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Introduction

This monograph is devoted to affine structures on Lie algebras and representations of
nilpotent Lie algebras. The origin of affine structures is the study of left–invariant affine
structures on Lie groups. These structures play an important role in the study of fun-
damental groups of affine manifolds and in the theory of affine crystallographic groups.
The beginning of this study goes back to Auslander [3] and Milnor [64], though many
others have contributed important work. The subject embeds into the theory of compact
manifolds with geometric structures. Euclidean, hyperbolic, projective or affine struc-
tures are well known examples for such geometric structures. We are mainly concerned
with affine structures. The fundamental group of a compact complete affine manifold is
an affine crystallographic group, ACG in short. This is a natural generalization of the
classical Euclidean crystallographic groups, i.e., ECGs which are discrete subgroups of
the isometry group of the Euclidean Rn with compact quotient.

Bieberbach presented around 1911 several important results for these groups. In par-
ticular he showed that every ECG contains an abelian subgroup of finite index consisting
of parallel translations. A natural problem is to generalize Bieberbach’s results to ACGs.
In general, the theorems are no longer true. But weaker analogues do hold or are con-
jectured. A particular analogue, known as the Auslander conjecture, asserts that every
ACG is virtually polycyclic, i.e., contains a polycyclic subgroup of finite index. In other
words, the fundamental group of compact complete affine manifolds is conjectured to be
virtually polycyclic. Milnor asked whether the conjecture is true without the compact-
ness assumption, but this was answered negatively by Margulis [61] in 1983. Milnor also
proved that any virtually polycyclic group appears as the fundamental group of some
complete affine manifold, and asked whether the manifold could be chosen to be compact.
An important source for examples of affine manifolds comes from complete left-invariant
affine structures on Lie groups. Given a discrete subgroup of such a Lie group the quotient
becomes a complete affine manifold. On the other hand, a virtually polycyclic group is
virtually contained in a connected Lie group. Milnor asked the following:

Does every solvable Lie group admit a complete left-invariant affine structure, or equiva-
lently, does every simply connected solvable Lie group admit a simply transitive operation
by affine transformations on some Rn ?

This question can be formulated in purely algebraic terms. It corresponds to the question
whether any solvable Lie algebra satisfies a certain algebraic property which we will call
affine structure. Milnor formulated the question in the seventies. What was known at that
time were a few special cases and results in low dimensions, where the answer is positive.
Auslander had proved that a Lie group with a complete left-invariant affine structure
is solvable. Indeed many mathematicians believed that the answer should be positive in
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6 INTRODUCTION

general. The problem became widely known as the Milnor conjecture. It had a remarkable
history. After several attempts to prove the existence of affine structures, counterexam-
ples in dimension 11 were discovered in 1993 by Benoist, and also by Grunewald and the
author. Here we present new systematical counterexamples on the Lie algebra level with
a shorter proof:

Theorem. There exist filiform nilpotent Lie algebras of dimension 10 ≤ n ≤ 12 which
admit no affine structures. On the other hand, all filiform Lie algebras of dimension n ≤ 9
admit an affine structure.

A Lie algebra g of dimension n over a field K is called filiform if it is nilpotent of
nilindex p = n − 1. Here the integer p with gp = 0 and gp−1 6= 0 is called nilindex and
g0 = g, gk = [gk−1, g] for k ≥ 1. The counterexamples rely on the fact that there are
certain filiform Lie algebras of dimension n without any faithful linear representation of
dimension n+1. Since the Lie algebra of a Lie group with left-invariant affine structure has
always such a representation, we obtain counterexamples to Milnors conjecture. However,
it is not clear how to find such Lie algebras in general.

The present work is organized as follows. In Chapter 1 we give a survey on the
background of Milnors problem. We will explain how the problem can be formulated in
purely algebraic terms. Then we prove consequences of our counterexamples with respect
to representation theory of Lie algebras and to finitely generated nilpotent groups.

In Chapter 2 we state the algebraic preliminaries which are important for our work.
That includes Lie algebra cohomology, Betti numbers and deformation theory of Lie
algebras. Moreover we discuss filiform Lie algebras and adapted bases for such algebras.

In Chapter 3 necessary and sufficient conditions for the existence of affine structures
on Lie algebras and Lie groups are given. In particular we prove the following criteria:

Theorem. Let g be a filiform Lie algebra and suppose that g has an extension

0 → z(h)
ι−→ h

π−→ g → 0

with a Lie algebra h and its center z(h). Then g admits an affine structure.

Theorem. Let g be a filiform Lie algebra over a field K and assume that there exists
an affine cohomology class [ω] ∈ H2(g, K). Then g admits an affine structure.

Here a 2–cocycle ω : g∧g → K is called affine if it is nonzero on z(g)∧g. It follows that
all elements in [ω] are affine and the class [ω] ∈ H2(g, K) is called affine. The converse of
the preceding theorems is not true in general. To apply these criteria we compute explicitly
the cohomology groups H2(g, K) for all filiform Lie algebras g of dimension n ≤ 11. That
is also useful for the study of Betti numbers of nilpotent Lie algebras. All computations
are ckecked with the computer algebra package Reduce. In higher dimensions, that is for
n ≥ 12, there arise new phenomena with respect to affine structures. We study all filiform
Lie algebras of dimension n ≥ 12 satisfying the following properties: g does not contain
a one-codimensional subspace U ⊇ g1 such that [U, g1] ⊆ g4, and g(n−4)/2 is abelian,
provided n is even. Here g1 = [g, g] and gi = [gi−1, g]. These algebras split in a natural
way into two distinct classes depending on whether [g1, g1] ⊆ g6 is satisfied or not. Denote
these classes by A1

n(K) and A2
n(K) respectively. We study such algebras and prove:
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Theorem. Let g ∈ A1
n(K), n ≥ 12. Then g has an extension

0 → z(h)
ι−→ h

π−→ g → 0

with a Lie algebra h ∈ A1
n+1(K) and hence admits an affine structure.

The theorem holds true also for g ∈ A2
12(K), but in general not for g ∈ A2

n(K), n ≥ 13.
Here H2(g, K) has dimension 2 or 3. In particular if b2(g) = 2 there cannot be an affine
cohomology class.

For n ≤ 11 we study the existence of affine structures for all filiform algebras of
dimension n. For that purpose we apply various constructions of affine structures.

In Chapter 4 we discuss that the existence question of affine structures is intimately
related to a very interesting question of refining Ado’s Theorem: For a finite-dimensional
Lie algebra g let µ(g) be the minimal dimension of a faithful g–module. That is an
invariant of g which is finite by Ado’s Theorem and difficult to determine, especially for
nilpotent and solvable Lie algebras. One is interested in finding general upper bounds for
µ(g), in particular linear bounds in the dimension of g. If the center of g is zero then
µ(g) ≤ dim g. If g admits an affine structure then µ(g) ≤ dim g + 1. It is not known
whether µ(g) grows polynomially with dim(g) or not. If g is nilpotent of dimension n
then Reed showed µ(g) < 1 + nn in 1969. He used Birkhoff’s construction of a faithful
representation by quotients of the universal enveloping algebra of g. Here we improve this
bound by showing:

Theorem. Let g be a nilpotent Lie algebra of dimension n. Then µ(g) < 3√
n
2n.

However, the upper bound µ(g) ≤ n + 1 involved in the study of affine structures is
much sharper. It will be more difficult to prove such a bound. We will determine the
filiform Lie algebras of dimension n ≤ 11 over C with µ(g) ≤ n + 1. For special classes
of Lie algebras we are able to compute µ(g) explicitly. A good example to illustrate that
the results are not obvious, even not in simple cases, are abelian Lie algebras: Denote by
⌈x⌉ the least integer greater or equal than x.

Theorem. Let g be an abelian Lie algebra of dimension n over an arbitrary field K.
Then µ(g) = ⌈2

√
n− 1⌉.

In Chapter 5, finally, the counterexamples for n ≤ 11 are determined. Also new
counterexamples in dimension 12 are presented. These are certain filiform Lie algebras
g not containing a one-codimensional subspace U ⊇ g1 with [U, g1] ⊆ g4, and where g4

is not abelian. The proof uses the classification of faithful ∆–modules. That method,
unfortunately, is not suitable to study the problem in more generality. It remains open
how the Lie algebras g satisfying µ(g) ≥ dim g + 2 can be found. In the context of this
work we think it is interesting to study first the following question, which is true at least
for n = 13:

Open problem. Does a Lie algebra g ∈ A2
n(K), n ≥ 13 satisfy µ(g) ≥ n + 2 if and

only if there is no affine [ω] ∈ H2(g, K) ?





CHAPTER 1

Background on Milnor’s Conjecture

In this chapter a survey is given on the origin of Milnor’s conjecture. It was first stated
in the context of affine manifolds and affine crystallographic groups. We will explain how
the conjecture can be formulated in purely algebraic terms. Working on the algebraic level
we will construct counterexamples. Finally we will show the connections to representation
theory of nilpotent Lie groups and Lie algebras and to finitely generated nilpotent groups.

1.1. Affine manifolds

Let G be a Lie group acting smoothly and transitively on a smooth manifold X. Let
U ⊂ X be an open set and let f : U → X be a smooth map. The map f is called
locally–(X,G) if for each component Ui ⊂ U , there exists gi ∈ G such that the restriction
of gi to Ui ⊂ X equals the restriction of f to Ui ⊂ U .

1.1.1. Definition. Let M be a smooth manifold of the same dimension as X. An
(X,G)–atlas on M is a pair (U,Φ) where U is an open covering of M and Φ = {ϕα : Uα →
X}Uα∈U is a collection of coordinate charts such that for each pair (Uα, Uβ) ∈ U × U the
restriction of ϕα ◦ ϕ

−1
β to ϕβ(Uα ∩ Uβ) is locally–(X,G). An (X,G)–structure on M is

a maximal (X,G)–atlas and M together with an (X,G)–structure is called an (X,G)–
manifold.

The notion of an (X,G)–diffeomorphism between two (X,G)–manifolds is defined in a
straightforward manner. Note that an (X,G)–structure onM induces an (X,G)–structure

on the universal covering manifold M̃ of M .
We are mainly interested in affine manifolds which we will define now. Let Aff(Rn)

be the group of affine transformations which is given by
{(

A b
0 1

)
| A ∈ GLn(R), b ∈ Rn

}
.

It acts on the real affine space {(v, 1)t | v ∈ Rn} by
(
A b
0 1

)(
v
1

)
=

(
Av + b

1

)

1.1.2. Definition. Let M be an n-dimensional manifold. An (X,G)–structure on M ,
where X is the real n–dimensional affine space, also denoted by Rn here, and G = Aff(Rn)
is called an affine structure on M and M is called an affine manifold.

(X,G)–manifolds are sometimes called geometric manifolds. Very often X will be a
space with a geometry on it and G the group of transformations of X which preserve
this geometry. The most important (X,G)–structures arise from the classical geometries.
Examples are Euclidean structures, where X is the Euclidean Rn and G = On(R) ⋉ Rn,
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10 1. BACKGROUND ON MILNOR’S CONJECTURE

hyperbolic structures with the real hyperbolic space X = Hn and G = PSO+(n, 1),
projective structures with the real projective space X = RPn and G = PGLn+1(R), flat
conformal structures with the n–sphere X = Sn and G = SO(n + 1, 1) and finally flat
Lorentzian structures, where X is the n–dimensional Lorentz space and G = O(n−1, 1)⋉
Rn.

We are mainly concerned with affine structures. Euclidean structures form a subclass
of affine structures, and affine structures form a subclass of projective structures.

Affine structures on a smooth manifold M are in correspondance with a certain class
of connections on the tangent bundle of M . The following result can be found in [57]:

1.1.3. Proposition. There is a natural correspondence of affine structures on a man-
ifold M and flat torsionfree affine connections ∇ on M .

For the notion of an affine connection see [57]. The covariant differentiation of a vector
field Y in the direction of a vector field X is denoted by ∇X : Y 7→ ∇X(Y ). For later
reference we recall that the connection ∇ is called torsionfree, or symmetric if

(1) ∇X(Y ) −∇Y (X) − [X, Y ] = 0

and flat or of curvature zero, if

(2) ∇X∇Y −∇Y∇X −∇[X,Y ] = 0

1.2. Existence of affine structures

A Euclidean structure on a manifold automatically gives an affine structure. It is
well known that the torus and the Klein bottle are the only compact two-dimensional
manifolds that can be given Euclidean structures [78]. When do affine structures exist
on a manifold M ? The first interesting case is that M is a closed 2–manifold. If M is a
2–torus, then there exist many affine structures, among them non-Euclidean ones as the
following example from [57] shows:

1.2.1. Example. Let Γ be the set of transformations of R2 given by

(x, y) 7→ (x+ ny +m, y + n), n,m ∈ Z

Then Γ is a discrete subgroup of Aff(R2) acting properly discontinuously on R2. The
quotient space R2/Γ is diffeomorphic to a torus and has a non-Euclidean affine structure
inherited from the affine space R2.

A classification of all affine structures on the 2–torus is given in [59],[66]. If M is a
closed 2–manifold, i.e., compact and without boundary, different from a 2–torus or the
Klein bottle, then there exist no affine structures. This follows from Benzecri’s result [11]
of 1955:

1.2.2. Theorem. A closed surface admits affine structures if and only if its Euler
characteristic vanishes.

Note that in contrast every surface admits a real projective structure, because it admits
a Riemannian metric of constant curvature. The theorem implies in particular that, if
the surface has genus g ≥ 2, there exists no torsionfree affine connection with curvature
zero. This was generalized by Milnor [63] in 1958:
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1.2.3. Theorem. A closed surface of genus g = 0 or g ≥ 2 does not possess any affine
connection with curvature zero.

1.2.4. Remark. In higher dimensions there is no such criterion for the existence of
an affine structure. However, Smillie [76] proved that a closed manifold does not admit
an affine structure if its fundamental group is built up out of finite groups by taking free
products, direct products and finite extensions. In particular, a connected sum of closed
manifolds with finite fundamental groups admits no affine structure. It is also known [29]
that certain Seifert fiber spaces admit no affine structure: Let M be a Seifert fiber space
with vanishing first Betti number. Then M does not admit any affine structure.

1.2.5. Remark. The following sections will show how to obtain many examples of
affine manifolds.

1.3. Fundamental groups of affine manifolds

1.3.1. Definition. A subgroup Γ ≤ Aff(Rn) is called an affine crystallographic group
or ACG, if Γ acts properly discontinuously on Rn and if the quotient space Rn/Γ is
compact.

This is a natural generalization of the classical Euclidean crystallographic groups
(ECGs), which are discrete subgroups of Isom(Rn) with compact quotient. While dis-
crete subgroups of Isom(Rn) act properly discontinuously on Rn this is not true in general
for discrete subgroups of Aff(Rn), e.g., for infinite discrete subgroups of GLn(R).

The study of ACGs is strongly connected with the study of fundamental groups of
affine manifolds: Torsionfree ACGs are just the fundamental groups of complete compact
affine manifolds [81]:

1.3.2. Proposition. If Γ is a torsionfree ACG then the quotient Rn/Γ is a com-
plete compact affine manifold with fundamental group isomorphic to Γ. Conversely any
connected complete compact affine manifold is the quotient Rn/Γ with some subgroup
Γ ≤ Aff(Rn) acting freely and properly discontinuously on Rn.

Here an affine manifold M is called complete if its universal covering M̃ is affinely
diffeomorphic to Rn.

The structure of ECGs is well known. Bieberbach proved around 1911 the following
results: two ECGs of dimension n are isomorphic as abstract groups iff they are conjugate
in Aff(Rn), and the number of nonisomorphic ECGs for given n is finite. That answered
a part of Hilbert’s 18th problem. ECGs have been classified up to isomorphism in small
dimension. The number of nonisomorphic ECGs for n = 2 is 17. These are the symmetry
groups of certain ornaments in the plane. For n = 3 there are 219 different ECGs. This is
very important for crystallography. Indeed, all 219 groups are realized as the symmetry
groups of genuine crystals. The number for n = 4 is 4783. A further result of Bieberbach
is that every ECG is virtually abelian, i.e., contains an abelian subgroup of finite index.
A similar result for Lorentz–flat manifolds has been proved in [43].

The results from the Euclidean case do not generalize to the affine case, but weaker
analogues survive [44], at least conjecturally. A famous conjecture here is the Auslander
conjecture. Auslander [3] claimed in 1964, that every ACG is virtually polycyclic. As he
later discovered his proof contained a gap. An equivalent formulation of his conjecture is:
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1.3.3. Auslander Conjecture. The fundamental group of a compact complete af-
fine manifold is virtually polycyclic.

A group Γ is virtually polycyclic if it has a subgroup of finite index which is polycyclic,
that is, admits a finite composition series with cyclic quotients. The number of infinite
cyclic quotients is called the rank of Γ. Examples of polycyclic groups are finitely generated
nilpotent groups. A polycyclic group is solvable but the converse is not always true.
However any discrete solvable subgroup of a Lie group with finitely many components is
polycyclic. Since Aff(Rn) is such a Lie group it suffices to prove that an ACG is virtually
solvable. Also one may assume that the ACG is torsionfree because of Selberg’s lemma.

The Auslander conjecture seems to be a very hard problem. In dimension 3 it was
proved by Fried and Goldman [36]. For the Lorentz case it was proved in [41]:

1.3.4. Theorem. The fundamental group of a manifold with compact complete flat
Lorentz structure is virtually polycyclic.

Auslander’s conjecture is proved for dimension n ≤ 6 and other cases, see [1],[43].
John Milnor [64] studied the fundamental groups of affine manifolds and proved in

1977:

1.3.5. Theorem. Any torsion–free virtually polycyclic group appears as the fundamen-
tal group of a complete affine manifold.

He also conjectured the converse, i.e., an even stronger version of Auslander’s conjec-
ture. However, this was disproved by Margulis [61] in 1983 with very surprising coun-
terexamples in dimension 3:

1.3.6. Theorem. There exist non-compact complete affine manifolds with a free non-
abelian fundamental group of rank 2.

Note that a free nonabelian group cannot be virtually polycyclic. The Lorentz-flat
manifolds constructed by Margulis are not compact and do not have vanishing Euler
characteristic. The examples can be generalized to higher dimensions.

Milnor asked in [64] whether a torsion-free and virtually polycyclic group Γ can be the
fundamental group of a complete compact affine manifold. If the manifold is not required
to be compact then the answer is positive by Theorem 1.3.5. In general however the
answer is negative as I will explain in section 1.6. We will prove the following theorem:

1.3.7. Theorem. There are finitely generated torsionfree nilpotent groups of rank
10, 11 and 12 which are not the fundamental group of any compact complete affine mani-
fold.

1.4. Left–invariant affine structures on Lie groups

In this section we state Milnor’s conjecture as he published it in [64]. Then we will
explain how to formulate it in purely algebraic terms.

1.4.1. Definition. Let G be an n–dimensional real Lie group. An affine structure
on G is called left–invariant, if each left-multiplication map L(g) : G → G is an affine
diffeomorphism.
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It is well known that many examples of affine manifolds can be constructed via left–
invariant affine structures on Lie groups.

There is a close relationship between the above question of Milnor on a torsion-free and
virtually polycyclic group Γ of rank k and the corresponding question for a k–dimensional
Lie group. It is known that such a Γ can be the fundamental group of a compact manifold
of dimension k with universal covering diffeomorphic to Rk [5], and Γ may be embedded
up to finite index as a discrete subgroup of some Lie group G. Milnor himself proposed
the corresponding question as follows [64]:

1.4.2. Milnor’s Question. Does every solvable Lie group G admit a complete left–

invariant affine structure, or equivalently, does the universal covering group G̃ operate
simply transitively by affine transformations of Rk ?

Note that if G admits such a structure, then the coset space G/Γ for any discrete
subgroup Γ is a complete affine manifold. In many cases, Γ can be chosen so that G/Γ
is also compact. Milnor’s question has a very remarkable history. When he asked this
question in 1977, there was some evidence for the existence of such structures. After
that many articles appeared proving some special cases, see for example [53], [72], [4].
However, the general question was still open and it was rather a conjecture than a question
by the time. Many mathematicians believed that Milnor’s question should have a positive
answer. In fact, around 1990 there appeared articles in the literature which claimed to
prove the conjecture, e.g., [15] and [68]. However, in 1993 the conjecture was disproved
by Benoist [10] and then more generally by Grunewald and the author [18],[21]: The
conjecture is not true, not even for nilpotent Lie groups. We will prove the following
theorem:

1.4.3. Theorem. There are filiform nilpotent Lie groups of dimension 10, 11 and 12
which do not admit any left-invariant affine structure.

We will discuss the counterexamples, old and new ones, in Chapter 5 on the Lie
algebra level. Although Milnor’s conjecture is not true it is still a challenging problem to
determine which Lie groups do admit such a structure.

It is possible to formulate Milnor’s problem in purely algebraic terms. Therefore we
make the following definitions: Let G denote a finite-dimensional connected 1–connected
Lie group with Lie algebra g.

1.4.4. Definition. Let A be a finite-dimensional vector space over a field K and let
A×A→ A, (x, y) 7→ x · y be a K–bilinear product which satisfies

(3) x · (y · z) − (x · y) · z = y · (x · z) − (y · x) · z
for all x, y, z ∈ A. Then A together with the product is called left-symmetric algebra or
LSA. The product is also called left-symmetric.

The name left-symmetric becomes evident, if we rewrite condition (3) as (x, y, z) =
(y, x, z), where (x, y, z) = x · (y · z) − (x · y) · z denotes the associator of three elements
x, y, z ∈ A. Sometimes these algebras are called Vinberg-algebras or semi-associative
algebras. There is a large literature on LSAs, see for example [48], [65], [75], [62], [22]
and the references cited therein. Vinberg [80] used LSAs to classify convex homogeneous
cones. A left-symmetric algebra is Lie-admissible. That means, [x, y] = x ·y−y ·x defines
a Lie bracket on the vector space A. The underlying Lie algebra will be denoted by g.
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1.4.5. Definition. An affine structure or LSA–structure on a Lie algebra g is a K–
bilinear product g × g → g which is left-symmetric and satisfies

(4) [x, y] = x · y − y · x
Denote the left-multiplication in the LSA by L(x)y = x·y, and the right multiplication

by R(x)y = y · x. Let G be a Lie group with Lie algebra g.

1.4.6. Proposition. There are canonical one-to-one correspondences between the fol-
lowing classes of objects, up to suitable equivalence:

(a) {Left-invariant affine structures on G}
(b) {Flat torsion-free left-invariant affine connections on G}
(c) {Affine structures on g}

Under the bijection, bi-invariant affine structures correspond to associative LSA–struc-
tures.

Proof. The details of the correspondence are given in [21] and [32]. We will recall
how a left-invariant affine structure induces an affine structure on its Lie algebra. Suppose
G admits such an structure. Then there exists a left-invariant flat torsionfree affine
connection ∇ on G. Since ∇ is left-invariant, for any two left-invariant vector fields
X, Y ∈ g, the covariant derivative ∇X(Y ) ∈ g is also left-invariant. Hence covariant
differentiation defines a bilinear multiplication

g × g → g, (X, Y ) 7→ XY = ∇X(Y )

The conditions that ∇ has zero torsion and zero curvature amounts via (1), (2) to

XY − Y X = [X, Y ](5)

X(Y Z) − Y (XZ) = [X, Y ]Z = (XY )Z − (Y X)Z(6)

This multiplication is an affine structure on g by definition. �

The completeness of left-invariant affine structures on G also can be expressed in
algebraic terms. For the following see [75]:

1.4.7. Definition. Let A be an LSA and T (A) = {x ∈ A | trR(x) = 0}. The largest
left ideal of A contained in T (A) is called the radical of A and is denoted by rad(A). An
LSA is called complete if A = rad(A).

We now have the following addition to Proposition 1.4.6:

1.4.8. Proposition. Let G be a connected and simply connected Lie group with Lie
algebra g. A left-invariant affine structure on G is complete if and only if the corresponding
LSA–structure on g is complete. Complete left-invariant affine structures on G correspond
bijectively to simply transitive actions of G by affine transformations on Rn.

Let K be a field of characteristic zero. In [75] it is proved:

1.4.9. Proposition. Let A be an LSA over K. Then there are equivalent:

(a) A is complete.
(b) R(x) is nilpotent for all x ∈ A.
(c) tr(R(x)) = 0 for all x ∈ A.
(d) Id+R(x) is bijective for all x ∈ A.
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Now we will state the algebraic version of Milnor’s question:

1.4.10. Milnor’s Question. Does every solvable Lie algebra admit a (complete)
affine structure ?

In this algebraic version the question makes sense for arbitrary Lie algebras over
arbitrary fields. In fact, if the field has prime characteristic, then the results differ very
much from the characteristic zero case, see [19]. Auslander [4] proved:

1.4.11. Proposition. A Lie group admitting a complete left-invariant affine structure
is solvable.

Lie groups with incomplete left-invariant affine structures need not be solvable. There
are many examples of reductive Lie groups with left-invariant affine structures. A basic
example is GLn(C). All left-invariant affine structures on GLn(C) have been classified, see
[20], [8]. Every such structure can be obtained as a certain deformation of the standard
bi-invariant affine structure corresponding to the associative matrix algebra structure of
gln(C). It is not known in general which reductive Lie groups admit left-invariant affine
structures. If a reductive Lie algebra g has 1–dimensional center and is the direct sum of
just two factors, i.e., g = s⊕ z(g) where s is split simple, then g has an affine structure if
and only if s is of type An, i.e., if g is isomorphic to gln+1(K) [20].

