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Abstract. Let p(n) denote the partition function and define p(n, k) =
∑k

j=0

(
n−j
k−j

)
p(j)

where p(0) = 1. We prove that p(n, k) is unimodal and satisfies p(n, k) < 2.825√
n

2n

for fixed n ≥ 1 and all 1 ≤ k ≤ n. This result has an interesting application: the
minimal dimension of a faithful module for a k-step nilpotent Lie algebra of dimension
n is bounded by p(n, k) and hence by 3√

n
2n, independently of k. So far only the bound

nn−1 was known. We will also prove that p(n, n− 1) <
√

n exp(π
√

2n/3) for n ≥ 1 and
p(n− 1, n− 1) < exp(π

√
2n/3).

1. Introduction

Let g be a Lie algebra of dimension n over a field K of characteristic zero. An invariant
of g is defined by

µ(g) := min{dim M | M is a faithful g–module}

Ado’s theorem asserts that µ(g) is finite. Following the details of the proof we see that
µ(g) ≤ f(n) for a function f only depending on n. It is an open problem to determine
good upper bounds for f(n) valid for a given class of Lie algebras of dimension n. Interest
for such a refinement of Ado’s theorem comes from a question of Milnor on fundamental
groups of complete affine manifolds [6]. The existence of left-invariant affine structures
on a Lie group G of dimension n implies µ(g) ≤ n + 1 for its Lie algebra g. It is known
that there exist nilpotent Lie algebras which do not satisfy this bound [5]. It is however
difficult to prove good bounds for µ(g) only depending on dim g. In 1937 Birkhoff [3]
proved µ(g) ≤ 1 + n + n2 + · · ·+ nk+1 for all nilpotent Lie algebras g of dimension n and
nilpotency class k. His construction used the universal enveloping algebra of g. In 1969
this method was slightly improved by Reed [7] who proved µ(g) ≤ 1 + nk. That yields
the bound µ(g) ≤ 1 + nn−1 only depending on n. We have improved the bound in [4] as
follows:

1.1. Theorem. Let g be a nilpotent Lie algebra of dimension n and nilpotency class k.
Denote by p(n) the number of partitions of n into positive integers with p(0) = 1 and set

p(n, k) =
k∑

j=0

(
n− j

k − j

)
p(j).

Then µ(g) ≤ p(n, k).

The aim of this paper is to study the function p(n, k) and to give upper bounds for it.
We will show the following:
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1.2. Theorem. The function p(n, k) is unimodal for fixed n ≥ 4. More precisely we have
with k(n) = bn+3

2
c

p(n, 1) < p(n, 2) < · · · < p(n, k(n)− 1) < p(n, k(n)),

p(n, k(n)) > p(n, k(n) + 1) > · · · > p(n, n− 1) > p(n, n).

1.3. Theorem. There is the following estimate for p(n, k):

p(n, k) <
2.825√

n
2n for fixed n ≥ 1 and all 1 ≤ k ≤ n

1.4. Corollary. Let g be a nilpotent Lie algebra of dimension n. Then

µ(g) <
3√
n

2n

A nilpotent Lie algebra g of dimension n and nilpotency class k is called filiform if
k = n − 1. In that case the estimate for µ(g) can be improved. In fact it holds µ(g) ≤
1 + p(n− 2, n− 2) which was the motivation to prove the following propositions:

1.5. Proposition. Let α =
√

2
3
π. Then

p(n− 1, n− 1) < eα
√

n for all n ≥ 1.

1.6. Proposition. Let α =
√

2
3
π. Then

p(n, n− 1) <
√

neα
√

n for all n ≥ 1.

1.7. Remark. If k, n →∞ with k
n
≤ 1−δ for some fixed δ > 0 then one has asymptotically

p(n, k) ∼
(

n

k

) ∞∏
j=1

1

1− ( k
n
)j

.

For k/n = 1/2 the infinite product is approximately 3.4627466194550636. The theorem
shows that µ(g) ≤ p(n, k) is a better estimate than µ(g) ≤ 1 + nk, especially if k is not
small in comparison to n. As for a bound for µ(g) independent of k, the corollary yields
a better one than nn−1. Note that some of the estimates on p(n, k) have been stated in
[4], where the proof of Lemma 5 is not complete. In fact, the upper bound given there for
p(n, n − 1) depends on a strong upper bound for p(n) itself, which so far is not proved.
Using the known upper bound for p(n) in [2] however it is not difficult to prove the above
estimates.

