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Introduction

Group homology and cohomology has its origins in topology, starting with the work of Rie-
mann (1857), Betti (1871) and Poincaré (1895) on “homology numbers” of manifolds. Although
Emmy Noether observed in 1925 that homology was an abelian group rather than just Betti
numbers, homology remained a part of the realm of topology until about 1945. During the pe-
riod of 1940−1955 came the rise of algebraic methods. The homology and cohomology of several
algebraic systems were defined and explored: Tor and Ext for abelian groups, homology and
cohomology of groups and Lie algebras, the cohomology of associative algebras, sheaves, sheaf
cohomology and spectral sequences. At this point the book of Cartan and Eilenberg (1956)
crystallized and redirected the field completely. Their systematic use of derived functors, de-
fined by projective and injective resolutions of modules, united all the previously disparate
homology theories. Several new fields grew out of this: homological algebra, K-theory, Galois
theory, étale cohomology of schemes and so on. Much could be said also on newer developments
in homological algebra.

Concerning group cohomology, the low dimensional cohomology of a group G was already clas-
sically studied in other guises, long before the formulation of group cohomology in 1943− 1945
by Eilenberg and MacLane. For example, classical objects were

H0(G,A) = AG, H1(G,Z) = G/[G,G]

and for G finite, the character group

H2(G,Z) = H1(G,C×) = Hom(G,C×)

Also the group H1(G,A) of crossed homomorphisms of G into a G-module A is classical as
well: Hilbert’s Theorem 90 from 1897 is actually the calculation that H1(G,L×) = 0 when G is
the Galois group of a cyclic field extension L/K. One should also mention the group H2(G,A)
which classifies extensions over G with normal abelian subgroup A via factor sets. The idea
of factor sets appeared already in Hölders paper in 1893 and again in Schur’s paper in 1904
on projective representations G→ PGLn(C). Schreier’s paper in 1926 was the first systematic
treatment of factor sets, without the assumption that A is abelian.
In 1950 Hochschild invented the term Galois cohomology for the group cohomology of the
Galois group G = Gal(L/K), where L is a (possibly infinite) Galois field extension of K, such
as the separable closure of K. Here G is a profinite group. Hochschild and Tate applied Galois
cohomology to class field theory. In 1964 Serre published Cohomologie galoisienne, which until
today is the standard reference on Galois cohomology over number fields.
The first draft was written in 2004. This is a new version with some corrections and extensions,
written in 2009.
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CHAPTER 1

Group extensions

Given a group G and a normal subgroup N of G we may decompose G in a way into N
and G/N . The study of group extensions is related to the converse problem. Given N and
Q, try to understand what different groups G can arise containing a normal subgroup N with
quotient G/N ∼= Q. Such groups are called extensions of N by Q. If N is abelian, then there is
a natural Q-action on N , making N a Q-module. In that case the cohomology group H2(Q,N)
classifies the equivalence classes of such group extensions which give rise to the given Q-module
structure on N .

Group homology and cohomology belongs to the field of homological algebra. This deals with
category theory and in particular with the theory of derived functors. In this chapter however
we will focus most of the time only on group theory.

1.1. Split extensions and semidirect products

We start with the definition of exact sequences.

Definition 1.1.1. A sequence of groups and group homomorphisms

· · · → An−1
αn−→ An

αn+1−−−→ An+1 → · · ·
is called exact at An if imαn = kerαn+1. The sequence is called exact if it is exact at each
group.

Example 1.1.2. The sequence 1
α1−→ A

α2−→ 1 is exact iff A = 1 is the trivial group. The

sequence 1
α−→ A

β−→ B
γ−→ 1 is exact iff A is isomorphic to B.

Indeed, 1 = imα1 = kerα2 = A in the first case, and 1 = imα = ker β, im β = ker γ = B
in the second, so that

A ∼= A/ ker β ∼= im β = B

Example 1.1.3. A short exact sequence is given by

1→ A
′ α−→ A

β−→ A
′′ → 1

From the exactness we conclude that α is injective, β is surjective and

(1.1) A
′ ∼= α(A

′
) = ker β

hence α(A
′
) being a kernel is a normal subgroup of A. Sometimes we will identify A′ with

its image α(A
′
). Furthermore we have

(1.2) A/ ker β ∼= β(A) = A
′′

hence A
′′

is isomorphic to the quotient A/A
′
.

3



4 1. GROUP EXTENSIONS

Definition 1.1.4. Let N and Q be groups. An extension of N by Q is a group G such that

(1) G contains N as a normal subgroup.
(2) The quotient G/N is isomorphic to Q.

An extension of groups defines a short exact sequence and vice versa: if G is an extension
of N by Q then

1→ N
ι−→ G

π−→ Q→ 1

is a short exact sequence where ι : N ↪→ G is the inclusion map and π : G � G/N is the
canonical epimorphism. If

1→ A
′ α−→ A

β−→ A
′′ → 1

is a short exact sequence, then A is an extension of α(A
′
) ∼= A

′
by β(A) ∼= A

′′
, see example

(1.1.3).

Example 1.1.5. Given any two groups N and Q, their direct product G = Q × N is an
extension of N by Q, and also an extension of Q by N .

Example 1.1.6. The cyclic group C6 is an extension of C3 by C2. Hence we obtain the
short exact sequence

1→ C3 → C6 → C2 → 1

The symmetric group respectively the dihedral group S3
∼= D3 is an extension of C3 by C2, but

not of C2 by C3. We obtain the short exact sequence

1→ C3 → D3 → C2 → 1

In the first case, C3 is a normal subgroup of C6 with quotient isomorphic to C2. In the
second case let C3 = 〈(123)〉. This is a normal subgroup of D3 since the index is [D3 : C3] = 2.
The quotient is isomorphic to C2 = 〈(12)〉. Note that C2 is not a normal subgroup of D3.

Let M/L/K be a tower of field extensions such that the field extensions M/K and L/K are
normal. Denote by

Q := Gal(L/K)

N := Gal(M/L)

G := Gal(M/K)

Then G is a group extension of N by Q since N C G and Q ∼= G/N by Galois theory. In
this way be obtain some examples of group extensions.

Example 1.1.7. Let M/L/K be Q(
√

2,
√

3)/Q(
√

2)/Q. Then

Q := Gal(Q(
√

2)/Q) ∼= C2

N := Gal(Q(
√

2,
√

3)/Q(
√

2)) ∼= C2

G := Gal(Q(
√

2,
√

3)/Q) ∼= C2 × C2

This yields the short exact sequence

1→ C2 → C2 × C2 → C2 → 1
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Let us prove that G ∼= C2 × C2. Since [Q(
√

2,
√

3) : Q] = 4 the group G has four elements:
the automorphisms

(
√

2,
√

3) 7→


(
√

2,
√

3)

(−
√

2,
√

3)

(
√

2,−
√

3)

(−
√

2,−
√

3)

Hence all non-trivial elements of G have order 2.

Example 1.1.8. Let M/L/K be Q(
√

2,
√

2 +
√

2)/Q(
√

2)/Q. Then

Q := Gal(Q(
√

2)/Q) ∼= C2

N := Gal(Q(
√

2,
√

2 +
√

2)/Q(
√

2)) ∼= C2

G := Gal(Q(
√

2,
√

2 +
√

2)/Q) ∼= C4

This yields the short exact sequence

1→ C2 → C4 → C2 → 1

To show that the Galois group of Q(
√

2,
√

2 +
√

2) over Q is cyclic of order 4, we will use
the following well known result:

Lemma 1.1.9. Let K be a field of characteristic different from 2 and assume that a is not
a square in K. Let L := K(

√
a). Then there exists a tower of normal field extensions M/L/K

with Gal(M/K) ∼= C4 if and only if a ∈ K2 +K2. In that case there exist s, t ∈ K, t 6= 0 such

that M = L(
√
s+ t

√
a).

In our case K = Q, L = Q(
√

2) and a = 2. Since 2 = 12 + 12 we have Gal(M/K) ∼= C4 and
with s = 2, t = 1,

M = L(
√

2 +
√

2) = Q(
√

2,
√

2 +
√

2)

Definition 1.1.10. Let 1 → N
α−→ G

β−→ Q → 1 be a given group extension. Denote by
τ : Q ∼= G/α(N) → G the map assigning each coset x ∈ G/α(N) a representative τ(x) ∈ G.
Any such function τ : Q→ G is called a transversal function.

By definition we have β(τ(x)) = x, i.e.,

(1.3) βτ = id |Q

In general a transversal function need not be a homomorphism. If it is however we obtain
a special class of extensions.

Definition 1.1.11. An extension 1 → N
α−→ G

β−→ Q → 1 is called split if there is a
transversal function τ : Q → G which is a group homomorphism. In that case τ is called a
section.

Sometimes this is called right-split, whereas left-split means that there exists a homomor-
phism σ : G → N such that σα = id |N . For the category of groups however, the properties
right-split and left-split need not be equivalent.
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Example 1.1.12. The extensions of example (1.1.6) are both split:

1→ C3 → C6 → C2 → 1

1→ C3 → D3 → C2 → 1

On the other hand the extension

1→ C2 → C4 → C2 → 1

of example (1.1.8) is not split.

Since a transversal function τ in these examples is given by its values on [0] and [1] in C2,
it is easily seen that we can find a section for the first two examples. As to the last extension
it is clear that C2 does not have a complement in C4. But this implies that the extension is
not splitting as we will see in the following.

Definition 1.1.13. Two subgroups N,Q ≤ G are called complementary if

N ∩Q = 1(1.4)

G = NQ(1.5)

In general, NQ = {nq | n ∈ N, q ∈ Q} is not a subgroup of G. In fact, it is a subgroup if
and only if NQ = QN . Hence in particular it is a subgroup if N CG or QCG.

Example 1.1.14. The subgroups N = 〈(123)〉 and Q = 〈(12)〉 are complementary subgroups
in G = S3. The subgroups N = 〈(12)〉 and Q = 〈(234)〉 of G = S4 are not complementary.

The first case is clear, for the second note that |NQ| = |N | · |Q| · |N ∩ Q|−1 = 6, hence
NQ 6= S4.

Lemma 1.1.15. Let N,Q ≤ G be subgroups. Then N and Q are complementary if and only
if each element g ∈ G has a unique representation g = nq with n ∈ N, q ∈ Q.

Proof. If N and Q are complementary then G = NQ, hence each element g ∈ G has a
representation g = nq. To show the uniqueness assume that g = nq = mp with n,m ∈ N and
p, q ∈ Q. Then n−1gp−1 = qp−1 = n−1m ∈ N ∩Q = 1 and hence m = n and p = q. Conversely
the unique representation implies G = NQ and N ∩Q = 1. �

Definition 1.1.16. A group G is called inner semidirect product of N by Q if

(1) N is a normal subgroup of G.
(2) N and Q are complementary in G.

In that case we will write G = QnN .

Example 1.1.17. Both S3 and C6 are inner semidirect products of C3 by C2.

This says that in contrast to direct products, an inner semidirect product G of N by Q
is not determined up to isomorphism by the two subgroups. It will also depend on how N is
normal in G.
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Example 1.1.18. Let Sn denote the symmetric group on n letters and Dn the dihedral group
of order 2n. Both are inner semidirect products as follows:

Sn = C2 nAn
Dn = C2 n Cn

Clearly AnCSn and C2,An are complementary subgroups in Sn. Let Dn = 〈s, t | sn = t2 =
1, tst = s−1〉 and Cn = 〈s〉, C2 = 〈t〉. Then Cn CDn and Cn and C2 are complementary in Dn.

An inner semidirect product of N by Q is also an extension of N by Q since Q ∼= G/N .
More precisely we have:

Proposition 1.1.19. For a group extension 1→ N
α−→ G

β−→ Q→ 1 the following assertions
are equivalent:

(1) There is a group homomorphism τ : Q→ G with βτ = id |Q.
(2) α(N) ∼= N has a complement in G, i.e., G ∼= QnN .

Corollary 1.1.20. G is an inner semidirect product of N by Q if and only if G is a split
extension of N by Q.

Proof. Let τ be a section. We will show that τ(Q) then is a complement of α(N) = ker β
in G. So let g ∈ ker β ∩ τ(Q). With g = τ(q) for some q ∈ Q it follows

1 = β(g) = β(τ(q)) = q

Since τ is a homomorphism g = τ(q) = τ(1) = 1. So we have

(1.6) α(N) ∩ τ(Q) = 1

Now let g ∈ G and define x := β(g) ∈ Q. Then τ(x) ∈ G and

β(gτ(x−1)) = β(g) · β(τ(x−1)) = xx−1 = 1

so that gτ(x−1) = α(n) for some n ∈ N since it lies in ker β = α(N). Using τ(x)−1 = τ(x−1)
we obtain g = α(n)τ(x), i.e.,

(1.7) G = α(N)τ(Q)

Since α and τ are monomorphisms we have G ∼= QnN , Q ∼= τ(Q) and N ∼= α(N).

For the converse direction let C be a complement of α(N) in G, i.e.,

C ∩ α(N) = 1(1.8)

C · α(N) = G(1.9)

The homomorphism lemma now says that α(N) ⊂ ker β implies the existence of a unique
homomorphism γ : G/α(N)→ Q such that the following diagram commutes:

G
β //

ϕ

��

Q

G/α(N)

γ

;;wwwwwwwww

In fact, γ is defined by γ(gα(N)) = β(g). Let us now restrict ϕ to the complement C. We still
denote this map by ϕ. By assumption it is an isomorphism, given by c 7→ cα(N) for c ∈ C.
Hence there exists a unique homomorphism γ : G/α(N)→ Q satisfying

γ(ϕ(c)) = γ(cα(N)) = β(c)
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for all c ∈ C, i.e., γ ◦ ϕ = β. Note that γ is an isomorphism. Hence the map

τ : Q→ C ⊂ G, q 7→ ϕ−1(γ−1(q))

is a homomorphism with

β(τ(q)) = (γ ◦ ϕ)(ϕ−1(γ−1(q))) = q

hence with βτ = id |Q. �

Example 1.1.21. The following exact sequences are both split:

1→ An
ι−→ Sn

sign−−→ {±1} → 1

1→ SLn(k)
ι−→ GLn(k)

det−→ k× → 1

It follows that Sn ∼= C2 nAn and GLn(k) ∼= k× n SLn(k).

Since ker sign = An we see that the first sequence is exact. It also splits. Let π ∈ Sn be a
transposition and define τ : {±1} → Sn by τ(1) = id and τ(−1) = π. Then τ is a section. For
the second sequence define τ : k× → GLn(k) by

a 7→


1 . . . 0 0
...

. . .
...

...
0 . . . 1 0
0 . . . 0 a


This is a section since τ(ab) = τ(a)τ(b) and (β ◦ τ)(a) = det τ(a) = a.

Definition 1.1.22. Let N,Q be two groups and ϕ : Q → Aut(N) be a homomorphism.
Define a multiplication on Q×N as follows:

(1.10) (x, a)(y, b) = (xy, ϕ(y)(a) · b)

for x, y ∈ Q and a, b ∈ N . Then Q × N together with this multiplication becomes a group
which is denoted by G = Q nϕ N . It is called the outer semidirect product of N by Q with
respect to ϕ.

Note that ϕ(xy) = ϕ(y) ◦ ϕ(x) for all x, y ∈ Q. The product on the RHS denotes the
composition of automorphisms in Aut(N). Let us verify the group axioms. The element (1, 1)
is a left unit element in G:

(1, 1)(x, a) = (x, ϕ(x)(1) · a) = (x, a)

A left inverse element to (x, a) is given by (x−1, b−1) where b = ϕ(x−1)(a):

(x−1, b−1)(x, a) = (x−1x, ϕ(x)(b−1) · a) = (1, ϕ(x)(ϕ(x−1)(a−1)) · a)

= (1, a−1a) = (1, 1)
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since b−1 = (ϕ(x−1)(a))−1 = ϕ(x−1)(a−1). Finally the multiplication is associative.

[(x, a)(y, b)](z, c) = (xy, ϕ(y)(a) · b)(z, c) = (xyz, ϕ(z)(ϕ(y)(a) · b) · c)
= (xyz, ((ϕ(z) ◦ ϕ(y))(a) · ϕ(z)(b) · c)

(x, a)[(y, b)(z, c)] = (x, a)(yz, ϕ(z)b · c) = (xyz, ϕ(yz)(a) · ϕ(z)(b) · c)

Since ϕ is a homomorphism both sides coincide.
We want to explain the relation between an inner and outer semidirect product. If

1→ N
α−→ G

β−→ Q→ 1

is a short exact sequence, then G acts on the normal subgroup α(N)CG by conjugation:

G× α(N)→ α(N), (g, α(a)) 7→ g−1α(a)g

Definition 1.1.23. The assignment γ(g) = g−1α(a)g defines a homomorphism γ : G →
Aut(α(N)). The restriction on the quotient G/α(N) ∼= Q is also denoted by γ : Q→ Aut(N).

Proposition 1.1.24. Let G = Qnϕ N be an outer semidirect product of N by Q. Then G
defines a split short exact sequence

1→ N
α−→ G

β
//Q

τoo → 1

where the maps α, β, τ are given by

α(a) = (1, a), β((x, a)) = x, τ(x) = (x, 1)

such that

(1.11) α ◦ ϕ(x) = γ(τ(x)) ◦ α

Proof. We show first that α(N) is normal in G so that γ : Q → Aut(N) is well defined.
Let (x, a) ∈ G and (1, c) ∈ α(N).

(x, a)−1(1, c)(x, a) = (x−1, ϕ(x−1)(a−1)) · (x, ϕ(x)(c) · a)

= (1, a−1 · ϕ(x)(c) · a) ∈ α(N)

Applying this computation we obtain for all a ∈ N

γ(τ(x))[α(a)] = τ(x)−1α(a)τ(x) = (x, 1)−1(1, a)(x, 1)

= (1, ϕ(x)(a)) = α[ϕ(x)(a)]

which gives (1.11). Since obviously α is a monomorphism and β is an epimorphism with
βτ = id we obtain a split short exact sequence. The group G is also an inner semidirect product
of α(N) by τ(Q). �

Conversely the following result holds.

Proposition 1.1.25. Each split short exact sequence 1 → N
α−→ G

β−→ Q → 1 defines via
(1.11) an outer semidirect product Qnϕ N which is isomorphic to G.
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Proof. Since α is a monomorphism (1.11) defines a homomorphism ϕ : Q → Aut(N).
Define the map ψ : Qnϕ N → G by

(1.12) ψ[(x, a)] = τ(x) · α(a)

By Lemma (1.1.15) the map ψ is bijective. Moreover it is a homomorphism. We have

ψ[(x, a)(y, b)] = ψ[(xy, ϕ(y)(a) · b)] = τ(xy) · α(ϕ(y)(a)) · α(b)

= τ(x)τ(y) · α(ϕ(y)(a)) · α(b)

by (1.10) and the fact that τ is a homomorphism. On the other hand

ψ[(x, a)]ψ[(y, b)] = τ(x)α(a) · τ(y)α(b) = τ(x)τ(y) ·
(
τ(y)−1α(a)τ(y)

)
· α(b)

= τ(x)τ(y) · γ(τ(y))(α(a)) · α(b) = τ(x)τ(y) · α(ϕ(y)(a)) · α(b)

�

Example 1.1.26. Let C2 act on Cn by the automorphism x 7→ x−1. Then Dn ∼= C2 nϕ Cn

The homomorphism ϕ : C2 → Aut(Cn) is defined by ϕ(1) = id and ϕ(−1)(x) = x−1.
The following well known result shows that certain group extensions are always semidirect

products.

Schur-Zassenhaus 1.1.27. Let N and Q be finite groups of coprime order. Then every

short exact sequence 1 → N
α−→ G

β−→ Q → 1 splits. Hence each extension of N by Q is a
semidirect product.

We will prove this theorem later, see proposition 2.5.6. There is a very elegant proof for the
case that N is abelian using the second cohomology group H2(Q,N). The general case can be
proved with an induction over the order of N reducing the problem to a central extension. An
above extension is called central if α(N) ⊂ Z(G) is satisfied. In that case N is abelian. In fact,
the above result has first been proved by Schur in 1902 for central extensions.
Note that the result need not be true if the orders are not coprime. A short exact sequence
1→ C2 → G→ C2 → 1 may split or may not. Take G = C2 × C2 or G = C4 respectively.

Exercises
(1) Exact sequences. Let 1→ G1 → G2 → G3 → . . .→ Gn → 1 be an exact sequence of finite

groups. Let |G| denote the cardinality of a group G. Prove the following equation:
n∏
i=1

|Gi|(−1)i

= 1

(2) Splitting extensions. Show that the extension

1→ C2 → C4 → C2 → 1

is not split. Which extensions of C3 by C2 are splitting ?
(3) Semidirect products. Let p be a prime. Show that none of the groups Cpn is a semidirect

product of non-trivial subgroups.
(4) The quaternion group. Let Q = {1,−1, i,−i, j,−j, k,−k} be the quaternion group. Is Q a

semidirect product of non-trivial subgroups ?
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1.2. Equivalent extensions and factor systems

How can we describe all possible extensions G of a group N by another group Q ? We will

view extensions as short exact sequences 1 → N
α−→ G

β−→ Q → 1. There will be a natural
equivalence relation on the set of such extensions. As a preparation we will need the following
lemma.