1.5. Affine structures and representation theory

The basic observations which finaly relate Milnors question and his problem mentioned
at the end of section 1.3 to problems of representation theory of Lie algebras are the
following two propositions.

1.5.1. Proposition. Let g be an n–dimensional Lie algebra over a field K of charac-
teristic zero. If g admits an affine structure then g possesses a faithful Lie algebra module
of dimension n + 1.

1.5.2. Proposition. Let Γ be a torsionfree finitely generated nilpotent group of rank
n and GΓ its real Malcev-completion with Lie algebra gΓ. If Γ is the fundamental group
of a compact complete affine manifold then gΓ has a faithful module of dimension n+ 1.

The real Malcev-completion of Γ is the uniquely determined connected and simply con-
nected real Lie group which contains an isomorphic copy of Γ as a discrete and cocompact
subgroup.

For the proof of the first proposition see 3.1.18. The second one is well known, see
for example [44]. In fact one proves that if Γ is a torsionfree finitely generated nilpotent
group of rank n then GΓ acts simply transitively on the affine space of dimension n. Then
one can apply Proposition 1.4.8.

Theorem 1.4.3 is now proved as follows. Consider the examples of n–dimensional
nilpotent Lie algebras which do not have a faithful module of dimension n + 1 given in
Chapter 5. Then the corresponding connected and simply connected Lie groups provide
the desired counterexamples: one uses Propositions 1.4.6 and 1.5.1.

For the proof of Theorem 1.3.7 we start with the examples of n–dimensional nilpotent
Lie algebras over Q which do not have a faithful module of dimension n + 1. Then
the connected and simply connected real Lie group corresponding to R ⊗Q g is the real
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Malcev-completion of a suitable finitely generated nilpotent group Γ. The claim follows
from Proposition 1.5.2.

Proposition 1.5.1 directly leads to the refinement of Ado’s theorem which we will treat
in Chapter 4: We will study how the minimal dimension of a faithful g–module for a Lie
algebra g depends on the dimension of g.

1.6. Affine and projective nilmanifolds

1.6.1. Definition. A nilmanifold is a compact manifold which is diffeomorphic to a
quotient of a simply–connected nilpotent Lie group G by a discrete subgroup Γ. It is
called affine resp. projective nilmanifold, if it admits an affine resp. projective structure.
A nilmanifold is called filiform, if the Lie algebra of G is filiform, see Definition 2.4.1.

First examples of affine nilmanifolds are the torus T2, or the Heisenberg nilmanifolds
G/Γ where G is a Heisenberg Lie group. An example of an affine filiform nilmanifold is
the Heisenberg nilmanifold of dimension 3. Fried, Goldman and Hirsch [37] showed:

1.6.2. Theorem. Let M be a compact complete affine manifold with nilpotent funda-
mental group. Then M is an affine nilmanifold.

An affine or projective structure on a nilmanifold N = G/Γ is called left-invariant, if

the corresponding structure on the universal cover Ñ ≃ G is left-invariant. The following
results are proved in [9]:

1.6.3. Theorem. Let N = G/Γ be a filiform nilmanifold. Then any affine or projective
structure on N is left–invariant.

Note that the theorem is false if N is not filiform [9].

1.6.4. Theorem. Let N = G/Γ be a nilmanifold of dimension n ≥ 2 such that the Lie
algebra of G has a 1–dimensional center and has no faithful module of dimension n + 1.
Then N admits no projective structures.

Proceeding as in the argument for Theorem 1.3.7 we obtain from the above theorem:

1.6.5. Theorem. There exist filiform nilvarieties of dimension 10, 11 and 12 which do
not admit any affine or projective structure.



CHAPTER 2

Algebraic preliminaries

2.1. Affine structures on Lie algebras

Let A be a left-symmetric algebra over K with underlying Lie algebra g. By definition
the product x · y in A satisfies the two conditions

x · (y · z) − (x · y) · z = y · (x · z) − (y · x) · z
[x, y] = x · y − y · x

for all x, y, z ∈ A. The left-multiplication L in A is given by L(x)(y) = x · y. The two
conditions are equivalent to

L : g → gl(g) is a Lie algebra homomorphism(7)

1 : g → gL is a 1–cocycle in Z1(g, gL)(8)

where gL denotes the g–module with action given by L, and 1 is the identity map.
Z1(g, gL) is the space of 1–cocycles with respect to gL, see section 2.2. Note that the
right-multiplication R is in general not a Lie algebra representation of g.

Let g be of dimension n and identify g with Kn by choosing a K–basis. Then gl(g)
gets identified with gln(K).

2.1.1. Definition. The Lie algebra of the Lie group Aff(G) is called the Lie algebra
of affine transformations and is denoted by aff(g). It can be identified as a vector space
with gln(K) ⊕Kn.

Given an affine structure on g, define a map α : g → aff(Kn) by α(x) = (L(x), x).
That is a Lie algebra homomorphism:

2.1.2. Lemma. The linear map L : g → gl(g) satisfies (7), (8) iff α : g → aff(Kn) is a
Lie algebra homomorphism.

Proof. Let more generally α(x) = (L(x), t(x)) ∈ gln(K)⊕Kn with a bijective linear
map t : g → g. We have

(9) α([x, y]) = [α(x), α(y)] ⇐⇒
{
L([x, y]) = [L(x), L(y)]

L(x)(t(y)) − L(y)(t(x)) = t([x, y])

To see this, use the identification of α(x) with

α(x) =

(
L(x) t(x)

0 0

)

Hence the Lie bracket in aff(Kn) is given by

[α(x), α(y)] = [(L(x), t(x)), (L(y), t(y))]

= (L(x)L(y) − L(y)L(x), L(x)(t(y)) − L(y)(t(x))

17
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It follows that α is a Lie algebra homomorphism iff L is and t is a bijective 1–cocycle in
Z1(g, gL). The lemma follows with t = 1, the identity map on g. �

2.2. Cohomology of Lie algebras

In the following let g be a Lie algebra of dimension n over K. Denote by M an g–
module with action g ×M → M , (x,m) 7→ x • m. The space of p–cochains is defined
by

Cp(g,M) =

{
HomK(Λpg,M) if p ≥ 0,

0 if p < 0.

The coboundary operators dp : Cp(g,M) → Cp+1(g,M) are defined by

(dpω)(x1 ∧ · · · ∧ xp+1) =
∑

1≤r<s≤p+1

(−1)r+sω([xr, xs] ∧ x1 ∧ · · · ∧ x̂r ∧ · · · ∧ x̂s ∧ · · · ∧ xp+1)

+

p+1∑

t=1

(−1)t+1xt • ω(x1 ∧ · · · ∧ x̂t · · · ∧ xp+1),

for p ≥ 0 and ω ∈ Cp(g,M). If p < 0 then we set dp = 0. A standard computation shows
dp ◦ dp−1 = 0, hence the definition

Hp(g,M) = ker dp/ im dp−1 = Zp(g,M)/Bp(g,M)

makes sense. This space is called the pth cohomology group of g with coefficients in the
g–module M . The elements from Zp(g,M) are called p–cocycles, and from Bp(g,M)
p–coboundaries. The sequence

0 → C0(g,M)
d0−→ C1(g,M)

d1−→ C2(g,M) → · · ·
yields a cochain complex, which is called standard cochain complex and is denoted by
{C•(g,M), d}. For details of Lie algebra cohomology see [54]. Sometimes the following
formula is useful: let dim g = n and dimM = m, then

dimHp(g,M) = dim(ker dp−1) + dim(ker dp) −m

(
n

p− 1

)

2.2.1. Betti numbers. There are important special cases of Lie algebra cohomology.
If M = K denotes the 1–dimensional trivial module, i.e., x •m = 0 for all x ∈ g, then the
numbers dimHp(g, K) are of special interest.

2.2.1. Definition. The number bp(g) = dimHp(g, K) is called the pth Betti number.

The Betti number can also be defined as the dimension of Hp(g, K), the pth homology
group with trivial coefficients.

2.2.2. Definition. A Lie algebra g is called unimodular, if tr(ad(x)) = 0 for all x ∈ g.

For example, nilpotent Lie algebras are unimodular. We have the following theorem
which can be found in [54] in the context of Poincaré’s duality:

2.2.3. Theorem. Let g be a n–dimensional unimodular Lie algebra. Then it holds
Hp(g, K) ∼= Hn−p(g, K).
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The theorem holds in particular for nilpotent Lie algebras. There are many questions
regarding the Betti numbers of nilpotent Lie algebras. In some cases, explicit Betti
numbers have been computed: if hn denotes the Heisenberg Lie algebra of dimension
2n+ 1 over K, then Santharoubane [71] proved

bp(hn) =

(
2n

p

)
−
(

2n

p− 2

)

for all 0 ≤ i ≤ n. See also [6] for the explicit Betti numbers of 2–step nilpotent Lie algebras
related to the Heisenberg algebra. If g is a complex nilpotent Lie algebra containing an
abelian ideal of codimension 1, then there is a combinatorical formula for bp(g) using
partitions [7]. A special case of such a Lie algebra is the standard graded filiform Lie
algebra L(n + 1). It is defined by

[e1, ei] = ei+1, 2 ≤ i ≤ n

where (e1, e2, . . . , en+1) is a basis of L(n+ 1), the undefined brackets being zero.

2.2.4. Proposition. The pth Betti number of L(n + 1) is given by

bp(L(n+ 1)) = Pp,n + Pp−1,n

for 1 ≤ p ≤ n+ 1, where P0,n = 1 and

Pp,n = #
{

(a1, . . . , ap) ∈ Zp | 1 ≤ a1 < · · · < ap ≤ n,

p∑

j=1

aj =
⌈p(n + 1)

2

⌉}

For small p this yields explicit formulas for the Betti numbers bp, e.g.,

b1(L(n)) = 2

b2(L(n)) =

⌊
n+ 1

2

⌋
,

b3(L(n)) =

⌊(
n+1

2

2

)
+

1

8

⌋
,

b4(L(n)) =

⌊
4

3

(
n+1

2

3

)
+

4n + 13

36

⌋

In general one cannot expect to obtain an explicit formula. Another problem is to obtain
upper and lower bounds for the Betti numbers of nilpotent Lie algebras. Dixmier [33]
proved a lower bound bp(g) ≥ 2 for 0 < p < dim g. An upper bound is given by bp(g) ≤(
n
p

)
−
(
n−2
p−1

)
for p = 1, . . . , n− 1 where n = dim g ≥ 3 and g is non-abelian [25].

The following question on the Betti numbers comes from topology. Let M be a smooth
n–manifold. The toral rank rk(M) of a smooth manifold M is the dimension of the largest
torus which acts almost freely on M . Halperin [47] conjectured in 1968:

2.2.5. Toral-Rank-Conjecture. It holds dimH∗(M) ≥ 2rk(M).
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In particular, if M = N/Γ is a nilmanifold, where N is a nilpotent Lie group with
Lie algebra n and Γ is a discrete cocompact subgroup of N , then rk(M) = dim z(n) and
H∗(N/Γ) = H∗(n,R). If the toral rank conjecture would be true, then dimH∗(n, K) ≥
2dim z(n) for such Lie algebras n. There are, however, nilpotent Lie algebras which are not
models of nilmanifolds. For these algebras there is no change of basis yielding rational
structure constants. In dimension 7 there are already infinitely many of such nilpotent
Lie algebras [74]. Nevertheless the estimate on the Betti numbers seems to be true for
all nilpotent Lie algebras. There is the toral rank conjecture for nilpotent Lie algebras,
which says

2.2.6. Toral-Rank-Conjecture. Let g be a nilpotent Lie algebra over K. Then

dimH∗(g, K) ≥ 2dim z(g)

The conjecture for Lie algebras is proved in the following cases [25], [30]:

2.2.7. Proposition. Let g be a nilpotent Lie algebra which satisfies one of the follow-
ing conditions:

(a) g is 2–step nilpotent
(b) dim z(g) ≤ 5
(c) dim g/z(g) ≤ 7
(d) dim g ≤ 14

Then dimH∗(g, K) ≥ 2dim z(g).

This implies, writing TRC for toral rank conjecture:

2.2.8. Corollary. The TRC is true for nilmanifolds of dimension n ≤ 14.

Finally we mention the b2–conjecture for nilpotent Lie algebras. It says that

b2(g) >
b1(g)2

4
.

This is discussed in [24]. But in fact, the conjecture was already proved in 1977 by H.
Koch [58].

2.2.2. First and second cohomology group. We will give a short interpretation
of the groups Hp(g,M) for p = 1, 2. For more details see [54]. First of all, H0(g,M) =
{m ∈ M | x • m = 0 ∀x ∈ g} = Mg is called the space of g–invariants in M . Let us
investigate H1(g,M). We have

(d1ω)(x ∧ y) = x • ω(y) − y • ω(x) − ω([x, y])

Hence the space of 1–cocycles and 1–coboundaries is given by

Z1(g,M) = {ω ∈ Hom(g,M) | ω([x, y]) = x • ω(y) − y • ω(x)}
B1(g,M) = {ω ∈ Hom(g,M) | ω(x) = x •m for some m ∈M}

Suppose that M equals the trivial g–module K. Then d0 = 0 and (d1ω)(x∧y) = ω([y, x]).
Hence

H1(g, K) = {ω ∈ g∗ | ω([g, g]) = 0}
∼= (g/[g, g])∗
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The first Betti number is given by b1(g) = dim g − dim[g, g]. In particular, b1(g) is
nonzero for nilpotent Lie algebras. If M = g is the adjoint module, then we obtain the
space H1(g, g) = Der(g)/Int(g) of outer derivations of g. Here Int(g) = {adx | x ∈ g}.
The space of 2–cocycles and 2–coboundaries is given by

Z2(g,M) = {ω ∈ Hom(Λ2g,M) | x1 • ω(x2 ∧ x3) − x2 • ω(x1 ∧ x3) + x3 • ω(x1 ∧ x2)

− ω([x1, x2] ∧ x3) + ω([x1, x3] ∧ x2) − ω([x2, x3] ∧ x1) = 0}
B2(g,M) = {ω ∈ Hom(Λ2g,M) | ω(x1 ∧ x2) = x1 • f(x2) − x2 • f(x1) − f([x1, x2])

for some f ∈ Hom(g,M)}
2.2.9. Definition. A Lie algebra h is called an extension of g by a if there is an exact

sequence of Lie algebras 0 → a
ι−→ h

π−→ g → 0. Two such extensions are called equivalent,
if there exists a Lie algebra isomorphism σ such that the diagram

0 −−−→ a
ι−−−→ h

π−−−→ g −−−→ 0yid

yσ
yid

0 −−−→ a
ι−−−→ h

π−−−→ g −−−→ 0

commutes. The extension is called abelian, if a is abelian.

If a is abelian then an extension as above makes a into a g–module in a well defined
way by

(10) x • y = ι−1([π−1(x), ι(y)]h), x ∈ g, y ∈ a

Since ι(a) is an ideal in h we see that ι−1 is defined on [π−1(x), ι(y)]. Hence we obtain
an action g × a → a. A computation shows that this is a g–module action. We have the
following proposition, see [54]:

2.2.10. Proposition. Let a be an abelian Lie algebra with the above g–module action.
There is a one-to-one correspondence between H2(g, a) and the set of equivalence classes
of abelian extensions of g by a. The zero class [0] ∈ H2(g, a) corresponds to the semi-direct
product of g and a.

Proof. Let h be an abelian extension of g by a. Then we have an exact sequence

0 → a
ι−→ h

π−→ g → 0

Then (10) defines a g–module structure on a. Fix a linear map τ : g → h for the above
extension with π◦τ = 1 on g. Then we may attach to this situation a map ω ∈ Hom(Λ2g, a)
by

(11) ω(x ∧ y) = ι−1([τ(x), τ(y)] − τ([x, y]))

A computation shows that ω is a 2–cocycle. Its cohomology class [ω] ∈ H2(g, a) does not
depend on the choice of τ . Moreover two equivalent abelian extensions h and h′ of g by
a define the same cohomology class and the same g–action. Hence we have obtained a
unique [ω] ∈ H2(g, a).

We can go backwards as well. Fix an [ω] ∈ H2(g, a) and define a Lie bracket on
h = a ⊕ g by

(12) [(a, x), (b, y)]h = (x • b− y • a+ ω(x ∧ y), [x, y]g)
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This yields a short exact sequence 0 → a
ι−→ h

π−→ g → 0 with ι(a) = (a, 0) and π(a, x) = x.
With τ : g → h, x 7→ (0, x) we get back the given ω via (11).

The zero class [0] ∈ H2(g, a) corresponds to the equivalence class of the semi-direct
product h = g ⋉θ a with θ(x)y = x • y as in (10). In that case τ is an injective Lie
algebra homomorphism, called Lie algebra splitting. We also say then that the above
exact sequence splits. �

As a special case where a = K is the trivial g–module we obtain:

2.2.11. Corollary. The elements of H2(g, K) classify the equivalence classes of cen-
tral extensions of g by K.

In that case the space of 2–cocycles and 2–coboundaries is given by

Z2(g, K) = {ω ∈ Hom(Λ2g, K) | ω([x1, x2] ∧ x3) − ω([x1, x3] ∧ x2)

+ ω([x2, x3] ∧ x1) = 0}
B2(g, K) = {ω ∈ Hom(Λ2g, K) | ω(x1 ∧ x2) = f([x1, x2])

for some f ∈ Hom(g, K)}

2.3. Deformations of Lie algebras

The theory of deformations of algebraic structures parallels the theory of deformations
of complex analytic structures, initiated by Kodaira and Spencer. Algebraic deformations
were first introduced by Gerstenhaber [38] for arbitrary rings and associative algebras,
and for Lie algebras by Nijenhuis and Richardson [67]. They studied one-parameter defor-
mations of Lie algebras and established the connection between Lie algebra cohomology
and infinitesimal deformations.

2.3.1. Definition. Let g be a Lie algebra over K with bracket [ , ] and g, h ∈ g, ϕk ∈
Hom(Λ2g, g) = C2(g, g). A formal one-parameter deformation of g is a power series

[g, h]t := [g, h] +
∑

k≥1

ϕk(g, h)t
k,

such that the Jacobi identity for [ , ]t holds. Here C2(g, g) refers to the standard cochain
complex {C•(g, g), d} of g with coefficients in the adjoint g–module g.

Note that g is not required to be finite-dimensional. Indeed, deformations of infinite-
dimensional Lie algebras have been intensively studied because of the applications in
physics. The conditions imposed by the Jacobi identity for [ , ]t are usually described
by the following product in the differential graded Lie algebra structure of the complex
{C•(g, g), d}: if α ∈ Cp(g, g) and β ∈ Cq(g, g), then the product [α, β] ∈ Cp+q−1(g, g) is
defined by

[α, β](g1, . . . , gp+q−1)

=
∑

i1<···<iq
(−1)

P

s(is−s)α(β(gi1, . . . , giq), g1, . . . , ĝi1, . . . , ĝiq , . . . , gp+q−1)

− (−1)(p−1)(q−1)
∑

j1<···<jq
(−1)

P

t(jt−t)β(α(gj1, . . . , gjp), g1, . . . , ĝj1, . . . , ĝjp, . . . , gp+q−1).
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where the summation is taken over indices ir, jr with 1 ≤ ir, jr ≤ p+ q − 1.
The Jacobi identity for [ , ]t is equivalent to the sequence of relations

dϕk = −1

2

k−1∑

i=1

[ϕi, ϕk−i], k = 1, 2, 3, . . .

For k = 1 we obtain dϕ1 = 0 which means ϕ1 ∈ Z2(g, g). The cohomology class of ϕ1 is
called the differential of the formal deformation [ , ]t and depends only on the equivalence
class of the deformation. Here two formal deformations of g are called equivalent, if
the resulting Lie algebras are isomorphic. A cohomology class from H2(g, g) is called
linear or infinitesimal deformation of g. Note however that an infinitesimal deformation
ϕ ∈ H2(g, g) is not necessarily the differential of any formal deformation. The above
equations for k = 2, 3, 4, . . . are necessary and sufficient conditions for it. They are
usually formulated in terms of higher Massey–Lie products. If they hold, ϕ1 is also called
integrable.

In the literature there is sometimes used a more general definition of a Lie algebra
deformation, see [35]: Let g be a Lie algebra over a field K of characteristic zero and
A be a K–algebra with a fixed augmentation ε : A → K satisfying ε(1) = 1. Assume
furthermore that A is a complete local algebra. A is called local, if it has a unique maximal
ideal m. It is called complete, if A equals the inverse limit lim

←−
A/mn. A typical example

of a complete local K–algebra is the power series ring A = K[[X1, . . . , Xn]] in n variables.

2.3.2. Definition. A formal deformation of g with base A is a Lie A–algebra structure
on the completed tensor product A⊗̂Kg = lim

←−
(A/mn ⊗ g) such that the map

ε⊗̂id : A⊗̂Kg → K ⊗K g

is a Lie algebra homomorphism.

If the parametrization algebra is A = K[[t]] we obtain the first definition of a formal
one-parameter deformation, which we will use here in this work.

2.4. Filiform Lie algebras

In the study of nilpotent Lie algebras, the Lie algebras with maximal nilindex with
respect to their dimension play an important role. They are called filiform algebras.

2.4.1. Definition. Let n be a Lie algebra over a field K. The lower central series
{nk} of n is defined by

n0 = n,

nk = [nk−1, n], k ≥ 1.

The integer p is called nilindex of n if np = 0 and np−1 6= 0. In that case n is called p–step
nilpotent. A nilpotent Lie algebra n of dimension n and nilindex p = n − 1 is called
filiform.

2.4.2. Remark. If we denote the type of a nilpotent Lie algebra n by {p1, p2, . . . , pr}
where dim(ni−1/ni) = pi for all i = 1, . . . , r, then the filiform Lie algebras are just the al-
gebras of type {2, 1, 1, . . . , 1}. That explains the name ”filiform” which means threadlike.
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2.4.3. Example. Let L = L(n) be the n-dimensional Lie algebra defined by

[e1, ei] = ei+1, i = 2, . . . , n− 1

where (e1, . . . , en) is a basis of L(n) and the undefined brackets are zero. This is called
the standard graded filiform.

If the Lie algebra n is filiform then the lower central series

n = n0 ⊇ n1 ⊇ · · · ⊇ nn−2 ⊇ nn−1 = 0

is of maximal length. The upper central series for n is also of length n− 1:

0 = n0 ⊆ n1 ⊆ · · · ⊆ nn−2 ⊆ nn−1 = n

Here n0 = 0, nk = {x ∈ n | ad(x)(n) ⊆ nk−1}. In particular, n1 = z(n) is the center of n.
The classification of filiform Lie algebras is a difficult problem which is so far known

up to dimension 11, see [16],[40].

2.4.1. Adapted bases for filiform algebras. In the paper of Vergne [79] the
following is proved: for any filiform Lie algebra there exist a so called adapted basis
(e1, . . . , en) such that

[e1, ei] = ei+1, i = 2, . . . , n− 1

[ei, ej] ∈ span{ei+j, . . . , en}, i, j ≥ 2, i+ j ≤ n

[ei+1, en−i] = (−1)iαen, 1 ≤ i < n− 1

with a certain scalar α, which is automatically zero if n is odd, and the undefined brackets
being zero. Moreover the brackets [ei, ej ] for i, j ≥ 2 are completely determined by the
brackets

[ek, ek+1] =
n∑

s=2k+1

αk,ses, 2 ≤ k ≤ [n/2]

Conversely one can define a filiform Lie algebra by the above brackets, which however
in general do not satisfy the Jacobi identity. Rather the Jacobi identity is equivalent to
certain polynomial equations in the parameters αk,s.