We have included a table which shows the values for p(k) and p(n, k) for n = 50 and
1 ≤ k ≤ 50. I thank Michael Stoll for helpful discussions.
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k p(k) p(50, k)

1 1 51
2 2 1276
3 3 20875
4 5 251126
5 7 2368708
6 11 18240890
7 15 117911248
8 22 652850403
9 30 3143939547
10 42 13327191287
11 56 50207862055
12 77 169422173829
13 101 515401493777
14 135 1421191021907
15 176 3568459118188
16 231 8190773240690
17 297 17243902126004
18 385 33393294003697
19 490 59630690096752
20 627 98399515067097
21 792 150323197512416
22 1002 212938456376977
23 1255 280067870621181
24 1575 342413939297475
25 1958 389526824102747
26 2436 412637434996367
27 3010 407312833046180
28 3718 374834739612319
29 4565 321717177399531
30 5604 257604118720316
31 6842 192465300826581
32 8349 134186828954271
33 10143 87302345518136
34 12310 52999252173708
35 14883 30018139013576
36 17977 15859467681399
37 21637 7814276022624
38 26015 3589870410395
39 31185 1537270615509
40 37338 613479208559
41 44583 228106170152
42 53174 79012160892
43 63261 25493798901
44 75175 7662394094
45 89134 2145558341
46 105558 559858427
47 124754 136194920
48 147273 30906004
49 173525 6547151
50 204226 1295971
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2. Unimodality

2.1. Definition. Let f be a sequence and define

F (n, `) :=
n∑

j=0

(
n− j

`

)
f(j)

for 0 ≤ ` ≤ n, where the binomial coefficient is understood to be zero if n− j < `. Then
F (n, `) is called unimodal, if there exists a sequence K with K(n) ≤ K(n+1) ≤ K(n)+1
such that for all n ≥ 0

F (n, 0) < F (n, 1) < F (n, 2) < · · · < F (n, K(n)− 1) ≤ F (n,K(n)),

F (n, K(n)) > F (n,K(n) + 1) > · · · > F (n, n− 1) > F (n, n) > F (n, n + 1) = 0.

2.2. Example. If f(n) = 1 for all n ≥ 0, then

F (n, `) =
n∑

j=0

(
n− j

`

)
=

(
n + 1

` + 1

)
is unimodal. Setting ` = n− k and using

(
n−j
k−j

)
=

(
n−j
n−k

)
we may rewrite the sum as

n∑
j=0

(
n− j

k − j

)
=

(
n + 1

k

)
In general F (n, `) will only be unimodal if we impose a certain restriction on the growth

of f(n). Before we give a criterion we note that the recursion for the binomial coefficients
implies the following lemma:

2.3. Lemma. Let F (n, n + 1) = 0. For 1 ≤ ` ≤ n it holds

F (n + 1, `) = F (n, `) + F (n, `− 1)(1)

F (n + 1, ` + 1)− F (n + 1, `) = F (n, ` + 1)− F (n, `− 1)(2)

Proof.

F (n, `) + F (n, `− 1) =
n∑

j=0

((
n− j

`

)
+

(
n− j

`− 1

))
f(j)

=
n∑

j=0

(
n + 1− j

`

)
f(j)

= F (n + 1, `)

Substituting ` + 1 for ` in (1) yields F (n + 1, ` + 1) = F (n, ` + 1) + F (n, `) so that the
difference yields (2). �

2.4. Proposition. Let f be a sequence satisfying

(a) f(n) > 0 for all n ≥ 0 and f(3) ≤ 2f(0) + f(1).
(b) f(n + 1) ≥ f(n) for all n ≥ 0.
(c) f(n) <

∑n−1
j=0 f(j) for all n ≥ 3.