Lemma 1.2.1. Suppose that we have the following commutative diagram of groups and ho-
momorphisms with exact rows:

1 // A

f
��

α // B

g

��

β // C

h
��

// 1

1 // A
′ γ // B

′ δ // C
′ // 1

If f and h are both injective, respectively surjective, then so is g. In particular, if f and h are
isomorphisms, so is g.

Proof. By assumption we know that α, γ are injective, β, δ are surjective and imα =
ker β, im γ = ker δ. Since the diagram commutes we have

(1.13) γf = gα, hβ = δg

Assume first that f and h are injective. We will show that g then is also injective. Let g(b) = 1
for some b ∈ B. Then by (1.13)

1 = δ(g(b)) = h(β(b)) =⇒ β(b) = 1

since h is injective. It follows b ∈ ker β = imα, hence α(a) = b for some a ∈ A. Then again by
(1.13)

1 = g(b) = g(α(a)) = γ(f(a)) =⇒ f(a) = 1

since γ is injective. But f is also injective hence a = 1 and b = α(1) = 1. This proves the
injectivity of g.
For the second part assume now that f and h are surjective. We will show that g is also
surjective. Let b′ ∈ B′ be given. Since h is surjective there is a c ∈ C such that h(c) = δ(b′) ∈ C ′.
Since β is surjective there is a b ∈ B such that β(b) = c. It follows

δ(g(b)) = h(β(b)) = h(c) = δ(b′)

so that δ (g(b)−1b′) = 1 and g(b)−1b′ ∈ ker δ = im γ. it follows g(b)−1b′ = γ(a′) for some a′ ∈ A′.
Since f is surjective there is an a ∈ A such that f(a) = a′ so that, using (1.13)

g(α(a)) = γ(f(a)) = γ(a′) = g(b)−1b′

which implies b′ = g(b) · g(α(a)) = g(b · α(a)). Hence g is surjective. �

The following result involving 10 groups and 13 group homomorphisms generalizes the above
lemma.

Lemma 1.2.2. Consider the following commutative diagram of groups and homomorphisms
with exact rows.

A1

f1
��

α1 // A2

f2
��

α2 // A3

f3
��

α3 // A4

f4
��

α4 // A5

f5
��

B1

β1 // B2

β2 // B3

β3 // B4

β4 // B5
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Then the following holds.

(a) If f2, f4 are onto and f5 is one-to-one, then f3 is onto.
(b) If f2, f4 are one-to-one and f1 is onto, then f3 is one-to-one.
(c) In particular, if f1, f2 and f4, f5 are isomorphisms, so is f3.

The proof is done in a completely analogous way and is left to the reader.

Definition 1.2.3. Let N and Q be groups. Two extensions G and G′ of N by Q are called
equivalent if there exists a homomorphism ϕ : G → G′ such that the following diagram with
exact rows becomes commutative:

1 // N

id

��

α // G

ϕ

��

β // Q

id
��

// 1

1 // N
γ // G′

δ // Q // 1

If the extensions G and G′ are equivalent then they are automatically isomorphic as groups
since ϕ is then an isomorphism by lemma 1.2.2. The converse however need not be true. There
exist inequivalent extensions G and G′ which are isomorphic as groups. Classifying inequivalent
group extensions is in general much finer than classifying non-isomorphic groups. We will see
that in the next example. Formaly we will write

(G,α, β) ' (G′, γ, δ)

for two equivalent group extensions. In that case there exists a homomorphism ϕ : G → G′

such that γ = ϕα and β = δϕ. This defines an equivalence relation. Clearly the relation is
reflexive since (G,α, β) ' (G,α, β) with ϕ = id. It is symmetric since (G,α, β) ' (G′, γ, δ)
implies (G′, γ, δ) ' (G,α, β) with ϕ−1 : G′ → G. To show transitivity consider the following
diagram:

1 // N

id

��

α // G

ϕ

��

β // Q

id
��

// 1

1 // N

id

��

γ // G′

ϕ′

��

δ // Q

id
��

// 1

1 // N
ε // G′′

κ // Q // 1

Assume that (G,α, β) ' (G′, γ, δ) and (G′, γ, δ) ' (G′′, ε, κ). It follows that there are homo-
morphisms ϕ : G→ G′ and ϕ′ : G′ → G′′ such that

γ = ϕα, β = δϕ, ε = ϕ′γ, δ = κϕ′

Defining ϕ′′ := ϕ′ϕ : G→ G′′ it follows

ε = ϕ′γ = ϕ′ϕα = ϕ′′α

β = δϕ = κϕ′ϕ = κϕ′′

Hence we have (G,α, β) ' (G′′, ε, κ).
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Example 1.2.4. Let p be a prime. Then there are p inequivalent extensions G of Cp by Cp.
Since G has order p2 it is either isomorphic to Cp × Cp or to Cp2.

Besides the split exact sequence 1→ Cp → Cp ×Cp → Cp → 1 consider the following p− 1
short exact sequences

1→ Cp
α−→ Cp2

βi−→ Cp → 1

where Cp = 〈a〉 = {1, a, a2, . . . , ap−1} and Cp2 = 〈g〉 = {1, g, g2, . . . , gp
2−1} and the homomor-

phisms α and β are given by

α : Cp → Cp2 , a 7→ gp

βi : Cp2 → Cp, g 7→ ai, i = 1, 2, . . . , p− 1

The sequences are exact since βi(α(a)) = βi(g
p) = api = 1 in Cp, hence imα = ker βi.

We claim that any two extensions βi and βj for i 6= j are inequivalent. Suppose (Cp, α, βi) '
(Cp, α, βj), i.e.,

1 // Cp

id
��

α // Cp2

ϕ

��

βi // Cp

id
��

// 1

1 // Cp
α // Cp2

βj // Cp // 1

and α = ϕα, βi = βjϕ. It follows

gp = α(a) = ϕ(α(a)) = ϕ(gp) = ϕ(g)p

Now ϕ(g) = gr generates Cp2 since ϕ is an isomorphism. Hence p - r and gp = ϕ(gp) = gpr in
Cp2 . This implies r ≡ 1(p). On the other hand we have

ai = βi(g) = βj(ϕ(g)) = βj(g
r) = ajr

in Cp. It follows i ≡ jr(p). Together with r ≡ 1(p) we have i ≡ j(p) or i = j and βi = βj. So
we have proved the claim.

Remark 1.2.5. There are exactly p equivalence classes of extensions of Cp by Cp. We will
see later that they are in bijection with the elements in the group H2(Cp, Cp) ∼= Cp where Cp
acts trivially on Cp.

We will now reduce the classification of group extensions to so called factor systems.
Schreier’s theorem yields a bijection between the equivalence classes of group extensions and
the equivalence classes of the associated parameter systems.

Definition 1.2.6. Let N and Q be two groups. A pair of functions (f, T )

f :Q×Q→ N

T :Q→ Aut(N)

is called a factor system to N and Q if
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f(xy, z)T (z)(f(x, y)) = f(x, yz)f(y, z)(1.14)

T (y) ◦ T (x) = γ (f(x, y)) ◦ T (xy)(1.15)

f(1, 1) = 1(1.16)

for all x, y, z ∈ Q.

The second condition (1.15) means, using the definition of γ

T (y) (T (x)(n)) = f(x, y)−1T (xy)(n)f(x, y)

for all n ∈ N . Sometimes T is referred to as the automorphism system.

Remark 1.2.7. If we choose f(x, y) ≡ 1 then (f, T ) is called the trivial factor system. In
that case T is a homomorphism by (1.15) and (1.14) reduces to 1 = 1.

Condition (1.16) corresponds to a normalization. The first two conditions already imply
the following conditions:

Lemma 1.2.8. Let (f, T ) be a pair of functions as above where only conditions (1.14) and
(1.15) are satisfied. Then it follows

T (1) = γ(f(1, 1))(1.17)

f(x, 1) = f(1, 1)(1.18)

f(1, y) = T (y)(f(1, 1))(1.19)

for all x, y ∈ Q.

Proof. By (1.15) we have T (1)◦T (1) = γ(f(1, 1))T (1) so that T (1) = γ(f(1, 1)). It follows
f(1, 1)−1f(x, 1)f(1, 1) = T (1)(f(x, 1)) and hence

f(x, 1)f(1, 1) = f(1, 1)T (1)(f(x, 1))

= f(x, 1)T (1)(f(x, 1))

where we have used (1.14) with z = y = 1 for the last equation. This shows (1.18).
Setting x = y = 1 in (1.14) we obtain

f(1, z)T (z)(f(1, 1)) = f(1, z)f(1, z)

Multiplying f(1, z)−1 from the left yields (1.19). �

Corollary 1.2.9. Let (f, T ) be a factor system to N and Q. Then

f(x, 1) = f(1, y) = 1(1.20)

T (1) = id |N(1.21)

for all x, y ∈ Q.

Proof. By (1.16) it follows T (1) = γ(f(1, 1)) = γ(1) = id |N . Furthermore f(x, 1) =
f(1, 1) = 1 and f(1, y) = T (y)(1) = 1 since T (y) is an automorphism of N . �

We can associate a factor system with each group extension as follows.

Proposition 1.2.10. Each group extension 1 → N
α−→ G

β−→ Q → 1 together with a
transversal function τ : Q→ G defines a factor system (fτ , Tτ ).
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This associated factor system depends not only on the extension, but also on the choice of
a transversal function τ .

Proof. Let x ∈ Q ' G/α(N) be a coset of α(N) in G and τ a fixed transversal function
x 7→ τ(x). It satisfies βτ = id on Q. Since α(N) is normal in G, the element τ(x)−1α(n)τ(x)
is in α(N). We will denote it by

(1.22) α(Tτ (x)(n)) = τ(x)−1α(n)τ(x)

where Tτ (x)(n) ∈ N . This defines automorphisms Tτ (x) of N and a map Tτ : Q → Aut(N).
Since β is a homomorphism we have

β(τ(xy)−1τ(x)τ(y)) = (βτ)((xy)−1) · (βτ)(x)(βτ)(y) = (xy)−1xy = 1

and hence τ(xy)−1τ(x)τ(y) ∈ ker β = α(N). It follows that there exists a unique element
fτ (x, y) ∈ N such that

(1.23) τ(x)τ(y) = τ(xy)α(fτ (x, y))

Now we have to verify the conditions (1.14),(1.15),(1.16) for the pair (fτ , Tτ ) which we will
denote by (f, T ). We set

(1.24) τ(1) = 1

This condition is not essential, but it helps simplify some of the computations. By (1.23)
we have

τ(1)τ(1) = τ(1)α(f(1, 1))

hence α(f(1, 1)) = 1 and f(1, 1) = 1. Hence (1.16) is satisfied. By using (1.22) and (1.23) we
obtain

(αT (y)T (x)) (n) = τ(y)−1τ(x)−1α(n)τ(x)τ(y)

= (α(f(x, y))−1 · τ(xy)−1α(n)τ(xy) · α(f(x, y))

= (α(f(x, y))−1 · α(T (xy)(n)) · α(f(x, y))

This implies (1.15). Using (1.23) we have

τ((xy)z) = τ(xy)τ(z) (α(f(xy, z))−1

= τ(x)τ(y) (α(f(x, y))−1 · τ(z) (α(f(xy, z))−1

τ(x(yz)) = τ(x)τ(yz) (α(f(x, yz))−1

= τ(x)τ(y)τ(z) (α(f(y, z))−1 (α(f(x, yz))−1

Using the associativity in G both terms must be equal, i.e.,
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α(f(x, yz))α(f(y, z)) = α(f(xy, z)) · τ(z)−1α(f(x, y))τ(z)

= α(f(xy, z) · α(T (z)(f(x, y))

Since α is a monomorphism we obtain (1.14). �

Now we have associated a factor system (Tτ , fτ ) to a group extension and a transversal
function τ . Does every factor system (f, T ) arise in such a way ? The answer is given by the
following proposition.

Proposition 1.2.11. For each factor system (f, T ) to N and Q there is a group extension
G of N by Q such that (f, T ) = (fτ , Tτ ) for a suitable choice of a transversal function τ .

Proof. Given (f, T ) we define a group structure on G = Q×N as follows.

(1.25) (x, a) ◦ (y, b) = (xy, f(x, y)T (y)(a)b)

for x, y ∈ Q and a, b ∈ N . This generalizes the construction of the outer semidirect product.
If we choose the trivial factor system f(x, y) = 1 for all x, y ∈ Q, then T : Q → Aut(N) is a
homomorphism and the above definition coincides with the outer semidirect product QnT N .
We need to show that the group laws are satisfied, that G is a group extension of N by Q and
that (fτ , Tτ ) is exactly (f, T ) with a suitable choice of τ . We start with the associativity.

(x, a) ◦ [(y, b) ◦ (z, c)] = (x, a) ◦ [yz, f(y, z)T (z)(b)c]

= (xyz, f(x, yz)T (yz)(a)f(y, z)T (z)(b)c)

[(x, a) ◦ (y, b)] ◦ (z, c) = [xy, f(x, y)T (y)(a)b] ◦ (z, c)

= (xyz, f(xy, z)T (z)
(
f(x, y)T (y)(a)b

)
c)

= (xyz, f(xy, z)T (z)(f(x, y)) · T (z)(T (y)(a)b)c)

= (xyz, f(xy, z)T (z)(f(x, y)) · γ(f(y, z))(T (yz)(a)) · T (z)(b)c)

= (xyz, f(x, yz) · f(y, z)γ(f(y, z))(T (yz)(a)) · T (z)(b)c)

= (xyz, f(x, yz)T (yz)(a)f(y, z)T (z)(b)c)

In the second computation we have first used that T (z) is an automorphism of N , then
(1.15) and (1.14). Let b := f(x, x−1)T (x−1)(a). Then (x−1, b−1) is the inverse of (x, a).

(x, a) ◦ (x−1, b−1) = (xx−1, f(x, x−1)T (x−1)(a) · b−1) = (1, 1)

Clearly (1, 1) is the unit element

(1, 1) ◦ (y, b) = (y, f(1, y)T (y)(1)b) = (y, b)

Now define β : G→ Q by (x, a) 7→ x. This map is a surjective homomorphism:
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β((x, a)) ◦ β((y, b)) = xy = β
(
(xy, f(x, y)T (y)(a)b

)
= β((x, a) ◦ (y, b))

where we have used (1.25) in the last step. The map (1, a) 7→ a is an isomorphism from
ker β = {(1, a) | a ∈ N} to N :

(1, a) ◦ (1, b) = (1, f(1, 1)T (1)(a)b) = (1, ab)

The map α : N → G defined by a 7→ (1, a) is a monomorphism. We obtain a short exact

sequence 1→ N
α−→ G

β−→ Q→ 1 and hence an extension G of N by Q.

The next step is to choose a transversal function τ : Q → G. The most natural choice is
τ(x) = (x, 1). Since

τ(x) ◦ τ(y) = (x, 1) ◦ (y, 1) = (xy, f(x, y)),

τ(xy)α(f(x, y)) = (xy, 1) ◦ (1, f(x, y)) = (xy, f(xy, 1)T (1)(1)f(x, y)

= (xy, f(x, y))

we have τ(x)τ(y) = τ(xy)α(f(x, y)). Comparing with (1.23), where fτ (x, y) was uniquely
determined, it follows fτ = f . Using (1.14) with y = x−1 and f(1, x) = f(x, 1) = 1 we obtain
T (x)(f(x, x−1) = f(x−1, x). Since T (x) is an automorphism it follows

(1.26) T (x)(f(x, x−1)−1) = f(x−1, x)−1

so that, using the formula for the composition of three elements from above

(x, 1)−1 ◦ (1, a) ◦ (x, 1) = (x−1, f(x−1, x)−1) ◦ (1, a) ◦ (x, 1)

= (x · 1 · x−1, f(x−1, x)T (x)
(
f(x−1, x)−1

)
f(1, x)T (x)(a) · 1)

= (1, T (x)(a))

This is just τ(x)−1α(a)τ(x) = α(T (x)(a)) and a comparison with (1.22) shows Tτ = T . �

Example 1.2.12. Consider the extension 1 → C2
α−→ C4

β−→ C2 → 1 where N = C2 =
〈a〉, C4 = 〈g〉, Q = C2 = 〈x〉 and α(a) = g2, β(g) = x. Determine the associated factor system
(fτ , Tτ ) where τ is given by τ(1) = 1, τ(x) = g.

Tτ : C2 → Aut(C2) is given by Tτ (1) = Tτ (x) = id since α(Tτ (x)(a)) = τ(x)−1α(a)τ(x) =
g−1g2g = g2 and hence Tτ (x)(a) = a. The map fτ : C2 × C2 → C2 is given by

f(1, 1) = f(1, x) = f(x, 1) = 1, f(x, x) = a

We have to show only the last condition. It is g ·g = τ(x)τ(x) = α(f(x, x)) so that f(x, x) = a.
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Example 1.2.13. Determine the group extension 1 → C2
α−→ G

β−→ C2 → 1 to the above
factor system (fτ , Tτ ).

The group G = {(1, 1), (1, a), (x, 1), (x, a)} has the following multiplication

(x, a) ◦ (y, b) = (xy, f(x, y)ab)

Using x2 = a2 = 1 we obtain

(x, a)4 = ((x, a) ◦ (x, a))2 = (x2, f(x, x)a2)2 = ((1, a))2

= (1, a) ◦ (1, a) = (1, f(1, 1)a2) = (1, 1)

Since (x, a)2 = (1, a) 6= (1, 1) the group G is isomorphic to C4.

So far we have constructed a correspondence between factor systems (f, T ) to N and Q and
group extensions G of N by Q. However, the correspondence is not yet one-to-one. There
are many factor systems (fτ , Tτ ) associated with one group extension. We will introduce an
equivalence relation on the set of factor systems.

Lemma 1.2.14. Let 1 → N
α−→ G

β−→ Q → 1 be a group extension and (f, T ), (f ′, T ′) two
associated factor systems. Then there is a map h : Q→ N such that

T ′(x) = γ(h(x)) ◦ T (x)(1.27)

f ′(x, y) = h(xy)−1f(x, y) · T (y)(h(x)) · h(y)(1.28)

Proof. The associated factor systems (f, T ) and f ′, T ′) arise by two transversal functions
τ : Q→ G and τ ′ : Q→ G. They just assign a given coset two representatives. Hence

τ ′(x) = τ(x)`(x)(1.29)

with a map ` : Q→ α(N). Define h : Q→ N by α(h(x)) = `(x). Using (1.22) we obtain

α(T ′(x)(n)) = τ ′(x)−1α(n)τ ′(x) = `(x)−1 · τ(x)−1α(n)τ(x) · `(x)

= α
(
h(x)−1

)
· α (T (x)(n)) · α(h(x))

so that α ◦ T ′(x) = α ◦ γ(h(x)) ◦ T (x) and (1.27) follows. Using (1.23) we obtain

α (f ′(x, y)) = τ ′(xy)−1τ ′(x)τ ′(y) = `(xy)−1 · τ(xy)−1 · τ(x)`(x)τ(y)`(y)

= `(xy)−1α(f(x, y)) · τ(y)−1α(h(x))τ(y) · `(y)

= `(xy)−1α(f(x, y)) · α(T (y))(h(x)) · `(y)

= α
(
h(xy)−1

)
· α(f(x, y)) · α(T (y)(h(x)) · α(h(y))

This implies (1.28). �

The lemma tells us how to define the equivalence relation.
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Definition 1.2.15. Let (f, T ) and (f ′, T ′) be two factor systems to N and Q. They are
called equivalent if there is a map h : Q → N such that (1.27) and (1.28) are satisfied, and
h(1) = 1.

If we take h(x) = 1 for all x ∈ Q then it follows immediately (f, T ) = (f ′, T ′). Different
choices of the transversal function τ lead to equivalent factor systems in our correspondence.
Next we show that the equivalence relation is compatible with equivalent group extensions.

Proposition 1.2.16. Equivalent group extensions

1 // N

id

��

α // G

ϕ

��

β // Q

id
��

// 1

1 // N
γ // G′

δ // Q // 1

define equivalent factor systems.

