straightforward computation of determinants yields the following result:

Corollary 3.12. A filiform Lie algebra with law in A10,1,A10,2,A10,4,A10,5,A10,6,A10,8 is not
symplectic. Any filiform Lie algebra with law in A10,9 is symplectic. An algebra with law in
A10,3 is symplectic if and only if p(α2,5, α3,7) 6= 0. An algebra with law in A10,7 is symplectic if
and only if f = 3α4,10(α2,6 + α3,8)− 4α2

3,8 6= 0.

Using the classification list of [7] we obtain:
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Corollary 3.13. Every 10-dimensional complex symplectic filiform Lie algebra is isomorphic
to one of the following laws: µ9

10(α), µ10
10, µ

11
10, µ

13
10(α, β), µ16

10(α, β), µ26
10(0, β), µ27

10, µ
29
10(α),

µ32
10(−1

2
, β), µ33

10(−1
2
), µ34

10(−1
2
), µ36

10(0, β), µ37
10(α), µ39

10(α), µ40
10, µ

41
10, µ

45
10(α), µ46

10, µ
47
10, µ

48
10, µ

49
10,

µ50
10, µ

51
10 or

µ1
10(α, β) : (α+ 2)(α+ 1)(α− 1)p(1, α) 6= 0

µ2
10(α, β) : (α+ 2)(α+ 1)(α− 1)p(1, α) 6= 0

µ3
10(α) : (α+ 2)(α+ 1)(α− 1)p(1, α) 6= 0

µ4
10(α) : (α+ 2)(α+ 1)(α− 1)p(1, α) 6= 0

µ12
10(α, β) : α 6= 0

µ17
10(α, β, γ) : (2β + 1)(3α+ 3γ − 4γ2) 6= 0

µ17
10(α, β, γ) : 2β + 1 = 3α+ 3γ − 4γ2 = 0

µ18
10(α, β, γ, δ) : (2β + δ)(3α+ 3γ − 4γ2) 6= 0

µ18
10(α, β, γ, δ) : 2β + δ = 3α+ 3γ − 4γ2 = γ(γ − 6) = 0

µ19
10(α, β) : 3α+ 3β − 4β2 6= 0

µ20
10(α, β, γ) : (2β + γ)(6α+ 1) 6= 0

µ20
10(α, β, γ) : 2β + γ = 6α+ 1 = 0

µ21
10(α, β, γ) : γ(2α+ β) 6= 0

µ22
10(α, β, γ) : γ(2α+ β) 6= 0

µ23
10(α, β) : 3α+ 3β − 4β2 = 0

µ24
10(α, β, γ) : 2α+ β = 0, α 6= 0

µ25
10(α, β) : α 6= 0

µ28
10(α, β) : 2β + 1 6= 0

µ31
10(α, β, γ) : 2α+ β = 0

Corollary 3.14. Every 10-dimensional complex symplectic filiform CNLA is isomorphic to
one of the following laws: µ9

10(α), µ10
10, µ

13
10(α, β), µ16

10(α, β), µ26
10(0, β), µ27

10, µ
29
10(α), µ32

10(−1
2
, β),

µ33
10(−1

2
), µ36

10(0, β), µ39
10(α), µ40

10, µ
45
10(α), µ46

10, µ
48
10 or

µ1
10(α, β) : (α+ 2)(α+ 1)(α− 1)p(1, α) 6= 0

µ2
10(α, β) : (α+ 2)(α+ 1)(α− 1)p(1, α) 6= 0

µ3
10(α) : (α+ 2)(α+ 1)(α− 1)p(1, α) 6= 0

µ12
10(α, β) : α 6= 0

µ17
10(α, β, γ) : (2β + 1)(3α+ 3γ − 4γ2) 6= 0

µ17
10(α, β, γ) : 2β + 1 = 3α+ 3γ − 4γ2 = 0
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µ18
10(α, β, γ, δ) : (2β + δ)(3α+ 3γ − 4γ2) 6= 0