Then F (n, `) =
∑n

j=0

(
n−j

`

)
f(j) is unimodal.
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Proof. The result follows by induction on n. For n ≤ 3 one directly obtains K(0) =
K(1) = 0, K(2) = 0, 1 and K(3) = 1 by (a), (b), (c). For example, if n = 3 then
F (3, 0) ≤ F (3, 1) > F (3, 2) > F (3, 3) > 0 says

f(0) + f(1) + f(2) + f(3) ≤ 3f(0) + 2f(1) + f(2) > 3f(0) + f(1) > f(0) > 0

which follows from the assumptions. Assuming for n

F (n, 0) < F (n, 1) < F (n, 2) < · · · < F (n,K(n)− 1) ≤ F (n,K(n)),

F (n, K(n)) > F (n, K(n) + 1) > · · · > F (n, n− 1) > F (n, n) > F (n, n + 1) = 0.

we obtain for n + 1 using the recursion (2):

F (n + 1, 1) < F (n + 1, 2) < · · · < F (n + 1, K(n)),

F (n + 1, K(n) + 1) > F (n + 1, K(n) + 1) > · · · > F (n + 1, n) > F (n + 1, n + 1) > 0.

If F (n + 1, K(n)) ≤ F (n + 1, K(n) + 1) we set K(n + 1) = K(n) + 1, and otherwise
K(n + 1) = K(n). It remains to show that F (n + 1, 0) < F (n + 1, 1). But since
F (n + 1, 0) = F (n, 0) + f(n + 1) and K(n) ≥ 1 for n ≥ 3 we have

F (n + 1, 1)− F (n + 1, 0) = F (n, 1)− f(n + 1)

≥ F (n, 0)− f(n + 1)

= f(0) + f(1) + · · ·+ f(n)− f(n + 1) > 0

by assumption (c). �

2.5. Corollary.

P (n, n− k) =
n∑

j=0

(
n− j

n− k

)
p(j) = p(n, k)

is unimodal with 0 ≤ k ≤ n.

Proof. We can apply the proposition since the partition function p(n) satisfies conditions
(a), (b), (c). Here only (c) is non-trivial. In fact, it is well known that

p(n) ≤ p(n− 1) + p(n− 2)

for all n ≥ 2, i.e., that p(n) is a ”sub-Fibonacci” sequence. If we set ` = n − k, then
0 ≤ k ≤ n and P (n, n− k) is unimodal. �

3. Lemmas on p(n, k)

For the proof of the theorems we need some lemmas.

3.1. Lemma. Denote by pk(j) the number of those partitions of j in which each term
does not exceed k. If |q| < 1 then

∞∑
j=0

pk(j)q
j =

k∏
j=1

1

1− qj
(3)

∞∑
j=0

jpk(j)q
j =

k∑
j=1

jqj

1− qj
·

k∏
j=1

1

1− qj
(4)
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Proof. The first identity is well known, see for example [1], Theorem 13-1. The prod-
uct is the generating function for pk(n). The second identity follows from the first by

differentiation. Denoting Fk(q) =
∏k

j=1
1

1−qj we have

q · d

dq
Fk(q) =

k∑
j=1

jqj

1− qj
· Fk(q)

∞∑
j=0

jpk(j)q
j = q · d

dq

∞∑
j=0

pk(j)q
j

�

In the following we will need good upper bounds for the infinite product

F (q) :=
∞∏

j=1

1

1− qj
.

F (q) is directly related to the Dedekind eta-function, which is defined on the upper half
plane H as

η(z) := q
1
24

∞∏
j=1

(1− qj),

where q := e2πiz. To obtain that approximately F (1
2
) = 3.4627466194550636, we could

use F (1
2
) = (1

2
)

1
24 · η(z)−1 with z = i log 2

2π
. The eta-function can be computed by many

computer algebra systems. On the other hand, it is not difficult to estimate the product
directly.

3.2. Lemma. For 0 < q < 1 and ` ≥ 2 we have

∞∏
j=1

1

1− qj
< exp

(
q`

(1− q)2

)
·

`−1∏
j=1

1

1− qj
(5)

∞∑
j=1

jqj

1− qj
<

q

(1− q)3
+

`−1∑
j=1

jqj(qj − q)

(1− qj)(1− q)
(6)

Proof. By the mean value theorem there exists a τj with 1 − q ≤ 1 − qj < τj < 1 such
that log 1

1−qj = − log(1− qj) = τ−1
j qj for all j ≥ 1. Hence

log
1

1− qj
<

qj

1− q

for all j ≥ 1 and
∞∑

j=`

log
1

1− qj
<

∞∑
j=`

qj

1− q
=

q`

(1− q)2
.