Proof. Choose any transversal function τ to the extension 1→ N
α−→ G

β−→ Q→ 1 and let
(f, T ) denote the associated factor system. Let (f ′, T ′) the factor system associated with the

extension 1→ N
α−→ G

β−→ Q→ 1 and the following τ ′ : Q→ G:

τ ′(x) = ϕ(τ(x))(1.30)

Since γ = ϕα and β = δϕ we have δτ ′ = δϕτ = βτ = id. So τ ′ is really a transversal
function. Its choice is such that (f ′, T ′) coincides with (f, T ). Hence the two factor systems
are euqivalent. In fact, by (1.22) we have

γ (T ′(x)(a)) = τ ′(x)−1γ(a)τ ′(x) = τ ′(x)−1ϕ(α(a))τ ′(x)

= ϕ(τ(x)−1) · ϕ(α(a)) · ϕ(τ(x)) = ϕ
(
τ(x)−1α(a)τ(x)

)
= (ϕ ◦ α)(T (x)(a)) = γ(T (x)(a))

Since γ is injective we have T ′ = T . Using (1.23) we have

τ ′(xy)γ(f ′(x, y)) = τ ′(x)τ ′(y) = ϕ(τ(x)) · ϕ(τ(y))

= ϕ(τ(x)τ(y)) = ϕ[τ(xy) · α(f(x, y))]

= (ϕτ)(xy) · (ϕα)(f(x, y)) = τ ′(xy)γ(f(x, y))

This implies f ′(x, y) = f(x, y) or f ′ = f . �

Proposition 1.2.17. Let N,Q be groups and (f, T ), (f ′, T ′) be two factor systems to N
and Q. If the factor systems are equivalent, so are the associated group extensions.

Proof. Assume that (f, T ) and (f ′, T ′) are equivalent, so that there is a map h : Q→ N
satisfying (1.27) and (1.28). Let G,G′ be the group extensions of N by Q as constructed in
proposition 1.2.11. As a set, G = G′ = Q × N . We need to show that both extensions are
equivalent, i.e., that there is a homomorphism ϕ : G→ G′ such that the diagram of proposition
1.2.16 commutes. We define ϕ by
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(1.31) (x, a) 7→ (x, h(x)−1a)

Clearly this map is bijective. It is also a homomorphism with respect to the composition
(1.25).

ϕ(g ◦ h) = ϕ((x, a) ◦ (y, b)) = ϕ
(
(xy, f(x, y)T (y)(a)b)

)
= (xy, h(xy)−1f(x, y)T (y)(a)b)

ϕ(g) ◦ ϕ(h) = (x, h(x)−1a) ◦ (y, h(y)−1b)

= (xy, f ′(x, y) · T ′(y)(h(x)−1a) · h(y)−1b)

= (xy, f ′(x, y) · [γ(h(y)) ◦ T (y)]((h(x)−1a)h(y)−1b))

= (xy, h(xy)−1f(x, y)T (y)(h(x))h(y)·
[γ(h(y)) ◦ T (y)]((h(x)−1a)h(y)−1b))

= (xy, h(xy)−1f(x, y)T (y)(h(x)) · T (y)(h(x)−1a)h(y)h(y)−1b)

= (xy, h(xy)−1f(x, y)T (y)(a)b)

In the second computation we have used also (1.27) and (1.28). It remains to show that the
diagram commutes. Since h(1) = 1 we have h(1)−1 = 1, so that we obtain

(ϕα)(a) = ϕ((1, a)) = (1, h(1)−1a) = (1, a) = γ(a)

(δϕ)((x, a)) = δ((x, h(x)−1a)) = x = β((x, a))

It follows γ = ϕα and β = δϕ. �

Now we can formulate the main result of this section.

Theorem 1.2.18 (Schreier). Let N and Q be two groups. By associating every extension of
N by Q a factor system one obtains a one-to-one correspondence between the set of equivalence
classes of extensions of N by Q and the set of equivalence classes of factor systems to N and
Q.

In particular, if the factor set associated with the extension G of N by Q is equivalent to
the trivial factor set then the extension G is equivalent to some semidirect product of N by
Q. Conversely, the factor set associated with a semidirect product is equivalent to the trivial
factor set.



CHAPTER 2

Cohomology of groups

We shall first give the original definition of the cohomology groups which is, unlike the
definition of the derived functors, quite concrete.

2.1. G-modules

If G is a group, we define a G-module M to be an abelian group, written additively, on
which G acts as endomorphisms. That means the following:

Definition 2.1.1. Let G be a group. A left G-module is an abelian group M together with
a map

G×M →M, (g,m) 7→ gm

such that, for all g, h ∈ G and m,n ∈M ,

g(m+ n) = gm+ gn(2.1)

(gh)m = g(hm)(2.2)

1m = m(2.3)

Equivalently a left G-module is an abelian group M together with a group homomorphism

T : G→ Aut(M)

where the correspondence is given by

T (g)(m) = gm ∀ m ∈M(2.4)

As in representation theory, we can transform this to a more familiar concept. Let Z[G]
denote the group ring of G. This is the free Z-module with the elements of G as base and in
which multiplication is defined by

(∑
g

ngg

)(∑
h

mhh

)
=
∑
g,h

ngmh(gh)(2.5)

where ng,mh ∈ Z and the sums are finite. For example, let G = Z = 〈t〉. Then {ti}i∈Z is a
Z-basis of Z[G]. Hence Z[G] = Z[t, t−1] is the ring of Laurent polynomials.

If M is a G-module, then M becomes a Z[G]-module if we define

(∑
g

ngg

)
m =

∑
g

ng(gm)(2.6)

Conversely, if M is a Z[G]-module, then M becomes a G-module if we define gm := (1g)m.

21
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Example 2.1.2. Let M be any abelian group and define

gm = m(2.7)

for all g ∈ G, m ∈M . This action of G is called the trivial action, and M is called a trivial
G-module.

Example 2.1.3. The module M = Z[G] with the action

h

(∑
g

ngg

)
=
∑
g

nghg(2.8)

is called the regular G-module.

Definition 2.1.4. Let M be a G-module. Define

MG = {m ∈M | gm = m for all g ∈ G}(2.9)

Then MG is a submodule of M which is called the module of invariants.

If M is a trivial G-module then MG = M .

Definition 2.1.5. Let M,N be two G-modules. A homomorphism of G-modules is a map
ϕ : M → N such that

ϕ(m+m′) = ϕ(m) + ϕ(m′)(2.10)

ϕ(gm) = gϕ(m)(2.11)

for all g ∈ G and m,m′ ∈M . We write HomG(M,N) for the set of all G-module homomor-
phisms ϕ : M → N .

2.2. The n-th cohomology group

Let A be a G-module and let Cn(G,A) denote the set of functions of n variables

f : G×G× · · · ×G→ A

into A. For n = 0 let C0(G,A) = Hom(1, A) ∼= A. The elements of Cn(G,A) are called
n-cochains. The set Cn(G,A) is an abelian group with the usual definitions of addition and
the element 0:

(f + g)(x1, . . . , xn) = f(x1, . . . , xn) + g(x1, . . . , xn)

0(x1, . . . , xn) = 0

We now define homomorphisms δ = δn : Cn(G,A)→ Cn+1(G,A).
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Definition 2.2.1. If f ∈ Cn(G,A) then define δn(f) by

δn(f)(x1, . . . , xn+1) = x1f(x2, . . . , xn+1)

+
n∑
i=1

(−1)if(x1, . . . , xi−1, xixi+1, . . . , xn+1)

+ (−1)n+1f(x1, . . . , xn)

For n = 0, 1, 2, 3 we obtain

(δ0f)(x1) = x1f − f(2.12)

(δ1f)(x1, x2) = x1f(x2)− f(x1x2) + f(x1)(2.13)

(δ2f)(x1, x2, x3) = x1f(x2, x3)− f(x1x2, x3) + f(x1, x2x3)− f(x1, x2)(2.14)

(δ3f)(x1, x2, x3, x4) = x1f(x2, x3, x4)− f(x1x2, x3, x4) + f(x1, x2x3, x4)

− f(x1, x2, x3x4) + f(x1, x2, x3)
(2.15)

For n = 0, f is considered as an element of A so that x1f makes sense.
We will show that δ2(f) = 0 for every f ∈ Cn(G,A), i.e., δn+1δn = 0 for all n ∈ N and

hence im δn ⊆ ker δn+1.

Lemma 2.2.2. It holds δn+1δn(Cn(G,A)) = 0 for all n ∈ N. Hence the following sequence
is a complex.

A
δ0−→ C1(G,A)

δ1−→ · · · δn−1−−→ Cn(G,A)
δn−→ Cn+1(G,A)

δn+1−−→ · · ·

Proof. Let f ∈ Cn(G,A). We want to show δ2(f)(x1, . . . , xn+2) = 0. Define gj ∈
Cn+1(G,A) for 0 ≤ j ≤ n+ 1 by

gj(x1, . . . , xn+1) =


x1f(x2, . . . , xn+1), j = 0

(−1)jf(x1, . . . , xjxj+1, . . . , xn+1), 1 ≤ j ≤ n

(−1)n+1f(x1, . . . , xn), j = n+ 1

This means

(δf)(x1, . . . , xn+1) =
n+1∑
j=0

gj(x1, . . . , xn+1)

Then define gji ∈ Cn+2(G,A) for 0 ≤ i ≤ n+ 2 by

gji(x1, . . . , xn+2) =


x1gj(x2, . . . , xn+2), i = 0

(−1)igj(x1, . . . , xixi+1, . . . , xn+2), 1 ≤ i ≤ n+ 1

(−1)n+2gj(x1, . . . , xn+1), i = n+ 2

This means

(δgj)(x1, . . . , xn+2) =
n+2∑
i=0

gij(x1, . . . , xn+2)
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It follows

δ2(f)(x1, . . . , xn+2) =
n+1∑
j=0

(δgj)(x1, . . . , xn+2) =
n+1∑
j=0

n+2∑
i=0

gij(x1, . . . , xn+2)

We will show that for all 0 ≤ j ≤ n+ 1 and all j + 1 ≤ i ≤ n+ 2

(gji + gi−1,j)(x1, . . . , xn+2) = 0(2.16)

This will imply our result as follows. Write down all gji as an (n+ 2)× (n+ 3) array and cancel
out each pair (gji, gi−1,j) starting with j = 0 and i = 1, . . . , n+2, then j = 1 and i = 2, . . . n+2,
until j = n + 1 and i = n + 2. Then all entries of the array are cancelled out and we obtain
δ2(f) =

∑n+1
j=0

∑n+2
i=0 gij = 0.

It remains to show (2.16). Assume first 1 ≤ j ≤ n. If i > j + 1 then

gji(x1, . . . , xn+2) = (−1)igj(x1, . . . , xixi+1, . . . , xn+2)

= (−1)igj(τ1, . . . , τn+1)

= (−1)i+jf(τ1, . . . , τjτj+1, . . . , τn+1)

= (−1)i+jf(x1, . . . , xjxj+1, . . . , xixi+1, . . . , xn+2)

with

(τ1, . . . , τj, τj+1, . . . , τi, τi+1, . . . , τn+1) =

(x1, . . . , xj, xj+1, . . . , xixi+1, xi+2, . . . , xn+2).

On the other hand we have

gi−1,j(x1, . . . , xn+2) = (−1)jgi−1(x1, . . . , xjxj+1, . . . , xn+2)

= (−1)jgi−1(σ1, . . . , σj, . . . , σn+1)

= (−1)i−1+jf(σ1, . . . , σi−1σi, . . . , σn+1)

= (−1)i+j−1f(x1, . . . , xjxj+1, . . . , xixi+1, . . . , xn+2)

with

(σ1, . . . , σj−1, σj, . . . , σi−1, σi, . . . , σn+1) =

(x1, . . . , xj−1, xjxj+1, . . . , xi, xi+1, . . . , xn+2).

It follows gij + gi−1,j = 0. If i = j + 1 we obtain in the same way

gji(x1, . . . , xn+2) = (−1)i+jf(x1, . . . , xi−1xixi+1, . . . , xn+2)

= −gi−1,j(x1, . . . , xn+2)

The remaining cases j = 0 and j = n+ 1 follow similarly. �

Define the subgroups Zn(G,A) = ker δn and Bn(G,A) = im δn−1. For n = 0 let B0(G,A) =
0. Since Bn(G,A) ⊆ Zn(G,A) we can form the factor group:

Definition 2.2.3. The n-th cohomology group of G with coefficients in A is given by the
factor group

Hn(G,A) = Zn(G,A)/Bn(G,A) = ker δn/ im δn−1
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2.3. The zeroth cohomology group

For n = 0 we have

H0(G,A) = Z0(G,A) = {a ∈ A | xa = a ∀x ∈ G} = AG

Hence H0(G,A) = AG is the module of invariants. Let L/K be a finite Galois extension
with Galois group G = Gal(L/K). Then L and L× are G-modules. Here L is regarded as a
group under addition and L× is the multiplicative group of units in L. We have

H0(G,L×) = (L×)G = K×

Let p be a prime and Cp the cyclic group of order p.

Example 2.3.1. Let A = Cp be a G = Cp-module. Then xa = a for all x ∈ Cp, i.e., A is a
trivial Cp-module. We have

H0(Cp, Cp) = Cp

Denote by xa the action of G on A. Let T : Cp → Aut(Cp) ∼= Cp−1 be the homomorphism
defined by xa = T (x)a. Now kerT being a subgroup of Cp must be trivial or equal to Cp, since
p is prime. However kerT = 1 is impossible since T is not injective. In fact, Cp is not contained
in Aut(Cp). Hence it follows kerT = Cp and T (Cp) = {id}. This means xa = T (x)a = a. Since
A is a trivial Cp-module it follows AG = A.

Lemma 2.3.2. Let M be a G-module, and regard Z as a trivial G-module. Then

H0(G,M) = MG ∼= HomG(Z,M)

Proof. A G-module homomorphism ϕ : Z → M is uniquely determined by ϕ(1), and
m ∈M is the image of 1 under ϕ if and only if it is fixed by G, i.e., if m ∈MG.

gm = g(ϕ(1)) = ϕ(g · 1) = ϕ(1) = m

Here g · 1 = 1 since G acts trivially on Z. �

2.4. The first cohomology group

If A is a G-module then

Z1(G,A) = {f : G→ A | f(xy) = xf(y) + f(x)}
B1(G,A) = {f : G→ A | f(x) = xa− a for some a ∈ A}

The 1-cocycles are also called crossed homomorphisms of G into A. A 1-coboundary is
a crossed homomorphism, i.e., δ1δ0 = 0. For the convenience of the reader we repeat the
calculation. Let f = δ0(a)(x1) = x1a− a and compute

(δ1δ0)(a)(x, y) = δ1(f)(x, y) = xf(y)− f(xy) + f(x)

= x(ya− a)− (xy)a+ a+ xa− a
= 0

Hence (δ1δ0)(a) = 0. Let A be a trivial G-module. Then a crossed homomorphism is just a
group homomorphism, i.e., Z1(G,A) = Hom(G,A), B1(G,A) = 0 and

H1(G,A) = Hom(G,A)

is the set of group homomorphisms from G into A.



26 2. COHOMOLOGY OF GROUPS

Remark 2.4.1. We want to consider sometimes right G-modules instead of left G-modules.
If A is a left Z[G]-module with action (x, a) 7→ xa, then a ∗ x = xa defines a right module
action with multiplication y ∗ x = xy in G: a ∗ (x ∗ y) = (yx)a = y(xa) = (a ∗ x) ∗ y. Then the
definition of 1-cocycles and 1-coboundaries becomes

Z1(G,A) = {f : G→ A | f(x ∗ y) = f(x) ∗ y + f(y)}
B1(G,A) = {f : G→ A | f(x) = a ∗ x− a for some a ∈ A}

Proposition 2.4.2. Let A be a G-module. There exists a bijection between H1(G,A) and
the set of conjugacy classes of subgroups H ≤ GnA complementary to A in which the conjugacy
class of G maps to zero.

Proof. There is a bijection between subgroups H ≤ G n A complementary to A and 1-
cocycles h ∈ Z1(G,A). If H is complementary to A then H = τ(G) for a section τ : G→ GnA
for π : GnA→ G. Writing τ(x) = (x, h(x)) with h : G→ A we have H = {(x, h(x)) | x ∈ G}.
We want to show that h ∈ Z1(G,A). The multiplication in G n A is given by (1.10), with
ϕ(y)a = ay for y ∈ G and a ∈ A. Note that this is a right action. Since we write A additively,
the formula becomes

(x, a)(y, b) = (xy, ay + b)

Since τ(xy) = τ(x)τ(y) we have

(xy, h(xy)) = (x, h(x))(y, h(y)) = (xy, h(x)y + h(y))

so that h(xy) = h(x)y + h(y). The converse is also clear. Moreover two complements are
conjugate precisely when their 1-cocycles differ by a 1-coboundary: for a ∈ A ≤ GnA the set
aHa−1 consists of all elements of the form

(1, a)(x, h(x))(1,−a) = (x, ax− a− h(x))

Hence the cosets of B1(G,A) in Z1(G,A) correspond to the A-conjugacy classes of complements
H in A, or in Gn A since Gn A = HA. �

Corollary 2.4.3. All the complements of A in Gn A are conjugate iff H1(G,A) = 0.

We have the following result on cohomology groups of finite groups.

Proposition 2.4.4. Let G be a finite group and A be a G-module. Then every element of
H1(G,A) has a finite order which divides |G|.

Proof. Let f ∈ Z1(G,A) and a =
∑

y∈G f(y). Then xf(y)− f(xy) + f(x) = 0. Summing
over this formula we obtain

0 = x
∑
y∈G

f(y)−
∑
y∈G

f(xy) + f(x)
∑
y∈G

1

= xa− a+ |G|f(x)

It follows that |G|f(x) ∈ B1(G,A), which implies |G|Z1(G,A) ⊆ B1(G,A). Hence |G|H1(G,A) =
0. �

Corollary 2.4.5. Let G be a finite group and A be a finite G-module such that (|G|, |A|) =
1. Then H1(G,A) = 0.

Proof. We have |A|f = 0 for all f ∈ C1(G,A). Then the order of [f ] ∈ H1(G,A) divides
(|G|, |A|) = 1. Hence the class [f ] is trivial. �
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Remark 2.4.6. We will show later that Hn(G,A) = 0 for all n ∈ N if the conditions of the
corollary are satisfied.

We shall conclude this section by proving the following result which can be found already
in Hilberts book Die Theorie der algebraischen Zahlkörper of 1895. It is called Hilbert’s Satz
90 and we present a generalization of it due to Emmy Noether.

Proposition 2.4.7. Let L/K be a finite Galois extension with Galois group G = Gal(L/K).
Then we have H1(G,L×) = 1 and H1(G,L) = 0.

Proof. We have to show Z1 = B1 in both cases. Let f ∈ Z1(G,L×). This implies
f(σ) 6= 0 for all σ ∈ G since f : G→ L×. The 1-cocycle condition is, written multiplicatively,
f(στ) = f(σ)σf(τ) or σf(τ) = f(σ)−1f(στ). The 1-coboundary condition is g(σ) = σ(a)/a for
a constant a. By a well known result on the linear independence of automorphisms it follows
that there exists a β ∈ L× such that

α : =
∑
τ∈G

f(τ)τ(β) 6= 0

It follows that for all σ ∈ G

σ(α) =
∑
τ∈G

σ(f(τ))σ(τ(β)) =
∑
τ∈G

f(σ)−1f(στ)στ(β) = f(σ)−1
∑
τ∈G

f(τ)τ(β)

= f(σ)−1α

It follows f(σ) = α
σ(α)

= σ(α−1)
α−1 , hence f ∈ B1(G,L×).

For the second part, let f ∈ Z1(G,L). Since L/K is separable there exists a β ∈ L such that

a : =
∑
τ∈G

τ(β) = TrL/K(β) 6= 0

Setting γ = a−1β we obtain
∑

τ∈G τ(γ) = 1 since τ(a) = a and τ(a−1) = a−1. Let

x : =
∑
τ∈G

f(τ)τ(γ)

Hence we obtain for all σ ∈ G

σ(x) =
∑
τ∈G

σ(f(τ))στ(γ) =
∑
τ∈G

f(στ)στ(γ)− f(σ)στ(γ)

= x− f(σ)

It follows f(σ) = x− σ(x) = σ(−x)− (−x), hence f ∈ B1(G,L). �

Remark 2.4.8. We have Hn(G,L) = 0 for all n ∈ N, but not Hn(G,L×) = 1 in general.