µ18
10(α, β, γ, δ) : 2β + δ = 3α+ 3γ − 4γ2 = γ(γ − 6) = 0, β 6= 0

µ18
10(α, β, γ, δ) : α = 42, β = 0, γ = 6, δ = 0

µ19
10(α, β) : 3α+ 3β − 4β2 6= 0

µ20
10(α, β, γ) : (2β + γ)(6α+ 1) 6= 0

µ20
10(α, β, γ) : 2β + γ = 6α+ 1 = 0

µ21
10(α, β, γ) : γ(2α+ β) 6= 0

µ22
10(α, β, γ) : γ(2α+ β) 6= 0

µ24
10(α, β, γ) : 2α+ β = 0, α 6= 0

µ25
10(α, β) : α 6= 0

µ28
10(α, β) : 2β + 1 6= 0

µ31
10(α, β, γ) : 2α+ β = 0, α 6= 0 or γ 6= 0

4. Symplectic filiform CNLAs of dimension n ≥ 12

For n ≥ 12 there is no classification of symplectic filiform Lie algebras. We will restrict
ourselfs to certain families of filiform Lie algebras g of dimension n ≥ 12. Consider the following
conditions on g:

(a) g contains no one-codimensional subspace U ⊇ g1 such that [U, g1] ⊆ g4.

(b) g
n−4

2 is abelian, if n is even.
(c) [g1, g1] ⊆ g6.

These properties are isomorphism invariants.

Definition 4.1. Let A1
n denote the set of n-dimensional filiform laws whose algebras satisfy

the properties (a), (b), (c). Denote by A2
n the set of n-dimensional filiform laws whose algebras

satisfy (a), (b), but not (c). Finally, for n even, denote by A3
n the set of n-dimensional filiform

laws whose algebras satisfy (a) but not (b).

The above properties of g can be expressed in terms of the corresponding structure constants
αk,s. It is easy to verify the following (use (4), (5)):

α2,5 6= 0, if and only g satisfies property (a).
αn

2
,n = 0, if and only if g satisfies property (b).

α3,7 = 0, if and only if g satisfies property (c).

If g satisfies property (a) we may change the adpated basis so that it stays adapted and

α2,5 = 1.

In fact, we may take f ∈ GL(g) defined by f(e1) = ae1, f(e2) = be2 and f(ei) = [f(e1), f(ei−1)]
for 3 ≤ i ≤ n with suitable nonzero constants a and b.

Proposition 4.2. Suppose that g is a filiform Lie algebra of dimension n ≥ 12 satisfying
properties (a), (b). Hence we may assume for its law λ ∈ An that α2,5 = 1, and αn

2
,n = 0 if n

is even. Then the Jacobi identity implies that
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(α3,7, α4,9, α5,11) =

(0, 0, 0) if λ ∈ A1
n

( 1
10
, 1

70
, 1

420
) if λ ∈ A2

n

Proof. Let (e1, . . . , en) be an adapted basis of g, the Lie brackets with respect to this basis being
given by (4), (5). Let J(ei, ej, ek) = 0 denote the Jacobi identity with ei, ej, ek. Let J(i, j, k, l)
be the coefficient of el in J(ei, ej, ek). If n ≥ 12 then we have the conditions J(2, 3, 4, 9) =
J(2, 4, 5, 11) = J(3, 4, 5, 12) = 0 which are given by the following equations:

α4,9(2 + α3,7)− 3α2
3,7 = 0

α5,11(2− α3,7 − α4,9) + 2α4,9(3α4,9 − 2α3,7) = 0

3α5,11(α3,7 + α4,9)− 4α2
4,9 = 0

It is not difficult to see that there are precisely two solutions: (α3,7, α4,9, α5,11) = (0, 0, 0) or
(α3,7, α4,9, α5,11) = ( 1

10
, 1

70
, 1

420
). Indeed, the first equation implies α4,9 = 3α2

3,7/(2 + α3,7). If we
substitute that into the other equations we obtain α3,7(10α3,7 − 1) = 0. �

Proposition 4.3. Let g be a filiform Lie algebra of dimension 12 with law λ ∈ A12. Then

H2(g, k) =


span{[ω1], [ω2], [ω]} if λ ∈ A1

12

span{[ω1], [ω2], [β]} if λ ∈ A2
12

span{[ω1], [ω2]} if λ ∈ A3
12

If λ ∈ A2
12 then g is symplectic since det(β) 6= 0. In the other two cases g is not symplectic.