Taking exponentials on both sides yields

∞∏
j=`

1

1− qj
< exp

q`

(1− q)2
.
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This proves (5). To show the second inequality we again use 1− q ≤ 1− qj and
∞∑

j=1

jqj

1− q
=

q

(1− q)3

so that
∞∑

j=1

jqj

1− qj
=

`−1∑
j=1

jqj

1− qj
+

∞∑
j=`

jqj

1− qj
<

`−1∑
j=1

jqj

1− qj
−

`−1∑
j=1

jqj

1− q
+

q

(1− q)3

�

3.3. Lemma. For n ≥ 4 and k = bn+3
2
c it holds

(7)
k∑

j=0

(n + 1− 2k + j)

(
n− j

k − j

)
p(j) > 0

Proof. If n is even, then k = n+2
2

and n + 1− 2k + j = j − 1. Since for j ≥ 2 all terms of
the sum are positive, it is enough to estimate the sum of the first 4 terms:

3∑
j=0

(j − 1)

(
n− j

k − j

)
p(j) =

(
n

k

) 3∑
j=0

(j − 1) an,k,j p(j)

=

(
n

k

) (
−1 + 2 · k(k − 1)

n(n− 1)
+ 6 · k(k − 1)(k − 2)

n(n− 1)(n− 2)

)
=

(
n

k

) (
n + 14

4(n− 1)

)
> 0

for k ≥ 3 and n ≥ 4, where

an,k,j :=

(
n− j

k − j

)(
n

k

)−1

=
k!(n− j)!

n!(k − j)!

If n is odd, then k = n+3
2

and n + 1 − 2k + j = j − 2. Now the sum in (7) contains two
negative terms and one needs the first 8 terms:

7∑
j=0

(j − 2)

(
n− j

k − j

)
p(j) =

(
n

k

) (
5(11n4 + 120n3 − 2966n2 + 9864n + 10251)

128n(n− 2)(n− 4)(n− 6)

)
> 0.

for k ≥ 7, n ≥ 11. For 4 ≤ n ≤ 10 the sum in (7) is also positive. �

In the same way we obtain:

3.4. Lemma. Let ` = bn+5
2
c. For all n ≥ 4 and all k with ` ≤ k ≤ n it holds

p(n, k) >
1745

512

(
n

k

)
Proof. Since an,k,j ≥ an,`,j for k ≥ ` we have for n ≥ 18

p(n, k) ≥
(

n

k

) ∑̀
j=0

an,`,jp(j) ≥
(

n

k

) 11∑
j=0

an,`,jp(j) ≥ 1745

512

(
n

k

)
For 4 ≤ n ≤ 18 the lemma is true also. �
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3.5. Lemma. For n ≥ 4 and k = bn+3
2
c+ 1 it holds

(8)
k∑

j=0

(n + 1− 2k + j)

(
n− j

k − j

)
p(j) < 0

Proof. If n is even, then k = n+4
2

. We can rewrite (8) as

(9)
k∑

j=0

j

(
n− j

k − j

)
p(j) < 3p(n, k)

It can be checked by computer that the inequality holds for small n. We have used the
computer algebra package Pari to verify it. So we may assume, let us say, n ≥ 500. Then
k
n
≤ q = 252

500
for all n ≥ 500 and hence

an,k,j =
k

n
· k − 1

n− 1
· · · k − j + 1

n− j + 1
≤

(
k

n

)j

≤ qj.

It follows
k∑

j=0

j

(
n− j

k − j

)
p(j) =

(
n

k

) k∑
j=0

j an,k,j p(j) <

(
n

k

) k∑
j=0

jp(j)qj

<

(
n

k

) ∞∑
j=0

jpk(j)q
j < 9.96868

(
n

k

)
The last inequality follows from Lemma 3.1 and Lemma 3.2: for q = 252

500
we have

∞∏
j=1

1

1− qj
< 3.54029829

∞∑
j=1

jqj

1− qj
< 2.81577392

and therefore
∞∑

j=0

jpk(j)q
j ≤

∞∑
j=1

jqj

1− qj
·
∞∏

j=1

1

1− qj
< 9.96867959.

On the other hand we have by Lemma 3.4

3p(n, k) >
5235

512

(
n

k

)
so that inequality (9) follows. If n is odd then k = n+5

2
and the proof works as before. �

3.6. Lemma. For 1 ≤ k ≤ n− 1 it holds

(10) p(n, k) <

(
n

k

) ∞∏
j=1

1

1− ( k
n
)j

.