2.5. The second cohomology group

Let G be a group and A be an abelian group. We recall the definition of a factor system,
written additively for A. A pair of functions (f, T ), f : G × G → A and T : G → Aut(A) is
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called factor system to A and G if

f(xy, z) + f(x, y)z = f(x, yz) + f(y, z)(2.17)

T (xy) = T (y)T (x)(2.18)

f(1, 1) = 0(2.19)

where f(x, y)z = T (z)(f(x, y)). Now let

0→ A
α−→ E

β−→ G→ 1

be an abelian group extension of A by G. This equippes A with a natural G-module structure.
We obtain T (x)(a) = xa, or T (x)(a) = ax, for x ∈ G and a ∈ A, which is independent of a
transversal function. In fact, the extension induces an (anti)homomorphism Tτ : G→ Aut(A)
with a transversal function τ : G→ E, see chapter 1. Since A is abelian it follows γh(x) = id|A
so that Tτ ′(x) = γh(x)Tτ (x) = Tτ (x). If we fix T and hence the G-module structure on A,
then the set of factor systems f = (f, T ) to A and G forms an abelian group with respect to
addition: (f + g)(x, y) = f(x, y) + g(x, y). It follows from (2.17) that this group is contained
in the group

Z2(G,A) = {f : G×G→ A | f(y, z)− f(xy, z) + f(x, yz)− f(x, y)z = 0}
where we have considered A as a right G-module. One has to rewrite the 2-cocycle condition
from definition (2.2.1) for a right G-module according to remark (2.4.1). Recall that

B2(G,A) = {f : G×G→ A | f(x, y) = h(y)− h(xy) + h(x)y}
is a subgroup of Z2(G,A) and the factor group is H2(G,A). Indeed, a 2-coboundary is a
2-cocycle. The sum of the following terms equals zero.

f(y, z) = h(z)− h(yz) + h(y)z

−f(xy, z) = −h(z) + h(xyz)− h(xy)z

f(x, yz) = h(yz)− h(xyz) + h(x)yz

−f(x, y)z = −h(y)z + h(xy)z − h(x)yz

Theorem 2.5.1. Let G be a group and A be an abelian group, and let M denote the set of
group extensions

0→ A
α−→ E

β−→ G→ 1

with a given G-module structure on A. Then there is a 1− 1 correspondence between the set of
equivalence classes of extensions of A by G contained in M with the elements of H2(G,A). The
class of split extensions in M corresponds to the class [0] ∈ H2(G,A). This class corresponds
to the trivial class represented by the trivial factor system f(x, y) = 0.

Proof. By theorem (1.2.18) the set of equivalence classes of such extensions is in bijective
correspondence with the equivalence classes of factor systems f ∈ Z2(G,A). Two factor systems
are equivalent if and only if they differ by a 2-coboundary in B2(G,A): by (1.28) we have

fτ ′(x, y) = fτ (x, y)− h(xy) + h(x)y + h(y)

Note that there is exactly one normalized 2-cocycle in each cohomology class, i.e., with f(1, 1) =
0. Hence two extensions of A by G contained in M are equivalent if and only if they determine
the same element of H2(G,A). �

Example 2.5.2. Let A = Z/pZ be a trivial G = Cp-module. Then H2(G,A) ∼= Z/pZ.
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Here p is a prime. There are exactly p equivalence classes of extensions

0→ Z/pZ α−→ E
β−→ Cp → 1

Example 2.5.3. Consider the Galois extension L/K = C/R with Galois group G =
Gal(C/R) ∼= C2. Then we have

H2(G,L×) ∼= Z/2Z

The proof is left as an exercise. In general we have H2(G,L×) ∼= Br(L/K), where Br(L/K)
is the relative Brauer group. It consists of equivalence classes of central simple K-algebras S
such that S ⊗K L ∼= Mn(L). Two central simple K-algebras are called equivalent if their
skew-symmetric components are isomorphic. For any field K the equivalence classes of finite-
dimensional central simple K-algebras form an abelian group with respect to the multiplication
induced by the tensor product.
The group Br(C/R) consists of two equivalence classes. The matrix algebra M2(R) represents
the class [0] and the real quaternion algebra H represents the class [1].
We will now generalize proposition (2.4.4).

Proposition 2.5.4. Let G be a finite group and A be a G-module. Then every element of
Hn(G,A), n ∈ N, has a finite order which divides |G|.

Proof. Let f ∈ Cn(G,A) and denote

a(x1, . . . , xn−1) =
∑
y∈G

f(x1, . . . , xn−1, y)

Summing the formula for δf and using∑
y∈G

f(x1, . . . , xn−1, xny) = a(x1, . . . , xn−1)

we obtain∑
y∈G

(δf)(x1, . . . , xn, y) = x1a(x2, . . . , xn)

+
n−1∑
i=1

(−1)ia(x1, . . . , xixi+1, . . . , xn) + (−1)na(x1, . . . , xn−1)

+ (−1)n+1|G|f(x1, . . . , xn)

= (δa)(x1, . . . , xn) + (−1)n+1|G|f(x1, . . . , xn)

Hence if δf = 0, then |G|f(x1, . . . , xn) = ±(δa)(x1, . . . , xn) is an element of Bn(G,A). Then
|G|Zn(G,A) ⊆ Bn(G,A), so that |G|Hn(G,A) = 0. �

Corollary 2.5.5. Let G be a finite group and A be a finite G-module such that (|G|, |A|) =
1. Then Hn(G,A) = 0 for all n ≥ 1. In particular, H2(G,A) = 0. Hence any extension of A
by G is split.

The last part is a special case of the Schur-Zassenhaus theorem, see (1.1.27). We will sketch
the proof of the general case.

Schur-Zassenhaus 2.5.6. If n and m are relatively prime, then any extension 1→ A
α−→

E
β−→ G→ 1 of a group A of order n by a group G of order m is split.
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Proof. If A is abelian, the extensions are classified by the groups H2(G,A), one group for
every G-module structure on A. These are all zero, hence any extension of A by G is split.
In the general case we use induction on n. It suffices to prove that E contains a subgroup S
of order m. Such a subgroup must be isomorphic to G under β : E → G. For, if S is such a
subgroup, then S ∩A is a subgroup whose order divides |S| = m and |A| = n. Then S ∩A = 1.
Also AS = E since α(A) = A is normal in E so that AS is a subgroup whose order is divided
by |S| = m and |A| = n and so is a multiple of nm = |E|. It follows that E is a semidirect
product and hence the extension of A by G is split.
Choose a prime p dividing n and let P be a p-Sylow subgroup of A, hence of E. Let Z be the
center of P . It is well known that Z 6= 1, see [4], p. 75. Let N be the normalizer of Z in E.
A counting argument shows that AN = E and |N/(A ∩ N)| = m, see [5]. Hence there is an
extension 1→ (A ∩N)→ N → G→ 1. If N 6= E, this extension splits by induction, so there
is a subgroup of N , and hence of E, isomorphic to G. If N = E, then Z CE and the extension
1→ A/Z → E/Z → G→ 1 is split by induction. Let G′ be a subgroup of E/Z isomorphic to
G and let E ′ denote the set of all x ∈ E mapping onto G′. Then E ′ is a subgroup of E, and
0 → Z → E ′ → G′ → 1 is an extension. As Z is abelian, the extension splits and there is a
subgroup of E ′, hence of E, isomorphic to G′ ∼= G. �

2.6. The third cohomology group

We have seen that Hn(G,A) for n = 0, 1, 2 have concrete group-theoretic interpretations.
It turns out that this is also the case for n ≥ 3. We will briefly discuss the case n = 3, which
is connected to so called crossed modules. Such modules arise also naturally in topology.

Definition 2.6.1. Let E and N be groups. A crossed module (N,α) over E is a group
homomorphism α : N → E together with an action of E onN , denoted by (e, n) 7→ en satisfying

α(m)n = mnm−1(2.20)

α(en) = e α(n) e−1(2.21)

for all n,m ∈ N and all e ∈ E.

Example 2.6.2. Let E = Aut(N) and α(n) be the inner automorphism associated to n.
Then (N,α) is a crossed module over E.

By definition we have α(m)n = α(m)(n) = mnm−1 and

α(en)(m) = α(e(n))(m) = e(n)me(n)−1 = e(ne−1(m)n−1) = e(α(n)(e−1(m)))

= (eα(n)e−1)(m)

Example 2.6.3. Any normal subgroup N C E is a crossed module with E acting by conju-
gation and α being the inclusion.

Let (N,α) be a crossed module over E and A := kerα. Then the sequence 0→ A
i−→ N

α−→ E
is exact. Since imα is normal in E by (2.21) G = coker(α) is a group. This means that the

sequence N
α−→ E

π−→ G→ 1 is exact. Since A is central in N by (2.20), and since the action of
E on N induces an action of G on A, we obtain a 4-term exact sequence

(2.22) 0→ A
i−→ N

α−→ E
π−→ G→ 1

where A is a G-module. It turns out that equivalence classes of exact sequences of this form
are classified by the group H3(G,A). Let us explain the equivalence relation. Let G be an
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arbitrary group and A be an arbitrary G-module. Consider all possible exact sequences of the
form (2.22), where N is a crossed module over E such that the action of E on N induces the
given action of G on A. We take on these exact sequences the smallest equivalence relation such
that two exact sequences as shown below are equivalent whenever their diagram is commutative:

1 // A

id
��

// N

f
��

α // E

g

��

// G

id
��

// 1

1 // A // N
′ α′ // E

′ // G // 1

Note that f and g need not be isomorphisms. We then have:

Theorem 2.6.4. There is a 1 − 1 correspondence between equivalence classes of crossed
modules represented by sequences as above and elements of H3(G,A).

We omit the proof, which can be found in [12], theorem 6.6.13.
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2.7. Functorial definition of cohomology groups

We will briefly discuss the language of category theory.

Definition 2.7.1. A category C consists of a nonempty class ob(C) of objects, a set
Hom(A,B) = HomC(A,B) for each pair of objects A,B, called the set of morphisms from A to
B, and a map

(α, β) 7→ β ◦ α : Hom(A,B)× Hom(B,C)→ Hom(A,C)

for each triple of objects A,B,C satisfying the following conditions:

(1) composition of morphisms is associative;
(2) for each object A, Hom(A,A) has an element idA that is left and right identity for

composition.

A fundamental category is the category AB of abelian groups. The objects are abelian
groups , and the morphisms are group homomorphisms. Another important category is the
category MR of R-modules for a given arbitrary ring R.

Definition 2.7.2. A covariant functor F : C → D is a map that associates with each object
A of C an object F (A) of D, and with each morphism α : A → B a morphism F (α) : F (A) →
F (B) such that F (α◦β) = F (α)◦F (β) and F (idA) = idF (A). The functor is called contravariant
if F (α ◦ β) = F (β) ◦ F (α).

Definition 2.7.3. A pair of functors F : A → B and G : B → A is called adjoint, if for
every pair of objects (A,B) with A ∈ A and B ∈ B there is a functorial bijection

τ = τA,B : HomB(F (A), B)→ HomA(A,G(B)).

This means, there is a bijection such that for all f : A → A′ in A and all g : B → B′ in B the
following diagram of induced mappings commutes:

HomB(F (A′), B)

��

// HomB(F (A), B)

��

// HomB(F (A), B′)

��
HomA(A′, G(B)) // HomA(A,G(B)) // HomA(A,G(B′))

In this case, F is called the left adjoint of this pair, and G is called the right adjoint of this
pair.

For example, F = HomR(M, ·) is a functor fromMR to AB. The symbol F = HomR(M, ·)
means that F (N) = HomR(M,N) for all N in MR.

Proposition 2.7.4. Let R be a ring and M be a left R-module. Then F = HomR(M, ·)
is a covariant functor from MR to AB, und F = HomR(·,M) is a contravariant functor from
MR to AB.

Proof. Let β : A → B be a morphism in MR. How do we define F (β) ? Let M be a

fixed R-module. Consider the sequence M
α−→ A

β−→ B in MR. Then define a homomorphism
β̃ = F (β) of abelian groups

F (β) : HomR(M,A)→ HomR(M,B)

by F (β)(α) = β̃(α) = β ◦ α. Obviously β = id in MR implies F (β) = id in AB. Given a
sequence

M
α−→ A

β−→ B
γ−→ C
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in MR, we obtain

F (γ ◦ β)(α) = (γ ◦ β)(α) = γ ◦ (β ◦ α)(2.23)

= F (γ)(F (β)(α)).(2.24)

Hence the functor F = HomR(M, ·) is covariant. The second claim follows similarly. �

Proposition 2.7.5. Let R be a commutative ring and M,N be two R-modules. Then both
F = M ⊗R · and G = · ⊗R N are covariant functors from MR to MR.

Proof. Given A
α−→ B

β−→ C in MR we put

F (α) = 1M ⊗ α : M ⊗R A→M ⊗R B,
where (1M ⊗ α)(x⊗ y) = x⊗ α(y). Then

F (β ◦ α) = 1M ⊗ (β ◦ α) = (1M ⊗ β) ◦ (1M ⊗ α)(2.25)

= F (β)F (α).(2.26)

Hence F is covariant. The second claim follows similarly. �

Definition 2.7.6. A covariant functor F : A → B is called exact, if it takes short exact
sequences in A to short exact sequences in B. That means, given a short exact sequence

0→M1 →M2 →M3 → 0

in A yields a short exact sequence

0→ F (M1)→ F (M2)→ F (M3)→ 0

in B.
The functor is called left-exact, if only follows that

0→ F (M1)→ F (M2)→ F (M3)

is exact. It is called right-exact, if only follows that

F (M1)→ F (M2)→ F (M3)→ 0

is exact.

The definition for contravariant functors is analogous. One has to reverse the arrows in B.
Hence a contravariant functor F is left-exact if every exact sequence

0→M1 →M2 →M3

is taken to an exact sequence

0→ F (M3)→ F (M2)→ F (M1).

Proposition 2.7.7. The contravariant functor HomR(·, V ) from MR to AB is left-exact,
as well as the covariant functor HomR(V, ·).

Proof. We only show that HomR(V, ·) is a left-exact functor. In general, it is not an exact
functor. So let

0→M1
ψ−→M2

ϕ−→M3

be a short exact sequence of R-modules. We have to show that the sequence

0→ HomR(V,M1)
ψ̃−→ HomR(V,M2)

ϕ̃−→ HomR(V,M3)
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is exact. Let ψ̃σ = 0 for σ ∈ HomR(V,M1). This means ψ(σ(v)) = 0 for all v ∈ V . We have

σ(v) = 0, because ψ is injective, and hence σ = 0. This implies that also ψ̃ is injective.
Now let ϕ̃τ = 0 with τ ∈ HomR(V,M2). Then ϕ(τ(v)) = 0 for all v ∈ V , and τ(v) = ψ(v′) with
some v′ ∈ M1, depending on v. Since ψ is injective, v′ is unique. Define τ ′ ∈ HomR(V,M1) by
this v′, i.e., let τ ′(v) = v′. Then it follows that

τ(v) = ψ(v′) = ψ(τ ′(v)) = (ψ̃τ ′)(v).

Hence τ is contained in the image of ψ̃. �

Remark 2.7.8. The covariant functors F = M ⊗R · and G = · ⊗R N are right-exact, but
not exact in general.

Definition 2.7.9. A category C is called additive if the sets Hom(A,B) are endowed with
the structure of abelian groups for all objects A and B in C, such that the following conditions
hold:

(1) The law of composition of morphisms is bilinear, and there exists a zero object 0, i.e.,
such that Hom(0, A) and Hom(A, 0) have precisely one element for each object A.

(2) Finite products and finite coproducts exist in C.

The second property can be replaced by the requirement, that every finite collection of
objects in C has a direct sum. To say that objects A and B admit a direct sum means that there
is an object A⊕B in the category and maps iA : A→ A⊕B, iB : B → A⊕B, pA : A⊕B → A,
pB : A ⊕ B → B such that pA ◦ iA = idA, pB ◦ iB = idB, pA ◦ iB = 0, pB ◦ iA = 0 and
iApA + iBpB = idA⊕B.
Some authors also use the following definition (using proposition 2.7.4 as a motivation):

Definition 2.7.10. Let C be an additive category. A sequence 0→ A→ B
α−→ C is called

exact if the sequence of abelian groups

0→ Hom(T,A)→ Hom(T,B)→ Hom(T,C)

is exact for all objects T in C. A sequence A
β−→ B → C → 0 is exact if the sequence of abelian

groups

0→ Hom(C, T )→ Hom(B, T )→ Hom(A, T )

is exact for all objects T .

We define the kernel and the cokernel of a morphism as follows:

Definition 2.7.11. Let C be an additive category. Suppose that f : A→ B is an arbitrary
morphism in C. A kernel of f is a morphism κ : C → A such that

(a) f ◦ κ : C → B is the zero morphism:

A
f

��@@@@@@@

C

κ

OO

0
// B
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(b) Given any morphism κ′ : D → A such that f ◦κ′ is the zero morphism, there is a unique
morphism g : D → C such that κ ◦ g = κ′:

A
f

��@@@@@@@

C

κ

OO

0 // B

D

0

77nnnnnnnnnnnnnnn

κ′

GG���������������
g

>>

Definition 2.7.12. Let C be an additive category. Suppose that f : A→ B is an arbitrary
morphism in C. A cokernel of f is a morphism λ : B → C such that

(a) λ ◦ f : A→ C is the zero morphism:

B

λ
��

A

f
??~~~~~~~

0
// C

(b) Given any morphism λ′ : B → D such that λ′ ◦f is the zero morphism, there is a unique
morphism g : C → D such that λ ◦ g = λ′:

B

λ
��

λ′

��0
00000000000000

A
0 //

f
??~~~~~~~

0
''PPPPPPPPPPPPPPP C

g

  
D

It is easy to see that kernels and cokernels are universal and hence uniquely determined if
they exist (they need not exist in general).

Definition 2.7.13. An abelian category is an additive category A in which the following
two conditions hold:

(3) Kernels and cokernels exist in C.
(4) If f : A→ B is a morphism whose kernel is 0, then f is the kernel of its cokernel, i.e.,

ker(coker(f)) = f .
If f : A → B is a morphism whose cokernel is 0, then f is the cokernel of its kernel,
i.e., coker(ker(f))) = f .
A morphism whose kernel and cokernel are 0 is an isomorphism.

In other words, every morphism has both a kernel and a cokernel, every monomorphism is
a kernel of a morphism and every epimorphism is a cokernel of a morphism.

We list some examples (and one counter-example) of abelian categories.

(a) The category MR of R-modules, for any ring R.
(b) The category of finitely generated R-modules, for a Noetherian ring R.
(c) The category of complexes of R-modules.
(d) The category of vector bundles over a topological space.
(e) The category of sheaves of abelian groups over a topological space.
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(f) The category of all groups is not an abelian category.

We need also special cases of the categoryMR. Taking the group ring R = Z[G] we obtain
the categoryMG of G-modules. For the trivial group G = {1} we have the category of abelian
groups (Z-modules). We recall the following result:

Proposition 2.7.14. Let 1 → I
α−→ N

β−→ M → 1 be a short exact sequence of R-modules.
Then the following conditions are equivalent:

(1) There exists a module homomorphism τ : M → N such that βτ = id |M .
(2) There exists a module homomorphism σ : N → I such that σα = id | I .
(3) N is isomorphic to the direct sum of I and M , i.e.,

N ' im(α)⊕ ker(σ) ' ker(β)⊕ im(τ)

Definition 2.7.15. Let A be an abelian category. An object I of A is injective if Hom(·, I)
is an exact functor, i.e., if 0→ A→ B → C → 0 is exact in A then also

0→ Hom(C, I)→ Hom(B, I)→ Hom(A, I)→ 0

is exact.

This sequence is automatically exact except at Hom(A, I). Hence to say that I is injective
means that every homomorphism A → I extends to B, i.e., for each injection f : A → B and
each α : A→ I there exists at least one map β : B → I such that α = β ◦ f .

Proposition 2.7.16. Let I be an R-module in the category MR. Then the following con-
ditions are equivalent:

(1) I is injective, i.e., the functor HomR(·, I) is exact.
(2) Each short exact sequence of R-modules 0→ I → N →M → 0 is split.
(3) Each R-module homomorphism f of a submodule M ′ of M to I can be extended to

a R-module homomorphism h : M → I. In other words, the following diagram is
commutative, h ◦ α = f :

I

0 // M ′ α //

f

OO

M

h

aa

Proof. We just gave a short reasoning why (1) and (3) are equivalent. Now assume (3)
and consider the following diagram:

I

0 // I
α //

id

OO

N

h
__

Then (3) yields a homomorphism h : N → I such that h ◦α = id |N . Using proposition 2.7.14 it
follows (2), i.e., the short exact sequence there splits. Conversely, assume (2). To show (3), let

I

0 // M ′ α //

f

OO

M
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be an exact diagram. We form the so-called push-out, see [8],

M ′

��

α // M

��
I

α′ // N

where N = I ⊕M ′ M . Since α is a monomorphism, so is α′. By (2) the sequence 0 → I
α−→ N

splits, and composing the splitting map σ : N → I with the push-out map M → N we obtain
the desired homomorphism h : M → I satisfying h ◦ α = f , proving (3). �

Definition 2.7.17. Let A be an abelian category. We say that A has enough injectives if
for every object A in A there is an injection A→ I where I is injective.

We have the following important theorem.

Theorem 2.7.18. Every R-module can be embedded into an injective R-module, i.e., the
category MR respectively MG has enough injectives.