The existence of an adapted basis has a deformation theoretic interpretation: any
n–dimensional filiform Lie algebra is isomorphic to an infinitesimal deformation of the
algebra L = L(n). The above αk,s can be viewed as deformation parameters:

2.4.4. Definition. Let In be an index set given by

I0
n = {(k, s) ∈ N × N | 2 ≤ k ≤ [n/2], 2k + 1 ≤ s ≤ n},

In =

{
I0
n if n is odd,

I0
n ∪ {(n

2
, n)} if n is even.
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Let (e1, . . . , en) be a basis of L(n) with [e1, ei] = ei+1 for 2 ≤ i ≤ n−1. For any element
(k, s) ∈ In we can associate a 2–cocycle ψk,s ∈ Z2(L,L) for the Lie algebra cohomology
with coefficients in the adjoint module L as follows:

ψk,s(e1 ∧ ei) = 0,

ψk,s(ek ∧ ek+1) = es

for 1 ≤ i ≤ n, 2 ≤ k ≤ n−1. Then the condition ψk,s ∈ Z2(L,L) for basis vectors e1, ei, ej
with 2 ≤ i, j is given by

[e1, ψk,s(ei ∧ ej)] = ψk,s([e1, ei] ∧ ej) + ψk,s(ei ∧ [e1, ej ])

and we obtain the following formula:

(13) ψk,s(ei ∧ ej) =





(−1)k−i
(
j − k − 1

k − i

)
(ad e1)

(j−k−1)−(k−i)es if 2 ≤ i ≤ k < j ≤ n ,

0 otherwise.

The ψk,s defined by (13) in fact lie in Z2(L,L), and Vergne’s result can be formulated as
follows:

2.4.5. Lemma. Any n–dimensional filiform Lie algebra over C is isomorphic to a Lie
algebra Lψ with basis (e1, . . . , en) whose Lie brackets are given by

(14) [ei, ej] = [ei, ej]L + ψ(ei ∧ ej), 1 ≤ i, j ≤ n.

Here ψ is a 2–cocycle which can be expressed by

ψ =
∑

(k,s)∈In

αk,sψk,s

with αk,s ∈ C and satisfies

(15) ψ(a ∧ ψ(b ∧ c)) + ψ(b ∧ ψ(c ∧ a)) + ψ(c ∧ ψ(a ∧ b)) = 0

The 2–cocycle ψ ∈ Z2(L,L) defines an infinitesimal deformation Lψ of L.

2.4.6. Definition. A basis (e1, . . . , en) of an n–dimensional filiform Lie algebra is
called adapted, if the brackets relative to this basis are given by (14) with a 2–cocycle
ψ =

∑
(k,s)∈In

αk,sψk,s.

2.4.7. Lemma. All brackets of an n–dimensional filiform Lie algebra in an adapted
basis (e1, . . . , en) are determined by the brackets

[e1, ei] = ei+1, i = 2, . . . , n− 1

[ek, ek+1] = αk,2k+1e2k+1 + . . .+ αk,nen, 2 ≤ k ≤ [(n− 1)/2]

[en
2
, en+2

2

] = αn
2
,nen, if n ≡ 0(2)

From (13) follows:
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2.4.8. Lemma. The brackets of an n–dimensional filiform Lie algebra in an adapted
basis are given by:

[e1, ei] = ei+1, i = 2, . . . , n− 1(16)

[ei, ej ] =

n∑

r=1

( [(j−i−1)/2]∑

ℓ=0

(−1)ℓ
(
j − i− ℓ− 1

ℓ

)
αi+ℓ, r−j+i+2ℓ+1

)
er, 2 ≤ i < j ≤ n.(17)

where the constants αk,s are zero for all pairs (k, s) not in In.
Note that an adapted basis for a filiform Lie algebra is not unique. Nevertheless we

can associate a matrix of coefficients to a filiform Lie algebra with respect to an adapted
basis: 



α2,5 α2,6 α2,7 α2,8 · · · α2,n

α3,7 α3,8 · · · α3,n

· · · · · ·
α[ n

2
],n




The matrix has 1
4
(n − 3)2 parameters if n is odd, and 1

4
(n2 − 6n + 12) if n is even. The

Jacobi identity defines certain equations with polynomials fi ∈ K[αk,s]. If n < 8, there are
no equations, i.e., the Jacobi identity is satisfied automatically. In general, with respect
to an adapted basis, the polynomial equations are much simpler than usual.

2.4.9. Example. Any filiform nilpotent Lie algebra of dimension 9 has an adapted
basis (e1, . . . e9) such that the Lie brackets are given by:

[e1, ei] = ei+1, i ≥ 2

[e2, e3] = α2,5e5 + α2,6e6 + α2,7e7 + α2,8e8 + α2,9e9

[e2, e4] = α2,5e6 + α2,6e7 + α2,7e8 + α2,8e9

[e2, e5] = (α2,5 − α3,7)e7 + (α2,6 − α3,8)e8 + (α2,7 − α3,9)e9

[e2, e6] = (α2,5 − 2α3,7)e8 + (α2,6 − 2α3,8)e9

[e2, e7] = (α2,5 − 3α3,7 + α4,9)e9

[e3, e4] = α3,7e7 + α3,8e8 + α3,9e9

[e3, e5] = α3,7e8 + α3,8e9

[e3, e6] = (α3,7 − α4,9)e9

[e4, e5] = α4,9e9

The Jacobi identity is satisfied if and only if the following equation holds:

α4,9(2α2,5 + α3,7) − 3α2
3,7 = 0.

That follows from a short computation. The matrix of coefficients is given by

α2,5 α2,6 α2,7 α2,8 α2,9

α3,7 α3,8 α3,9

α4,9




There are 9 deformation parameters {αk,s | (k, s) ∈ I9}.
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2.5. The variety of Lie algebra laws

Let V be a vector space of dimension n over an algebraically closed field K of char-
acteristic zero, with fixed basis (e1, . . . , en). A Lie algebra structure on V determines a
multiplication table relative to the basis. If

[ei, ej ] =
n∑

k=1

ckijek

then the point (ckij) ∈ Kn3

is called a Lie algebra law. The constants ckij are subject to
two sets of conditions:

ckij + ckji = 0(18)
n∑

l=1

(clijc
m
lk + cljkc

m
li + clkic

m
lj ) = 0(19)

They correspond to the skew-symmetry and the Jacobi identity of the Lie bracket. Equa-
tions (18), (19) determine a certain Zariski-closed set in n3–dimensional affine space with
coordinates ckij , 1 ≤ i, j, k ≤ n. It is often called an affine algebraic variety, although it
need not be irreducible.

2.5.1. Definition. The set of all Lie algebra laws of dimension n is denoted by
Ln(K). It is called the variety of Lie algebra laws, or the variety of structure constants
of n–dimensional Lie algebras.

A set Ln(K) may also be considered as a closed subset of the affine algebraic variety
Hom(Λ2V, V ), via the bilinear skew–symmetric map defining the Lie bracket. The linear
reductive group GL(V ) = GLn(K) acts on Hom(Λ2V, V ) by

(g ∗ µ)(x ∧ y) = g(µ(g−1(x) ∧ g−1(y))), g ∈ GLn(K), µ ∈ Hom(Λ2V, V )

It induces an action of GL(V ) on Ln(K). The orbits under this action correspond to
isomorphism classes of n–dimensional Lie algebras: two sets of structure constants gen-
erate isomorphic Lie algebras if and only if they are transformed into each other under
the action of the group GL(V ). We obtain an ”orbit space”. In the theory of algebraic
transformation groups there is a concept of how to define such a quotient. Let G be a
linear reductive algebraic group over an algebraically closed field K and X be an affine
variety X with G–action and ring of coordinates K[X]. Then there exists an affine variety
G\X such that K[G\X] = K[X]G, see [77]. Here

K[X]G = {f ∈ K[X] | f(g ∗ x) = f(x) ∀ g ∈ G, x ∈ X}
denotes the ring of invariants of K[X]. It is generated by finitely many elements. The
affine variety G\X is called algebraic quotient of X by G. The inclusion K[X]G →֒ K[X]
defines a morphism πX : X → G\X, which is called quotient map. The topology on G\X
is the quotient topology with respect to πX . Any fiber π−1

X (η), η ∈ G\X contains exactly
one closed orbit: The set G\X algebraically parametrizes the closed orbits of G in X. In
general G\X does not parametrize the set of all orbits of G in X.

In our case we obtain an algebraic quotient G\X with G = GL(V ) and X = Ln(K).
In the following however, we will only study the affine variety X.
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2.5.2. Example. Let n = 2 and K = C. Then the algebraic set L2(C) is the affine
plane C2: since condition (19) is satisfied automatically we have only the linear condition
(18). Relative to the action of the group GL(2,C) this plane splits into two orbits: the
origin {0} and its complement C2 \ {0}. The orbit space consists of two points.

The situation becomes much more difficult for larger n. There are several questions
about the varieties Ln(K). One is interested in the irreducible components and the
dimensions and degrees of these. What are their generic points ? It is also interesting to
know the open orbits in Ln(K).

2.5.3. Remark. A Lie algebra law is called rigid, if itsGLn(K)–orbit in Ln(K) is open.
If the field K is algebraically closed of characteristic zero, then a Lie algebra law is rigid iff
its corresponding Lie algebra has no non-trivial formal one-parameter deformation. The
vanishing of the second Lie algebra cohomology with adjoint coefficients is a sufficient,
but not necessary condition for rigidity.

If λ ∈ Ln(K) then we denote the corresponding Lie algebra by gλ:

2.5.4. Proposition. Let λ ∈ Ln(K) be a Lie algebra law such that H2(gλ, gλ) = 0.
Then λ is rigid, i.e., has an open orbit.

In Ln(K) we have the following closed subsets: the set of Lie algebra laws which
corresponds to solvable respectively nilpotent Lie algebras.

2.5.5. Definition. Denote by Nn(K) the laws of n–dimensional nilpotent Lie algebras
and by Rn(K) the laws of n–dimensional solvable Lie algebras.

It is known that the number of nonisomorphic rigid Lie algebra laws of a given di-
mension is finite. However, this number is growing very fast with the dimension. The
following is proved in [26]:

2.5.6. Proposition. The number of rigid laws λ ∈ Rn(K) with pairwise nonisomor-
phic solvable Lie algebras gλ and H2(gλ, gλ) = 0 is not less than Γ(

√
n), provided n ≥ 81.

Here Γ(x) denotes Euler’s Gamma function. A classification Ln(K) is known up to
dimension 7 [56],[27]. The number s(n) of irreducible components of Ln(K) is growing
rapidly. In fact, the following estimate is known [56] :

e
√
n < s(n) < 2n

4/6

The following table shows the number of components and the number of open orbits of
Ln(K) for 1 ≤ n ≤ 7:

Dimension Components Open orbits

1 1 1
2 1 1
3 2 1
4 4 2
5 7 3
6 17 6
7 49 14
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The variety Nn(K) has also been been studied by many authors, see for example
[46],[79]. It is known that the variety Nn(K) is irreducible for n ≤ 6 and reducible for
n = 7, 8 and n ≥ 11.

2.5.7. Definition. Let Fn(K) be the subset of Nn(K) consisting of those elements
which define a filiform Lie algebra. Let An(K) denote the subset of Fn(K) consisting of
elements which are the structure constants of a filiform Lie algebra with respect to an
adapted basis. If λ ∈ Fn(K) then we denote the corresponding Lie algebra by gλ. Denote
the class of n–dimensional filiform Lie algebras over K by Fn(K).

The result of Vergne [79] implies:

2.5.8. Lemma. Let g ∈ Fn(K). Then there exists a basis (e1, . . . , en) such that the
corresponding Lie algebra law belongs to An(K).

The notion of a filiform algebra law appears naturally: Fn(K) is a Zariski–open subset
of Nn(K), see [42].

Let g be a filiform Lie algebra of dimension n ≥ 7 and g1 = [g, g], gk = [gk−1, g] for
k ≥ 2. The following properties are isomorphism invariants of g:

(a) g contains a one-codimensional subspace U ⊇ g1 such that [U, g1] ⊆ g4.
(b) g contains no one-codimensional subspace U ⊇ g1 such that [U, g1] ⊆ g4.

(c) g
n−4

2 is abelian, where n is even.
(d) [g1, g1] ⊆ g6.

A Lie algebra law in An(K) is the vector of structure constants depending on the
parameters αk,s. Properties (a)–(d) can be expressed by relations of these parameters.

2.5.9. Lemma. If g is a filiform Lie algebra of dimension n ≥ 7 then there is a basis
for g such that its Lie algebra law belongs to An(K) and satisfies

(i1) α2,5 = 0, if and only if g satisfies property (a).
(i2) α2,5 = 1, if g satisfies property (b).
(i3) αn

2
,n = 0, if and only if g satisfies property (c).

(i4) α3,7 = 0, if and only if g satisfies property (d).

Proof. With respect to an adapted basis (e1, . . . , en) the space g4 is spanned by
{e6, . . . , en} and we have [e2, e3] = α2,5e5 + . . . + α2,nen. The brackets (17) show that
property (a) just means α2,5 = 0. Property (b) means α2,5 6= 0. In that case we change
the basis so that it stays adapted and satisfies α2,5 = 1. Let the base change f ∈ GL(V )
be as follows:

f(e1) = ae1

f(e2) = be2

f(ei) = [f(e1), f(ei−1)], 3 ≤ i ≤ n,

where a, b ∈ K∗. A suitable choice of a, b yields an adapted basis such that the corre-
sponding Lie algebra law satisfies α2,5 = 1. With respect to an adapted basis, g

n−4

2 =
span{en

2
, . . . , en} and g6 is spanned by {e8, . . . , en}. By lemma 2.4.7, property (c) means

αn
2
,n = 0. The brackets (17) show that property (d) means α3,7 = 0. �





CHAPTER 3

Construction of affine structures

In general it is difficult to decide whether or not there exists a left-invariant affine
structure on a given Lie group. By Proposition 1.4.6 we may pass to the Lie algebra level.
Here we will prove some necessary and sufficient conditions for the existence of affine
structures. Among nilpotent Lie algebras it has many advantages to consider filiform Lie
algebras, in particular for the study of Milnor’s conjecture. It also turns out that some
irreducible components of the affine variety Nn(K) are the closure of sets of filiform Lie
algebra laws. Our construction of affine structures on filiform Lie algebras splits into two
parts. First we try to construct affine structures on all filiform Lie algebras of dimension
n ≤ 11. That will be successful for n ≤ 9, whereas in dimension 10 and 11 there appear
counterexamples. In that context we compute explicitly the cohomology groups H2(g, K)
for all filiform Lie algebras g of dimension n ≤ 11. Secondly we study all filiform Lie
algebras of dimension n ≥ 12 satisfying property (b) and (c). They split naturally into
two distinct classes depending on whether property (d) is satisfied or not. We denote the
class of n–dimensional filiform Lie algebras satisfying property (b),(c),(d) by A1

n(K), and
those satisfying property (b),(c) but not (d) by A2

n(K). There exists an adapted basis
such that the corresponding Lie algebra laws form subsets of An(K), see Lemma 2.5.9.
We prove that all Lie algebras g ∈ A1

n(K) possess a canonical affine structure which is
induced by the extension property: for all g ∈ A1

n(K) there is a Lie algebra h ∈ A1
n+1(K)

such that there is an exact sequence of Lie algebras:

0 → z(h)
ι−→ h

π−→ g → 0

Hence all g ∈ A1
n(K), n ≥ 12 possess a natural affine structure given by formula (20)

of Proposition 3.1.8. The situation for A2
n(K) is more complicated. Although many Lie

algebras g ∈ A2
n(K) do possess such an extension by an h ∈ A2

n+1(K), there are infinitely
many which do not. It is interesting to study the obstructions. These are given by a
polynomial which can be obtained by computing the cohomology classes [ω] ∈ H2(g, K).

3.1. Conditions for the existence of affine structures

Let g be a finite-dimensional Lie algebra over a field K of characteristic zero. We give
some necessary and sufficient conditions for the existence of affine structures on g.

3.1.1. Sufficient conditions for affine structures.

3.1.1. Proposition. A Lie algebra g admits an affine structure if and only if there
is a g–module M of dimension dim g such that the vector space Z1(g,M) contains a
nonsingular 1–cocycle.

31
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Proof. Let ϕ ∈ Z1(g,M) be a nonsingular 1-cocycle with inverse transformation
ϕ−1. The module M corresponds to a linear representation θ : g → gl(g). Then

L(x) := ϕ−1 ◦ θ(x) ◦ ϕ

defines a g–module N such that ϕ−1 ◦ ϕ = 1 ∈ Z1(g, N). It follows that L : g → gl(g)
is a Lie algebra representation and 1([x, y]) = 1(x)y − 1(y)x is a bijective 1–cocycle in
Z1(g, gL). Hence L(x)y = x · y defines a left-symmetric structure on g. Conversely, 1 is a
nonsingular 1–cocycle if g admits a left-symmetric structure. �

3.1.2. Corollary. If the Lie algebra g admits a nonsingular derivation, then there
exists an affine structure on g.

Proof. Let d be a nonsingular derivation and g the adjoint module of g. Since
Z1(g, g) equals the space Der(g) of derivations of g, d is a nonsingular 1–cocycle. �

3.1.3. Corollary. If the Lie algebra g is graded by positive integers, then there exists
an affine structure on g.

Proof. Suppose that g = ⊕i∈N gi is a graduation, i.e., [gi, gj] ⊆ gi+j. Then there is
a nonsingular derivation defined by d(xi) = ixi for xi ∈ gi. �

3.1.4. Corollary. Let g be a 2–step nilpotent Lie algebra or a nilpotent Lie algebra
of dimension n ≤ 6. Then g admits an affine structure.

Proof. It is well known that in both cases g can be graded by positive integers. �

The existence of a nonsingular derivation is a strong condition on the Lie algebra.
In fact, such a Lie algebra is necessarily nilpotent [50]. However the converse does not
hold, see [34]. We will also present many nilpotent Lie algebras without any nonsingular
derivation.

3.1.5. Definition. A Lie algebra g is called characteristically nilpotent, if all its deriva-
tions are nilpotent.

By Engel’s theorem, such a Lie algebra is nilpotent, since all inner derivations ad(x)
are nilpotent. One might think that characteristically nilpotent Lie algebras form a small
subclass of nilpotent Lie algebras. This is not true, see [42]. The example of a charac-
teristically nilpotent Lie algebra, given in [34], is 3–step nilpotent. Although there is no
nonsingular derivation there exists an affine structure. That follows from a theorem of
Scheuneman [72]:

3.1.6. Proposition. Let g be a 3–step nilpotent Lie algebra. Then g admits an affine
structure.

There have been attempts to generalize this result for 4–step nilpotent Lie algebras.
However, only in special cases a positive result could be proved [31]. The general case is
still open.

There is the following result about extending affine structures to a semi-direct product:

3.1.7. Lemma. Let g be a Lie algebra with affine structure and h = g⋉θ a be the semi-
direct product of g and an abelian Lie algebra a with Lie homomorphism θ : g → Der(a).
Then h admits an affine structure.
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Proof. We construct a left-symmetric product on h = g ⋉θ a as follows:

(x, a) · (y, b) = (x · y, θ(x)b)
for x, y ∈ g, a, b ∈ a. Here x · y denotes the left-symmetric product on g. Let u =
(x, a), v = (y, b), w = (z, c) elements of h. Then

u · v − v · u = (x · y, θ(x)b) − (y · x, θ(y)a)
= ([x, y], θ(x)b− θ(y)a)

= [u, v]h

u · (v · w) − (u · v) · w = (x · (y · z) − (x · y) · z, θ(x)θ(y)c− θ(x · y)c)
= (y · (x · z) − (y · x) · z, θ(y)θ(x)c− θ(y · x)c)
= v · (u · w) − (v · u) · w

�

Let 0 → a
ι−→ h

π−→ g → 0 be a split exact sequence of Lie algebras. Then, by the
preceding lemma, an affine structure on g induces an affine structure on h. The following
important proposition yields an affine structure on g itself.

3.1.8. Proposition. Let g ∈ Fn(K) and suppose that g has an extension

0 → a
ι−→ h

π−→ g → 0

with ι(a) = z(h). Then g admits an affine structure.

Proof. If g has such an extension then h must be nilpotent. We first show that we
may assume dim a = 1. For that choose elements h1, . . . , hn ∈ h so that their residue
classes form an adapted basis of g. Since ι(a) = z(h) there is a j ∈ {1, . . . , n} such that
v := [hj , hn] 6= 0, otherwise hn ∈ z(h). Then the residue class of v in g is zero, hence
v ∈ ι(a) = z(h). Choose a subspace U ⊆ ι(a) such that dim(ι(a)/U) = 1 and v 6∈ U .
Since U is an ideal of h we can define h′ = h/U . Then π induces a Lie algebra surjection
π′ : h′ → g with 1–dimensional kernel, since U ⊆ ker(π). To obtain the desired extension
we must show ker(π′) = z(h′): Clearly ker(π′) ⊆ z(h′). Conversely let x ∈ z(h′) and let
h′j be the residue class of hj in h′. Then π′(x) ∈ z(g) and hence x can be written as
x = λh′n + u with λ ∈ K, u ∈ ker(π′). It follows 0 = [h′j , x] = λ[h′j, h

′
n] + [h′j , u] where

[h′j, u] = 0 and [h′j , h
′
n] 6= 0, hence λ = 0 and x = u ∈ ker(π′).

Now we assume that dim a = 1. Then the center z(h) is 1–dimensional and it follows
that h ∈ Fn+1(K). We will construct an affine structure on g as follows. Let (f1, . . . , fn+1)
be an adapted basis for h and let ei := fi mod z(h) for i = 1, . . . , n. Then (e1, . . . , en)
is an adapted basis of g. Let h3 = span{f3, . . . , fn+1} and g2 = span{e2, . . . , en}. There
is a uniquely determined linear map ϕ : g → h3 satisfying ϕ(x) = [f1, x]h for all x ∈ g

where x ∈ h is any element with π(x) = x. The restriction of ϕ to g2 is bijective since it
is evidently injective. Denote its inverse by ψ : h3 → g2. Now set for all x, y ∈ g

(20) x • y := ψ([x, ϕ(y)]h)

The formula is well defined since [x, ϕ(y)]h = [x, [f1, y]] ∈ h3. As we will show it satisfies
conditions (3) and (4) of Definition 1.4.5 and hence defines an affine structure on g:
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x • y − y • x = ψ([x, [f1, y]] − [y, [f1, x]])

= ψ([y, [f1, x]] − [f1, [y, x]] − [y, [f1, x]])

= ψ([f1, [x, y]]) = ψ([f1, [x, y]g]) = ψ(ϕ([x, y]g))

= [x, y]g

where the brackets are taken in h if not otherwise denoted. Using the identity [f1, ψ(w)] =
w for all w ∈ h3 and again the Jacobi identity we obtain for all x, y, z ∈ g:

x • (y • z) − y • (x • z) = ψ([x, [y, ϕ(z)]] − [y, [x, ϕ(z)]])

= [x, y]g • z

= (x • y) • z − (y • x) • z

�

3.1.9. Corollary. Let g ∈ Fn(K) and suppose that g has an extension

0 → z(h)
ι−→ h

π−→ g → 0

with a Lie algebra h ∈ Fn+1(K). Then g admits an affine structure.

3.1.10. Remark. The converse of Proposition 3.1.8 is not always true. There are
examples of filiform Lie algebras g ∈ Fn(K) which admit an affine structure but no
extension 0 → z(h) → h → g → 0, see Remark 3.4.10.

3.1.11. Definition. Let g ∈ Fn(K). A 2–cocycle ω ∈ Z2(g, K) is called affine, if
ω : g∧ g → K does not vanish on z(g)∧ g. A class [ω] ∈ H2(g, K) is called affine if every
representative is affine.

3.1.12. Lemma. Let g ∈ Fn(K) and ω ∈ Z2(g, K) be an affine 2–cocycle. Then its
cohomology class [ω] ∈ H2(g, K) is affine and nonzero.

Proof. If z(g) = span{z}, then ω is affine iff ω(z ∧ y) 6= 0 for some y ∈ g. For
ξ ∈ B2(g, K) we have ξ(z ∧ y) = f([z, y]) = f(0) = 0 for some linear form f ∈ g∗. Hence
ω is not a 2–coboundary and [ω] is affine. �

Using the interpretation of H2(g, K) with trivial coefficients we obtain:

3.1.13. Proposition. A Lie algebra g ∈ Fn(K) has an extension

(21) 0 → z(h)
ι−→ h

π−→ g → 0

with h ∈ Fn+1(K) if and only if there exists an affine [ω] ∈ H2(g, K).

Proof. Let z(g) = span{z} and suppose that g has such an extension. Then z(h) is
a trivial g–module equal to K. The extension determines a unique class [ω] ∈ H2(g, K)
and we may assume that the Lie bracket is given by

(22) [(a, x), (b, y)]h := (ω(x ∧ y), [x, y]g)
on the vector space h := K ⊕ g. Suppose that ω(z ∧ y) = 0 for all y ∈ g. Then (a, 0) and
(a, z) are contained in z(h). This contradicts z(h) ∼= K. Hence ω is affine.
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Conversely an affine [ω] ∈ H2(g, K) determines an extension

0 → K
ι−→ h

π−→ g → 0

via the Lie bracket (22) on h := K ⊕ g. Let (a, x) ∈ z(h). Then x ∈ z(g) and it follows
that x is a multiple of z. Since ω(z, y) 6= 0 for some y ∈ g it follows that (a, z) is not in
z(h). Hence x = 0 and z(h) is the trivial one-dimensional g–module K. �

An immediate consequence is the following:

3.1.14. Corollary. Let g ∈ Fn(K) and assume that there exists an affine class
[ω] ∈ H2(g, K). Then g admits an affine structure.