Proof. Estimating as in the preceding lemma and applying Lemma 3.1 we have

p(n, k) ≤
(

n

k

) k∑
j=0

(
k

n

)j

pk(j) <

(
n

k

) ∞∏
j=1

1

1− ( k
n
)j

�
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4. Proof of the Theorems

Proof of Theorem 1.2: Assume that n ≥ 4 is fixed. We have already proved that
p(n, k) is unimodal. What we must show is that p(n, k) becomes maximal exactly for
k = bn+3

2
c. We formulate this as two lemmas:

4.1. Lemma. For n ≥ 4 and 1 ≤ k ≤ bn+3
2
c we have

p(n, k − 1) < p(n, k)

Proof. Using p(n + 1, k) − p(n, k) = p(n, k − 1) we see that we have to prove 2p(n, k) −
p(n + 1, k) > 0 which is equivalent to the following inequality:

k∑
j=0

(n + 1− 2k + j)

(
n− j

k − j

)
p(j) > 0.

But this is obvious for 1 ≤ k ≤ bn+3
2
c − 1, because in that case the sum has for j ≥ 1

only positive terms and the first term with j = 0 is nonnegative. For k = bn+3
2
c there

exist negative terms, but the claim follows from Lemma 3.3.
�

4.2. Lemma. For n ≥ 4 and bn+3
2
c+ 1 ≤ k ≤ n we have

(11) p(n, k − 1) > p(n, k)

Proof. The inequality is equivalent to

k∑
j=0

(n + 1− 2k + j)

(
n− j

k − j

)
p(j) < 0.

For k = bn+3
2
c + 1 it follows from Lemma 3.5. We can now apply the unimodality of

p(n, k), see Corollary 2.5, to obtain the lemma. �

Proof of Theorem 1.3: For n < 500 the theorem can be checked by computer. Using
Sterling’s formula we obtain (

n

bn+3
2
c

)
<

2n√
πn/2

for all n ≥ 1 and hence with q = 252/500, k(n) = bn+3
2
c, n ≥ 500

p(n, k) ≤ p(n, k(n)) <

(
n

k(n)

) ∞∏
j=1

1

1− qj
< 3.54029829 · 2n√

πn/2
<

2.825√
n

2n.

For the proof of the propositions we need the following lemma.

4.3. Lemma. Let α =
√

2
3
π. Then for n ≥ 3 we have

√
n√

n + 1− 1
< 1 +

π√
6n

< e
α
√

n
“√

1+ 1
n
−1

”

Proof. Using the inequality

1 +
1

2n
− 1

8n2
<

√
1 +

1

n
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and exp(x) > 1 + x + x2/2 for x > 0 we obtain

e
α
√

n
“√

1+ 1
n
−1

”
> exp

(
α
√

n
( 1

2n
− 1

8n2

))
= exp

( π√
6n

(
1− 1

4n

))
> 1 +

π√
6n

− π

4n
√

6n
+

π2

12n
− π2

24n2
+

π2

192n3

> 1 +
π√
6n

for n ≥ 1. On the other hand we have for n ≥ 17

1

1 + π√
6n

< 1− π√
6n

+
π2

6n
< 1 +

1

2n
− 1

8n2
− 1√

n

<

√
1 +

1

n
− 1√

n
=

√
n + 1− 1√

n

Taking reciprocal values yields the second part of the lemma. For 3 ≤ n ≤ 16 one verifies
the lemma directly. �

Proof of Proposition 1.5: Let α =
√

2
3
π. In [2], section 14.7 formula (11), the

following upper bound for p(n) is proved:

p(n) <
π√
6n

eα
√

n for all n ≥ 1

We want to prove the proposition by induction on n. By Lemma 4.3 we have

1 +
π√
6n

< eα
√

n+1−α
√

n

which holds for all n ≥ 1. Assuming the claim for n− 1 it follows for n:

p(n, n) = p(n− 1, n− 1) + p(n) < eα
√

n +
π√
6n

eα
√

n

=

(
1 +

π√
6n

)
eα
√

n < eα
√

n+1

Proof of Proposition 1.6: It follows from Lemma 4.3 that
√

neα
√

n <
(√

n + 1− 1
)

eα
√

n+1

By induction on n and Proposition 1.5 we have:

p(n + 1, n) = p(n, n) + p(n, n− 1) < eα
√

n+1 +
√

neα
√

n

<
√

n + 1eα
√

n+1
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