Proof. Here is a very rough outline of the proof. For details see [8]. Let T be a divisible
abelian group. This means, the homomorphism x 7→ mx from T to T is surjective for all m ∈ Z.
The first step in the proof is to show that then HomZ(R, T ) is an injective R-module. If M is
an arbitrary R-module then it is possible to embedd M into some divisible abelian group T .
This will induce an embedding of M into the injective R-module HomZ(R, T ). �

Every category C has an opposite category Cop where the objects are the same as the objects
in C, but the morphisms and compositions are reversed, so that there is a 1− 1 correspondence
f 7→ f op between morphisms f : B → C in C and morphisms f op : C → B in Cop. The categories
C and Cop need not be isomorphic: for example, let T be the category of torsion abelian groups.
Then T op is the category of profinite abelian groups.
Let A be an abelian category. Then Aop is also abelian and injective objects in A correspond
to so called projective objects in Aop. We have the following dual definition.

Definition 2.7.19. LetA be an abelian category. An object P ofA is projective if Hom(P, ·)
is an exact functor, i.e., if 0→ A→ B → C → 0 is exact in A then also

0→ Hom(P,A)→ Hom(P,B)→ Hom(P,C)→ 0

is exact.

Indeed, A is injective in A if and only if A is projective in Aop.

Example 2.7.20. Consider the category of all complex vector spaces. Then each object is
projective and injective.

Indeed, every module in this category is free, since it has a basis, and hence projective.

Example 2.7.21. The category of finite abelian groups F is an example of an abelian cate-
gory that has no projective objects. Since F is equivalent to Fop it has also no injective objects.

Proposition 2.7.22. Let P be an R-module in the category MR. Then the following
conditions are equivalent:

(1) P is projective, i.e., the functor HomR(P, ·) is exact.
(2) Each short exact sequence of R-modules 0→ N →M → P → 0 is split.
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(3) For each surjective R-module homomorphism g : B → C and an R-module homomor-
phism γ : P → C there is at least one R-module homomorphism β : P → B such that
γ = g ◦ β:

P

γ

��

β

��
0 Coo B

goo

Definition 2.7.23. Let A be an abelian category. We say that A has enough projectives if
for every object A in A there is a surjection P → A where P is projective.

Proposition 2.7.24. The category MR respectively MG has enough projectives.

Indeed, every R-module is the homomorphic image of a free, hence projective R-module.

We could also use projectives for the definition of cohomology, but we will do it with injectives.

Definition 2.7.25. Let M be an object of a category A. A resolution of M is a long exact
sequence

0→M → I0 → I1 → · · · → Ir → · · ·
We sometimes write this M → I•. If all the Ir are injective objects of A, then it is called an
injective resolution.

Proposition 2.7.26. If the abelian category A has enough injectives, then every object in
A has an injective resolution.

Let F : C → D be a left exact functor from one abelian category to a second one. Let
M → I• be an injective resolution of M . On applying the functor F , we obtain a complex

F (I) : 0
d−1

−−→ F (I0)→ F (I1)→ · · · → F (Ir)
dr

−→ F (Ir+1)→ · · ·

which may be no longer exact. Define

(RrF )(M) = Hr(F (I)) := ker(dr)/ im(dr−1)

for all r ≥ 0. One can show that the objects (RrF )(M) are well-defined up to a canoni-
cal isomorphism. Moreover, a morphism α : M → N gives rise to a well-defined morphism
(RrF )(M)→ (RrF )(N). In fact, the RrF are functors.

Definition 2.7.27. The above functors RrF are called the right derived functors of F .

Example 2.7.28. We have R0F = F .

Because F is left exact, 0→ F (M)→ F (I0)
d0−→ F (I1) is exact. Therefore

(R0F )(M) = ker(d0) = F (M)

Theorem 2.7.29. A short exact sequence 0→ A→ B → C → 0 gives rise to a long exact
sequence

0→ F (A)→ F (B)→ F (C)→ R1F (A)→ R1F (B)→ R1F (C)→ · · ·
→ RrF (A)→ RrF (B)→ RrF (C)→ · · ·

and the association of the long exact sequence to the short exact sequence is functorial.
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The last condition means that a commutative diagram

0 // A

��

// B

��

// C

��

// 0

0 // A′ // B′ // C ′ // 0

gives rise to a commutative diagram

· · · // Rr−1F (C)

��

// RrF (A)

��

// RrF (B)

��

// RrF (C)

��

// · · ·

· · · // Rr−1F (C ′) // RrF (A′) // RrF (B′) // RrF (C ′) // · · ·

Now we turn to the functorial definition of cohomology groups.

Lemma 2.7.30. The functor F : MG → AB, F (M) = MG from the category of G-modules
to the category of abelian groups is left exact.

Proof. This follows from the fact that MG = HomG(Z,M) for any G-module, see (2.3.2).
Here Z is regarded as trivial G-module. �

Hence, if 0 → N → M → V → 0 is exact then 0 → NG → MG → V G is exact. Since the
category of G-modules has enough injectives, every G-module has an injective resolution and
we can form the right derived functors of F .

Definition 2.7.31. Let G be a group and M be a G-module. Define the rth cohomology
group of G with coefficients in M to be

Hr(G,M) = RrF (M)

That means, if we choose an injective resolution

0→M → I0 d0−→ I1 d1−→ I2 d2−→ · · ·
of M , then the complex

0
d−1

−−→ (I0)G
d0−→ (I1)G → · · · d

r−1

−−→ (Ir)G
dr

−→ (Ir+1)G → · · ·
need no longer be exact, and we have Hr(G,M) ∼= ker(dr)/ im(dr−1). For any homomorphism
α : M → N of G-modules and any injective resolutions M → I• and N → J•, α extends to a
map of complexes α̃ : I• → J•,

0 // M

α

��

// I0

��

// I1

��

// · · ·

0 // N // J0 // J1 // · · ·

and the homomorphisms Hr(α̃) : Hr(I•G) → Hr(J•G) are independent of the choice of α̃. On
applying this statement to the identity map id: M →M , we see that the groups Hr(G,M) are
well defined up to a canonical isomorphism. These groups have the following basic properties.

(1) We have H0(G,M) = F (M) = MG.
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(2) If I is an injective G-module, then Hr(G, I) = 0 for all r > 0, because 0 → I → I →
0→ 0→ · · · is an injective resolution of I.

(3) A short exact sequence 0→ N →M → V → 0 of G-modules gives rise to a long exact
sequence

0→ H0(G,N)→ H0(G,M)→ H0(G, V )→ H1(G,N)→ H1(G,M)→ · · ·
→ Hr(G,N)→ Hr(G,M)→ Hr(G, V )→ Hr+1(G,N)→ · · ·

We have finally obtained two different definitions of cohomology groups. One by means
of cochains and explicit formulas of the coboundary operators, the other by means of derived
functors. One can show that there is a canonical isomorphism between the two cohomology
groups.



CHAPTER 3

Galois cohomology

3.1. Profinite groups

Profinite groups G are compact topological groups for which the open normal subgroups
form a fundamental system of neighbourhoods of e = 1G. Following Bourbaki we require
compact spaces to be Hausdorff.

Definition 3.1.1. A group G equipped with a topology is called a topologic group if

(1) the map x 7→ x−1, G→ G is continuous.
(2) the map (x, y) 7→ xy, G × G → G is continuous, where G × G is equipped with the

product topology.

There are numerous examples of topological groups. Any finite group equipped with the
discrete topology is a topological group. The groups

(Q,+), (R,+), (C,+)

with the usual topology induced by the Eudlidean metric are topological groups. Furthermore
(Q,+) is also a topological group with respect to the p-adic topologies. Important examples of
topological groups are given by the Lie groups (topological groups that are also differentiable
manifolds), for instance by the group GL(n,R). The topology on GL(n,R) is defined by viewing

GL(n,R) as a subset of Euclidean space Rn2
.

An isomorphism between two topological groups is an isomorphism of abstract groups and a
homeomorphism of their topological spaces. There is a large literature on topological groups.
We only need a few results.

Lemma 3.1.2. Let G be a topological group and La be the left multiplication by a ∈ G. Then
La is a homeomorphism. In particular, a subset A ⊆ G is open if and only if aA is open.

Proof. Of course, La is a homomorphism. Since La is the composition of the continuous
maps G→ G×G, g 7→ (a, g) and G×G→ G, (a, g) 7→ ag, it is also continuous. The inverse
mapping La−1 is continuous for the same reason. �

Lemma 3.1.3. Let G be a topological group, A,B ⊆ G be subsets and A,B the topological
closure of A resp. B. Then we have

(1) A ·B ⊆ AB.

(2) A−1 = A
−1

.
(3) gA = gA for all g ∈ G.

Proof. (1): Let x ∈ A, y ∈ B, and U a neighborhood of xy. Because group multiplication
is continuous there exists a neighborhood V of 1 such that xV · yV ⊂ xyU . Then xV is a
neighborhood of x, and by assumption there is an a ∈ xV ∩A. Similarly there is a b ∈ yV ∩B.
This implies ab ∈ AB ∩ xyU , so that each neighborhood of xy intersects AB. Thus we have
xy ∈ AB.

41



42 3. GALOIS COHOMOLOGY

(2): Denote by I the homeomorphism G →, g 7→ g−1. Since A−1 ⊆ A
−1

= I(A) the RHS is

closed, so that A−1 ⊆ A
−1

. On the other hand, A−1 ⊆ A−1, i.e.,

A ⊆ (A−1)−1 = I(A−1).

Again the RHS is closed, so that A ⊆ (A−1)−1, and hence A
−1 ⊆ A−1.

(3): We have gA ⊆ gA, implying gA ⊆ gA by the same argument as in (2), using the homeo-
morphism Lg instead of I. Conversely we have A ⊆ g−1gA, implying again A ⊆ g−1gA. This
means gA ⊆ gA. �

Lemma 3.1.4. Let G be a topological group and H be a subgroup of G. Then H is a
topological group with respect to the relative topology and the embedding H ↪→ G is continuous.
The topological closure H is a subgroup of G as well.

Proof. The multiplication H × H → H is a restriction of a continuous map, hence con-
tinuous. The same is true for the Inverse I : H → H. It remains to show that H is a group.

By lemma 3.1.3 we have H ·H ⊆ H ·H = H and H
−1

= H−1 = H. Hence H is a group. �

Lemma 3.1.5. Every open subgroup H of a topological group G is closed at the same time.

Proof. We have G \ H =
⋃
g 6∈H gH. Together with H all gH are open as well. Hence

G \H is open, that is, H is closed. �

Lemma 3.1.6. Let G be a topological group. If H is a normal subgroup then G/H is a
topological group with respect to the quotient topology and the canonical projection π : G→ G/H
is open and continuous.

Proof. Let O be the topology on G and π : G→ G/H be the canonical projection. Then
O′ := {U ⊆ G/H | π−1(U) ∈ O} defines a topology on G/H such that π is continuous and
open with respect to this topology. Indeed, ∅ and G/H are open sets, since ∅ = π−1(∅) and
G = π−1(G/H). Furthermore, if Ai ∈ O′, i.e., π−1(Ai) ∈ O, then

π−1(
⋃
i

Ai) =
⋃
i

π−1(Ai) ∈ O

so that ∪iAi ∈ O′. Similarly, the intersection of finitely many open sets Ai is again open.
The map π is continuous by definition. It maps open sets to open sets: if U ∈ O then
π−1(π(U)) = UH. However, if U is open then UH is open as well. Now (G/H,O′) is a
topological group. To see that the multiplication is continuous, let W be a neighborhood of
g1g2H ∈ G/H. Then π−1(W ) is an open neighborhood of g1g2. Since multiplication in G is
continuous, there exist neighborhoods Uj of gj with U1U2 ⊆ π−1(W ). Since π is open, the sets
π(Uj) are neigborhoods of gjH, and π(U1)π(U2) = π(U1U2) ⊆ W . Similarly we see that the
inverse taking is continuous. �

Let L/K be a Galois extension, possibly infinite. This means that L/K is algebraic, normal
and separable. We want to give a topology on the group G = Gal(L/K). Define a fundamental
system of open neighbourhoods of 1G ∈ G by the collection of subgroups of the form H =
Gal(L/F ) for a finite extension F/K. Then the Galois closure M of F is still a finite Galois
extension of K. Hence we always find a normal open subgroup Gal(L/M) ⊆ H. Thus we
may actually define the system of neighbourhoods of 1G to be the set of all normal subgroups
N = Gal(L/F ) where F/K is a finite Galois extension. Let

O′ = {N = Gal(L/F ) | F/K is a finite Galois extension}
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For each σ ∈ G, we define the system of neighbourhoods of σ to be σO′ = {σN | N ∈ O′}. We
will show that this defines a topology O on G, the so called Krull topology.

Proposition 3.1.7. Let L/K be a Galois extension. Then (Gal(L/K),O) is a Hausdorff
topological group.

Proof. We first show that O defines a topology. Let G = Gal(L/K). Clearly G ∈ O.
Just take F = K. Also ∅ ∈ O. If Ni = Gal(L/Fi) ∈ O for i = 1, 2, then so is N1 ∩ N2 =
Gal(L/F1F2) ∈ O since the composite F1F2 of two finite Galois extensions is again a finite
Galois extension. This shows that each intersection of finitely many sets in O is again contained
in O. Finally each union of sets in O belongs again to O. If {Ni} is a family of sets in O
then ∪iNi = Gal(L/ ∩i Fi) ∈ O since the intersection ∩iFi of arbitrarily many finite Galois
extensions is again a finite Galois extension. Hence G is a topological space. It is also a
topological group. The map i : x 7→ x−1 is continuous since the preimage of an open set
N = Gal(L/F ) ∈ O contains again an open set, i.e., a set contained in O: because H is a
group we have i−1(N) = N . The map (x, y) 7→ xy is also continuous: let N = στGal(L/F ) ∈ O
be an open neighbourhood of στ . Then σN and τN are open neighbourhoods of σ respectively
τ , and we have

σN · τN = στN ·N = στN

The first equality follows since N is a normal subgroup, and the second one since N is a group,
i.e., N = N ·N . Finally we show that G is a Hausdorff group. Let σ, τ ∈ G such that σ 6= τ . We
have to find U, V ∈ O such that σU ∩ τV = ∅. Choose α ∈ L such that σ(α) 6= τ(α). Let F be
the normal closure of K(α). This is a finite Galois extension of K so that N = Gal(L/F ) ∈ O.
We claim that σN ∩ τN = ∅. Hence taking U = V = N finishes the proof. Assume that the
intersection would be non-empty. Then we would have σ ∈ τN . But then σ(α) = τ(α) since
α ∈ F and N fixes F elementwise. This is a contradiction. �

Proposition 3.1.8. Let L/K be a Galois extension. Then (Gal(L/K),O) is totally dis-
connected and compact.

Proof. A topological space is called totally disconnected if its connected components are
the one-points sets. Let G = Gal(L/K). We first show that (Gal(L/K),O) is totally discon-
nected. For any finite subset S of L let

G(S) = {σ ∈ G | σ(s) = s ∀ s ∈ S}.

The sets G(S) with S being G-stable form a neighborhood base of 1 consisting of open normal
subgroups. These G(S) are open subgroups, hence also closed. Since

⋂
G(S) = {1G}, this

shows that the connected component of G containing 1G is just {1G}. By homogeneity (for
each x, y in a topological group G there is a homeomorphism f : G → G such that f(x) = y),
the analogue statement is true for every element of G.
To show that (Gal(L/K),O) is compact is more difficult. We just give a rough idea, for
a detailed and direct proof see Artin [1]. Also recall that we follow Bourbaki by requiring
compact spaces to be Hausdorff. This property, however, we have just proved above. Let S
be a finite subset of L stable under G. Then G(S) is a normal subgroup of G of finite index
because it is the kernel of the associated map G→ Sym(S). Since every finite set is contained
in a stable finite set, one can show that the map

G→
∏

G/G(S)
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is injective, where the product runs over these finite sets S which are stable under G. We endow∏
G/G(S) with the product topology, so that the induced topology on G is that for which the

G(S) form an open neighborhodd base of 1G, i.e., it is the Krull topology. According to the
Tychonoff theorem,

∏
G/G(S) is compact. The proof is finished by showing that G is closed

in the product. �

Remark 3.1.9. A good deal of number theory of this century can be interpreted as the
study of the absolute Galois group Gal(Q/Q). To obtain information on this group one lets
it act on K-vector spaces. In other words, one is considering continuous homomorphisms
ϕ : Gal(Q/Q) → GLn(K) where GLn(K) is equipped with the discrete topology (even if it
carries a natural topology, e.g., if K = C). For n = 1 such continuous representations cor-
respond to finite cyclic extensions of Q. They have been studied already by Gauß and the
results include, for example, the theorem of Kronecker-Weber and the prime number theorem
of Dirichlet. The Kronecker-Weber Theorem is as follows: let K/Q be a finite abelian Galois
extension, i.e, Gal(K/Q) is abelian, then K is contained in a cyclotomic extension, i.e., there is
a root of unity ζ such that K ⊆ Q(ζ). The study of 2-dimensional continuous representations of
Gal(Q/Q) is among other things connected with the results of Wiles on the Taniyama-Shimura
conjecture. This conjecture roughly says that any elliptic curve over Q is a modular form in
disguise. It has been proved in 1999 by Wiles, Taylor, Ribet and the work of many more.

We want to explain briefly how the Krull topology can be used to extend the fundamental
theorem of E. Galois to infinite Galois extensions. We recall a part of Galois’ fundamental
theorem when L/K is finite.

Theorem 3.1.10. Let L/K be a finite Galois extension. Suppose that M is an intermediate
field, i.e., L/M/K. Then L/M is a Galois extension and there is a one-to-one correspondence

{M | L/M/K is an intermediate field} ↔ {H | H is a subgroup of Gal(L/K)}
given by M 7→ Gal(L/M) and H 7→ LH . For two intermediate fields M,M ′ we have M ⊃
M ′ if and only if Gal(L/M) ⊂ Gal(L/M ′), and Gal(L/MM ′) = Gal(L/M) ∩ Gal(L/M ′).
Furthermore M/K is a Galois extension if and only if Gal(L/M) C Gal(L/K). In that case
we have Gal(L/K)/Gal(L/M) ∼= Gal(M/K), induced by σ 7→ σ|M .

The fixed field is defined by LH = {x ∈ L | σ(x) = x ∀σ ∈ H}.
It was already Dedekind who noted that the fundamental theorem fails in general for infinite
Galois extensions. Here is an example. Let K = Fp be the field with p elements and let

F =
⋃
n≥1

Fpn

its algebraic closure. The extension F/Fp is normal and separabel since algebaic extensions of
a finite field are separabel. Let G = Gal(F/Fp) be its Galois group. Denote by ϕ : α 7→ αp the
Frobenius automorphism. We have ϕ ∈ G. Let H = 〈ϕ〉 be the subgroup of G generated by ϕ.

Example 3.1.11. The fundamental theorem of Galois fails for the infinite Galois extension
L/K = F/Fp. We have LH = LG = Fp and H 6= G. Hence there are two different subgroups of
G with the same fixed field.

Let us give a proof. Clearly LG = Fp. Let x ∈ LH . Then we have ϕ(x) = x, hence x is a
root of Xp −X ∈ Fp[X]. All p elements of Fp are roots of this polynomial. Since Fp is a field,
there cannot be more roots. Hence x ∈ Fp and LH = Fp. To show that H is a proper subgroup
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of G we have to construct a τ ∈ Gal(F/Fp) which is not a power of ϕ. It suffices to construct
an infinite subfield M with Fp $ M $ F. The extension F/M will be also a Galois extension.
Choose a τ ∈ Gal(F/M) \ {1} and assume that H = G. Then τ = ϕn for some n ∈ N. One
may replace τ by τ−1 if necessary. Then ϕn fixes M elementwise and M is contained in the
fixed field of ϕn, i.e., M ⊂ Fpn . This is a contradiction because M is infinite. Hence we have
H 6= G. We claim that M = ∪n≥0 Fp2n is such an intermediate field. It is infinite but different
from F. To see this let F be a cubic extension of Fp. Of course F ⊂ F, but F * M . Write
F = Fp(α) and assume α ∈ M . Then α ∈ Fp2n for some n and [Fp2n : Fp] = [Fp2n : F ][F : Fp].
However 3 = [F : Fp] is not a divisor of 2n = [Fp2n : Fp], a contradiction.

Remark 3.1.12. Let Fq be a finite field. Then Gal(Fq/Fq) ∼= Ẑ, where Ẑ is the profinite
completion of the additive group Z. It consists of sequences (sn)∞n=1 with sn ∈ Z/nZ such that
if m | n, then sm ≡ sn mod m. The set of such sequences forms a group by componentwise

addition. The group Ẑ is uncountable.

The question of how to modify the fundamental theorem so that it will apply also for
infinite Galois extensions was solved by Krull. One has to equipp the Galois group with the
Krull topology. Then there will be a bijection between closed subgroups of Galois groups and
intermediate fields of the extension. In our example we would obtain H = G, so that the above
problem dissolves.