If we know that the second Betti number of a filiform Lie algebra equals two, i.e., if
it is minimal, then we can conclude:

3.1.15. Corollary. Let g ∈ Fn(K), n ≥ 6 be a filiform Lie algebra with b2(g) = 2.
Then there exists no affine [ω] ∈ H2(g, K).

Proof. If g is filiform of dimension n ≥ 5, there exist two linear independent classes
[ω1], [ω2] ∈ H2(g, K): let (e1, . . . , en) be an adapted basis for g and define ω1, ω2 by

ω1(e2 ∧ e3) = 1,

ω2(e2 ∧ e5) = 1, ω2(e3 ∧ e4) = −1

where the undefined values are zero. A short calculation shows that ω1, ω2 ∈ Z2(g, K):
the condition for ω to be a 2–cocycle is

(23) ω([ei, ej] ∧ ek) − ω([ei, ek] ∧ ej) + ω([ej, ek] ∧ ei) = 0 for i < j < k

Let ω = ω1. The calculation is clear, except maybe for i = 1, j = 2. Then it reduces to
ω1(e3 ∧ ek) = ω1(ek+1 ∧ e2) for k ≥ 3.

The cohomology class of ω1 is nonzero: assume that ω1 ∈ B2(g, K). Then there is an
f ∈ g∗ with f([ei, ej ]) = ω1(ei ∧ ej). This implies 0 = ω1(e1 ∧ ek−1) = f([e1, ek−1]) = f(ek)
for k ≥ 3. Hence we obtain a contradiction:

1 = ω(e2 ∧ e3) = f([e2, e3]) = f
( n∑

k=5

α2,kek

)
=

n∑

k=5

α2,kf(ek) = 0

Similarly we see that the class of ω2 and of any linear combination of ω1 and ω2 is nonzero.
Because of dimH2(g, K) = 2 we know that ([ω1], [ω2]) must be a basis of the cohomology.
It is clear that for n ≥ 6 any linear combination of ω1, ω2 is zero on z(g) ∧ g. Hence the
corollary is proved. �

3.1.16. Proposition. Let g ∈ Fn(K) be a filiform Lie algebra with abelian commutator
subalgebra. Then g admits an affine structure.

Proof. If [g, g] is abelian then there exists a basis (e1, . . . , en) such that the Lie
brackets are given by

[e1, ei] = ei+1, i = 2, . . . , n− 1

[e2, ei] =

n∑

k=i+2

α2,k−i+3 ek, i = 3, . . . , n− 2.
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with parameters α2,s ∈ K, where 5 ≤ s ≤ n. That is proved in [17]. The Jacobi identity
is satisfied automatically. Define a left-symmetric product on g by

e1 • ei = ei+1, i = 2, . . . , n− 1

e2 • ei =
n∑

k=i+2

α2,k−i+3 ek, i = 2, . . . , n− 2

where α2,n+1 = 0. A short computation shows that this product satisfies [ei, ej] = ei • ej −
ej • ei and (ei, ej, ek) = (ej , ei, ek), where (ei, ej, ek) = ei • (ej • ek) − (ei • ej) • ek. �

Let ω ∈ Z2(g, K) be a 2–cocycle. We may view ω as a skew-symmetric bilinear form
ω : g × g → K. Another result is:

3.1.17. Proposition. Let g be a Lie algebra such that there exists an ω ∈ Z2(g, K)
which is nondegenerate as skew-symmetric bilinear form. Then g has even dimension and
admits an affine structure.

Proof. If dim g is odd then ω must be degenerate. Let g∗ be the dual of the adjoint
module g. The action g × g∗ → g∗ is defined by (x, f) 7→ x • f for x ∈ g, f ∈ g∗

where (x • f)(y) = −f([x, y]). Define a map C2(g, K) → HomK(g, g∗), ξ 7→ ϕξ with
ϕξ(x) ∈ g∗, ϕξ(x)(y) = ξ(x, y). That map induces an injection

H2(g, K) →֒ H1(g, g∗), [ξ] 7→ [ϕξ]

see [12]. In fact, ϕξ is a 1–cocycle:

ϕξ([x, y])(z) = ξ([x, y], z) = ξ(y, [x, z]) − ξ(x, [y, z])

= −ϕξ(y)([x, z]) + ϕξ(x)([y, z])

= (x • ϕξ(y))(z) − (y • ϕξ(x))(z)

Since ω is nondegenerate, ker(ϕω) = {x ∈ g | ω(x, y) = 0 ∀y} = 0. This implies that the
linear map ϕω : g → g∗ is invertible. We obtain an invertible 1–cocycle ϕω ∈ Z1(g, g∗).
By Proposition 3.1.1, g admits an affine structure. �

3.1.2. Necessary conditions for affine structures. There is the following impor-
tant necessary condition for the existence of affine structures:

3.1.18. Lemma. Let g be a Lie algebra admitting an affine structure. Then g has a
faithful g–module of dimension dim g + 1.

Proof. Since g has an affine structure there exists a faithful Lie homomorphism
h : g → aff(g) into the Lie algebra of affine transformations. This is the affine holonomy
representation on the Lie algebra level. If dim g = n, then aff(g) ⊆ gln+1(K) and we
obtain a faithful linear representation of dimension n + 1. �

3.2. Two classes of filiform Lie algebras

Investigating affine structures on filiform Lie algebras we find that the filiform algebras
of dimension n ≥ 12 satisfying property (b) and (c) are of importance. Recall that these
properties for a filiform Lie algebra g are:
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(b) g does not contain a one-codimensional subspace U ⊇ g1 such that [U, g1] ⊆ g4.

(c) g
n−4

2 is abelian, provided n is even.

By lemma 2.5.9, such Lie algebras have an adapted basis (e1, . . . , en) such that the Lie
algebra law is in An(K) and satisfies

α2,5 = 1,(24)

αn
2
,n = 0, if n ≡ 0(2)(25)

If g moreover satisfies property (d), i.e., [g1, g1] ⊆ g6, then we have also

α3,7 = 0,(26)

see lemma 2.5.9. Define the following two classes of Lie algebras:

3.2.1. Definition. Let A1
n(K) denote the class of filiform Lie algebras of dimension

n ≥ 12 satisfying property (b),(c),(d). There is a basis such that the corresponding Lie
algebra laws belong to An(K) and satisfy (24), (25), (26). Denote the set of such Lie
algebra laws by A1

n(K). Let A2
n(K) denote the class of filiform Lie algebras of dimension

n ≥ 12 satisfying property (b),(c), but not property (d). There is a basis such that
the corresponding Lie algebra laws belong to An(K) and satisfy (24), (25) and α3,7 6= 0.
Denote the set of such Lie algebra laws by A2

n(K).

It is clear that these two classes are disjoint, in the sense that a Lie algebra from the
first class cannot be isomorphic to one of the second class. Our first result is:

3.2.2. Proposition. Suppose that λ ∈ An(K), n ≥ 12 satisfies conditions (24), (25).
Then it follows (α3,7, α4,9, α5,11) = (0, 0, 0) or (α3,7, α4,9, α5,11) =

(
1
10
, 1

70
, 1

420

)
.

Proof. The claim follows from the Jacobi identity for λ. If (e1, . . . , en) is an adapted
basis, then the Lie brackets with respect to that basis are given by (16), (17), that is

[e1, ei] = ei+1, i = 2, . . . , n− 1

[ei, ej] =

n∑

k=1

( [(j−i−1)/2]∑

ℓ=0

(−1)ℓ
(
j − i− ℓ− 1

ℓ

)
αi+ℓ, k−j+i+2ℓ+1

)
ek, 2 ≤ i < j ≤ n.

with parameters αk,s ∈ K, where (k, s) runs through the index set In and αk,s = 0
for (k, s) not in In. Let J(ei, ej, ek) = 0 denote the Jacobi identity with ei, ej , ek. Let
J(i, j, k, l) be the coefficient of el in J(ei, ej, ek). If n ≥ 12 then we have the conditions
J(2, 3, 4, 9) = J(2, 4, 5, 11) = J(3, 4, 5, 12) = 0 which consist of the following equations:

α4,9(2 + α3,7) − 3α2
3,7 = 0(27)

α5,11(2 − α3,7 − α4,9) + 2α4,9(3α4,9 − 2α3,7) = 0(28)

3α5,11(α3,7 + α4,9) − 4α2
4,9 = 0(29)

There are precisely two solutions:

(α3,7, α4,9, α5,11) = (0, 0, 0)

(α3,7, α4,9, α5,11) =

(
1

10
,

1

70
,

1

420

)
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From (27) we obtain α4,9 = 3α2
3,7/(2+α3,7). If we substitute that in (29), we have α3,7 = 0

or α5,11 = 6α3
3,7/((α3,7 + 2)(2α3,7 + 1)). The denominator cannot be zero. Finally, (28)

yields α3,7(10α3,7 − 1) = 0. �

3.2.3. Definition. Let λ ∈ A1
n(K), n ≥ 12. Then by property (c) λ depends on the

parameters αk,s ∈ K where the index set for (k, s) is I0
n. We write this index set I0

n as
the disjoint union of three subsets as follows:

I1,n = {(k, s) | 3 ≤ k ≤ [
n− 1

2
], 2k + 1 ≤ s ≤ min(n, 3k − 2)}

I2,n = {(k, s) | 2 ≤ k ≤ 3, 2k + 2 ≤ s ≤ n}

I3,n = {(k, s) | 4 ≤ k ≤ [
n + 1

3
], 3k − 1 ≤ s ≤ n}

We use the following notation for λ:

λ = (αk,s | (k, s) ∈ I2,n ∪ I1,n ∪ I3,n) ∈ A1
n(K)

The next proposition shows that the polynomial equations in the parameters αk,s
given by the Jacobi identity for λ ∈ A1

n(K) can be solved so that the 2n+ 12 parameters
αk,s, (k, s) ∈ I2,n remain arbitrary and the others are polynomials in these parameters.

3.2.4. Proposition. Let n ≥ 12 and (k, s) ∈ I2,n, (l, r) ∈ I1,n ∪ I3,n. Then there exist
polynomials P(l,r) ∈ K[αk,s] such that the following map is bijective:

Ψ : A2n−12(K) → A1
n(K), (αk,s)(k,s)∈I2,n

7→ (αk,s, P(l,r)((αk,s)))(l,r)∈I1,n∪I3,n

Proof. For the proof we have to skip some details which are clear in principle but
very lenghty. The Jacobi identity for λ ∈ A1

n(K) is equivalent to polynomial equations in
the parameters αk,s. We use induction on n to show that there is a solution such that:

αl,r = 0 for (l, r) ∈ I1,n(30)

αk,s are free parameters for (k, s) ∈ I2,n(31)

αl,r = P(l,r)((αk,s)) for (l, r) ∈ I3,n(32)

Here all parameters with index set I0
n have been assigned. The polynomials P(l,r) for

(l, r) ∈ I1,n are just the zero polynomials. If the result holds in dimension n − 1, we
consider the Jacobi equations in dimension n over the field K(αk,s) with (k, s) ∈ I0

n−1. It
is then obvious that we obtain linear equations in the variables x = (α4,n, . . . , αr,n), where
r = [n−1

2
]. The system reduces to r − 3 equations given by J(2, k, k + 1, n) = 0 for k =

3, . . . , r − 1. The corresponding matrix has upper-triangular form with diagonal entries
equal to 2. Hence there is a unique solution to express the αk,s with (k, s) ∈ I0

n \ I0
n−1

as polynomials in the free parameters. Therefore the claim holds also in dimension n. It
follows that A1

n(K) is polynomially isomorphic to the affine space A2n−12(K). The map Ψ
sending the (2n−12)–tuple of free parameters to the law λ = (αl,r)(l,r)∈I0

n
is bijective. �
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3.2.5. Example. Let n = 13 and λ ∈ A1
13(K). The matrix of coefficients contains 25

parameters



α2,5 α2,6 α2,7 α2,8 · · · · · · α2,13

α3,7 α3,8 · · · · · · α3,13

α4,9 · · · α4,13

· · · · · ·
α6,13




The 14 parameters α2,6, . . . , α2,13 and α3,8, . . . , α3,13 can be chosen arbitrary and the re-
maining αl,r are given by the following polynomials P(l,r):

α3,7 = α4,9 = α4,10 = α5,11 = α5,12 = α5,13 = α6,13 = 0

α2,5 = 1

α4,11 = 2α2
3,8

α4,12 = −1

2
[3α4,11(α2,6 + α3,8) − 9α3,9α3,8]

α4,13 = −1

2

[
3α4,12(α2,6 + α3,8) − 10α3,10α3,8 − 5α2

3,9 + 4α2
3,8(2α2,7 + 3α3,9)

]

3.2.6. Definition. Let λ ∈ A2
n(K), n ≥ 12. Write the index set I0

n as the disjoint
union of three subsets as follows:

I4,n = {(k, s) | 3 ≤ k ≤ [
n− 1

2
], s = 2k + 1}

I5,n = {(k, s) | k = 2, 6 ≤ s ≤ n and k = 3, n− 4 ≤ s ≤ n}
I6,n = I0

n \ {I4,n ∪ I5,n}

We use the following notation for λ:

λ = (αk,s | (k, s) ∈ I5,n ∪ I4,n ∪ I6,n) ∈ A2
n(K)

3.2.7. Proposition. Let n ≥ 12 and (k, s) ∈ I5,n, (l, r) ∈ I4,n ∪ I6,n. Then there
exist polynomials P(l,r) ∈ K[αk,s] such that for n = 12 and n ≥ 16 the following map is
bijective:

Ψ : An(K) → A2
n(K), (αk,s)(k,s)∈I5,n

7→ (αk,s, P(l,r)((αk,s)))(l,r)∈I4,n∪I6,n

For n = 13, 14, 15 we have one additional free parameter, i.e., the corresponding map
Ψ : An+1(K) → A2

n(K) is bijective.

Proof. For 12 ≤ n ≤ 15 the result follows by an explicit computation: For n = 12
see example 3.2.8. For n = 13 the free parameters can be chosen as α2,6, . . . , α2,13 and
α3,8, . . . , α3,12. For n = 14 the free parameters are α2,6, . . . , α2,14 and α3,8, α3,10, . . . , α3,14,
but not α3,9. For n = 15 the free parameters are α2,6, . . . , α2,15 and α3,8, α3,11, . . . , α3,15,
but not α3,9, α3,10. That continues, but for n ≥ 16 the Jacobi identity also implies a
condition involving α3,8. We have one less free parameter for n ≥ 16. We use induction
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on n to show that the following holds for n ≥ 16:

αl,2l+1 =
(l − 2) !

2l−2 · 5 · 7 · · · (2l − 1)
for (l, r) ∈ I4,n(33)

αk,s are free parameters for (k, s) ∈ I5,n(34)

αl,r = P(l,r)((αk,s)) for (l, r) ∈ I6,n(35)

There are n free parameters. If the result holds in dimension n−1, we consider the Jacobi
equations in dimension n over the field K(αk,s) with (k, s) ∈ I0

n−1. We obtain linear
equations in the r − 2 variables x = (α3,n−5, α4,n, . . . , αr,n), where r = [n−1

2
]. Writing

down all equations we see that the corresponding matrix has full rank, so that there is
a unique solution to express the αk,s with (k, s) ∈ I0

n \ I0
n−1 as polynomials in the free

parameters. Hence the result holds in dimension n. It follows that A2
n(K), n ≥ 16 is

polynomially isomorphic to the affine space An(K). �

3.2.8. Example. Let n = 12 and λ ∈ A2
12(K). The matrix of coefficients contains 21

parameters. The 12 parameters α2,6, . . . , α2,12 and α3,8, . . . , α3,12 can be chosen arbitrary.
The remaining αl,r are given by the following polynomials P(l,r):

α2,5 = 1

α3,7 = 1/10

α4,9 = 1/70

α5,11 = 1/420

α6,12 = 0

α4,10 = (46α3,8 − 3α2,6) /147

α5,12 = (9250α3,8 − 795α2,6) /116424

α4,11 =
(
2107α3,9 + 9000α2

3,8 − 2580α3,8α2,6 − 154α2,7 + 180α2
2,6

)
/6174

α4,12 = (3124044α3,10 + 25174730α3,9α3,8 − 3700725α3,9α2,6 − 17820000α3
3,8

− 12711600α2
3,8α2,6 − 4148060α3,8α2,7 + 4752000α3,8α

2
2,6 − 242550α2,8

+ 581910α2,7α2,6 − 356400α3
2,6)/8557164

3.2.9. Definition. If g is a filiform Lie algebra of even dimension n ≥ 12 satisfying
property (b), but not property (c), there is a basis such that the Lie algebra law belongs
to An(K) and satisfies α2,5 = 1 and αn

2
,n 6= 0. Denote the set of such Lie algebra laws by

A3
n(K) and the class of such Lie algebras by A3

n(K).

We will study that class of Lie algebras only for n = 12. Algebras from A3
12(K) play

a role for the extensions of 11–dimensional filiform Lie algebras. In general, for n ≥ 12
it is difficult to obtain a characterization of A3

n(K). An easy consequence of the Jacobi
identity is the following:

3.2.10. Lemma. Let λ ∈ A3
12(K) with α2,5 = 1. Then it follows 2α2,5 + α3,7 6= 0 and

(36) (2α2
2,5 − 5α2

3,7)(4α
2
2,5 − 4α2,5α3,7 + 3α2

3,7) = 0
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3.3. Affine structures induced by extensions

In this section we study the extension property for filiform Lie algebras of the classes
A1
n(K) and A2

n(K). If the extension property for g is satisfied, we obtain an affine structure
on g, see Proposition 3.1.8.

3.3.1. Theorem. Let g ∈ A1
n(K). Then g has an extension

0 → z(h)
ι−→ h

π−→ g → 0

with a Lie algebra h ∈ A1
n+1(K).

Proof. Define maps

Θ1
n : A1

n+1(K) → A1
n(K), (αk,s)(k,s)∈I0

n+1
7→ (αk,s)(k,s)∈I0

n

Φ1
n : A1

n(K) → A1
n+1(K), (αk,s)(k,s)∈I0

n
7→ (βk,s)(k,s)∈I0

n+1

where

βk,s =





αk,s if (k, s) ∈ I0
n = I1,n ∪ I2,n ∪ I3,n,

free if (k, s) ∈ I2,n+1 \ I2,n = {(2, n+ 1), (3, n+ 1)},
P(k,s)((βi,j)) if (k, s) ∈ I1,n+1 ∪ I3,n+1, (i, j) ∈ I2,n+1

where P(k,s) are the polynomials from Proposition 3.2.4. That is well defined since the
polynomials for A1

n(K) are a subset of the polynomials for A1
n+1(K). Let λ = (αk,s) ∈

A1
n(K) and λ′ = (βk,s). It follows that λ′ ∈ A1

n+1(K): We have assigned the βk,s so
that the Jacobi identity for λ′ holds without any restrictions on the αk,s, see the proof
of Proposition 3.2.4. Since I2,n ⊂ I2,n+1 the free parameters of λ ∈ A1

n(K) remain free
for λ′ ∈ A2

n(K). Note that this is not true in the case of Lie algebra laws from A2
n(K),

because I5,n, the index set of free parameters, is in general not contained in I5,n+1.
It follows Θ1

n◦Φ1
n = id|A1

n(K). Denote by g the Lie algebra corresponding to λ ∈ A1
n(K)

with adapted basis (e1, . . . , en) and h the Lie algebra corresponding to λ′ ∈ A1
n+1(K) with

adapted basis (f1, . . . , fn+1). Let π : h → g by π(fi) = ei for i = 1, . . . , n and π(fn+1) = 0.
By definition, π is a surjective Lie algebra homomorphism with ker π = z(h). Moreover
τ : g → h, τ(ei) = fi is an injective map with π ◦ τ = 1. �

3.3.2. Corollary. All Lie algebras g ∈ A1
n(K), n ≥ 12 admit an affine structure

induced by an affine cohomology class.

In the case of A2
n(K) we define the maps

Θ2
n : A2

n+1(K) → A2
n(K), (αk,s)(k,s)∈I0

n+1
7→ (αk,s)(k,s)∈I0

n

Φ2
n : A2

n(K) → K |I
0
n+1|, (αk,s)(k,s)∈I0

n
7→ (βk,s)(k,s)∈I0

n+1

where

βk,s =





αk,s if (k, s) ∈ I0
n = I4,n ∪ I5,n ∪ I6,n,

free if (k, s) ∈ {(2, n+ 1), (3, n+ 1)},
P(k,s)((βi,j)) if (k, s) ∈ I4,n+1 ∪ I6,n+1, (i, j) ∈ I5,n+1
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Let λ = (αk,s) ∈ A2
n(K). For the map Φ2

n to be well defined and for Φ2
n(λ) ∈ A2

n+1(K)
to hold, λ has to satisfy one additional polynomial condition, namely

α3,n−4 = Pn((αk,s))

with a certain polynomial Pn in the free variables. The reason is the following: Let n ≥ 16.
We have I5,n ( I5,n+1. The only element of I5,n which is not contained in I5,n+1 is α3,n−4.
That is a free parameter in dimension n but not in dimension n+ 1. The Jacobi identity
for Φ2

n(λ) imposes a polynomial condition on α3,n−4.

3.3.3. Definition. λ = (αk,s) ∈ A2
n(K) and its corresponding Lie algebra gλ are said

to satisfy property (L), if Φ2
n(λ) ∈ A2

n+1(K), or equivalently if α3,n−4 = Pn((αk,s)) holds
for a certain polynomial Pn.

3.3.4. Remark. There are two different methods to determine the polynomial Pn.
First we may compute the Jacobi identity for Φ2

n(λ). Secondly we can compute H2(gλ, K).
It contains an affine cohomology class iff property (L) is satisfied.

The preceding discussion shows that the extension property does not hold in general
for Lie algebras from A2

n(K). More precisely we have obtained:

3.3.5. Proposition. Let g ∈ A2
n(K), n ≥ 13. Then there is an extension

0 → z(h)
ι−→ h

π−→ g → 0

with h ∈ A2
n+1(K) iff property (L) holds.

In particular for n = 13 we have:

3.3.6. Proposition. A Lie algebra g ∈ A2
13(K) has an extension

0 → z(h)
ι−→ h

π−→ g → 0

with an h ∈ F14(K) if and only if

(37) α3,9 = P13((αk,s)) =
1

30030

(
4290α2,7 + 3321α2

2,6 − 92100α2,6α3,8 + 514300α2
3,8

)

Proof. As remarked above we have two possibilities to determine the polynomial
P13. Here we compute H2(g, K), see also Proposition 3.4.5, and apply Proposition 3.1.13.
The result is: If (37) does not hold then dimH2(g, K) = 2 and hence g cannot have such
an extension. Otherwise dimH2(g, K) = 3 and there is an affine cohomology class. �

For n = 12 we have:

3.3.7. Proposition. Let n = 12. Then all Lie algebras g ∈ A2
12(K) have an extension

0 → z(h)
ι−→ h

π−→ g → 0

with a Lie algebra h ∈ A2
13(K). Hence these Lie algebras possess an affine structure.

Proof. We determine again H2(g, K). A straightforward computation shows that
b2(g) = 3 and that H2(g, K) contains an affine cohomology class, see Proposition 3.4.4.
Hence the result follows. �

We also study the extension property for A3
12(K):



3.4. COMPUTATION OF H2(g, K) 43

3.3.8. Proposition. A Lie algebra g ∈ A3
12(K) has no extension

0 → z(h)
ι−→ h

π−→ g → 0

with an h ∈ F13(K).

Proof. A computation shows that the space H2(g, K) is 4–dimensional and does not
contain an affine cohomology class, see Proposition 3.4.7 �

3.4. Computation of H2(g, K)

In this section we compute the cohomology groups H2(g, K) for all g ∈ Fn(K) with
n ≤ 11, and for some cases with n = 12, 13. All computations are done with the symbolic
algebra package Reduce. If there exists an affine cohomology class, we obtain a central
extension and an affine structure on g. Let (e1, . . . , en) be an adapted basis for g.