Proof. Let λ ∈ A1
12 and the Lie brackets of g being given by (4), (5) with 21 scalars αk,s, (k, s) ∈

I12. We have α2,5 = 1, α3,7 = α6,12 = 0 and polynomial equations in the parameters αk,s given
by the Jacobi identity. However since we use an adapted basis, these equations are quite simple.
The Jacobi identity is satisfied if and only if

α4,9 = α4,10 = α5,11 = α5,12 = 0

α4,11 = 2α2
3,8

α4,12 = −1

2
[3α4,11(α2,6 + α3,8)− 9α3,9α3,8]

Hence the parameters α2,6, . . . , α2,12 and α3,8, . . . , α3,12 are arbitrary.
Now a standard computation yields the second scalar cohomology as above. Here ω is a 2-
cocycle with

ω(e1 ∧ e12) = 1

ω(e2 ∧ e4) = α2,12

ω(e2 ∧ e6) = α2,10 − 2α3,12

... =
...

ω(e4 ∧ e7) = 2α2
3,8



14 D. BURDE

It is easy to see that all linear combinations of ω1, ω2 and ω are degenerate. In fact, the vector
(0, . . . , 0, 1, 6α3,8 − α2,6, 0)t always belongs to the kernel of the representing matrix. Hence g is
not symplectic. A similar computation is done for the other two cases. �

Corollary 4.4. If λ ∈ A2
12 such that 200α3,8 − 27α2,6 6= 0 then g is a symplectic CNLA.

Remark 4.5. Let λ ∈ A2
12. Then g is always a CNLA, except for the case

α3,8 = 27α2,6/200,

α3,9 = (4000α2,7 + 243α2
2,6)/28000

α3,10 = (560000α2,8 + 100000α2,6α2,7 − 30213α3
2,6)/3920000

α3,11 = f(α2,6, . . . , α2,9)

α3,12 = g(α2,6, . . . , α2,10)

with certain polynomials f, g ∈ Q[α2,6, . . . , α2,10].

For λ ∈ A2
n, n ≥ 13 we have two different cases for the cohomology. Denote by A2

n,1 the subset
of laws satisfying α3,n−4 = Pn(αk,s), where Pn is a certain polynomial with rational coefficients
in the variables αk,s where k = 2, 6 ≤ s ≤ n and k = 3, n − 4 ≤ s ≤ n. Denote by A2

n,1 the
subset of laws which do not satisfy this polynomial equation. For n = 14 the polynomial P14 is
given by:

P14 = (482832810500a3
3,8 − 157196008500a2

3,8a2,6 + 2223828750a3,8a2,7

+ 16180336845a3,8a
2
2,6 + 186801615a2,8 − 266859450a2,7a2,6

− 517476276a3
2,6)/1307611305

Proposition 4.6. Let g be a filiform Lie algebra of dimension 14 with law λ ∈ A14. Then

H2(g, k) =


span{[ω1], [ω2], [ω]} if λ ∈ A1

14

span{[ω1], [ω2], [β]} if λ ∈ A2
14,1

span{[ω1], [ω2]} if λ ∈ A2
14,2

If λ ∈ A2
14,1 then g is symplectic since det(β) 6= 0. In the other two cases g is not symplectic.

Corollary 4.7. If λ ∈ A2
14,1 such that 200α3,8 − 27α2,6 6= 0 then g is a symplectic CNLA.

Remark 4.8. The result generalizes to higher dimensions. The cohomology has dimension 2 or
3 and only the filiform algebras g with law λ ∈ A2

n,1 are symplectic. It is easy to see that the

algebras g with law λ ∈ A1
n, n ≥ 12 are not symplectic, since (0, . . . , 0, 1, (n− 6)α3,8 − α2,6, 0)t

lies in the kernel of the matrix associated to every ω ∈ Z2(g, k). The algebras with law λ ∈ A2
n,1

are CLNAs except for the case where α3,k are given by certain polynomials in α2,l with rational
coefficients.

Remark 4.9. The knowledge of H2(g, k) can also be used to determine affine filiform Lie alge-
bras. If there exists a non-degenerate ω ∈ Z2(g, k) then g is symplectic, hence affine. However,
it is enough to find an affine class [ω] ∈ H2(g, k) to ensure that g is affine, see [1]. It is well
known that all complex filiform Lie algebras of dimension n < 10 are affine. In dimension 10
however, there exist filiform algebras which are not affine. It turns out that a law λ in A10,1 or
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A10,4 is not affine, if it belongs to a certain irreducible component of the variety of all nilpo-
tent Lie algebra laws of dimension 10, such that the Lie algebra g/Z2(g) is characteristically
nilpotent. Here Z2(g) denotes the second center of g.
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