Theorem 3.1.13. Let L/K be a Galois extension. We have the following canonical one-to-
one correspondence

{M | L/M/K is an intermediate field} ↔
{H | H is a closed subgroup of Gal(L/K)}

given by M 7→ Gal(L/M) and H 7→ LH . Every open subgroup of Gal(L/K) is closed, and open
subgroups correspond to finite extensions LH/K. For two intermediate fields M,M ′ we have
M ⊃M ′ if and only if Gal(L/M) ⊂ Gal(L/M ′), and Gal(L/MM ′) = Gal(L/M)∩Gal(L/M ′).
Furthermore M/K is a Galois extension if and only if Gal(L/M) C Gal(L/K). In this case
σ 7→ σ|M induces an isomorphism of topological groups

Gal(L/K)/Gal(L/M) ∼= Gal(M/K),

where the factor group is equipped with the quotient topology.

Galois groups will be our motivating example of profinite groups.

Definition 3.1.14. A partially ordered set (I,≤) is said to be directed if for any two
elements i and j of I, there exists a k ∈ I such that i, j ≤ k. Suppose that for every element
i of a directed set (I,≤) we have a group Gi, and for every inequality i ≤ j we have a group
homomorphism πji : Gj → Gi. If

(1) πii = id for all i ∈ I,
(2) πji ◦ πkj = πki for all i ≤ j ≤ k,

then the family (Gi, πji) is called a projective system of groups (some authors write (I,≤
, Gi, πji)). Given any such projective system, one defines a projective limit of it by

lim←−Gi = {(gi)i∈I ∈
∏
i∈I

Gi | πji(gj) = gi whenever i ≤ j}
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This is indeed a group, being a subgroup of the direct product
∏
Gi. The neutral element

is (1, 1, 1, . . .). It is in lim←−Gi. If g, h ∈ lim←−Gi with g = (· · · , gi, · · · ) and h = (· · · , hi, · · · )
then we have also gh = (· · · , gihi, · · · ) ∈ lim←−Gi. In fact πji(gjhj) = πji(gj)πji(hj) = gihi.
The group lim←−Gi comes together with projections lim←−Gi → Gj, induced by the projections
πj :

∏
Gi → Gj. Furthermore lim←−Gi is a topological group as well. We give each Gi the

discrete topology, the product
∏
Gi the product topology and the projective limit the restriction

topology.

Proposition 3.1.15. Let (Gi, πji) be a projective system of groups such that all Gi are
compact Hausdorff topological groups. Then lim←−Gi is a compact (Hausdorff) topological group.

Proof. By the theorem of Tychonoff the product
∏
Gi together with the product topology

is compact since all Gi are compact. The product topology is the most coarse topology such
that all projections πj :

∏
Gi → Gj are continuous. It suffices to show that lim←−Gi is closed

in
∏
Gi with respect to the relative topology, because this will imply that lim←−Gi is a compact

topological group. If g = (. . . , gi, . . .) is in
∏
Gi \ lim←−Gi then there is an index pair (i, j)

with j ≥ i and πji(gj) 6= gi. Since all Gi are Hausdorff there are open neighbourhoods Vj of
πji(gj) ∈ Gi and Ui of gi ∈ Gi such that Vj ∩Ui = ∅. Since πji is continuous Uj = π−1

ji (Vj) is an
open neighbourhood of gj ∈ Gj. Then

U = Ui × Uj ×
∏
k 6=i,j

Gk

is an open neighbourhood of g ∈ G which does not intersect lim←−Gi. In fact U ∩ lim←−Gi = ∅
since πji(Uj) ⊂ Vj and Ui have empty intersection. It follows that

∏
Gi \ lim←−Gi is open since

every g ∈
∏
Gi \ lim←−Gi has an open neighbourhood not intersecting lim←−Gi. But then lim←−Gi is

closed. �

Definition 3.1.16. A topological group which is isomorphic (as a topological group) to a
projective limit of finite groups is called a profinite group.

One defines topological ring and profinite ring similarly. Before giving examples let us say
that profinite groups can be described topologically as follows:

Proposition 3.1.17. Let G be a topological group. The following assertions are equivalent.

(1) G is a profinite group.
(2) G is a compact (Hausdorff) totally disconnected group.

Example 3.1.18. Any finite group G is profinite.

Let I = {1}, Gi = G and π11 = id. Equipp the finite groups Gi with the discrete topology.
Then (Gi, πji) is a projective system with limit G. Hence G is profinite. Conversely every
discrete profinite group is finite.

Example 3.1.19. The group Z is not profinite.

Indeed, Z is not compact. But we may form its profinite completion Ẑ, see below.

Example 3.1.20. The p-adic numbers Zp form a profinite ring.

Let Ri = Z/piZ and πji : Z/pjZ → Z/piZ the natural projections. The projective limit of
these rings will be again a ring, namely the ring of p-adic integers

Zp = lim←−Z/piZ
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We can express the expansion of elements in Zp as

Zp = {(xn)∞n=0 ∈
∏
n≥0

Z/pnZ | xn+1 ≡ xn mod pn}

Definition 3.1.21. Let G be a group. The profinite completion of G is the profinite group

Ĝ defined by Ĝ = lim←−G/N , with N ranging over the set of normal subgroups of G of finite
index, ordered by containment, the maps πji being the natural ones.

There is a natural group homomorphism G → Ĝ with dense image, which need not be
injective in general.

Example 3.1.22. The projective completion of Z is given by

Ẑ = lim←−
n

Z/nZ ∼=
∏
p∈P

Zp

This is the absolute Galois group of a finite field Fq, see remark 3.1.12.

Let I be the set of positive integers, partially ordered by n ≤ m iff n | m. Then (I,≤) is

directed and (I,≤,Z/nZ, πmn) forms a projective system with projective limit Ẑ. The πmn are
again the usual surjections.

Example 3.1.23. Let L/K be a Galois extension. Then Gal(L/K) is a profinite group and
the profinite topology coincides with the Krull topology on Gal(L/K).

Let I be the set of intermediate fields Fi inside L/K such that Fi/K is a finite Galois
extension. The set I is partially ordered by inclusion. We may take the composed field of two
subfields, which is again a finite Galois extension, so the set I is directed. For Fj ⊃ Fi we have
restriction maps πji : Gal(Fj/K)→ Gal(Fi/K). So we have a projective system and

Gal(L/K) = lim←−Gal(Fi/K)

where now each Gal(Fi/K) is a finite group. We have now equipped Gal(L/K) with the
profinite topology. It coincides with the Krull topology. To see this we use the following
lemma.

Lemma 3.1.24. Let (I,≤, Gi, πij) be a projective system of finite groups and G = lim←−Gi

the associated profinite group. Let πi : G → Gi be the projections induced by the projections∏
Gj → Gi. Then the sets {ker(πi) | i ∈ I} form a fundamental system of open neighbourhoods

of 1 in G.

Proof. Since all Gi are finite, equipped with the discrete topology, we know that {1} is
a fundamental system of open neighbourhoods of 1 in Gi. According to the definition of the
product topology of

∏
Gi and the relative topology of G ⊆

∏
Gi the sets

G ∩
(∏
j∈J

{1} ×
∏
i∈I\J

Gi

)
=
⋂
J⊆I

ker(πi)

form a fundamental system of open neighbourhoods of 1 in G, where J runs through the finite
subsets of I. Since I is directed, and all J are finite there exists a k ∈ I such that j ≤ k for all
j ∈ J . This implies that

ker(πk) ⊆
⋂
J⊆I

ker(πi),
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so that the kernels of the projections πi form a fundamental system of open neighbourhoods of
1 in G. �

Now we can identify the profinite topology and the Krull topology on G = Gal(L/K). A
fundamental system of open neighbourhoods of 1 in the Krull topology on G = Gal(L/K)
consists of the groups Gi = Gal(L/Fi), where Fi/K is finite and normal. We have G = lim←−Gi

and ker(πi) = Gal(L/Fi), since ker(πi) consists of all automorphisms of L which are trivial on
Fi.

Remark 3.1.25. The fact that Gal(L/K) is a profinite group also follows from propositions
3.1.8 and 3.1.17.

We mention some properties of profinite groups.

Proposition 3.1.26. Let H be a closed subgroup of a profinite group G. Then H is profinite
as well.

Note that the condition that H is closed is necessary. If we consider the profinite group
Gal(Fp/Fp) and its subgroup H, generated by the Frobenius automorphism, then H ' Z, which
is not a profinite group.

Proposition 3.1.27. Let N be a closed normal subgroup of a profinite group G. Then G/N
is profinite with the quotient topology.

If H is an open subgroup of G, then the index (G : H) is finite: G is compact and ∪g∈G gH
is an open covering of G. On the other hand, subgroups of profinite groups of finite index need
not be open in general:

Lemma 3.1.28. Let V be an infinite dimensional vector space. For all n ≥ 1, there exists a
subspace Vn of V such that V/Vn has dimension n.

Proof. It follows form Zorn’s lemma that V contains maximal linearly independent sub-
sets, which are indeed a basis of V . Choose such a basis and take Vn to be the subspace spanned
by the set obtained by omitting exactly n elements from this basis. �

Proposition 3.1.29. The profinite group Gal(Qal/Q) has nonopen normal subgroups of
finite index 2n for all n ≥ 1.

Proof. Let E be the subfield

Q[
√
−1,
√

2,
√

3,
√

5,
√

7,
√

11, . . .]

of the field C. For each prime p ∈ P we have

Gal(Q[
√
−1,
√

2, . . . ,
√
p]/Q) '

∏
`∈P,`≤p
`=∞

Z/2Z

This implies that

G := Gal(E/Q) = lim←−
n

Gal(Q[
√
−1,
√

2, . . . ,
√
p]/Q)

is a direct product of coplies of Z/2Z indexed by the primes ` of Q including ` =∞. Consider
the following subgroup H of G:

H = {(a`) ∈ G | a` = 0 for all but finitely many `}.
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This subgroup is dense in G because, given a point (a`) ∈ G, there is a sequence in H converging
to (a`), given by

(a∞, 0, 0, 0, . . .), (a∞, a2, 0, 0, . . .), (a∞, a2, a3, 0, . . .), . . .

We can regard G/H as a vector space over F2 and apply lemma 3.1.28 to obtain subgroups
Gn of index 2n in G containing H. Now Gn cannot be open. Otherwise it would be also
closed, which contradicts the fact that H is dense. It follows that the inverse inverse of Gn in
Gal(Qal/Q) is a normal nonopen subgroup of finite index. �

A profinite group is called topologically finitely-generated, if it has a dense finitely-generated
subgroup.

Theorem 3.1.30 (Nikolov, Segal 2003). Let G be a topologically finitely-generated profinite
group. Then all subgroups of finite index are open.

This generalizes an earlier analogous result of Jean-Pierre Serre for topologically finitely-
generated pro-p groups. The proof uses the classification of finite simple groups.

Proposition 3.1.31. Every profinite group occurs as a Galois group of an appropriate
Galois extension L/K.

Proof. A proof can be found in [9], Theorem 2.11.5. Here is a brief outline of the idea of
the proof. Let G be a profinite group, and let F be any field. Denote by T the disjoint union
of all the sets G/U , where U runs through the collection of all open normal subgroups of G.
One may interpret the elements of T as indeterminates, and consider the field

L = F (T )

of all rational functions on the indeterminates in T with coefficients in F . The group G acts
on T in a natural way: if g ∈ G and g′U ∈ G/U , then g(g′U) = gg′U . This induces an action
of G on L as a group of F -automorphisms of L. Now define K = LG, the fixed field. One can
show that L/K is a Galois extension with Galois group G. �

Remark 3.1.32. In contrast to the above theorem it is not true that every profinite group
occurs as an absolute Galois group.

In fact, it follows from a result of Artin and Schreier that the only finite absolute Galois
groups are Gal(C/C) = 1 and Gal(C/R) = C2.

Theorem 3.1.33 (Artin-Schreier, 1927). Let K be an algebraically closed field, and F be a
subfield such that 1 < [K : F ] <∞. Then K/F is a Galois extension, K = F (i) with i2 = −1,
and F has characteristic zero. Furthermore, any finite sum of nonzero squares in F is again a
nonzero square in F .

There is a lot of very modern research now on the characterization of absolute Galois groups
among all profinite groups.

Definition 3.1.34. Denote by Ks the separable closure of K. If K is perfect (for example,
all fields of characteristic zero), then it coincides with the algebraic closure K. The absolute
Galois group of K is Gal(Ks/K).

Definition 3.1.35. A field K is called pseudo algebraically closed, or a PAC field, if each
nonempty absolutely irreducible variety V defined over K has a K-rational point.
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Suppose that K is an algebraically closed field and consider the ideal I generated by poly-
nomials f1, . . . , fm ∈ K[x1, . . . , xn]. Assume that I is not the whole ring. Then Hilbert’s
Nullstellensatz says that f1, . . . , fm have a common K-zero. This implies that K is a PAC
field, i.e., algebraically closed fields are PAC fields. So are separably closed fields. We have the
following results:

Proposition 3.1.36. Let K be a PAC field and V be a variety defined over K. Then the
set V (K) is dense in V in the Zariski K-topology. In particular, K is infinite.

Hence a finite field Fq, q = pk is not a PAC field.

Proposition 3.1.37. Infinite algebraic extensions of finite fields are PAC-fields.

Proposition 3.1.38 (Ax,Roquette). Every algebraic extension of a PAC-field is a PAC
field.

Both results follow from the following theorem, see [6], Theorem 11.2.3.

Theorem 3.1.39. Let L be an algebraic extension of an infinite field K. Suppose every
plane algebraic curve defined over K has an L-rational point. Then L is a PAC field.

Recently, Kollár solved an open problem of [6] on PAC fields.

Theorem 3.1.40 (Kollár). A field K is a PAC field if and only if every absolutely irreducible
homogeneous polynomial f(x, y, z) ∈ K[x, y, z] has a nontrivial zero in K3.

It is interesting to look at the finite field K = Fq. Since it is not a PAC field, there must
be a plane projective curve C : f(x, y, z) = 0 defined over Fq with no K-rational point, defined
by an homogeneous absolutely irreducible polynomial. In fact, for p > 3 we may take

f(x, y, z) = xq−1 + yq−1 + zq−1

The absolute irreducibility of f reduces to the absolute irreducibility of the polynomial 1 +
Xq−1 +Y q−1. For the latter observe that 1+Xq−1 has simple roots in Fp and apply Eisenstein’s

criterion over the ring Fp[X]. Since we have aq−1 = 1 for all a ∈ F×q it follows that aq−1 + bq−1 +

cq−1 is 1, 2 or 3 for all (a, b, c) ∈ F3
q \ {(0, 0, 0)}. Since p > 3, this value is not 0 in Fq.

For p = 3 and q = p1 we take

f(x, y, z) = x6 + y6 + z6 + x2y2z2.

It takes some effort to show that f is abolutely irreducible. Since a2 = 1 for each F×3 it follows
that f takes only the nonzero values 1 and 2 on F3

3 \ {(0, 0, 0)}.
For q = 3k and k ≥ 2 choose α ∈ Fq \ F3 and let

f(x, y, z) = αxq−1 + yq−1 + zq−1

Then f is abolutely irreducible, and the values of f on F3
q \ {(0, 0, 0)} are 1, 2, α, α+ 1 or α+ 2.

None of them is 0.

For q = 2k and k ≥ 3 choose α ∈ Fq \ F4 and let

f(x, y, z) = α2xq−1 + αyq−1 + zq−1.

Then α is a root of no quadratic polynomial with coefficients in F2. Hence f(x, y, z) = 0 has
no nontrivial solution in Fq.
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Finally for q = 4 and q = 2 let

f(x, y, z) = x6 + y6 + z6 + x3y3 + x3z3 + y3z3 + x2y2z2.

Using that a3 = 1 for each a ∈ F×4 , we may check that f(a, b, c) = 1 for all (a, b, c) ∈ F3
4 \

{(0, 0, 0)} such that one of the coordinates is zero. Otherwise, f(a, b, c) = 6 · 1 + a2b2c2 6= 0.
One can prove that f is absolutely irreducible.

Definition 3.1.41. A profinite group G is called projective, if every finite embedding prob-
lem

G

ϕ

��

γ

��
0 Aoo B

αoo

is solvable. This means, for all finite groups A and B, and a homomorphism ϕ : G → A, and
an epimorphism α : B → A there is a solution, i.e., a homomorphism γ : G→ B with α ◦γ = ϕ.

The absolute Galois group of a PAC field is projective, and conversely, every projective
profinite group can be realized as an absolute Galois group of a PAC field.

Theorem 3.1.42 (J. Ax). If K is a PAC field, then Gal(Ks/K) is a projective profinite
group.

Proof. See Theorem 11.6.2 in [6]. �

Theorem 3.1.43 (Lubotzky, van den Dries). Every projective profinite group can be realized
as an absolute Galois group of a PAC field.

Proof. See Corollary 23.1.2 in [6]. �

However, not every field with projective absolute Galois group is a PAC field.

Example 3.1.44. For each prime number p, Gal(Fp/Fp) ' Ẑ is a projective group, but Fp,
being a finite field, is not a PAC field.

The projectivity of the absolute Galois group of a field K is closely related to the vanishing
of the Brauer group Br(K) of K, although it is not equivalent to it.

Definition 3.1.45. A central simple K-algebra is a K-algebra A whose center is K and
which has no two sided ideals except 0 and A.

For example, if D is a division ring with center K, then the ring Mn(D) of all n×n matrices
with entries in D is a central simple K-algebra. Conversely, if A is a finite dimensional cantral
simple K-algebra, then by a theorem of Wedderburn, there exists a unique division ring D with
center K and some n ≥ 1 such that A 'K Mn(D). Suppose B is another finite dimensional
central simple K-algebra. B is called equivalent to A if there exists a positive integer n with
B 'Mn(D). In particular, A is equivalent to D. We denote the equivalence class of A by [A].

Definition 3.1.46. Denote by Br(K) the set of all equivalence classes of finite dimensional
central simple K-algebras. This forms an abelian group under the tensor product, called the
Brauer group of K.
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Indeed, the tensor product of two finite dimensional central simple K-algebras is again a
finite dimensional central simple K-algebra. Moreover, the tensor product respects the euqiva-
lence relation between finite dimensional central simple K-algebras. Hence,

[A] · [B] = [A⊗K B]

is an associative multiplication rule onBr(K). This rule is commutative since A⊗KB ' B⊗KA.
The equivalence class [K] is a unit in Br(K), because A⊗K K ' A. An inverse to [A] is given
by [Aop], where Aop is the opposite algebra of A. It consists of all elements a◦, with a ∈ A, and
addition and multiplication defined by the rules

a◦ + b◦ = (a+ b)◦,

a◦b◦ = (ba)◦.

One proves that A⊗K Aop 'Mn(K), where n = dimK(A). This shows [Aop] = [A]−1.

Proposition 3.1.47. Let K be a PAC field. Then its Brauer group Br(K) is trivial.

The connection between projectivity of the absolute Galois group of a field K and its Brauer
group Br(K) is based on the following canonical isomorphism

H2(Gal(Ks/K), K×s ) ' Br(K).

It is known that every element of Br(K) has finite order.
Let K be a field and L a finite extension. Multiplication by a ∈ L is a K-linear trans-

formation `a : L → L. The norm NL/K(a) is defined as the determinant of `a. Properties of
the determinant imply that the norm belongs to K and NL/K(ab) = NL/K(a)NL/K(b). Hence
the norm is a group homomorphism N : L× → K× on the multiplicative groups of non-zero
elements. If L/K is a Galois extension, the norm N = NL/K of an element a ∈ L is the product
of all the conjugates σ(a) of a, for σ ∈ Gal(L/K).

Proposition 3.1.48. The following conditions on a field K are equivalent:

(a) The Brauer group Br(L) is trivial for every finite separable extension L of K.
(b) The norm map N : M× → L× is surjective for every finite separable extension L of K

and for every finite Galois extension M/L.

For PAC fields we summarize the following consequences:

Proposition 3.1.49. Let K be a PAC field. Then the following assertions hold:

(a) The absolute Galois group Gal(Ks/K) is projective.
(b) The Brauer group Br(K) is trivial.
(c) The norm map N : M× → K× is surjective for every finite Galois extension M/L.
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3.2. The cohomology of profinite groups

One can define cohomology groups for profinite groups, if one carries along the profinite
topology.

Definition 3.2.1. Let G be a profinite group. An abelian group M is called a discrete
G-module, if M is a G-module such that the action G ×M → M is continuous when M is
endowed with the discrete topology, and G×M with the product topology.

In the discrete topology every subset is open.

Lemma 3.2.2. Let G be a profinite group and M be a G-module. Then the following asser-
tions are equivalent.

(1) M is a discrete G-module.
(2) The stabilizer Gm = {σ ∈ G | σ(m) = m} of every m ∈M is open in G.
(3) M = ∪HMH , where H runs through the open subgroups of G.