3.4.1. Lemma. Let ω ∈ Hom(Λ2g, K). Then ω is an affine 2–cocycle iff ω(e1 ∧ en) or
ω(e2 ∧ en) is nonzero.

Proof. By definition, ω is affine iff ω(ej ∧ en) 6= 0 for some j ∈ {1, . . . , n}. But
equation (23) for i = 1, k = n implies ω(ej ∧ en) = 0 for 3 ≤ j ≤ n. �

3.4.2. Definition. Define ωℓ ∈ Hom(Λ2g, K) as follows:

ωℓ(ek ∧ e2ℓ+3−k) = (−1)k for 1 ≤ ℓ ≤ [(n− 1)/2], 2 ≤ k ≤ [(2ℓ+ 3)/2](38)

In the following we will mainly use ω1, . . . , ω4. They are defined by

ω1(e2 ∧ e3) = 1

ω2(e2 ∧ e5) = 1, ω2(e3 ∧ e4) = −1

ω3(e2 ∧ e7) = 1, ω3(e3 ∧ e6) = −1, ω3(e4 ∧ e5) = 1

ω4(e2 ∧ e9) = 1, ω4(e3 ∧ e8) = −1, ω4(e4 ∧ e7) = 1, ω4(e5 ∧ e6) = −1

3.4.3. Lemma. We have ω1, ω2 ∈ Z2(g, K), whereas ωℓ, ℓ ≥ 3 need not be 2–cocycles.
If ℓ < [(n− 1)/2], then ωℓ cannot be an affine 2–cocycle.

Proof. The first part follows from the proof of Corollary 3.1.15. Secondly we have
ωℓ(ei ∧ en) = 0 for ℓ < [(n− 1)/2]. �

3.4.4. Proposition. Let g ∈ A2
12(K). Then H2(g, K) = span{[ω1], [ω2], [ω]}, where

ω1, ω2 are as in (38) and ω is an affine 2–cocycle with

ω(e1 ∧ e12) = 1

ω(e2 ∧ e4) = α2,12

ω(e2 ∧ e5) = α2,11

ω(e2 ∧ e6) = α2,10 − 2α3,12

... =
...

ω(e6 ∧ e7) =
1

2310
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3.4.5. Proposition. Let g ∈ A2
13(K). Then

H2(g, K) =

{
span{[ω1], [ω2], [ω]} if g satisfies property (L) ,

span{[ω1], [ω2]} otherwise.

where ω is an affine 2–cocycle with

ω(e1 ∧ e13) = 1

ω(e2 ∧ e4) = α2,13

ω(e2 ∧ e6) = α2,11 − 2α3,13

... =
...

ω(e6 ∧ e8) =
1

2310

3.4.6. Remark. The last result can be generalized for all n ≥ 13. In particular,
b2(g) = 2 for all algebras g ∈ A2

n(K), n ≥ 13 not satisfying property (L). These algebras
have minimal second Betti numbers (among nilpotent Lie algebras) and are candidates
for Lie algebras without affine structures.

3.4.7. Proposition. Let g ∈ A3
12(K). Then H2(g, K) = span{[ω1], . . . , [ω4]}. In

particular, H2(g, K) does not contain an affine cohomology class.

In the following we determine the spaces H2(g, K) for all filiform Lie algebras g of
dimension n ≤ 11. The numbers dimH2(g, K) are called the second Betti numbers.
The cohomology spaces give important information on g. In our case, we will use it to
determine the existence of affine cohomology classes. For the computations we choose an
adapted basis for g so that its Lie algebra law lies in An(K). We divide An(K), 6 ≤ n ≤ 11
into the following subsets depending on certain equalities or inequalities of the structure
constants. These subsets correspond to well defined classes of filiform Lie algebras:

A6,1 if α3,6 6= 0
A6,2 if α3,6 = 0
A7,1 if 2α2,5 + α3,7 6= 0
A7,2 if 2α2,5 + α3,7 = 0
A8,1 if α4,8 6= 0, 2α2,5 + α3,7 = 0
A8,2 if α4,8 = 0, 2α2,5 + α3,7 6= 0
A8,3 if α4,8 = 0, 2α2,5 + α3,7 = 0, α2,5 6= 0
A8,4 if α4,8 = α3,7 = α2,5 = 0
A9,1 if 2α2,5 + α3,7 6= 0, α2

3,7 6= α2
2,5

A9,2 if 2α2,5 + α3,7 6= 0, α2
3,7 = α2

2,5

A9,3 if α2,5 = α3,7 = 0, α4,9 6= 0, α2,6 + α3,8 6= 0
A9,4 if α2,5 = α3,7 = 0, α4,9 6= 0, α2,6 + α3,8 = 0
A9,5 if α2,5 = α3,7 = α4,9 = 0, 2α2,7 + α3,9 6= 0
A9,6 if α2,5 = α3,7 = α4,9 = 0, 2α2,7 + α3,9 = 0
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A10,1 if α5,10 6= 0, 2α2,5 + α3,7 6= 0
A10,2 if α5,10 6= 0, 2α2,5 + α3,7 = 0
A10,3 if α5,10 = 0, 2α2,5 + α3,7 6= 0, α2

3,7 6= α2
2,5

A10,4 if α5,10 = 0, 2α2,5 + α3,7 6= 0, α2
3,7 = α2

2,5

A10,5 if α5,10 = 0, 2α2,5 + α3,7 = 0, α4,9 6= 0, α2
2,6 + 2α2,7α4,9 6= 0

A10,6 if α5,10 = 0, 2α2,5 + α3,7 = 0, α4,9 6= 0, α2
2,6 + 2α2,7α4,9 = 0

A10,7 if α5,10 = 0, 2α2,5 + α3,7 = 0, α4,9 = 0, 2α2,7 + α3,9 6= 0
A10,8 if α5,10 = 0, 2α2,5 + α3,7 = 0, α4,9 = 0, 2α2,7 + α3,9 = 0, α 6= 0
A10,9 if α5,10 = 0, 2α2,5 + α3,7 = 0, α4,9 = 0, 2α2,7 + α3,9 = 0, α = 0
A11,1 if 2α2,5 + α3,7 6= 0, α3,7 6= 0, 10α3,7 − α2,5 6= 0, β 6= 0
A11,2 if 2α2,5 + α3,7 6= 0, 10α3,7 − α2,5 6= 0; β = 0 or α3,7 = 0
A11,3 if 2α2,5 + α3,7 6= 0, 10α3,7 − α2,5 = 0
A11,4 if 2α2,5 + α3,7 = 0, α4,9 6= 0
A11,5 if 2α2,5 + α3,7 = 0, α4,9 = 0

where α = 3α4,10(α2,6 + α3,8) − 4α2
3,8 and β = (2α2

2,5 − 5α2
3,7)(4α

2
2,5 − 4α2,5α3,7 + 3α2

3,7).

3.4.8. Proposition. For λ ∈ An(K), 4 ≤ n ≤ 11 the corresponding Lie algebra gλ
admits an affine cohomology class as follows:

dim gλ Class H2(gλ, K) affine ω b2(gλ)

4 A4 ω1, ω X 2
5 A5 ω1, ω2, ω X 3
6 A6,1 ω1, ω2 − 2
6 A6,2 ω1, ω2, ω X 3
7 A7,1 ω1, ω2, ω X 3
7 A7,2 ω1, ω2, ω3, ω X 4
8 A8,1 ω1, ω2, ω3 − 3
8 A8,2 ω1, ω2, ω X 3
8 A8,3 ω1, ω2, ω3 − 3
8 A8,4 ω1, ω2, ω3, ω X 4
9 A9,1 ω1, ω2, ω X 3
9 A9,2 ω1, ω2, ω, ω

′ X 4
9 A9,3 ω1, ω2, ω3 − 3
9 A9,4 ω1, ω2, ω3, ω X 4
9 A9,5 ω1, ω2, ω3, ω X 4
9 A9,6 ω1, ω2, ω3, ω, ω

′ X 5
10 A10,1 ω1, ω2, ω3 − 3
10 A10,2 ω1, ω2, ω3, ω4 − 4
10 A10,3 ω1, ω2, ω X 3
10 A10,4 ω1, ω2, ω3 − 3
10 A10,5 ω1, ω2, ω3 − 3
10 A10,6 ω1, ω2, ω3, ω X 4
10 A10,7 ω1, ω2, ω3, ω X 4
10 A10,8 ω1, ω2, ω3, ω4 − 4
10 A10,9 ω1, ω2, ω3, ω4, ω X 5
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dim gλ Class H2(gλ, K) affine ω b2(gλ)

11 A11,1 ω1, ω2 − 2
11 A11,2 ω1, ω2, ω X 3
11 A11,3 ω1, ω2, ω X 3
11 A11,4 ω1, ω2, ω3 − 3

The notations here are as follows. By ω1, . . . , ω4 we denote always the 2–cocycles
defined by (38). ω stands for an affine 2–cocycle, which might be different for distinct
classes of Lie algebras. The same holds for ω′. For the cohomology the table shows
representing 2–cocycles for a basis. So ω1, ω2, ω in the table means that ([ω1], [ω2], [ω])
is a basis of H2(gλ, K). Note that for n ≥ 5 the two-dimensional subspace spanned by
[ω1], [ω2] is always contained in H2(gλ, K). A checkmark denotes the existence and a
minus sign the absence of an affine 2–cocycle.

3.4.9. Remark. For λ ∈ A11,5 the Jacobi identity implies (α2,5, α3,7, α4,9) = (0, 0, 0).
In that case we have also determined the affine 2–cocycles for gλ. However, this requires
to introduce quite a lot of subclasses. On the other hand, it is not difficult to show that
all such algebras admit an affine structure. To avoid unnecessary complicated notations
we will omit the result here in the table.

3.4.10. Remark. Let λ ∈ A6,1. Then gλ does not admit an affine [ω] ∈ H2(gλ, K).
However, gλ admits an affine structure since there exists a nonsingular derivation.

3.4.11. Example. Let λ ∈ A9(K) and (e1, . . . , e9) be an adapted basis, see example
2.4.9. If λ ∈ A9,5 then the space H2(gλ, K) is spanned by the classes of ω1, ω2, ω3, ω, where
ω is an affine 2–cocycle defined by:

ω(e1 ∧ e9) = 1

ω(e2 ∧ e4) = α2,9

ω(e2 ∧ e6) = α2,7 − 2α3,9

ω(e2 ∧ e7) = α2,6 − 3α3,8

ω(e3 ∧ e4) = α2,8

ω(e3 ∧ e5) = α3,9

ω(e3 ∧ e6) = α3,8

In particular gλ admits an affine structure.

3.5. Affine structures for g ∈ Fn(K), n ≤ 11

In this section we treat the existence problem of affine structures for all filiform Lie
algebras g ∈ Fn(K), n ≤ 11. Here we use the information of the previous sections so
that we do not consider the algebras which admit an affine structure by the existence
of an affine cohomology class. The answer will be affirmative for n ≤ 9, but not for
n = 10, 11. In fact, the counterexamples to the Milnor conjecture show that there are
algebras without affine structures for n = 10 and n = 11. Nevertheless we can construct
affine structures in many cases, using modifications of the adjoint representation. We will
choose an adapted basis (e1, . . . , en) for g. It is necessary to refine the sets of structure
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constants for n = 10, 11. We split the sets A10,1, A10,4, A11,1 as follows:

A1
10,1 if α5,10 6= 0, 2α2,5 + α3,7 6= 0, α3,7 = −α2,5

A2
10,1 if α5,10 6= 0, 2α2,5 + α3,7 6= 0, α3,7 = α2,5

A1
10,4 if α5,10 = 0, 2α2,5 + α3,7 6= 0, α3,7 = −α2,5

A2
10,4 if α5,10 = 0, 2α2,5 + α3,7 6= 0, α3,7 = α2,5

A1
11,1 if 2α2,5 + α3,7 6= 0, α2,5 = 0

A2
11,1 if 2α2,5 + α3,7 6= 0, α3,7 = 0

A3
11,1 if 2α2,5 + α3,7 6= 0, α2,5, α3,7 6= 0, 10α3,7 − α2,5 6= 0, β 6= 0

where β = (2α2
2,5 − 5α2

3,7)(4α
2
2,5 − 4α2,5α3,7 + 3α2

3,7). Note that the Jacobi identity for

λ ∈ A10,1 implies α2
3,7 = α2

2,5.

3.5.1. Nonsingular derivations. If a Lie algebra admits a nonsingular derivation
then there exists an affine structure by Corollary 3.1.2. Unfortunately for filform Lie
algebras that is rarely the case. One should use additional methods to construct affine
structures. Nevertheless it is interesting to determine the filiform Lie algebras possessing
a nonsingular derivation. That holds in particular for algebras of dimension 10 and 11
where an affine structure does not exist in general. Hence the existence of a nonsingular
derivation is a valuable information.

Let g ∈ Fn(K) and (e1, . . . , en) be an adapted basis. For n ≤ 11 the derivations of g

can be determined by a straightforward computation with a symbolic computer algebra
package. In addition, if D is a nonsingular derivation of g then the linear operators

L(ei) =

(
ad(ei) D(ei)

0 0

)

define a faithful g–module of dimension n+ 1, see Lemma 2.1.2. Whether such a faithful
module exists can be also decided by a straightforward computation.

3.5.1. Proposition. Let λ ∈ A9,3. Then gλ does not possess a nonsingular derivation.

Proof. If λ ∈ A9(K) and D ∈ Der(gλ), then it is clear that the matrix of D with
respect to the adapted basis (e1, . . . , en) is lower-triangular. Hence its determinant is given
by the product of the elements in the diagonal. If not all αk,s are zero then det(D) = 0 if
and only if D(e9) = 0. If not (α2,5, α3,7, α4,9) = (0, 0, 0), the diagonal of D is of the form
(ξ, 2ξ, . . . , 9ξ) for some ξ ∈ K. For λ ∈ A9,3 we obtain the equation ξ(α2,6 + α3,8) = 0,
hence ξ = 0 and det(D) = 0. �

3.5.2. Proposition. If λ ∈ A1
10,1 then gλ admits a nonsingular derivation iff

α2,6 = 2α2
2,5/α5,10

α3,8 = −3α2,6

α3,9 = −3(10α3
2,5 + α2,7α

2
5,10)/α

2
5,10

α3,10 = (α4
5,10(α2,5α2,9 + α2

2,7) − 21α3
5,10α2,8α

2
2,5 − 144α2

5,10α2,7α
3
2,5

− 1152α6
2,5)/(5α

2
2,5α

3
5,10)
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3.5.3. Proposition. If λ ∈ A2
10,1 then gλ admits a nonsingular derivation iff

α2,6 = 2α2
2,5/α5,10

α3,8 = 0

α3,9 = α2,7

α3,10 = (α2
5,10(α

2
2,7 − α2,5α2,9) + α5,10α2,8α

2
2,5 − 2α2,7α

3
2,5)/(α5,10α

2
2,5)

3.5.4. Proposition. If λ ∈ A1
10,4 then gλ admits a nonsingular derivation iff

α3,8 = −3α2,6

α3,9 = −(6α2,5α2,7 + 15α2
2,6)/(2α2,5)

α3,10 = −3(6α2
2,5α2,7 + 20α2,5α2,6α2,7 + 19α3

2,6)/(2α
2
2,5)

3.5.5. Proposition. If λ ∈ A2
10,4 then gλ admits a nonsingular derivation iff

α3,8 = 0

α3,9 = α2,7

α3,10 = (α2,5α2,8 − α2,6α2,7)/α2,5

α2,10 = (α2,5(α2,6α2,9 + α2,7α2,7) − α2,6α
2
2,7)/(α

2
2,5)

3.5.6. Proposition. If λ ∈ A2
11,1 then gλ admits a nonsingular derivation iff

α3,i = 0, 8 ≤ i ≤ 11

α2,7 = 5α2
2,6/(4α2,5)

α2,8 = 7α3
2,6/(4α

2
2,5)

α2,9 = 21α4
2,6/(8α

3
2,5)

α2,10 = 33α5
2,6/(8α

4
2,5)

α2,11 = 429α6
2,6/(64α5

2,5)

3.5.7. Proposition. If λ ∈ A1
11,1 then gλ admits a nonsingular derivation iff

α2,6 = 0

α3,9 = (3α2,7α3,7 + α2
3,8)/α3,7

α3,10 = (α3
3,8 − 5α2,7α3,7α3,8 + 3α2,8α

2
3,7)/(α

2
3,7)

α3,11 = (2α4
3,8 − 3α2

2,7α
2
3,7 + 25α2,7α3,7α

3
3,8 − 13α2,8α

2
3,7α3,8 + 9α2,9α

3
3,7)/(2α

2
3,7)

α2,11 = (3α2
2,8α

2
3,7 − 10α3

2,7α3,7 − 2α2
2,7α

2
3,8 − 10α2,7α2,8α3,7α3,8 + 9α2,7α2,9α

2
3,7

+ 5α2,9α3,7α
2
3,8 − 3α2,10α

2
3,7α3,8)/(2α

3
3,7)

3.5.8. Proposition. If λ ∈ A3
11,1 then gλ admits a nonsingular derivation iff

α3,8 = 3α2,6α3,7(α2,5 − α3,7)/(2α
2
2,5)

and α3,9, α3,10, α3,11, α2,11 are quotients of two certain polynomials with nonzero denomi-
nator. The polynomials depend on the condition whether 4α2,5 equals α3,7, 7α3,7 or not.
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3.5.9. Proposition. If λ ∈ A11,4 then gλ admits a nonsingular derivation iff

α2,6 = 0

α2,8 = 0

α3,9 = (α4,9α4,11 − α2
4,10)/(6α4,9)

α3,11 = (36α3,10α
2
4,9α4,10 + 144α2,9α

3
4,9 + α2

4,9α
2
4,11 − 2α4,9α

2
4,10α4,11 + α4

4,10)/(36α3
4,9)

Note that the Jacobi identity implies α2,5 = α3,7 = 0, α3,8 = −α2,6, α5,11 = 6α4,9.

3.5.2. Affine structures of adjoint type. Let g ∈ Fn(K) and (e1, . . . , en) be an
adapted basis. Then g is generated by e1, e2 and an affine structure on g is given by a Lie
algebra homomorphism L : g → gl(g) such that [x, y] = L(x)y−L(y)x for all x, y ∈ g. In
order to construct an affine structure we have to find linear operators L(e1), L(e2) such
that

[L(ei), L(ej)] = L([ei, ej])

[ei, ej ] = L(ei)ej − L(ej)ei

where L(ei+1) = [L(e1), L(ei)] for i ≥ 2. We will use the adjoint representation as follows.
Let L(e2) be a strictly lower-triangular matrix and set

L(e1) = ad(e1)

3.5.10. Definition. Let λ ∈ An(K) with adapted basis (e1, . . . , en). An affine struc-
ture on gλ is called of of adjoint type with respect to (e1, . . . , en), if it is given by
L(e1) = ad(e1) and L(e2) which is a strictly lower-triangular matrix.

For n ≤ 9 adjoint structures always exist and moreover L(e2) is related to ad(e2). We
have the following result:

3.5.11. Theorem. Any filiform Lie algebra g of dimension n ≤ 9 admits an affine
structure.

Proof. Any filiform Lie algebra of dimension n ≤ 6 admits a nonsingular derivation.
In fact, all nilpotent Lie algebras of dimension n ≤ 6 can be graded by positive integers
and hence possess a nonsingular derivation. Let λ ∈ An(K), 7 ≤ n ≤ 9. Then the
algebras gλ admit an affine cohomology class except for the cases λ ∈ A8,1, A8,3, A9,3. In
that cases it turns out that we can find an appropriate L(e2) for the above construction.
We will write down L(e2) only in the second case; for λ ∈ A8,1, A9,3 the construction is
similar. Let λ ∈ A8,3 and define L(e2) by

L(e2)e1 = 0

L(e2)e2 = −α2,5e4 + α2,6e5 + α2,7e6 + α2,8e7

L(e2)e3 = α2,6e6 + α2,7e7 + α2,8e8

L(e2)e4 = (13α2,6 + α3,8)e7/7

L(e2)e5 = α2,5e7 + 2(8α2,6 − α3,8)e8/7

L(e2)e6 = 3α2,5e8

L(e2)e7 = 0

L(e2)e8 = 0
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Then it follows easily that L defines an affine structure of adjoint type on gλ. �

For n = 10 we obtain affine structures as follows:

3.5.12. Proposition. If λ ∈ A10,5, A10,8, A10,2 then gλ always admits an affine struc-
ture of adjoint type. For λ ∈ A10,1, gλ admits an affine structure of adjoint type if and
only if λ ∈ A2

10,1 with 2α2
2,5 = α2,6α5,10. If λ ∈ A10,4 then gλ admits no affine structure of

adjoint type.

Proof. The result follows by straightforward computation. An affine structure of
adjoint type with respect to an adapted basis is completely described if L(e2) is given.
Define the first layer of the lower-triangular matrix L(e2) to be the first lower diagonal,
say {λ1, . . . , λ9}, the second layer the second lower diagonal {λ10, . . . λ17} and so forth.
It turns out that, knowing the first and second layer, the matrix L(e2) can be easily
computed. For that reason we will describe the affine structures of adjoint type by giving
the first, second and sometimes third layer of L(e2).

Case A10,5 :

1th layer of L(e2) : {0, 0, 0, 0, 0, 0, 0, 0, 0}
2nd layer of L(e2) : {0, 0, 0, 0, 0, 0, α4,9

2
, α4,9}

3rd layer of L(e2) : {0,−3α2,6,−α2,6,−3α2,6,−
7

2
α2,6, 0,

11α2,6 + α4,10

2
}

Case A10,8 :

1th layer of L(e2) : {0, 0, 0, 0, 0, 0, 0, 0, 0}
2nd layer of L(e2) : {0, 0, 0, 0, 0, 0, 0, 1}

3rd layer of L(e2) : {0, α2,6, α2,6, α2,6 − α3,8, α2,6 − 2α3,8, 0,
α4,10 + 7α3,8 − 3α2,6

2
}

Case A10,2 :

1th layer of L(e2) : {0, 0, 0, 0, 0, 0, 0, 0,−α5,10

2
}

2nd layer of L(e2) : {0, 0, 0, 0, 0, 0, 0, 0}

Case A2
10,1 with 2α2

2,5 = α2,6α5,10 :
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1th layer of L(e2) : {0, 0, 0, 0, 0, 0, 0, 0,−α5,10

2
}

2nd layer of L(e2) : {0,−3α2,5,−α2,5, 0, 0, α2,5, 3α2,5,
15α2,5

4
}

�

For n = 11 the result is as follows:

3.5.13. Proposition. If λ ∈ A2
11,1, A11,5 then gλ always admits an affine structure of

adjoint type. If λ ∈ A11,4 then gλ admits an affine structure of adjoint type if and only if
α2,6 = α2,8 = 0. If λ ∈ A1

11,1, A3
11,1 then gλ admits no affine structure of adjoint type.

Proof. The affine structures are described as follows:

Case A2
11,1 :

1th layer of L(e2) : {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
2nd layer of L(e2) : {0, α2,5, α2,5, α2,5, α2,5, α2,5, α2,5α2,5, α2,5}

Case A11,5 :

1th layer of L(e2) : {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
2nd layer of L(e2) : {0, 0, 0, 0, 0, 0, 0,−α5,11,−4α5,11}

Case A11,4 with α2,6 = α2,8 = 0 :

1th layer of L(e2) : {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

2nd layer of L(e2) : {0, 0, 0, 0, 0,−3α4,9

5
,−α4,9, 0, 0}

�

3.5.14. Remark. The construction of affine structures on filiform Lie algebras of
dimension n ≤ 11 is complete except for the cases λ ∈ A10,1, A10,4, A11,1, A11,4.

3.5.15. Remark. There exists another useful modification of the adjoint representa-
tion to construct affine structures. Let λ ∈ An(K) and L(e2) be lower-triangular. Instead
of L(e1) = ad(e1) one takes
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L(e1) =




0 0 0 0 0 0
0 0 0 0 0 0
0 2/3 0 0 0 0
0 0 3/4 0 0 0
...

...
...

. . .
...

...
0 0 0 n−1

n 0




In some cases that construction is interesting, but we will not use it here.



CHAPTER 4

A refinement of Ado’s theorem

Let g be a Lie algebra of dimension n over a field K of characteristic zero. Ado’s
theorem states that there exists a faithful g–module of finite dimension. Hence g may be
embedded in the matrix algebra glm(K) for some m ∈ N. It arises the question about the
size of m.

4.0.16. Definition. Let g be a finite-dimensional Lie algebra over a field K of char-
acteristic zero. Define an invariant of g by

µ(g, K) := min{dimKM |M is a faithful g–module}
We write µ(g) if the field is fixed. By Ado’s theorem, µ(g) is finite. Following the

details of the proof we see that µ(g) ≤ f(n) for a function f only depending on n. Interest
for a refinement of Ado’s theorem in this respect comes from the fact that the existence
of left-invariant affine structures on a Lie group implies µ(g) ≤ n+1 for its Lie algebra g.
Then the question arises which Lie algebras satisfy this bound. Clearly all Lie algebras
g with trivial center satisfy µ(g) ≤ n, since in that case the adjoint representation is a
faithful representation of dimension n. The answer is not clear for nilpotent and solvable
Lie algebras. As we know, not all nilpotent Lie algebras satisfy the bound n + 1 for µ,
although it is very difficult to find such algebras.