Proof. Suppose that (1) holds, i.e., that G × M → M is continuous. Then also the
restriction ϕ : G× {m} → M is continuous. Hence Gm × {m} = ϕ−1(m) is open in G× {m},
so that Gm is open in G. Hence (2) follows.
Now assume that (2) holds and let m ∈M . Since Gm is open it contains an open subgroup H
so that m ∈MGm ⊆MH . Hence (3) follows.
Assume that (3) holds. Let (σ,m) ∈ G×{m} and n = σ(m). By assumption n ∈MH for some
open subgroup H. Then Mσ× {m} is an open neighbourhood of (σ,m) which is mapped to n
under the G-action G×M →M . Hence this action is continuous and (1) follows. �

Submodules and quotient modules of discrete modules are again discrete.

Example 3.2.3. Consider the Galois extension Q(
√

N)/Q with

Q(
√

N) = Q(
√

2,
√

3,
√

5, . . .),

and G = Gal(Q(
√

N)/Q). Then M =
∏

p Q(
√
p) is a G-module which is not discrete.

If G is profinite and M is a discrete topological space, a map G→M is continuous iff there
is an open normal subgroup N of G such that f is constant on the cosets of G/N . Since N
has finite index in G, continuous maps G → M have only finitely many values. In the above
example, assume that G×M →M is continuous. Then G× {m} →M is continuous and any
m has only finitely many images under the action of G. However, this is not true since e.g.
m = (

√
2,
√

3,
√

5, . . .) has infinitely many images.

Proposition 3.2.4. The discrete G-modules form an abelian category CG. This category
has enough injectives.

This enables us to define cohomology groups Hn
c (G,M) for profinite groups G and discrete

G-modules M by taking injective resolutions, just as before. The groups can also be calculated
using continuous cocycles. Let Cn

c (G,M) be the group of continuous maps G×n → M , and
define the coboundary operators δn : Cn

c (G,M)→ Cn+1
c (G,M) as before. Then we obtain

Hn
c (G,M) ∼= Zn

c (G,M)/Bn
c (G,M) = ker(δn)/ im(δn−1)

Most of the theory concerning the cohomology groups Hn(G,M) continues to hold for the
groups defined by continuous cochains. Sometimes the subscript c will be dropped. It will be
clear from the context which cohomology is used.
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Remark 3.2.5. It follows from the definition that H0
c (G,M) = H0(G,M) for all discrete

G-modules M , and that H i
c(G,M) = H i(G,M) for all i ≥ 0 if G is finite. However, for i > 0

and G infinite the two groups are different in general.

Example 3.2.6. Let G = Ẑ and M = Q with the trivial Ẑ-action. Then H1
c (Ẑ,Q) = 0, but

H1(Ẑ,Q) 6= 0.

In fact, H1
c (Ẑ,Q) = lim←−n Hom(Z/nZ,Q) = 0, because Q is torsion free. On the other hand,

H1(Ẑ,Q) is the group of Ẑ-module homomorphisms ϕ : Ẑ→ Q. But as Q is a divisible abelian
group, every homomorphism C → Q from a subgroup C of an abelian group B extends to a

homomorphism B → Q. Applying this with C = Z, B = Ẑ and the natural inclusion Z → Q
we obtain a nontrivial homomorphism Ẑ→ Q.

Remark 3.2.7. Let G be a profinite group, MG be the category of all G-modules, and CG
the category of discrete G-modules. Then CG is a full subcategory ofMG. Moreover there is a
functor F :MG → CG, F (M) = M∪ where

M∪ =
⋃

H open in G

MH

We have HomG(M,N∪) = HomG(M,N) if M is a discrete G-module. The functor F preserves
injectives and is left exact. Hence CG has enough injectives. But F is not exact and hence
Hn(G,M) and Hn(G,M∪) in general are different. The inclusion functor i : CG → MG is
exact but does not preserve injectives. Hence Hn(G,M) and Hn(G, i(M)) are also different in
general.
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3.3. Inflation, restriction and the Hochschild-Serre spectral sequence

We will start with induced modules in the version without continuity.

Definition 3.3.1. Let G be a group, H a subgroup and M be an H-module. Let

IndGH(M) = {ϕ : G→M | ϕ(hg) = hϕ(g) for all h ∈ H, g ∈ G}

Then IndGH(M) becomes a G-module with the operations

(ϕ+ ϕ′)(x) = ϕ(x) + ϕ′(x)

(gϕ)(x) = ϕ(xg)

Indeed, (g, ϕ) 7→ gϕ defines an action since (g′g)ϕ = g′(gϕ):

((g′g)ϕ)(x) = ϕ(xg′g) = (gϕ)(xg′) = (g′(gϕ))(x)

A homomorphism α : M → N of H-modules defines a homomorphism

α∗ : IndGH(M)→ IndGH(N)

of G-modules by α∗(ϕ) = α ◦ ϕ. Hence IndGH : MH →MG is a functor.

Definition 3.3.2. A G-module is said to be induced if it is isomorphic to IndG1 (A) =
{ϕ : G→ A} for some abelian group A.

Note that the maps ϕ are just maps, not necessarily homomorphisms. We have IndGH(M) =
HomH(Z[G],M), where Z[G] is an H-module as well, with its canonical G-action, and the
action of G on an H-module homomorphism ϕ : Z[G]→M is given by (σϕ)(g) := ϕ(g.σ) for a
basis element g of Z[G].

Remark 3.3.3. Let G be a profinite group, H a closed subgroup and M be a discrete
H-module. Then

IndGH(M) = {ϕ : G→M continuous | ϕ(hg) = hϕ(g) for all h ∈ H, g ∈ G}
becomes a discrete G-module.

Lemma 3.3.4. For any G-module M and H-module N we have

HomG(M, IndGH(N)) ∼= HomH(M,N)

Moreover the functor IndGH : MH →MG is exact.

Proof. Given a G-homomorphism α : M → IndGH(N), we define β : M → N by β(m) =
α(m)(1), where 1 is the identity in G. Then we have for any g ∈ G

β(gm) = (α(gm))(1) = (gα(m))(1) = α(m)(g · 1) = α(m)(g)

because α is a G-homomorphism and α(m) ∈ IndGH(N). Hence for h ∈ H
β(hm) = α(m)(h) = h(α(m)(1) = h(β(m))

so that β ∈ HomH(M,N). Conversely, given such a β we define α : M → IndGH(N) such that
α(m)(g) = β(gm). It follows similarly that α is a G-homomorphism. These correspondences
yield the desired isomorphism of the first part. Given an exact sequence of H-modules

0→M
α−→ N

β−→ P → 0

we have to prove that the sequence of G-modules

0→ IndGH(M)
α∗−→ IndGH(N)

β∗−→ IndGH(P )→ 0
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is exact. Let ϕ ∈ IndGH(M) and α∗(ϕ) = α ◦ ϕ = 0. Since α is injective we have ϕ = 0, so that
α∗ is injective. Furthermore (β∗α∗)(ϕ) = β ◦ α ◦ ϕ = 0 since β ◦ α = 0. Hence β∗α∗ = 0 and
imα∗ ⊂ ker β∗.
Conversely let ψ ∈ ker β∗, i.e., β∗(ψ) = β ◦ ψ = 0. For all g ∈ G there is an m ∈ M such
that ψ(g) = α(m), because ψ(g) ∈ ker β ⊂ imα. Define a map ϕ : G → M by ϕ(g) = m.
This is well defined, since α is injective. Furthermore ψ = α ◦ ϕ = α∗(ϕ). We have to show
that ϕ ∈ IndGH(M), and hence ψ ∈ imα∗. Then ker β∗ ⊂ imα∗ and it follows the exactness at
IndGH(N). Since ψ ∈ IndGH(N) we have

α(ϕ(hg)) = ψ(hg) = hψ(g) = hα(m) = α(hm) = α(hϕ(g))

and hence ϕ(hg) = hϕ(g), because α is injective. This shows ϕ ∈ IndGH(M).
Finally we have to show that β∗ is surjective. Let S be a set of right coset representatives for
H in G, i.e., G = ∪s∈S Hs, and let ϕ ∈ IndGH(P ). For each s ∈ S, choose an n(s) ∈ N mapping
under β to ϕ(s) ∈ P , and define ϕ̃(hs) = h·n(s). Then ϕ̃ ∈ IndGH(N) and β∗(ϕ̃) = β ◦ϕ̃ = ϕ. �

Remark 3.3.5. Let G be a profinite group and H a closed subgroup. Then IndGH is also
an exact functor from the category CH of discrete H-modules to the category CG of discrete
G-modules.

Theorem 3.3.6 (Shapiro’s Lemma). Let G be a profinite group, H a closed subgroup of G.
For any discrete H-module N and all r ≥ 0, there is a canonical isomorphism

Hr(G, IndGH(N)) ∼= Hr(H,N)

Proof. Let us first mention that the result holds for any abstract group G with subgroup
H and H-module N .
For r = 0, the isomorphism is the composite of the following isomorphisms:

NH ∼= HomH(Z, N) ∼= HomG(Z, IndGH(N)) ∼= IndGH(N)G

The first and the third isomorphism follow from lemma 2.3.2, the second one from lemma
3.3.4. Z is regarded as a trivial module. Now choose an injective resolution N → I• of N .
By applying the functor IndGH , we obtain an injective resolution IndGH(N) → IndGH(I•) of the
G-module IndGH(N), because IndGH is exact and preserves injectives. Hence

Hr(G, IndGH(N)) = Hr((IndGH(I•))G) = Hr(I•H) = Hr(H,N)

�

Corollary 3.3.7. If M is an induced G-module, then Hn(G,M) = 0 for all n ≥ 1.

Proof. If M = IndG1 (A), then Hn(G,M) = Hn({1}, A) = 0. �

Corollary 3.3.8. Let L/K be a finite Galois extension and G = Gal(L/K). Then
Hn(G,L) = 0 for all n ≥ 1.

This generalizes the additive part of proposition 2.4.7. Recall that Hn(G,L×) in general
need not be trivial.

Proof. By the normal basis theorem there exists an α ∈ L such that {σα | σ ∈ G} is a
basis (a “normal” basis) for L as a K-vector space. This means, L is isomorphic to K[G] as a
G-module. But K[G] = IndG1 K, and hence Hn(G,L) = Hn({1}, K) = 0. �
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If α : M → N is a homomorphism of G-modules, then it induces a homomorphism

Hn(G,M)→ Hn(G,N)

of cohomology groups. This can be generalized as follows.

Definition 3.3.9. Let M be a G-module and N be a G′-module. Two homomorphisms
α : G′ → G and β : M → N are said to be compatible if

β(α(g′)m) = g′β(m) ∀ g′ ∈ G′,m ∈M

In this case M becomes a G′-module by g′m = α(g′)m such that β : M → N becomes a
homomorphism of G′-modules. Furthermore the map

(α, β) : C•(G,M)→ C•(G′, N)

given by ϕ 7→ β◦ϕ◦αn defines a homomorphism of complexes. It commutes with the coboundary
operators, so that it induces a homomorphism of cohomology groups

(α, β) : Hn(G,M)→ Hn(G′, N).

Example 3.3.10. Let H be a subgroup of G and α : H ↪→ G be the inclusion map. For
any H-module N let β : IndGH(N)→ N be the map defined by β(ϕ) = ϕ(1). Then α and β are
compatible:

β(α(h)ϕ) = β(hϕ) = hβ(ϕ)

The induced homomorphism

Hn(G, IndGH(N))→ Hn(H,N)

is precisely the isomorphism in Shapiro’s Lemma.

Similarly, if H is a subgroup of G, α : H ↪→ G is the inclusion map and β : M → M is the
identity, both maps are compatible:

Definition 3.3.11. The induced homomorphisms are called the restriction homomorphisms

Res: Hn(G,M)→ Hn(H,M)

These homomorphisms can also be constructed as follows: let ϕm(g) = gm. Then ϕm ∈
IndGH(M) and ϕ : M → IndGH(M), m 7→ ϕm is a homomorphism of G-modules. Denote by
ϕ̃ : Hn(G,M) → Hn(G, IndGH(M)) the induced homomorphism of cohomology groups. Let
ψ : Hn(G, IndGH(M))→ Hn(H,M) be the isomorphism in Shapiro’s Lemma. Then we have

Res = ψ ◦ ϕ̃

Let H be a normal subgroup of G, α : G → G/H be the quotient map and β : MH ↪→ M
be the inclusion. Then α and β are compatible:

Definition 3.3.12. The induced homomorphisms are called the inflation homomorphisms

Inf : Hn(G/H,MH)→ Hn(G,M)

We can extend the definition of restriction and inflation to profinite groups and discrete
modules. There is the following inflation-restriction exact sequence.
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Theorem 3.3.13. Let G be a profinite group, H be a closed normal subgroup of G and M
be a discrete G-module. Let n ∈ N. Assume that Hr(H,M) = 0 for all r with 1 ≤ r < n. Then
the following sequence is exact.

0→ Hn(G/H,MH)
Inf−→ Hn(G,M)

Res−−→ Hn(H,M)

For n = 1 the hypothesis on Hr(H,M) is vacuous, so that we always have

(3.1) 0→ H1(G/H,MH)
Inf−→ H1(G,M)

Res−−→ H1(H,M)

Proof. Let n = 1. We will show that Inf is injective and im Inf = ker Res. Let ϕ : G/H →
MH be a 1-cocycle and ϕ′ = Inf ϕ. Then ϕ′ is a 1-cocycle in H1(G,M) via G→ G/H

ϕ−→MH →
M . Suppose that the class of ϕ′ is trivial, i.e., ϕ′ is a 1-coboundary. Then ϕ′(g) = gm−m for
some m ∈ M . Hence gm −m = ghm −m for all h ∈ H, so that m = hm for all h ∈ H, i.e.,
m ∈ MH . But then ϕ(gH) = gHm −m is a 1-coboundary in H1(G/H,MH) and the class of
ϕ is zero. It follows that Inf is injective. Similarly we see that im Inf = ker Res. For n > 1 the
result can be proved by induction. �

Example 3.3.14. Let Ω/K and L/K be finite Galois extension with L ⊂ Ω. Then H :=
Gal(Ω/L) is a normal subgroup of G := Gal(Ω/K), and with M = Ω× we have MH = L×.
According to Proposition 2.4.7, H1(H,Ω×) = 1, and so there is an exact sequence

1→ H2(G/H,L×)→ H2(G,Ω×)→ H2(H,Ω×)

Remark 3.3.15. In Theorem 3.3.13 the cohomology groups Hn(H,M) can be equipped
with a G-module structure, such that H acts trivially on it. Then Hn(H,M) becomes a G/H-
module and it is not difficult to show that the image of Hn(G,M) under Res actually lies in
Hn(H,M)G/H . Then (3.1) can be extended to the following special case of of the Hochschild-
Serre spectral sequence

0→ H1(G/H,MH)
Inf−→ H1(G,M)

Res−−→ H1(H,M)G/H

→ H2(G/H,MH)
Inf−→ H2(G,M)

The result for n ≥ 1 here is as follows:

Theorem 3.3.16. Let G be a profinite group, H be a closed normal subgroup of G and M
be a discrete G-module. Let n ≥ 1 be an integer and assume that that Hr(H,M) = 0 for all r
with 1 ≤ r < n. Then there is a natural map

τn,M : Hn(H,M)G/H → Hn+1(G/H,MH)

fitting into the following exact sequence:

0→ Hn(G/H,MH)
Inf−→ Hn(G,M)

Res−−→ Hn(H,M)G/H
τn,M−−−→

→ Hn+1(G/H,MH)
Inf−→ Hn+1(G,M).

Among many possible topics within techniques from group cohomology we want to mention
the cup-product (see [7]). We will assume that G is a group and A,B are G-modules (the
cup-product can also be adapted to profinite groups and discrete modules). A cup-product is
an associative product operation
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H i(G,A)×Hj(G,B)→ H i+j(G,A⊗B),

(a, b) 7→ a ∪ b,
which is graded-commutative, i.e., it satisfies

a ∪ b = (−1)ij(b ∪ a).

Here A⊗B = A⊗ZB is the tensor product of A and B over the commutative ring Z, equipped
with the G-module structure given by

g.(a⊗ b) = g.a⊗ g.b
for g ∈ G, a ∈ A and b ∈ B. Note that in general this is different from the tensor product of
A and B over the group ring Z[G]. We begin with a construction of the cup-product with the
first step as follows: let A• and B• be complexes of abelian groups, i.e.,

· · · → Ai−1 ∂i−1
A−−→ Ai

∂i
A−→ Ai+1 → · · · ,

and similarly for B•. Then we define the tensor product complex A• ⊗ B• by first considering
the double complex

...
...

...

· · · // Ai−1 ⊗Bj+1

OO

// Ai ⊗Bj+1

OO

// Ai+1 ⊗Bj+1

OO

// · · ·

· · · // Ai−1 ⊗Bj

OO

// Ai ⊗Bj

OO

// Ai+1 ⊗Bj

OO

// · · ·

· · · // Ai−1 ⊗Bj−1

OO

// Ai ⊗Bj−1

OO

// Ai+1 ⊗Bj−1

OO

// · · ·

...

OO

...

OO

...

OO

where the horizontal maps are given by

∂hi,j = ∂iA ⊗ id : Ai ⊗Bj → Ai+1 ⊗Bj,

a⊗ b 7→ ∂iA(a)⊗ b,
and the vertical maps are given by

∂vi,j = id⊗(−1)i∂jB : Ai ⊗Bj → Ai ⊗Bj+1,

a⊗ b 7→ a⊗ (−1)i∂jB(b).

The above squares anticommute, i.e., one has

∂hi,j+1 ◦ ∂vi,j = −∂vi+1,j ◦ ∂hi,j.
Now take the total complex associated with this double complex. This is, by definition, the
complex T • with

T n =
⊕
i+j=n

Ai ⊗Bj
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and ∂n : T n → T n+1 given on the component Ai⊗Bj by ∂hi,j+∂
v
i,j. The above anticommutativity

then implies ∂n+1 ◦ ∂n = 0, i.e., that T • is really a complex. We define this T • to be the tensor
product of A• and B•, and denote it as above by A• ⊗B•.
This enables us to proceed to the second step of the cup-product construction. In addition to
the situation before, assume further given abelian groups A and B. Then we have the complex
Hom(A•, A) whose degree i term is Hom(A−i, A) and whose differentials are those induced by
the differentials of A•. In the same way we have the complex Hom(B•, B). We construct a
product operation

H i(Hom(A•, A))×Hj(Hom(B•, B))→ H i+j(Hom(A• ⊗B•, A⊗B))(3.2)

as follows. Given homomorphisms of abelian groups α : A−i → A and β : B−j → B with
i+ j = n, the tensor product α⊗ β is a homomorphism

α⊗ β : A−i ⊗B−j → A⊗B,
and hence defines an element of the degree (i+j) term in Hom(A•⊗B•, A⊗B) via the diagonal
embedding

Hom(A−i ⊗B−j, A⊗B)→ Hom

( ⊕
k+l=i+j

A−k ⊗B−l, A⊗B

)
.

Here if α ∈ Zi(Hom(A•, A)) and β ∈ Zj(Hom(B•, B)), then by construction of A• ⊗ B• we
have

α⊗ β ∈ Zi+j(Hom(A• ⊗B•, A⊗B)).

Moreover, if α ∈ Bi(Hom(A•, A)), then α⊗β ∈ Zi+j(Hom(A•⊗B•, A⊗B)). The same follows
if β ∈ Bj(Hom(B•, B)). This defines the required map (3.2).

If in this construction all abelian groups carry a G-module structure for some group G and G-
(module)-homomorphisms α and β, then also α⊗β is a G-homomorphism, hence by restricting
to G-homomorphisms the product (3.2) induces a product

H i(HomG(A•, A))×Hj(HomG(B•, B))→ H i+j(HomG(A• ⊗B•, A⊗B)),

where A⊗B and A• ⊗B• are endowed with the G-module structure defined before.

For the next step we need the following proposition. Recall that the lower numbering in a
projective resolution P• is defined by Pi := P−i.

Proposition 3.3.17. Let G be a group, and let P• be a complex of G-modules which is a
projective resolution of the trivial G-module Z. Then P• ⊗ P• is a projective resolution of the
trivial Z[G×G]-module Z.

Here the terms of P• ⊗ P• are endowed by a G×G-action coming from

(g1, g2)(p1 ⊗ p2) = g1.p1 ⊗ g2.p2

The proof is based on the following lemma. Recall that a complex A• is called acyclic or exact,
if H i(A•) = 0 for all i.

Lemma 3.3.18. Let A• and B• be complexes of free abelian groups. Then the following holds.

(1) A• ⊗B• is again a complex of free abelian groups.
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(2) If A• and B• are acyclic, then so is the complex A• ⊗B•.

(3) If A• and B• are concentrated in nonpositive degree, acyclic in negative degrees and
having a free abelian group as 0-cohomology, then so is the complex A• ⊗ B•, and in
addition

H0(A• ⊗B•) ' H0(A•)⊗H0(B•).

Proof. (1): As tensor products and direct sums of free abelian groups are again free, it
follows that the terms of A• ⊗B• are free abelian.

(2): The proof of acyclicity is based on the fact that a subgroup of a free abelian group is again
free. This implies that for all i, the subgroups Bi(A•) are free, and in particular projective.
For all i we have the exact sequence

0→ Zi(A•)→ Ai → Bi+1(A•)→ 0,

the terms being free abelian groups. Hence the sequence splits. Moreover, we have Zi(A•) =
Bi(A•) by the acyclicity of A•. Therefore we may rewrite the above exact sequence as

0→ Bi(A•)
id−→ Bi(A•)⊕Bi+1(A•)

(0,id)−−−→ Bi+1(A•)→ 0.

Hence the complex A• decomposes as an infinite direct sum of complexes of the shape

· · · → 0→ 0→ A
id−→ A→ 0→ 0→ · · ·

and similarly, the complex B• decomposes as a direct sum of complexes

· · · → 0→ 0→ B
id−→ B → 0→ 0→ · · ·

The construction of tensor products of complexes commutes with arbitrary direct sums. Hence
we are reduced to check acyclicity for the tensor product of complexes of the above type. But
by definition, these are complexes of the form

· · · → 0→ 0→ A⊗B (id,± id)−−−−→ (A⊗B)⊕ (A⊗B)
(0,± id)−−−−→ A⊗B → 0→ 0→ · · ·

Therefore the claim follows.

(3): The proof goes along the same lines as for (2), and the description of the 0-cohomology
follows from the right exactness of the tensor product. �

Proof of Proposition 3.3.17: By definition, the Pi are direct summands in some free G-
module, which is in particular a free abelian group, so they are also free abelian groups. Hence
we can use (3) of lemma 3.3.18, and we are done if we show that the terms of P• ⊗ P• are
projective as Z[G×G]-modules. For this, notice first the canonical isomorphism

Z[G×G] ' Z[G]⊗Z Z[G] :

indeed, both abelian groups are free on a basis corresponding to pairs of elements in G. Taking
direct sums we obtain that tensor products of free Z[G]-modules are free Z[G×G]-modules with
the above G×G-action. If Pi resp. Pj are projective Z[G]-modules with a direct complement
Qi resp. Qj in some free Z[G]-module, then the isomorphism

(Pi ⊕Qi)⊗ (Pj ⊕Qj) ' (Pi ⊗ Pj)⊕ (Pi ⊗Qj)⊕ (Qi ⊗ Pj)⊕ (Qi ⊗Qj)

shows that Pi ⊗ Pj is a direct summand in a free Z[G×G]-module, and hence it is projective.
Then the projectivity of the terms of P• ⊗ P• follows. �

Putting everything together, we can finally construct the cup-product.
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Third step: Let A and B be G-modules, and P• be a projective resolution of the trivial
G-module Z. Applying the second step with A• = B• = P• we obtain maps

H i(Hom(P•, A))×Hj(Hom(P•, B))→ H i+j(P• ⊗ P•, A⊗B)).

By proposition 3.3.17, the complex P• ⊗ P• is a projective resolution of Z as a G×G-module.
Hence using the definition of cohomology via projective resolutions we may rewrite the above
maps as

H i(G,A)×Hj(G,B)→ H i+j(G×G,A⊗B).

On the other hand, the diagonal embedding G→ G×G induces a restriction map

Res : H i+j(G×G,A⊗B)→ H i+j(G,A⊗B).

Composing the two maps we finally obtain an operation

H i(G,A)×Hj(G,B)→ H i+j(G,A⊗B),

(a, b) 7→ a ∪ b.

which we call the cup-product map.
One may check that this construction does not depend on the chosen projective resolution P•.

Remark 3.3.19. The construction is functorial in the following sense. For a given morphism
A→ A′ of G-modules the diagram

H i(G,A)×Hj(G,B)

��

// H i+j(G,A⊗B)

��
H i(G,A′)×Hj(G,B) // H i+j(G,A′ ⊗B)

commutes. Similarly such a diagram for the second variable commutes.

Remark 3.3.20. For i = j = 0 the cup-product map

H0(G,A)×H0(G,B)→ H0(G,A⊗B)

is just the natural map AG ⊗ BG → (A ⊗ B)G. This follows from the construction of the
cup-product.

Remark 3.3.21. There is the following generalization of a cup-product, usually again de-
noted as cup-product. For a given morphism A×B → C of G-modules we obtain pairings

H i(G,A)×Hj(G,B)→ H i+j(G,C)

by composing the cup-product with the natural map

H i+j(G,A⊗B)→ H i+j(G,C).

Proposition 3.3.22. The cup-product is associative and graded-commutative.

Proof. We leave it to the reader to check associativity. One has to follow carefully the
construction. It ultimately boils down to the associativity of the tensor product.
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For graded-commutativity, we first work on the level of tensor products of complexes and
compare the images of the obvious maps

Ai ⊗Bj →
⊕

k+l=i+j

Ak ⊗Bl,

Bj ⊗ Ai →
⊕

k+l=i+j

Bl ⊗ Ak

in the complexes A• ⊗B• and B• ⊗A• respectively. Given a⊗ b ∈ Ai ⊗Bj, the differential in
A• ⊗B• acts on it by

∂iA ⊗ idB +(−1)i idA⊗∂jB,
whereas the differential in B• ⊗ A• acts on b⊗ a ∈ Bj ⊗ Ai by

∂jB ⊗ idA +(−1)j idB ⊗∂iA.

Therefore mapping a⊗b to (−1)ij(b⊗a) induces an isomorphism of complexes A•⊗B• ' B•⊗A•.
Applying this with A• = B• = P• and performing the rest of the construction of the cup-
product, we obtain that both elements a ∪ b and (−1)ij(b ∪ a) are mapped, via the above
isomorphism, to the same element in H i+j(G,A⊗B). �

The following exactness property holds for the cup-product.

Proposition 3.3.23. Given an short exact sequence of G-modules

0→ A1 → A2 → A3 → 0(3.3)

with the property that the tensor product over Z with a G-module B remains exact, i.e., such
that

0→ A1 ⊗B → A2 ⊗B → A3 ⊗B → 0(3.4)

is again exact, we have for all elements a ∈ H i(G,A3) and b ∈ Hj(G,B) the relation

δ(a) ∪ b = δ(a ∪ b)

in H i+j+1(G,A1 ⊗ B), where the δ are the connecting maps in the associated long sequence of
cohomology.
Similarly, if

0→ B1 → B2 → B3 → 0

is a short exact sequence of G-modules such that the tensor product over Z

0→ A⊗B1 → A⊗B2 → A⊗B3 → 0

with a G-module A remains exact, we have for all elements a ∈ H i(G,A) and b ∈ Hj(G,B3)
the relation

a ∪ δ(b) = (−1)iδ(a ∪ b)
in H i+j+1(G,A⊗B1).

Proof. For the first statement, fix an element b ∈ Hj(G,B). Take a projective resolution
P• of the trivial G-module Z and consider the sequences

0→ Hom(P•, A1)→ Hom(P•, A2)→ Hom(P•, A3)→ 0(3.5)
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and

0→ Hom(P• ⊗ P•, A1 ⊗B)→ Hom(P• ⊗ P•, A2 ⊗B)(3.6)

→ Hom(P• ⊗ P•, A3 ⊗B)→ 0.

These are exact sequences of complexes because of the projectivity of the Pi and the exactness
of the sequences (3.3) and (3.4). Lifting b to an element β ∈ Hom(Pj, B) and tensor product
with β yields maps

Hom(Pj, Ak)→ Hom(Pi ⊗ Pj, Ak ⊗B)

for k = 1, 2, 3. Hence proceeding as in the second step of the cup-product construction we obtain
maps form the terms in the sequence (3.5) to those of the sequence (3.6), increasing degrees by
j, giving rise to a commutative diagram by functoriality of the cup-product construction. The
connecting maps δ are obtained by applying the so called snake lemma to the above sequences
- we leave out the details. Finally one obtains the first statement by following the image of
an element a ∈ H i(G,A) by using the above mentioned commutativity. Let us say, that the
proof of the second statement is similar, except that one has to replace the differentials in
the complexes Hom•(P•, Bk) by their multiples by (−1)i in order to obtain a commutative
diagram, by virtue of the sign convention we have taken in the first step of the cup-product
construction. �

Let H be a subgroup of G of finite index, and let A be a G-module. We mention briefly the
so called correstriction maps

Cor: H i(H,A)→ H i(G,A), i ≥ 0

which are given by taking cohomology and applying Shapiro’s lemma. It satisfies the following
property.

Proposition 3.3.24. Let H be a subgroup of G of finite index n ≥ 1, and let A be a
G-module. Then the composite maps

Cor ◦Res: H i(G,A)→ H i(G,A)

are given by multiplication by n for all i ≥ 0.

Given a subgroupH ofG, perhaps a normal subgroup, or a subgroup of finite index if needed,
the cup-product satisfies the following compatibility relations with the associated restriction
maps, inflation maps and corestriction maps.

Proposition 3.3.25. For given G-modules A and B we have the following relations.

(1) For a ∈ H i(G,A) and b ∈ Hj(G,B) we have

Res(a ∪ b) = Res(a) ∪ Res(b).

(2) If H is normal in G, a ∈ H i(G/H,AH) and b ∈ Hj(G/H,BH), then we have

Inf(a ∪ b) = Inf(a) ∪ Inf(b).

(3) Let H be a subgroup of G of finite index. Then for a ∈ H i(H,A) and b ∈ Hj(G,B)
we have

Cor(a ∪ Res(b)) = Cor(a) ∪ b.
This is called the “projection formula”.
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Proof. According to the definition of restriction maps, (1) follows by performing the cup-
product construction for the modules

IndGH(A) = HomH(Z[G], A)

IndGH(B) = HomH(Z[G], B),

and using the functoriality of the construction for the natural maps A → IndGH(A) and B →
IndGH(B).
Similarly, (2) follows by performing the cup-product construction simultaneously for the projec-
tive resolutions P• and Q• considered in the definition of inflation maps (a projective resolution
P• of Z as a trivial G-module and a projective resolution Q• of Z as a trivial G/H-module),
and using functoriality.
For (3), consider the diagram

HomH(Z[G], A)

��

× HomH(Z[G], B) // HomH×H(Z[G×G], A⊗B)

��
HomG(Z[G], A) × HomG(Z[G], B)

OO

// HomG×G(Z[G×G], A⊗B)

where the horizontal maps are induced by the tensor product, the middle vertical map upwards
is the one inducing the restriction and the two others are those inducing the correstriction maps.
The diagram is “commutative” in the sense that starting form elements in HomH(Z[G], A) and
HomG(Z[G], B) we obtain the same elements in HomG×G(Z[G × G], A ⊗ B) by going through
the diagram in the two possible ways; this follows from the definition of the maps. The claim
then again follows by performing the cup-product construction for the pairings of the two rows
of the diagram and using functoriality. �



66 3. GALOIS COHOMOLOGY

3.4. Homology groups and Tate groups

The functorial definition of cohomology groups can be dualized to give us homology groups.

Definition 3.4.1. Let M be a G-module and define MG to be the largest quotient module
of M on which G acts trivially. This is called the module of coinvariants.

In other words, MG is the quotient of M by the subgroup generated by

{gm−m | g ∈ G,m ∈M}
If M is a trivial G-module then M = MG. Considering Z[G]-modules we have the following
description of MG. Let ε : Z[G]→ Z be the augmentation map, given by∑

g∈G

ngg 7→
∑
g∈G

ng

This is a ring epimomorphism (but not a G-module homomorphism). Its kernel is called the
augmentation ideal, denoted by ker ε = IG = I. It is a free Z-submodule of Z[G] with basis
{g − 1 | g ∈ G}: if x ∈ IG then x =

∑
g ngg such that

∑
g ng = 0. Thus, x =

∑
g ng(g − 1).

Lemma 3.4.2. Let M be a G-module. Then we have

MG
∼= M/IM ∼= Z⊗Z[G] M

Proof. By definition the quotient map π : M → MG satisfies π(gm − m) = 0 for all
g ∈ G,m ∈ M . Hence IGM ⊂ kerπ. But MG is maximal with this property, and hence
IGM = ker π and MG

∼= M/IGM . For the second part consider the map Z⊗Z[G]M →MG given
by n⊗m 7→ n[m], where [m] denotes the natural image of an element m ∈M in MG = M/IM .
Clearly this map defines an epimorphism. We will show that it is also injective. Let 1⊗m be
in the kernel. This means [m] = [0]. Consequently we can write m = λ1m1 + . . .+λnmn, where
λr ∈ I and mr ∈M . Since for λ ∈ I we have 1λ = 0 it follows

1⊗m =
∑
r

(1⊗ λrmr) =
∑
r

((1λr)⊗mr) = 0.

�

Lemma 3.4.3. The functor F : MG → AB, F (M) = MG from the category of G-modules
to the category of abelian groups is right exact.

Proof. This follows from the fact that F is naturally equivalent to the functor M →
Z⊗Z[G]M , which is clearly right exact. Recall that F being right exact means the following. If

0→M ′ →M →M ′′ → 0

is a short exact sequence of G-modules, then so is

M ′
G →MG →M ′′

G → 0

�

Recall that the category MG has enough projectives, see proposition 2.7.24. Hence every
G-module M has a projective resolution

· · · → P2
d2−→ P1

d1−→ P0 →M → 0

Then the complex

· · · → (P2)G
d2−→ (P1)G

d1−→ (P0)G →MG → 0
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need no longer be exact, and we define

Hn(G,M) = ker(dn)/ im(dn+1)

These groups have the following basic properties.

(1) We have H0(G,M) = F (M) = MG, because

(P1)G → (P0)G →MG → 0

is exact.
(2) If P is a projective G-module, then Hn(G,P ) = 0 for all n ≥ 1, because · · · 0→ P →

P → 0 is a projective resolution of P .
(3) Let P• → M and Q• → N be projective resolutions of G-modules M and N . Then

any homomorphism α : M → N of G-modules extends to a morphism of complexes

P•

eα
��

// M

α

��
Q• // N

and the homomorphisms Hn(α̃) : Hn(P•G) → Hn(Q•G) are independent of the choice
of α. Applying this to the identity map id: M → M , it follows that the groups are
well-defined up to canonical isomorphism. Moreover M 7→ Hn(G,M) is a functor from
the category of G-modules to the category of abelian groups.

(4) A short exact sequence 0→ N →M → V → 0 of G-modules gives rise to a long exact
sequence

· · · → Hn(G,N)→ Hn(G,M)→ Hn(G, V )→ Hn−1(G,N)→ · · ·
→ H1(G, V )→ H0(G,N)→ H0(G,M)→ H0(G, V )→ 0

Each morphism of short exact sequences induces a morphism of long exact sequences.

Note that these properties determine the functors Hn(G, •). Just as in the case of cohomology,
it is possible to give an explicit description of the homology groups Hn(G,M) as the quotient
of a group of n-cycles by a subgroup of n-boundaries.
We will shortly discuss the low-dimensional homology groups. They also have interpretations
in group theory. However, the low-dimensional cohomology groups are more important. Let us
start with n = 0. By definition we have

H0(G,M) = MG

In the following we consider Z as a trivial G-module.

Lemma 3.4.4. For any group G we have

H1(G,Z) ∼= I/I2

Proof. By definition of I we have a short exact sequence of G-modules

0→ I
ı−→ Z[G]

ε−→ Z→ 0

It induces a long exact sequence of homology groups, ending with

H1(G,Z[G])→ H1(G,Z)
∂−→ H0(G, I)

β−→ H0(G,Z[G])
ε∗−→ H0(G,Z)→ 0
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By Lemma 3.4.2 we have

H0(G,Z) = ZG = Z
H0(G,Z[G]) = Z[G]G = Z[G]/IZ[G] = Z

H0(G, I) = I/I2

Also H1(G,Z[G]) = 0, because Z[G] is projective. In fact, it is free, hence projective as Z[G]-
module. The exactness of the sequence thus implies that ∂ is injective and ε∗ is surjective.
Together it shows that

Z/ ker ε∗ ∼= im ε∗ ∼= Z
Hence ε∗ must be injective as well: if ker ε∗ is nonzero, then Z/ ker ε∗ is finite, which is not the
case. It follows that β is zero and ∂ is surjective, hence bijective:

∂ : H1(G,Z) ∼= I/I2

�

We can now interpret H1(G,Z) with the trivial G-action.

Proposition 3.4.5. For any group G we have

H1(G,Z) ∼= G/G′

where G′ is the commutator subgroup of G.

Proof. Because of the Lemma it suffices to prove that G/G′ ∼= I/I2 as abelian groups.
Define θ : G→ I/I2 by

x 7→ (x− 1) + I2

To see that θ is a homomorphism, note that

xy − 1− (x− 1)− (y − 1) = (x− 1)(y − 1) ∈ I2

so that

θ(xy) = xy − 1 + I2

= (x− 1) + (y − 1) + I2

= (x− 1 + I2) + (y − 1 + I2)

= θ(x) + θ(y)

Since I/I2 is abelian we have ker θ ⊂ G′, and so θ induces a homomorphism ψ : G/G′ → I/I2

given by
xG′ 7→ x− 1 + I2

We will construct the inverse of ψ, showing that ψ is a group isomorphism. Define ϕ : I → G/G′

by
x− 1 7→ xG′

Because I is a free abelan group with basis all x − 1, where x ∈ G \ 1, ϕ is a well-defined
homomorphism. We have to show that I2 is a subgroup of kerϕ. Then ϕ induces a map
I/I2 → G/G′, which is clearly the inverse of ψ. But this follows from the identity

ϕ((x− 1)(y − 1)) = ϕ((xy − 1)− (x− 1)− (y − 1))

= xyG′(xG′)−1(yG′)−1

= 1
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�

Corollary 3.4.6. For any group and any trivial G-module M we have

H1(G,M) ∼= (G/G′)⊗Z[G] M

The group H2(G,Z) is also useful in group theory. It is called the Schur multiplier of G,
because it has to do with universal central extensions of G. There is also a formula of Hopf: let
G = F/R be a presentation of a group G, where F is a free group and R is a normal subgroup
of relations.

Theorem 3.4.7 (Hopf). We have

H2(G,Z) ∼= (R ∩ F ′)/[F,R]

so that the group on the RHS depends only on G and not upon the choice of the presentation
of G.

Remark 3.4.8. For any group G, there exists a topological space BG, called the classifying
space of G, such that G = π1(BG), and

Hn(BG,Z) = Hn(G,Z)

There is also a topological space K(G, 1), unique up to homotopoy type, such that G =
π1(K(G, 1)), πn(K(G, 1)) = 0 for n > 1, and

Hn(K(G, 1),Z) = Hn(G,Z)

Example 3.4.9. Let G = Z/2Z × Z/2Z be the Kleinian 4-group. A presentation of G is
given by

G = 〈x, y | x2, y2, xyx−1y−1〉
Then H2(G,Z) ∼= Z/2Z.

Here, F is the free group with basis (x, y). One shows that (R ∩ F ′)/[F,R] = Z/2Z. The
proof is left to the reader.
We will now define the so called Tate groups which combine homology and cohomology groups
so that we become a doubly infinite exact sequence of homology and cohomology. For that we
require G to be finite.

Definition 3.4.10. Let G be a finite group and M be a G-module. The map NormG : M →
M is defined to be

m 7→
∑
g∈G

gm

It is called the Norm map.

Lemma 3.4.11. The norm map induces a homomorphism

NormG : H0(G,M)→ H0(G,M)

Definition 3.4.12. Let G be a finite group and M be a G-module. The Tate groups are
defined to be

Hk
T (G,M) =


Hk(G,M) k > 0

MG/NormG(M) k = 0

ker(NormG)/IM k = −1

H−k−1(G,M) k < −1
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For example, H−2
T (G,Z) = H1(G,Z) ∼= G/G′. The T stands for Tate, who had a major

part in introducing Galois cohomology into algebraic number theory.

Proposition 3.4.13. Any short exact sequence of G-modules

0→M ′ →M →M ′′ → 0

induces an exact sequence of Tate groups, for all k ∈ Z,

· · · → Hk−1
T (G,M ′′)→ Hk

T (G,M ′)→ Hk
T (G,M)→

Hk
T (G,M ′′)→ Hk+1

T (G,M ′)→ · · ·
which extends infinitely in both directions.

In general, for any given G and M the Tate groups exhibit very little obvious structure.
This is different, if G is cyclic.

Theorem 3.4.14. Let G be a finite cyclic group and M be a G-module. Then, for all k ∈ Z,

Hk
T (G,M) ∼= Hk+2

T (G,M)

We mention another result.

Theorem 3.4.15. Let G be a finite group and M be a G-module. If

H1
T (H,M) = H2

T (H,M) = 0

for all proper subgroups H of G, then Hk
T (G,M) = 0 for all k ∈ Z.

If G is cyclic, this follows of course from the periodicity of the Tate cohomology.

Remark 3.4.16. We will not attempt to define homology groups or Tate groups for profinite
groups. The passage from finite groups to profinite groups is only well-behaved for cohomology.
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