4.1. Elementary properties of µ

We state some general results on µ(g). By Lemma 3.1.18 we have:

4.1.1. Lemma. Let g be a Lie algebra of dimension n. If g has an affine structure then
µ(g) ≤ n + 1. If g has trivial center then µ(g) ≤ n.

In particular we obtain µ(g) ≤ n+1 if g is 2 or 3-step nilpotent, or admits a nonsingular
derivation.

4.1.2. Lemma. Let g, b be Lie algebras with dim g = n and dim b = m such that there
is an extension

0 → b
ι−→ h

π−→ g → 0

with z(h) = b, identifying ι(b) with b. Then µ(g) ≤ n+m.

Proof. By assumption, g ∼= h/b. We obtain an h/b–module structure on h by:

h/b × h → h, ([x], v) 7→ x • v = [x, v]h

Then h together with this action x • v is a faithful g–module of dimension n+m: Suppose
[x] • v = 0 for all v ∈ h. Then [x, v] = 0 for all v ∈ h, hence x ∈ z(h) ⊆ b. This implies
[x] = [0] in g ∼= h/b. Hence the module is faithful. �

For the following result see [10]:

53
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4.1.3. Proposition. Let g ∈ Fn(K). Then g satisfies µ(g) ≥ n.

Proof. We may assume that n ≥ 3 and K is algebraically closed. Let M be a
faithful g–module. There is a unique decomposition of M into submodules indexed by
the characters of g,

M =
⊕

c

Mc

with the following property: the module tensor product Mc ⊗ K−c is nilpotent, where
Kc denotes the 1–dimensional g–module given by the character c. Let z be the center of
g. It is 1–dimensional. Since M is faithful it acts non-trivially on one factor Mc ⊗K−c.
We may assume that M is nilpotent by replacing M by Mc ⊗ K−c. We have a natural
descending filtration on M by M1 = M, M i+1 = g •M i for i ≥ 1. If M i = M i+1 for some
i then M i = 0. Since M is faithful and dim g = n we have Mn ⊇ gn−1 •M1 = z •M 6= 0.
This implies dimM i/M i+1 ≥ 1 for all i = 1, . . . , n and hence dimM ≥ n. �

4.1.4. Proposition. Let g ∈ Fn(K) and suppose that there exists an extension 0 →
z(h)

ι−→ h
π−→ g → 0. Then µ(g) = n.

Proof. We proceed as in Proposition 3.1.8 and reduce the question to the case that
dim z(h) = 1 and h ∈ Fn+1(K). Let (f1, . . . , fn+1) be an adapted basis for h. The adjoint
representation of h then induces a g–module structure on M = span{f1, f3, f4, . . . fn+1}.
That is a faithful g–module of dimension n since the center of g acts nontrivially. This
implies µ(g) ≤ n and hence µ(g) = n by Proposition 4.1.3. �

4.2. Explicit formulas for µ

In some cases we can determine µ(g) by an explicit formula in the dimension of g.
The first case is that g is abelian. Then g is a vector space and any faithful representation
ϕ : g → gl(V ), where V is a d–dimensional vector space, turns ϕ(g) into an n–dimensional
commutative subalgebra of the matrix algebra Md(K). There is an upper bound of n in
terms of d. Since ϕ is a monomorphism, n ≤ d2. A sharp bound was proved by Schur
[73] over C and by Jacobson [51] over any field K:

4.2.1. Proposition. Let M be a commutative subalgebra of Md(K) over an arbitrary
field K. Then dimM ≤ [d2/4] + 1, where [x] denotes the integral part of x. This bound
is sharp.

Denote by ⌈x⌉ the ceiling of x, i.e., the least integer greater or equal than x.

4.2.2. Proposition. Let g be an abelian Lie algebra of dimension n over an arbitrary
field K. Then µ(g) = ⌈2

√
n− 1⌉.

Proof. By Proposition 4.2.1, a faithful g–module has dimension d with n ≤ [d2/4]+1.
This implies d ≥ ⌈2

√
n− 1 ⌉. It is easy to construct commutative subalgebras of Md(K)

of dimension exactly equal to [d2/4] + 1. Hence µ(g) = ⌈2
√
n− 1 ⌉. �

4.2.3. Definition. Let hm(K) be a (2m + 1)–dimensional vector space over K with
basis (x1, . . . , xm, y1, . . . , ym, z). Denote by hm(K) the 2–step nilpotent Lie algebra defined
by [xi, yi] = z for i = 1, . . . , m. It is called Heisenberg Lie algebra of dimension 2m+ 1.
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4.2.4. Lemma. Let g be a nilpotent Lie algebra with 1–dimensional center z(g) spanned
by z ∈ g. Then a representation L : g → gl(V ) is faithful iff z(g) acts nontrivially. In
that case L(z)v 6= 0 for some nonzero v ∈ V .

Proof. If L is not faithful then kerL is a nonzero ideal in g intersecting z(g) non-
trivially since g is nilpotent. Hence z ∈ kerL and L(z) = 0. Conversely if L(z) 6= 0 then
kerL = 0 and L is faithful. �

4.2.5. Proposition. The Heisenberg Lie algebras satisfy µ(hm(K)) = m+ 2.

Proof. It is well known that hm(K) has a faithful representation of dimension m+2
as follows. Let γz +

∑m
j=1(αjxj + βjyj) correspond to the (m+ 2) × (m+ 2) matrix




0 α1 . . . αm γ
0 . . . 0 β1

...
. . .

...
...

0 βm
0 . . . 0




There are no faithful representations of smaller dimension for hm(K). It seems that this
fact is not mentioned in the standard literature. Assume that L : hm(K) → gl(V ) is
a faithful representation of minimal degree. By the lemma we may fix a v ∈ V with
L(z)v 6= 0. We have to show dimV ≥ m+ 2. The evaluation map is defined by

ev : hm(K) → V, x 7→ L(x)v

It is clear that ker ev is a subalgebra of hm(K) not containing z. In fact, ker ev is an
abelian Lie algebra: Let x, y ∈ ker ev. Then [x, y] ∈ ker ev, hence L([x, y])v = 0. On
the other hand, [x, y] ∈ z(g) so that [x, y] is a multiple of z. Since L(z)v 6= 0 it follows
[x, y] = 0. We have

dimV ≥ dim im ev = dim hm(K) − dim ker ev

The number on the right hand becomes minimal if the dimension of ker ev becomes max-
imal. This happens if ker ev is a maximal subalgebra not containing z. Any such abelian
subalgebra has dimension m, hence dim im ev ≥ m + 1. If we show v 6∈ im ev then it
follows dimV ≥ dim im ev ≥ m+ 2 and the proof is finished.

Assume v ∈ im ev. Let K be algebraically closed. By Lie’s theorem we may assume
that L(xi), L(yi) are upper triangular endomorphisms and hence that the commutator
L(z) = [L(xi), L(yi)] is nilpotent. In particular L(z)v = v is impossible. But since
v ∈ im ev there must be an x ∈ g with L(x)v = v. That x is not contained in the center of
g and not in ker ev. There exists some y ∈ ker ev such that [x, y] = z. Otherwise x would
commute with ker ev and span{ker ev, x} = {ker ev} because ker ev is maximal abelian. In
that case x ∈ ker ev and v = L(x)v = 0, which is a contradiction. It follows

L(z)v = [L(x), L(y)]v = L(x)L(y)v − L(y)L(x)v = 0

by using L(y)v = 0 and L(x)v = v. This is a contradiction. �

4.2.6. Proposition. Let g be a 2–step nilpotent Lie algebra of dimension n with 1–
dimensional center. Then n is odd and µ(g) = (n + 3)/2.
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Proof. The commutator subalgebra [g, g] ⊆ z(g) is 1–dimensional. Hence the Lie
algebra structure on g is defined by a skew-symmetric bilinear form V ∧ V → K where
V is the subspace of g complementary to K = [g, g]. It follows from the classification of
such forms that g is isomorphic to the Heisenberg Lie algebra hm(K) with n = 2m + 1.
It follows µ(g) = m+ 2 = (n+ 3)/2. �

4.2.7. Proposition. Let g be a filiform Lie algebra of dimension n with abelian com-
mutator algebra. Then µ(g) = n.

Proof. First g has a faithful g–module M of dimension n + 1, since g admits an
affine structure, see Proposition 3.1.16. It is easy to see that M has a faithful submodule
of dimension n. Hence µ(g) = n by Proposition 4.1.3. �

In the same way we obtain:

4.2.8. Proposition. Let g ∈ Fn(K) with n < 10. Then µ(g) = n.

4.3. A general bound for µ

In 1937 Birkhoff [13] proved a special case of Ado’s theorem. He showed

µ(g) ≤ 1 + n+ n2 + · · ·+ nk+1

for a nilpotent Lie algebra g of dimension n and class k. His construction used the
universal enveloping algebra of g. In 1969 this method was slightly improved by Reed
[70]:

4.3.1. Proposition. Let g be a nilpotent Lie algebra of dimension n and nilpotency
class k. Then µ(g) ≤ 1 + nk.

For a solvable Lie algebra, Reed gives the following bound:

4.3.2. Proposition. Let g be a solvable Lie algebra of dimension n over an alge-
braically closed field of characteristic zero. Then µ(g) < 1 + n + nn.

4.3.3. Remark. The idea of the proof is as follows, see [70]. By embedding g in a
splittable solvable Lie algebra of dimension dim g+dim g/n, where n denotes the nilradical
of g, the situation is in principle reduced to the case that g = h ⋉ n. If g is a semidirect
product of a Lie algebra h and a nilpotent ideal n containing the center of g, then a
faithful representation of g is constructed extending the faithful representation of n from
Proposition 4.3.1: let ρ′ be the representation of g of degree 1 + nk extending the faithful
representation of n and ρ be the direct sum of ρ′ and ad, the adjoint representation of
g. Since ker(ad) is the center of g and since ρ′ is faithful on n and hence on the center,
it follows that ρ is faithful on g. It is clear that the degree of ρ is not greater than the
degree of ρ′ plus dim g. It would be interesting to know whether that construction also
works if we start with a faithful representation of n of minimal degree. In other words, is
it true that

µ(g) ≤ µ(n) + dim g

where g is a solvable Lie algebra and n its nilradical. An answer does not appear to be
known.

It is interesting to note that the estimate µ(g) ≤ µ(n)+dim(g/n) is not true in general.
The following example is due to H. Abels. Let n be a k–dimensional abelian Lie algebra
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over C with basis (v1, . . . , vk). Define Dn : n → n by Dnvj = vj+1 for 1 ≤ j ≤ k and
Dnvk = 0, and form the semidirect product g = C⋉Dn with the derivation D := Idn+Dn.
If ρ : g → gl(V ) is a faithful representation of g and ρ(D) = ρ(D)s + ρ(D)n the additive
Jordan decomposition then Cρ(D)n+ρ(n) is isomorphic to the standard graded filiform of
dimension k+1: ρ(D)n acts by taking commutators in gl(V ) on the isomorphic copy ρ(n)
of n in the corresponding way as Dn acts on n. In particular dimV ≥ k+1 by Proposition
4.1.3 and hence µ(g) ≥ k + 1. In fact µ(g) = k + 1, whereas µ(n) = ⌈2

√
k − 1 ⌉.

The general bounds for µ are not very good if one keeps in mind that it is quite
difficult to find Lie algebras g with µ(g) ≥ dim g + 2. In particular for g ∈ Fn(K) the
bound µ(g) < 1 + nn−1 is very rough. We can improve this bound:

4.3.4. Theorem. Let g be a nilpotent Lie algebra of dimension n and nilpotency class
k. Denote by p(j) the number of partitions of j and let

ν(n, k) =

k∑

j=0

(
n− j

k − j

)
p(j)

Then µ(g) ≤ ν(n, k).

Proof. Construct a faithful representation ρ : g → gl(V ), such that ρ(X) is nilpotent
for all X ∈ g as follows: Let g1 = g and gi+1 = [g, gi]. Since g is k-step nilpotent, gk+1 = 0.
Choose a basis x1, . . . , xn of g such that the first n1 elements span gk, the first n2 elements
span gk−1 and so on. We will take V as a quotient of the universal enveloping algebra
U(g) of g. By the Poincaré-Birkhoff-Witt theorem the ordered monomials

xα = xα1

1 . . . xαn

n , α = (α1, . . . αn) ∈ Zn
+

form a basis for U(g). Let t =
∑

α cαx
α be an element of U(g) where only finitely many

cα are nonzero. Define an order function as follows:

ord(xj) = max{m : xj ∈ gm}

ord(xα) =
n∑

j=1

αj ord(xj)

ord(t) = min{ord(xα) : cα 6= 0}

and ord(1U(g)) = 0, ord(0) = ∞. Let Um(g) = {t ∈ U(g) : ord(t) ≥ m}. One can show
that Um(g) is an ideal of U(g) having finite codimension. Define

V = U(g)/Um(g)

Choose a basis {t1, . . . , tℓ} of V such that t1, . . . , tℓ1 span Um−1(g)/Um(g) , t1, . . . , tℓ2 span
Um−2(g)/Um(g) and so on. Then it is easy to check that the desired representation of g

is obtained by setting

ρ(X)(tj) = Xtj mod Um(g)

If m > k then ρ(X) · 1U(g) = X 6= 0 for all X ∈ g, so that ρ is faithful.
Now we will construct a bound for dimV : Choose m minimal, i.e., m = k + 1. Let
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B = {xα | ord(xα) ≤ k} be a basis for V as above. Then x1, . . . , xn1
have order k,

xn1+1, . . . , xn2
have order k − 1 and so on. Hence

#B = {(α1, . . . , αn) ∈ Zn
+ |

k∑

j=1

(k − j + 1)(αnj−1+1 + · · · + αnj
) ≤ k}

with n0 = 0. On the other hand, dim gk ≥ 1, dim gk−1 ≥ 2 and so on. We can choose the xi
such that ord(x1) = k, ord(x2) ≥ k−1, ord(x3) ≥ k−2, . . . , ord(xk) = · · · = ord(xn) ≥ 1.
If actually ord(xi) = k + 1 − i for i = 1, . . . , k and ord(xk+1) = · · · = ord(xn) = 1, then
#B will be maximal, i.e., #B ≤ p(n, k), where

p(n, k) = #
{
(α1, . . . , αn) ∈ Zn

+ |
(

k∑

j=1

(k − j + 1)αj

)
+ αk+1 + · · ·+ αn ≤ k

}
.

Using the generating function (1/(1 − x))r+1 =
∑

k≥0

(
r+k
k

)
xk for |x| < 1 we obtain

#{(α1, . . . , αn) ∈ Zn
+ |

n∑

j=1

αj ≤ k} = #{(α0, . . . , αn) ∈ Zn+1
+ |

n∑

j=0

αj = k}

=

(
n+ k

k

)
.

Since p(k) = #{(α1, . . . , αk) ∈ Zk
+ | kα1 + (k − 1)α2 + · · ·+ αk = k} we have

p(n, k) = ν(n, k) =
k∑

j=0

(
n− j

k − j

)
p(j).

�

We give two examples:

4.3.5. Example. Let g = span{x1, . . . , x6} and define Lie brackets by

[x2, x6] = −x1, [x3, x6] = −x2, [x4, x5] = −x1, [x5, x6] = −x3

We obtain a 4–step nilpotent Lie algebra of dimension 6 with

ord(x1) = 4, ord(x2) = 3, ord(x3) = 2, ord(xi) = 1

for i = 4, 5, 6. By the above theorem there is a faithful g–module of dimension ν(6, 4) = 51.
The bound of Proposition 4.3.1 is 1 + nk = 1297.

4.3.6. Example. Let g = span{x1, . . . , x6} and define Lie brackets by

[x6, xi] = xi−1 for 2 ≤ i ≤ 5

We obtain a filiform nilpotent Lie algebra of dimension 6. There is a faithful g–module
of dimension ν(6, 5) = 45. Here 1 + nk = 7777. The bounds are not very good. Because
of Proposition 4.2.8 we know µ(g) = 6.

In the following we study some properties of ν(n, k). Let ν(n, 0) := 1.

4.3.7. Lemma. ν(n + 1, k) = ν(n, k) + ν(n, k − 1) for 1 ≤ k ≤ n.
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Proof.

ν(n, k) + ν(n, k − 1) =

k∑

j=0

(
n− j

k − j

)
p(j) +

k−1∑

j=0

(
n− j

k − j − 1

)
p(j)

=

k−1∑

j=0

[(
n− j

k − j

)
+

(
n− j

k − j − 1

)]
p(j) +

(
n− k

0

)
p(k)

=
k−1∑

j=0

(
n + 1 − j

k − j

)
p(j) + p(k)

= ν(n + 1, k)

�

4.3.8. Lemma. Let η(q) =
∏∞

j=1(1 − qj)−1. For 2 ≤ k ≤ n− 1 it holds

(39) ν(n, k) <

(
n

k

)
η( k

n
)−1

Proof. Denote by pk(j) the number of those partitions of j in which each term in
the partition does not exceed k. We have

k∑

j=0

p(j)qj <

∞∑

j=0

pk(j)q
j =

k∏

j=1

1

1 − qj

for |q| < 1. Hence

ν(n, k) =
k∑

j=0

(
n− j

k − j

)
p(j) <

k∑

j=0

(
n

k

)
qjp(j) <

(
n

k

) k∏

j=1

1

1 − qj

with q = k/n. �

4.3.9. Lemma. We have ν(n, k − 1) < ν(n, k) for all n, k with 2 ≤ k ≤ [n+3
2

] and

ν(n, k−1) > ν(n, k) for all n, k with [n+3
2

]+1 ≤ k < n. In particular for k(n) = [(n+3)/2]:

(40) ν(n, k) ≤ ν(n, k(n)) for 1 ≤ k ≤ n.

Proof. Let n be even. We first show ν(n, k − 1) < ν(n, k) for all k with 2 ≤ k ≤
(n+2)/2. By Lemma 4.3.7 that means ν(n+1, k)−ν(n, k) = ν(n, k−1) < ν(n, k), hence
2ν(n, k) − ν(n+ 1, k) > 0. Since

k∑

j=0

(
2

(
n− j

k − j

)
−
(
n + 1 − j

k − j

))
p(j) =

k∑

j=0

(n− 2k + j + 1)(n− j)!

(k − j)!(n− k + 1)!
p(j)

the inequality is equivalent to

(41)

k∑

j=0

(n− 2k + j + 1)

(
n− j

k − j

)
p(j) > 0

It is certainly true for k < (n + 2)/2 since then all coefficients in the sum are positive.
For k = k(n) = (n+2)/2 however the first term is negative. Nevertheless (41) holds since
already the sum of the first four terms is positive for n ≥ 4 and k = k(n).
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For the second part we must show that the sum in (41) is negative for n ≥ k ≥ k(n)+1.
For k = k(n) + 1 = (n+ 4)/2 that means

(42)
k∑

j=0

(j − 3)

(
n− j

k − j

)
p(j) < 0, or

k∑

j=0

j

(
n− j

k − j

)
p(j) < 3ν(n, k)

Estimating carefully we obtain

k∑

j=0

p(j)jqj <

∞∑

j=0

jpk(j)q
j =

k∑

j=1

jqj

1 − qj

k∏

j=1

1

1 − qj
< 10

for q = k/n, k = k(n) + 1 and n ≥ 355. Hence

k∑

j=0

j

(
n− j

k − j

)
p(j) <

(
n

k

) k∑

j=0

p(j)jqj < 10

(
n

k

)
< 3ν(n, k)

The last inequality follows from summing up the first terms of ν(n, k) for k = k(n) + 1:

ν(n, k) >
1745

512

(
n

k

)

For n ≤ 355 the inequality (42) is also true. We have verified it with the computer algebra
system Pari. If k ≥ k(n) + 1, then the sum in (41) is negative. That follows from the
fact that ν(n, k) is unimodal for fixed n. A function F (n, k) with 0 ≤ k ≤ n is called
unimodal if there exists a sequence K with K(n) ≤ K(n + 1) ≤ K(n) + 1 such that for
all n ≥ 0

F (n, 0) < F (n, 1) < F (n, 2) < · · · < F (n,K(n) − 1) ≤ F (n,K(n)),

F (n,K(n)) > F (n,K(n) + 1) > · · · > F (n, n− 1) > F (n, n) > F (n, n+ 1) = 0.

The unimodality of ν(n, k) can be proved by induction. Finally the proof for n odd is
done likewise. �

4.3.10. Proposition. There is the following estimate for ν(n, k):

ν(n, k) ≤ 3√
n

2n for fixed n ≥ 1 and all 1 ≤ k ≤ n(43)

Proof. Using the two preceding lemmas and Stirling’s formula for the binomial co-
efficient we obtain

ν(n, k) ≤ ν(n, k(n)) <

(
n

k(n)

)
1

η
(k(n)

n

) < 2n√
πn/2

· 1

η
(k(n)

n

) < 2.81√
n

2n

for n ≥ 355. For n ≤ 355 the proposition is true also. �

4.3.11. Corollary. Let g be a nilpotent Lie algebra of dimension n. Then

µ(g) <
3√
n

2n
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4.3.12. Remark. If k, n→ ∞ with k
n
≤ δ for some fixed δ > 0 then one has asymptot-

ically ν(n, k) ∼
(
n
k

) (
η( k

n
)
)−1

and η
(k(n)

n

)−1 ∼ 3.4627466. The proposition shows that the

bound µ(g) ≤ ν(n, k) is much better than 1+nk, especially if k is not small in comparison
to n. For small k we can give better bounds. Note that k = 1 corresponds to the abelian
case.

4.3.13. Lemma. Let α =
√

2
3
π. Then for n ≥ 3 we have

√
n√

n + 1 − 1
< 1 +

π√
6n

< e
α
√
n

“√
1+ 1

n
−1

”

Proof. Using the inequality

1 +
1

2n
− 1

8n2
<

√
1 +

1

n

and exp(x) > 1 + x+ x2/2 for x > 0 we obtain

e
α
√
n

“√
1+ 1

n
−1

”

> exp
(
α
√
n
( 1

2n
− 1

8n2

))
= exp

( π√
6n

(
1 − 1

4n

))

> 1 +
π√
6n

− π

4n
√

6n
+

π2

12n
− π2

24n2
+

π2

192n3

> 1 +
π√
6n

for n ≥ 1. On the other hand we have for n ≥ 17

1

1 + π√
6n

< 1 − π√
6n

+
π2

6n
< 1 +

1

2n
− 1

8n2
− 1√

n

<

√
1 +

1

n
− 1√

n
=

√
n+ 1 − 1√

n

Taking reciprocal values yields the second part of the lemma. For 3 ≤ n ≤ 16 one verifies
the lemma directly. �

4.3.14. Lemma. Let α =
√

2
3
π. Then

ν(n− 1, n− 1) < eα
√
n for all n ≥ 1.

Proof. Let α =
√

2
3
π. In [2], section 14.7 formula (11), the following upper bound

for p(n) is proved:

p(n) <
π√
6n
eα
√
n for all n ≥ 1

We want to prove the proposition by induction on n. By Lemma 4.3.13 we have

1 +
π√
6n

< eα
√
n+1−α√n
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which holds for all n ≥ 1. Assuming the claim for n− 1 it follows for n:

ν(n, n) = ν(n− 1, n− 1) + ν(n) < eα
√
n +

π√
6n
eα
√
n

=

(
1 +

π√
6n

)
eα
√
n < eα

√
n+1

�

4.3.15. Lemma. Let α =
√

2
3
π. Then

ν(n, n− 1) <
√
neα

√
n for all n ≥ 1.

Proof. It follows from Lemma 4.3.13 that
√
neα

√
n <

(√
n+ 1 − 1

)
eα
√
n+1

By induction on n and Lemma 4.3.14 we have:

ν(n + 1, n) = ν(n, n) + ν(n, n− 1) < eα
√
n+1 +

√
neα

√
n

<
√
n+ 1eα

√
n+1

�

We improve the bound of Proposition 4.3.10 for filiform Lie algebras:

4.3.16. Proposition. Let g be a filiform Lie algebra of dimension n and α =
√

2
3
π.

Then

µ(g) < 1 + eα
√
n−1

Proof. Using the construction of Theorem 4.3.4 with (x1, . . . , xn) = (en, . . . , e1) we
obtain a faithful module V with basis

B =
{
eαn

n · · · eα1

1 |
n∑

j=2

(j − 1)αj + α1 ≤ n− 1
}

for g = span{e1, . . . , en} and dimV = ν(n, n− 1). Here ord(ei) = i− 1, i = 2, . . . , n and
ord(e1) = 1. The elements ei of g act on V by

eiej = [ei, ej] + ejei for i < j

where ejei is an element of V for j ≥ i. Let U be the submodule of V generated by e1. It
has a basis of all monomials eαn

n · · · eα1

1 with α1 6= 0, hence dim U = ν(n− 1, n− 2). The
factor module V/U is a faithful g– module of dimension

ν(n, n− 1) − ν(n− 1, n− 2) = ν(n− 1, n− 1)

Its basis B̃ contains the monomials eαn
n · · · eα2

2 of maximal order, i.e., with

n∑

j=2

(j − 1)αj = n− 1
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These are p(n − 1) monomials, the number of partitions of n − 1. We may omit these

monomials from B̃, except for en in order to preserve faithfulness. Then we obtain a
faithful module of dimension

ν(n− 1, n− 1) − p(n− 1) + 1 = 1 + ν(n− 2, n− 2)

The claim follows by Lemma 4.3.14. �

4.4. Faithful modules of dimension n+ 1

In this section we will study faithful g–modules of dimension n+1 for all Lie algebras
g ∈ Fn(K) with n ≤ 11. In case that there exists such a module for g we have

n ≤ µ(g) ≤ n+ 1

Because of the results of section 3.5 we only have to consider Lie algebra laws λ from

A10,4, A1
10,1, A2

10,1, A11,4, A1
11,1, A3

11,3

In all other cases gλ admits an affine structure and hence possesses a faithful module of
dimension n+1. Let λ ∈ An(K) and (e1, . . . , en) be an adapted basis. The Lie algebra gλ
is generated by e1, e2. A gλ–module M is given by a linear representation L : gλ → gl(M).
In order to construct such a module it is sufficient to find linear operators L(e1), L(e2)
such that

[L(ei), L(ej)] = L([ei, ej])

where L(ei+1) = [L(e1), L(ei)].

4.4.1. Definition. Let g ∈ Fn(K) and M be a g–module given by L(e1), L(e2) where
(e1, . . . , en) denotes an adapted basis of g. Then M is called a ∆–module if L(e1) and
L(e2) are simultaneously strictly upper triangular matrices with respect to some basis of
M such that each entry of L(e1) is equal to 0 or 1 and in each row and in each column of
L(e1) there is at most one nonzero entry, and dimM = n + 1.

Note that such a ∆–module, if it exists, is nilpotent, i.e., all L(ei) are nilpotent linear
transformations. The center of a ∆–module is given by kerL(e1) ∩ kerL(e2). We will
introduce a combinatorical type for ∆–modules as follows:

4.4.2. Definition. Define the first layer of the matrix L(e1) to be the first up-
per diagonal, say {λ1, . . . , λn}, the second layer of L(e1) the second upper diagonal
{λn+1, . . . , λ2n−1} and so on. Let N1 denote the set of indices i such that λi = 0 in
the first layer of L(e1), and Nj the set of indices i such that λi = 1 in the j–th layer of
L(e1) for j = 2, . . . , n. Define the combinatorical type of a ∆–module M with respect to
the adapted basis of g to be

type(M) = {N1 | N2 | · · · | Nn}

The combinatorical type of M more precisely is the type of L(e1). Empty sets Ni are
omitted in this notation. If L(e1) is of full Jordan block form, then Nj = ∅ for all j. In
that case we set type(M) = ∅. Note that not all ∆–modules are faithful.
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4.4.3. Example. Let λ ∈ A5(K). The Lie brackets of gλ with respect to an adapted
basis {e1, . . . , e5} are given by [e1, ei] = ei+1, [e2, e3] = αe5. A faithful ∆–module M for
gλ of type {4, 5 | 9} is given as follows:

L(e1) =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0




, L(e2) =




0 0 α 0 0 0
0 0 0 α 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0




, L(e5) =




0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




Denote by {f1, . . . , f6} the basis of M . The center of M is 1–dimensional. It is generated
by f1.

Note that L(e2) is described by the first two layers. The module M is faithful since
L(e5) is nonzero. In the following we will describe for each filiform Lie algebra of the
above classes the ∆–modules we have found. Of course, the construction requires a
systematic study of ∆–modules. It is very helpful to know which types can never yield
faithful modules. Recall that a module of a filiform Lie algebra gλ with λ ∈ An(K) is
faithful if and only if the center z(gλ) of gλ acts nontrivially, i.e., if L(en) is not the zero
transformation, where en generates z(gλ). After that it will be useful to reduce the number
of possible types for ∆–modules. This will be done in Chapter 5. Here we will only state
the result of the construction of ∆–modules.

4.4.1. ∆–modules for n = 10.

4.4.4. Theorem. If λ ∈ A2
10,4, A2

10,1 then gλ always has a faithful ∆–module. If
λ ∈ A1

10,4, A1
10,1 satisfies

3α2,6 + α3,8 = 0

then gλ possesses a faithful ∆–module. Hence µ(gλ) ≤ 11 for these algebras.

4.4.5. Remark. The theorem implies together with the preceding results that all Lie
algebras gλ with λ ∈ A10(K) have a faithful module of dimension 11 with the possible
exception of the cases where λ satisfies 2α2,5 + α3,7 6= 0, α3,7 = −α2,5, 3α2,6 + α3,8 6= 0.

Proof. A ∆–module of a given type is computed as follows: Denote the first layer
of L(e2) by {x1, . . . , x10}, the second layer by {x11, . . . , x19} and so on. The two matrices
L(e1), L(e2) generate a ∆–module if and only if certain polynomial equations in the vari-
ables x1, . . . , x55 holds. These equations can be solved successively. First one has to solve
a subsystem of equations which has only the variables {x1, . . . , x10}, then a subsystem
of equations in the variables {x11, . . . , x19} can be solved. As it turns out, once we have
solved the equations involving the first two layers of L(e2), the remaining equations can
be easily solved by substitutions of certain xi which appear as linear monomials. More
or less only the first two layers involve non-trivial computations. For that reason we will
describe the ∆–modules here by specifying the type of L(e1) and the first and second layer
of L(e1). A complete solution may be found in [21] and the references cited therein. For
the computations we have used Reduce. The constructed faithful modules are as follows:

Case A2
10,1 with 33α2,6 − 20α2,8 = 0 :
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L(e1) is of type : {9}

1th layer of L(e2) : {−10α5,10

11
, 0, 0, 0, 0, 0, 0, 0, 0, 0}

2nd layer of L(e2) : {−23α2,6α5,10

22α2,5

,−α2,5,−α2,5, 0, α2,5, α2,5, 0, 1,−2}

Case A2
10,1 with γ = 33α2,6 − 20α2,8 6= 0 and 726α2

2,5 − γα5,10 = 0 :

L(e1) is of type : {1, 9, 10 | 19}

1th layer of L(e2) : {1, 0, 0, 0, 0, 0, 0, α5,10

11
, 0,

1

α2
2,5

}

2nd layer of L(e2) : {0,−α2,5,−α2,5, 0, α2,5, α2,5, 0,
2α2

2,5α
2
5,10

121
,−2α5,10

11
}

Case A2
10,1 with γ = 33α2,6 − 20α2,8 6= 0 and 726α2

2,5 − γα5,10 6= 0 :

L(e1) is of type : {9, 10 | 19}

1th layer of L(e2) : {− 660α2
2,5α5,10

726α2
2,5 − γα5,10

, 0, 0, 0, 0, 0, 0,
66α2,5

γ
, 0,

8712α2
2,5

γ2
}

2nd layer of L(e2) : {0,−α2,5,−α2,5, 0, α2,5, α2,5, 0, 1,−
132α2

2,5

γ
}

Case A2
10,4 with 33α2,6 − 20α2,8 = 0 :

L(e1) is of type : {9}
1th layer of L(e2) : {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
2nd layer of L(e2) : {0,−α2,5,−α2,5, 0, α2,5, α2,5, 0, 1,−2}

Case A2
10,4 with γ = 33α2,6 − 20α2,8 6= 0 :

L(e1) is of type : {9, 10 | 19}

1th layer of L(e2) : {0, 0, 0, 0, 0, 0, 0, 66α2
2,5

γ
, 0,

8712α4
2,5

γ2
}

2nd layer of L(e2) : {0,−α2,5,−α2,5, 0, α2,5, α2,5, 0, 1,−
132α2

2,5

γ
}

Case A1
10,1 with 3α2,6 + α2,8 = 0, and α2,6 = 0 :
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L(e1) is of type : {9}

1th layer of L(e2) : {−10α2,5

11
, 0, 0, 0, 0, 0, 0, α5,10, 0, 2α5,10}

2nd layer of L(e2) : {0, 7α2,5, 3α2,5, 2α2,5, α2,5, α2,5,−
11α2,5

5
, α5,10,−2α5,10}

Case A1
10,1 with 3α2,6 + α2,8 = 0, 22α2

2,5 − α2,6α5,10 = 0, and α2,6 6= 0 :

L(e1) is of type : {1, 9, 10 | 19}

1th layer of L(e2) : {1, 0, 0, 0, 0, 0, 0, α5,10

11
, 0,

1

α2
2,5

}

2nd layer of L(e2) : {0, 7α2,5, 3α2,5, 2α2,5, α2,5, α2,5, 0,
2α2

2,5α
2
5,10

121
,−2α5,10

11
}

Case A1
10,1 with 3α2,6 + α2,8 = 0, γ = 22α2

2,5 − α2,6α5,10 6= 0, and α2,6 6= 0 :

L(e1) is of type : {9, 10 | 19}

1th layer of L(e2) : {−20α2
2,5α5,10

γ
, 0, 0, 0, 0, 0, 0,

2α2,5

α2,6
, 0,

8α4
2,5

α2
2,6

}

2nd layer of L(e2) : {0, 7α2,5, 3α2,5, 2α2,5, α2,5, α2,5,−
7γα2,5

5α2,6α5,10

, 1,−4α2
2,5

α2,6

}

Case A1
10,4 with 3α2,6 + α2,8 = 0, and α2,6 6= 0 :

L(e1) is of type : {9, 10 | 19}

1th layer of L(e2) : {0, 0, 0, 0, 0, 0, 0, 2α
2
2,5

α2,6

, 0,
8α4

2,5

α2
2,6

}

2nd layer of L(e2) : {14α2,5, 7α2,5, 3α2,5, 2α2,5, α2,5, α2,5, 0, 1,−
4α2

2,5

α2,6
}

Case A1
10,4 with 3α2,6 + α2,8 = 0, and α2,6 = 0 :

L(e1) is of type : {9}
1th layer of L(e2) : {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
2nd layer of L(e2) : {14α2,5, 7α2,5, 3α2,5, 2α2,5, α2,5, α2,5, 0, 1,−2}

We have L(e10) 6= 0 in all cases, i.e., the constructed ∆–modules are faithful. �
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4.4.2. ∆–modules for n = 11. To shorten the formulas we have set α3,7 = 1 for
λ ∈ A1

11,1 in the result, but not in the calculation. Similarily we have set α2,5 = 1 for

λ ∈ A3
11,1. On the other hand, we could have assumed this by changing the base so that

it stays adapted and satisfies α3,7 = 1 respectively α2,5 = 1.

4.4.6. Theorem. If λ ∈ A11,4 then gλ possesses a faithful ∆–module. If λ ∈ A1
11,1

satisfies α2,6 = 0, α3,9 = 3α2,7 + α2
3,8 then gλ possesses a faithful ∆–module. If λ ∈ A3

11,1

satisfies α2,6 = α3,8/(3α3,7(1 − α3,7)) and

α3,9 =
12α2,7α3,7 + α2

2,6(α3,7 − 1)(3α2
3,7 + 7α3,7 − 1)

4(2 + α3,7)(44)

then gλ possesses a faithful ∆–module. Hence µ(gλ) ≤ 12 for these algebras.

Proof. The constructed faithful ∆–modules of dimension 12 are as follows:

Case A11,4 with γ = 2α2,6 − α4,10 6= 0 :

L(e1) is of type : {9, 10 | 20}

1th layer of L(e2) : {α
2
4,9

γ
, 0, 0, 0, 0, 0, 0, 0, 0, 1,

7α2
4,9

4γ
}

2nd layer of L(e2) : {0, 0, 0, 0, 0,−α4,9,−3α4,9, 0, 0, 0}

Case A11,4 with 2α2,6 − α4,10 = 0 :

L(e1) is of type : {9, 10 | 20}

1th layer of L(e2) : {1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 7
3
}

2nd layer of L(e2) : {0, 0, 0, 0, 0,−α4,9,−3α4,9, 0, 0, 0}

Case A1
11,1 with α2,6 = 0, α3,9 = 3α2,7 + α2

3,8, α3,8 6= 0 :

L(e1) is of type : {9, 10 | 20}

1th layer of L(e2) : {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 6

α3,8
}

2nd layer of L(e2) : {5

2
, 5, 0,−2,−1, 0, 0, 0,− 1

α3,8
,

18

α2
3,8

}

Case A1
11,1 with α2,6 = 0, α3,9 = 3α2,7 + α2

3,8, α3,8 = 0 :
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L(e1) is of type : {10}
1th layer of L(e2) : {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2}

2nd layer of L(e2) : {5

2
, 5, 0,−2,−1, 0, 0, 0, 1,−2}

Case A3
11,1 with (44), α3,8 6= 0 :

L(e1) is of type : {9, 10 | 20}

1th layer of L(e2) : {0, 0, 0, 0, 0, 0, 0, 0, 1, 0,− 4

α2,6
}

2nd layer of L(e2) : {γ1, γ2, γ3, 1 − 2α3,7, 1 − α3,7, 1, 1, 0,
2

α2,6
,

8

α2
2,6

}

Case A3
11,1 with (44), α3,8 = 0 :

L(e1) is of type : {10}
1th layer of L(e2) : {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2}
2nd layer of L(e2) : {γ1, γ2, γ3, 1 − 2α3,7, 1 − α3,7, 1, 1, 0,−2},

γ1 =
2 − 10α3,7 + 16α2

3,7 − 5α3
3,7

2(1 − α2
3,7)

γ2 =
(2 − 5α3,7)(1 − α3,7)

2 + α3,7

γ3 =
2 − 5α3,7

2 + α3,7

�

Note that the Jacobi identity implies that 1 − α2
3,7 6= 0. The constructed modules are

faithful, since L(e11), which depends only on the first two layers of L(e2), is nonzero. To
give an example, consider the first ∆–module constructed for λ ∈ A3

11,1. Here L(e11) is the
zero matrix except for the right upper corner element which is −22/α2,6, hence nonzero.

4.4.7. Remark. The theorem is consistent with the computations from section 3.5.1:
The Lie algebras admitting a nonsingular derivation also admit a faithful ∆–module.



CHAPTER 5

Counterexamples to the Milnor conjecture

5.1. An open problem

In this chapter we will give counterexamples to the Milnor conjecture. The conjecture
may be formulated as follows:

5.1.1. Milnor Conjecture. Every solvable Lie algebra admits an affine structure.

To obtain the counterexamples we construct Lie algebras g of dimension n which
satisfy µ(g) ≥ n + 2. Such Lie algebras do not possess a faithful module of dimension
n + 1 and hence admit no affine structure. In general it is not clear how to find such
algebras.

5.1.2. Problem. Find the Lie algebras g which satisfy µ(g) ≥ n + 2.

We will solve this problem for filiform Lie algebras of dimension n = 10 and n = 11.
We determine all Lie algebras g ∈ Fn(C), n = 10, 11 with µ(g) ≥ n+ 2.

As a corollary we obtain that there are nilpotent Lie groups which do not admit any
left-invariant structure. We will always assume here that K = C. The proof is based on
the study of combinatorical types of faithful ∆–modules and the explicit computation of
∆–modules of a given type. The first step is the following:

5.1.3. Lemma. Let λ ∈ An(C). If gλ has a faithful module M of dimension n+1 then
there also exists a faithful ∆–module for gλ.

Proof. The proof of Proposition 4.1.3 implies that M can be replaced by a faithful
module of dimension n+1 which is nilpotent. Hence we may assume that M is nilpotent.
Then by Lie’s theorem there exists a basis f1, . . . , fn+1 such that L(e1), L(e2) are simul-
taneously strictly upper triangular matrices. Applying suitable base changes which keep
the upper triangular form of both operators we may assume that the entries of L(e1) are
0 or 1 and that in each row and in each column of L(e1) there is at most one nonzero
entry. The suitable base changes are of the form fi 7→ α1if1 + · · · + αiifi. By definition
we obtain a faithful ∆–module. �

Let g ∈ Fn(K). Choose an adapted basis (e1, . . . , en) so that the corresponding law λ
belongs to An(K). If there exists no faithful ∆–module then µ(g) ≥ n+2. Hence we have
reduced the above problem to the study of ∆–modules. Unfortunately we have to classify,
in a certain sense, the faithful ∆–modules because of the lack of a better invariant for
the problem. Clearly this method is not suitable to study the problem in more generality.
Nevertheless it indicates that there should be counterexamples to the Milnor conjecture
in any dimension n ≥ 13. The candidates are certain filiform algebras g where H2(g, K)
does not contain an affine cohomology class. Recall that we write g ∈ A2

n(K) for filiform

69
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Lie algebras which satisfy property (b) and (c), but not (d): g does not contain a one-

codimensional subspace U ⊆ g1 such that [U, g1] ⊆ g4, g
n−4

2 is abelian for n even, and
[g1, g1] is not contained in g6. We propose the following problem:

5.1.4. Open problem. Does a Lie algebra g ∈ A2
n(K), n ≥ 13 satisfy µ(g) ≥ n+ 2 if

and only if there is no affine [ω] ∈ H2(g, K) ?

For n = 13 we have studied the ∆–modules and we believe that the statement is true.
For higher dimensions, however, a classification of ∆–modules is a hopeless approach.

5.1.5. Remark. The condition that g admits an affine structure is not necessarily
equivalent to the fact that µ(g) ≤ dim g + 1.

5.2. Filiform Lie algebras of dimension 10

Any filiform Lie algebra of dimension 10 over C has an adapted basis (e1, . . . , e10) such
that the Lie brackets are given by:

[e1, ei] = ei+1, 2 ≤ i ≤ 9

[e2, e3] = α2,5e5 + α2,6e6 + α2,7e7 + α2,8e8 + α2,9e9 + α2,10e10

[e2, e4] = α2,5e6 + α2,6e7 + α2,7e8 + α2,8e9 + α2,9e10

[e2, e5] = (α2,5 − α3,7)e7 + (α2,6 − α3,8)e8 + (α2,7 − α3,9)e9 + (α2,8 − α3,10)e10

[e2, e6] = (α2,5 − 2α3,7)e8 + (α2,6 − 2α3,8)e9 + (α2,7 − 2α3,9)e10

[e2, e7] = (α2,5 − 3α3,7 + α4,9)e9 + (α2,6 − 3α3,8 + α4,10)e10

[e2, e8] = (α2,5 − 4α3,7 + 3α4,9)e10

[e2, e9] = −α5,10e10

[e3, e4] = α3,7e7 + α3,8e8 + α3,9e9 + α3,10e10

[e3, e5] = α3,7e8 + α3,8e9 + α3,9e10

[e3, e6] = (α3,7 − α4,9)e9 + (α3,8 − α4,10)e10

[e3, e7] = (α3,7 − 2α4,9)e10

[e3, e8] = α5,10e10

[e4, e5] = α4,9e9 + α4,10e10

[e4, e6] = α4,9e10

[e4, e7] = −α5,10e10

[e5, e6] = α5,10e10

The Jacobi identity holds if and only if the parameters {αk,s | (k, s) ∈ I10} satisfy the
following equations:

0 = α5,10(2α2,5 − α3,7 − α4,9)

0 = α4,9(2α2,5 + α3,7) − 3α2
3,7

0 = α5,10(2α2,7 + α3,9) − α4,10(2α2,5 + α3,7) − 3α4,9(α2,6 + α3,8) + 7α3,7α3,8
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To determine the algebras g ∈ F10(C) with µ(g) ≥ n + 2 = 12 it suffices to consider the
laws λ ∈ A10,10, see Remark 4.4.5, defined by:

A10,10 if α3,7 = −α2,5 6= 0

Note that A10,10 is the union of A1
10,1 and A1

10,4. The Jacobi identity holds if and only if

α4,9 = 3α2,5

α4,10 = (α5,10(2α2,7 + α3,9) − α2,5(16α3,8 + 9α2,6))/α2,5

The free parameters are then α2,6, α2,7, α2,8, α2,9, α2,10, α3,8, α3,9, α3,10, α5,10.

5.2.1. Remark. There is a classification of all algebras g ∈ F10(C), see [16]. So we
could compute µ(g) for each isomorphism class. However, it is easier to compute the
invariant µ(gλ) just for all λ ∈ A10,10.

We need the following lemma:

5.2.2. Lemma. Let λ ∈ A10(C) and M be a faithful ∆–module for gλ. Then we may
assume that the combinatorical type of M is one of the following:

(1) ∅
(2) {i} i = 5, . . . , 10
(3) {i, i+ 1} i = 5, . . . , 9
(4) {i, i+ 1 | 10 + i} i = 5, . . . , 9
(5) {i, i+ 1, j | 10 + i} i = 5, 6, 7 j > i+ 2
(6) {i, j, j + 1 | 10 + j} j = 6, 7, 8, 9 i < j − 1

Proof. The module M is given by the linear operators L(e1) and L(e2) which are of
the following form:

L(e1) :=




0 λ1 λ11 . . . λ53 λ55

0 0 λ2 . . . λ51 λ54
...

...
...

. . .
...

...
0 0 0 . . . λ9 λ19

0 0 0 . . . 0 λ10

0 0 0 . . . 0 0




L(e2) :=




0 x1 x11 . . . x53 x55

0 0 x2 . . . x51 x54
...

...
...

. . .
...

...
0 0 0 . . . x9 x19

0 0 0 . . . 0 x10

0 0 0 . . . 0 0




where λi ∈ {0, 1} such that in each row and each column of L(e1) there is at most one
nonzero entry (equal to 1). The module M is faithful iff L(e10) is nonzero. Let n = 10
and

λi,j :=
n∏

k=1
k 6=i,j

λk, λi,j,k :=
n∏

ℓ=1
ℓ 6=i,j,k

λℓ

ri := (−1)n−2

(
n− 2

i− 1

)
, 1 ≤ i ≤ n− 1
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Then L(e10) = (ai,j)1≤i,j≤11 is given as follows: ai,j = 0 except for

a1,n =

n−1∑

i=1

riλi,nxi, a2,n+1 =

n−1∑

i=1

riλ1,i+1xi+1

a1,n+1 =

n−1∑

i=1

riλi,i+1xi+n +

n−1∑

i=1

i−1∑

j=1

riλi+1,j+1,j λj+nxi+1 +

n−1∑

i=1

n−1∑

j=1+1

riλj+1,j,i λj+nxi

Using this formulas we can determine the combinatorical types

type(M) = {N1 | N2 | · · · | Nn}
of M which can yield a faithful module. For the definition of the sets Ni see Definition
4.4.2. If N1 contains more than 3 elements, then L(e10) = 0 and M is not faithful. If
|N1| = 3 then M is not faithful if not {i, i+ 1} ⊆ N1. It is straightforward to check that
the types which can be faithful are given as follows:

(1) ∅
(2) {i}, i = 1, . . . , n+ 1
(3) {i, i+ 1 | N2}, |N2| ≤ 1, i = 1, . . . , n
(4) {1, i | Ni}, |Ni| ≤ 1, i = 3, . . . , n+ 1
(5) {i, n+ 1 | Nn−i}, |Nn−1| ≤ 1, i = 2, . . . , n− 1
(6) {i, i+ 1, j | i+ n | Nk}, |Nk| ≤ 1, i = 1, . . . , n− 3, j > i+ 2
(7) {i, j, j + 1 | j + n | Nk}, |Nk| ≤ 1, i = 3, . . . , n, i < j − 1
(8) {i, i+ 1, i+ 2 | N2}, 1 ≤ |N2| ≤ 2, i = 1, . . . , n− 1

where N2 in case (8) is {i + n} or {i + n + 1} or {i + n, i + n + 1}, and N2 in case
(3) is ∅ or {i + n}. The notation |Ni| ≤ 1 means that Ni is either ∅ or consists of an
element which is uniquely determined by the rule that in each row and column of L(e1)
there is at most one nonzero entry. It is not difficult to see that this list can be reduced
by various arguments, such as adding trivial 1–dimensional modules and possibly going
to the dual module M∗ of M . The type of M∗ results from reflecting the matrix L(e1),
which determines the type of M , on its antidiagonal. For more details see [18],[21]. We
obtain the list of types given above. �

Now we are ready to determine the Lie algebras g ∈ F10(C) with µ(g) ≥ 12:

5.2.3. Theorem. If λ ∈ A10,10 satisfies 3α2,6 +α3,8 6= 0 then gλ has no faithful module
of dimension 11 and hence admits no affine structure. In fact, it holds 12 ≤ µ(gλ) ≤ 22.
For all other choices of λ ∈ A10(C) it holds µ(gλ) ≤ 11.

Proof. Note that α2,6 and α3,8 are free parameters for λ ∈ A10,10. The construction
of faithful ∆–modules in section 4.4 shows the last part of the theorem. Assume that
λ ∈ A10,10, and that gλ has a faithful module M of dimension 11. By Lemma 5.1.3 we
may assume that M is a faithful ∆–module. By Lemma 5.2.2 we may assume that the
combinatorical type of M is one of the list given there. The proof consists of solving
the module equations, which are polynomial equations in the variables xi of L(e2) with
coefficients αi,j of the Lie algebra, for each type of the list. This means a lot of compu-
tations. However, the computation for each type is straightforward and the polynomial
equations involved can be solved using a certain algorithm: one has to solve the equations
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involving the first layer to obtain a typical subsystem of equations with variables from
the second layer of L(e2). After that in general the equations can be solved by applying
a few substitutions. Many types very soon yield a contradiction. As an example for a
more complicated type, let M be of type {10}. If x19 6= 0, then the equations involving
the variables {x1, . . . , x10} immediately yield x1 = x2 = · · · = x8 = 0 and x10 = 0 so that
we obtain the following subsystem in the variables x11, . . . , x14:

0 = −x14x12 + 2x14x11 − x14α2,5 − x13x11 + 3x13α2,5 − 3x12α2,5 + x11α2,5

0 = −4x14x13 + 7x14x12 − x14α2,5 + 5x2
13 − 12x13x12 + 5x13α2,5 + 4x2

12 − 7x12α2,5 + 3α2
2,5

0 = −10x2
14 + 31x14x13 − 6x14x12 + 7x14α2,5 − 25x2

13 + 10x13x12 − 12x13α2,5 − α2
2,5

0 = −50x2
14 + 175x14x13 − 70x14x12 + 101x14α2,5 − 150x2

13 + 120x13x12 − 175x13α2,5

− 24x2
12 + 70x12α2,5 − 49α2

2,5

0 = −10x2
14 + 35x14x13 − 13x14x12 + 8x14α2,5 − 30x2

13 + 22x13x12 − 17x13α2,5

− 4x2
12 + 7x12α2,5 − 4α2

2,5

0 = −40x2
14 + 144x14x13 − 64x14x12 + 94x14α2,5 − 125x2

13 + 110x13x12 − 163x13α2,5

− 24x2
12 + 70x12α2,5 − 48α2

2,5

0 = −10x2
14 + 45x14x13 − 36x14x12 + 11x14x11 + 8x14α2,5 − 45x2

13 + 63x13x12 − 16x13x11

− 24x13α2,5 − 18x2
12 + 6x12x11 + 22x12α2,5 − 5x11α2,5 − 14α2

2,5

A computation by hand or by a computer algebra system using Groebner bases shows
that these equations imply α2,5 = 0. That is a contradiction. The case x19 = 0 is similar.
The following types however lead to faithful ∆–modules

{9}, {1, 9, 10 | 19}, {1, 8, 9 | 18}, {9, 10 | 19}, {8, 9 | 18}
But in all these cases it follows 3α2,6 + α3,8 = 0.
Let now λ ∈ A10,10 with 3α2,6 +α3,8 6= 0. It remains to prove that g = gλ satisfies µ(g) ≤
22. We will construct a faithful g–module as in Theorem 4.3.4. Let U(g) be the universal
enveloping algebra of g together with a basis of ordered monomials eα = eα10

10 . . . eα1

1 and
an order function. Consider

Um(g) = {t ∈ U(g) | ord(t) ≥ m}
It follows that Um(g) is an ideal of U(g) of finite codimension. Let V be the quotient
module U(g)/Um(g). It is a faithful g–module if m is greater than the nilpotency class of
g. If we choose m = 10 then V has vector space basis

{eα10

10 · · · eα1

1 | 9α10 + · · ·+ 2α3 + α2 + α1 ≤ 9}
The elements ei of g act on V by eiej = [ei, ej] + ejei for i < j. Consider the following

quotient module V̂ of V with vector space basis, ordered by weight:

{e10, e9, e25, e8, e5e4, e4e23, e7, e5e3, e5e22, e24, e4e3e2, e4e32, e33, e23e22, e6,
e5e2, e4e3, e4e

2
2, e

2
3e2, e3e

3
2, e

5
2, e5, e4e2, e

2
3, e3e

2
2, e

4
2, e4, e3e2, e

3
2, e3, e

2
2, e2, 1}

The module V̂ is a faithful g–module of dimension 33 with a center Z containing e10.

Taking the quotient module of V̂ by a maximal subspace of Z not containing e10 we
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obtain a faithful g–module of dimension 27. Repeating this procedure finally we obtain a
faithful g–module of dimension 22. �

5.3. Filiform Lie algebras of dimension 11

Any filiform Lie algebra of dimension 11 over C has an adapted basis (e1, . . . , e11) such
that the Lie brackets are given by:

[e1, ei] = ei+1, 2 ≤ i ≤ 10

[e2, e3] = α2,5e5 + α2,6e6 + α2,7e7 + α2,8e8 + α2,9e9 + α2,10e10 + α2,11e11

[e2, e4] = α2,5e6 + α2,6e7 + α2,7e8 + α2,8e9 + α2,9e10 + α2,10e11

[e2, e5] = (α2,5 − α3,7)e7 + (α2,6 − α3,8)e8 + (α2,7 − α3,9)e9

+ (α2,8 − α3,10)e10 + (α2,9 − α3,11)e11

[e2, e6] = (α2,5 − 2α3,7)e8 + (α2,6 − 2α3,8)e9 + (α2,7 − 2α3,9)e10 + (α2,8 − 2α3,10)e11

[e2, e7] = (α2,5 − 3α3,7 + α4,9)e9 + (α2,6 − 3α3,8 + α4,10)e10

+ (α2,7 − 3α3,9 + α4,11)e11

[e2, e8] = (α2,5 − 4α3,7 + 3α4,9)e10 + (α2,6 − 4α3,8 + 3α4,10)e11

[e2, e9] = (α2,5 − 5α3,7 + 6α4,9 − α5,11)e11

[e3, e4] = α3,7e7 + α3,8e8 + α3,9e9 + α3,10e10 + α3,11e11

[e3, e5] = α3,7e8 + α3,8e9 + α3,9e10 + α3,10e11

[e3, e6] = (α3,7 − α4,9)e9 + (α3,8 − α4,10)e10 + (α3,9 − α4,11)e11

[e3, e7] = (α3,7 − 2α4,9)e10 + (α3,8 − 2α4,10)e11

[e3, e8] = (α3,7 − 3α4,9 + α5,11)e11

[e4, e5] = α4,9e9 + α4,10e10 + α4,11e11

[e4, e6] = α4,9e10 + α4,10e11

[e4, e7] = (α4,9 − α5,11)e11

[e5, e6] = α5,11e11

The parameters {αk,s | (k, s) ∈ I11} satisfy the Jacobi identity if and only if the following
equations hold:

0 = α4,9(2α2,5 + α3,7) − 3α2
3,7

0 = α4,10(2α2,5 + α3,7) + 3α4,9(α2,6 + α3,8) − 7α3,7α3,8

0 = α5,11(2α2,5 − α3,7 − α4,9) + α4,9(6α4,9 − 4α3,7)

0 = −α5,11(2α2,7 + α3,9) + α4,11(2α2,5 + α3,7) + 3α4,10(α2,6 + α3,8) − 4α2
3,8

+ 2α4,9(2α2,7 + 3α3,9) − 8α3,7α3,9
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We want to determine the Lie algebras g ∈ F11(C) with µ(g) ≥ 13. Because of Theorem
4.4.6 it is sufficient to consider laws λ ∈ A1

11,1, A3
11,1, i.e., filiform laws λ ∈ A11(C) with

2α2,5 + α3,7 6= 0, α3,7 6= 0, 10α3,7 − α2,5 6= 0,

(2α2
2,5 − 5α2

3,7)(4α
2
2,5 − 4α2,5α3,7 + 3α2

2,7) 6= 0

The equations then imply α2
3,7 6= α2

2,5. The Jacobi identity is satisfied if and only if

α4,9 = 3α2
3,7/(2α2,5 + α3,7)

α4,10 = (7α3,8α3,7 − 3α4,9(α3,8 + α2,6))/(2α2,5 + α3,7)

α4,11 = (α3,9(8α3,7 + α5,11 − 6α4,9) + α2,7(2α5,11 − 4α4,9) − 3α4,10(α2,6 + α3,8)

+ 4α2
3,8)/(2α2,5 + α3,7)

α5,11 = 3α3
3,7(4α2,5 − 7α3,7)/(2(2α2,5 + α3,7)(α

2
2,5 − α2

3,7))

Recall that we may assume α3,7 = 1 for λ ∈ A1
11,1 and α2,5 = 1 for λ ∈ A3

1,11. We obtain
the following result:

5.3.1. Theorem. For λ ∈ A1
11,1 it holds µ(gλ) ≤ 12 iff λ satisfies α2,6 = 0, α3,9 =

3α2,7 + α2
3,8. For λ ∈ A3

1,11 it holds µ(gλ) ≤ 12 iff λ satisfies

α2,6 = 2α3,8/(3α3,7(1 − α3,7))

α3,9 = (12α2,7α3,7 + α2
2,6(α3,7 − 1)(3α2

3,7 + 7α3,7 − 1))/(4(2 + α3,7))

For λ ∈ A11(C) we have 11 ≤ µ(gλ) ≤ 12 except for cases described above where we have
13 ≤ µ(gλ) ≤ 22.

Proof. The construction of faithful ∆–modules in Theorem 4.4.6 shows that 11 ≤
µ(gλ) ≤ 12 for all λ ∈ A11(C) except for cases described above. The other statements can
be proved in the same way as in Theorem 5.2.3. However, the combinatorical types for
∆–modules which have to be studied, are different for n = 11. Here we have the following
result:

5.3.2. Lemma. Let λ ∈ A11(C) and M be a faithful ∆–module for gλ. Then we may
assume that the combinatorical type of M is one of the following:

(1) ∅
(2) {i} i = 6, . . . , 11
(3) {i, i+ 1} i = 6, . . . , 10
(4) {i, i+ 1 | 11 + i} i = 6, . . . , 10
(5) {i, i+ 1, j | 11 + i} i = 6, 7, 8 j > i+ 2
(6) {i, j, j + 1 | 11 + j} j = 6, . . . , 10 i < j − 1

For each type we have to do the analogous computations as for n = 10, only more, to
see if there exists a faithful ∆–module of one of the above types. To construct a faithful

module of dimension 22 take the following quotient module V̂ of V with vector space
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basis:

{e11, e10, e9, e25, e8, e5e4, e4e23, e7, e5e3, e5e22, e24, e4e3e2, e4e32, e33, e23e22, e6,
e5e2, e4e3, e4e

2
2, e

2
3e2, e3e

3
2, e

5
2, e5, e4e2, e

2
3, e3e

2
2, e

4
2, e4, e3e2, e

3
2, e3, e

2
2, e2, 1}

The module V̂ is a faithful g–module of dimension 34 with a center Z containing e10.

Taking the quotient module of V̂ by a maximal subspace of Z not containing e10 we
obtain a faithful g–module of dimension 28. Repeating this procedure finally we obtain a
faithful g–module of dimension 22. �

5.3.3. Remark. The Lie algebras a(r, s, t) which were discussed in [10],[18] are special
cases of algebras gλ with λ ∈ A3

1,11 and

α2,5 = 1

α3,7 = 1 − r

α3,8 = −s
α3,9 = −t

where the other αk,s are zero, except for α4,9, . . . , α5,11 which are polynomials in r, s, t
given by the Jacobi identity.

5.4. Filiform Lie algebras of dimension 12

If λ ∈ A12(C) satisfies 2α2,5 + α3,7 6= 0 then gλ belongs to one of the three classes
A1

12,A
2
12,A

3
12, see section 3.2. According to Theorems 3.3.1 and 3.3.7 all Lie algebras from

the first and second class admit canonical affine structures given by central extensions.
Hence they satisfy µ(g) ≤ n+1 = 13. The situation for n = 12 is different from the cases
n ≥ 13, where algebras from the second class in general do not admit such extensions.
It is therefore interesting to ask whether the Milnor conjecture holds for all g ∈ F12(C).
This is not the case and there exist again counterexamples. Although we will not give a
proof here, we formulate the following result:

5.4.1. Theorem. Let n = 12 and suppose that λ ∈ A3
n(C) satisfies

2α2
2,5 + α2,6α6,12 6= 0

Then µ(gλ) ≥ n+ 2 and gλ does not admit an affine structure.

The proof works as before in dimension 10 and 11. One has to reduce the com-
binatorical types for possible faithful ∆–modules and then solve the polynomial equa-
tions. This requires really a lot of computations, so that we will omit these here. If
2α2

2,5 + α2,6α6,12 = 0 and another condition holds, then we have constructed faithful ∆–
modules of type {11, 12 | 23}.



CHAPTER 6

Deutsche Zusammenfassung

Die vorliegende Arbeit ist affinen Strukturen auf Lie Algebren und Darstellungen
nilpotenter Lie Algebren gewidmet. Der Ursprung affiner Strukturen liegt in den linksin-
varianten affinen Strukturen auf Lie Gruppen. Diese Strukturen spielen eine beson-
dere Rolle für das Studium von Fundamentalgruppen affiner Mannigfaltigkeiten und von
affinen kristallographischen Gruppen. Sie ordnen sich ein in die Theorie kompakter
Mannigfaltigkeiten mit geometrischer Struktur. Beispiele solcher ”geometrischer Man-
nigfaltigkeiten” sind euklidische, hyperbolische, projektive und nicht zuletzt affine Man-
nigfaltigkeiten. Die Fundamentalgruppe einer kompakten vollständigen affinen Mannig-
faltigkeit ist eine affine kristallographische Gruppe, kurz ACG genannt. Sie ist eine
natürliche Verallgemeinerung einer euklidischen kristallographischen Gruppe (ECG), wel-
che eine diskrete Untergruppe der euklidischen Bewegungsgruppe mit kompaktem Quo-
tienten ist. Historisch gesehen haben zuerst Bieberbach und Schönflies um 1911 wichtige
Resultate über solche Gruppen bewiesen. Bieberbach bewies, daß jede ECG eine abelsche
Untergruppe von endlichem Index besitzt, die aus Paralleltranslationen besteht. Außer-
dem zeigte er, daß es in jeder Dimension bis auf Isomorphie nur endlich viele ECG’s
gibt. Das Studium affiner Mannigfaltigkeiten und ACG’s wurde insbesondere durch die
Arbeiten von Auslander [3] und Milnor [63] begründet. Ein natürliches Problem ist die
Verallgemeinerung der Sätze von Bieberbach. Im allgemeinen bleiben diese Sätze nicht
mehr richtig, aber man kann analoge Aussagen formulieren und auch, bis auf einige Aus-
nahmen, beweisen. Eine prominente Ausnahme allerdings stellt die sogenannte Auslander-
Vermutung dar, die besagt, daß jede ACG virtuell polyzyklisch ist, also eine polyzyklische
Untergruppe von endlichem Index besitzt. Diese Vermutung hat auch Milnor beschäftigt,
der gezeigt hatte, daß jede virtuell polyzyklische Gruppe als Fundamentalgruppe einer
vollständigen affinen Mannigfaltigkeit vorkommt. Er fragte, ob man die Mannigfaltigkeit
kompakt wählen kann, und ob die Fundamentalgruppe einer nicht notwendig kompakten
vollständigen affinen Mannigfaltigkeit auch virtuell polyzyklisch sein muß. Die letztere
Aussage wäre eine Verallgemeinerung der Auslander-Vermutung. Sie gilt aber nicht, wie
Margulis 1983 gezeigt hat. Die Auslander-Vermutung bleibt hingegen weiterhin offen.
Milnor betrachtete in diesem Zusammenhang linksinvariante affine Strukturen auf Lie
Gruppen. Diese liefern zum einen wichtige Beispiele affiner Mannigfaltigkeiten, denn
der Quotient einer solchen Lie Gruppe nach einer diskreten Untergruppe wird zu einer
vollständigen Mannigfaltigkeit, zum anderen ist auch eine virtuell polyzyklische Gruppe
virtuell in einer zusammenhängenden Lie Gruppe enthalten. Milnor stellte in seiner Ar-
beit [64] von 1977 die folgende Frage:

Läßt jede auflösbare Lie Gruppe eine vollständige affine Struktur zu, oder anders gefragt,
läßt jede einfach zusammenhängende auflösbare Lie Gruppe eine einfach transitive Ope-
ration zu durch affine Transformationen auf einem Rn ?

77
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Zu dieser Zeit waren nur Spezialfälle bekannt, in denen die Antwort positiv ist. Auslander
hatte bewiesen, daß umgekehrt jede Lie Gruppe mit vollständiger linksinvarianter affiner
Struktur auflösbar sein muß. Viele Mathematiker glaubten, daß Milnors Frage zu beja-
hen sei. Das Problem wurde als die Milnor-Vermutung bekannt. Sie läßt sich auch rein
algebraisch formulieren. Dann ist die Frage, ob jede auflösbare Lie Algebra eine gewisse
algebraische Struktur, die wir affin nennen werden, zuläßt. In der Folgezeit erschienen
viele Artikel, die eine positive Antwort zu beweisen suchten. Tatsächlich wurden mehrere
sogenannte Beweise veröffentlicht. Seit 1993 sind allerdings Gegenbeispiele in Dimension
11 von Benoist, von Grunewald und dem Autor selbst bekannt. In dieser Arbeit geben wir
in systematischer Weise neue Gegenbeispiele auf dem Lie Algebra Niveau mit kürzeren
Beweisen:

Theorem. Es gibt filiform nilpotente Lie Algebren der Dimension 10 ≤ n ≤ 12,
die keine affine Struktur zulassen. Andererseits besitzen alle filiformen Lie Algebren der
Dimension n ≤ 9 eine affine Struktur.

Eine Lie Algebra g der Dimension n über einem Körper K heißt filiform nilpotent,
wenn sie nilpotent der Stufe p = n − 1 ist, also gp = 0 und gp−1 6= 0 gilt. Hierbei ist
g0 = g, gk = [gk−1, g] für k ≥ 1. Das Prinzip der Gegenbeispiele beruht darauf, daß wir
filiforme Algebren der Dimension n bestimmen, die keinen treuen Modul der Dimension
n+1 besitzen. Da jede Lie Algebra einer Lie Gruppe mit linksinvarianter affiner Struktur
einen solchen Modul aber besitzen muß, erhalten wir Gegenbeispiele zur Milnorschen
Vermutung. Es ist aber keineswegs klar, wie man solche Lie Algebren finden kann.

Die Arbeit ist wie folgt aufgebaut. In Kapitel 1 geben wir einen Überblick über den
Hintergrund der Milnor-Vermutung. Wir werden erklären wie die Milnor-Vermutung rein
algebraisch formuliert werden kann. Dann leiten wir Folgerungen aus unseren Gegen-
beispielen für die Darstellungen von Lie Algebren und für endlich erzeugte nilpotente
Gruppen ab.

In Kapitel 2 tragen wir alle nötigen algebraischen Voraussetzungen zusammen, die
zum Studium der Milnor-Vermutung gebraucht werden. Wir behandeln Lie Algebra Ko-
homologie und Deformationstheorie von Lie Algebren, die wir anwenden, um die Existenz
gewisser adaptierter Basen für filiforme Lie Algebren zu zeigen.

In Kapitel 3 beweisen wir notwendige und hinreichende Kriterien für die Existenz
affiner Strukturen auf Lie Gruppen und Lie Algebren. Unter anderem beweisen wir fol-
gende Kriterien:

Theorem. Sei g eine filiforme Lie Algebra, die eine Erweiterung

0 → z(h)
ι−→ h

π−→ g → 0

besitzt mit einer Lie Algebra h und deren Zentrum z(h). Dann läßt g eine affine Struktur
zu.

Theorem. Sei g eine filiforme Lie Algebra über einem Körper K, so daß es eine
affine Kohomologieklasse [ω] ∈ H2(g, K) gibt. Dann läßt g eine affine Struktur zu.

Hierbei heißt ein 2–Kozykel ω : g∧g → K affin, wenn er auf z(g)∧g nicht verschwindet.
In diesem Fall haben alle Elemente der Klasse [ω] ∈ H2(g, K) diese Eigenschaft und die
Klasse heißt dann affin. Die Umkehrung der obigen Theoreme gilt im allgemeinen aller-
dings nicht. Um diese Kriterien anwenden zu können, bestimmen wir für alle filiformen
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Lie Algebren der Dimension n ≤ 11 explizit die Kohomologiegruppen H2(g, K). Alle
expliziten Rechnungen sind hier, und in der ganzen Arbeit, mit dem Computeralgebra
System Reduce ausgeführt und überprüft worden.

Diese Daten sind auch für das Studium der Betti Zahlen nilpotenter Lie Algebren
nützlich. Im Studium affiner Strukturen auf Lie Algebren treten neue Phänomene in
höheren Dimensionen auf, nämlich für n ≥ 12. Wir studieren die filiformen Lie Alge-
bren g der Dimension n ≥ 12 mit den folgenden Eigenschaften: g enthält keinen 1–
kodimensionalen Teilraum U ⊇ g1 mit [U, g1] ⊆ g4, und g(n−4)/2 ist abelsch, sofern n
gerade ist. Dabei ist g1 = [g, g] und gi = [gi−1, g]. Diese Algebren zerfallen in natürlicher
Weise in zwei verschiedene Klassen, nämlich je nach dem, ob [g1, g1] ⊆ g6 gilt oder nicht.
Wir bezeichen diese beiden Klassen mit A1

n(K) and A2
n(K). Für die erste Klasse gilt

folgende Erweiterungseingenschaft:

Theorem. Sei g ∈ A1
n(K), n ≥ 12. Dann hat g eine Erweiterung

0 → z(h)
ι−→ h

π−→ g → 0

mit einer Lie Algebra h ∈ A1
n+1(K). Damit besitzt g eine affine Structur.

Das Theorem gilt auch für g ∈ A2
12(K), aber im allgemeinen nicht mehr für g ∈

A2
n(K), n ≥ 13. Hier hat H2(g, K) entweder die Dimension 2 oder 3. Wenn die Dimen-

sion gleich 2 ist, kann es keine affine Kohomologieklasse geben. Komplementär zu diesen
Ergebnissen, also für n ≤ 11, studieren wir die Existenz affiner Strukturen auf allen filifor-
men Lie Algebren g ∈ Fn(K). Dazu wenden wir verschiedenste Konstruktionsprinzipien
für affine Strukturen an.

In Kapitel 4 studieren wir ein sehr interessantes Problem über den Satz von Ado,
welches direkt im Zusammenhang mit der Milnor Vermutung auftaucht. Für eine endlich-
dimensionale Lie Algebra g sei µ(g) die minimale Dimension eines treuen g–Moduls. Das
ist eine Invariante von g, die endlich ist nach dem Satz von Ado, und die man nicht
so leicht bestimmen kann, besonders nicht für auflösbare und nilpotente Lie Algebren.
Man möchte obere Schranken für g finden, insbesondere eine lineare Schranke in der
Dimension von g. Falls g ein triviales Zentrum hat, gilt µ(g) ≤ dim g. Wenn g eine affine
Struktur zuläßt, dann folgt µ(g) ≤ dim g + 1. Im allgemeinen ist nicht bekannt, ob µ(g)
polynomial in der Dimension von g wächst oder nicht. Nachdem Birkhoff schon 1937 eine
Schranke für die minimale Dimension treuer Moduln nilpotenter Lie Algebren angegeben
hatte, verbesserte Reed diese Schranke 1969. Er zeigte µ(g) < 1 + nn für nilpotente Lie
Algebren der Dimension n. Dabei benutzte auch er die universelle Einhüllende von g wie
Birkhoff. Wir können diese Schranke verbessern:

Theorem. Es gilt µ(g) < 3√
n
2n für eine nilpotente Lie Algebra der Dimension n.

Die für affine Strukturen relevante Schranke µ(g) ≤ n + 1 ist allerdings wesentlich
schärfer. Wir bestimmen später alle filiformen Lie Algebren der Dimension n ≤ 11 über C,
die diese Schranke erfüllen. Für spezielle Klassen von Lie Algebren können wir µ(g) auch
explizit ausrechnen. Die Ergebnisse sind selbst in einfachen Fällen nicht offensichtlich.
Betrachtet man etwa abelsche Lie Algebren, so erhalten wir:

Theorem. Sei g eine abelsche Lie Algebra der Dimension n über einem beliebigen
Körper K. Dann gilt µ(g) = ⌈2

√
n− 1⌉.
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Hierbei ist ⌈x⌉ die kleinste ganze Zahl, die größer oder gleich x ist.
In Kapitel 5 kommen wir dann zu den Gegenbeispielen für n ≤ 11. Wir stellen auch

neue Gegenbeispiele in Dimension 12 vor, nämlich gewisse filiforme Lie Algebren g mit
den folgenden Eigenschaften: g enthält keinen 1–kodimensionalen Teilraum U ⊇ g1 mit
[U, g1] ⊆ g4, und g4 is nicht abelsch.

Der Beweis beruht auf der expliziten Klassifikation aller treuen ∆–Moduln. Diese
Methode ist allerdings ungeeignet, das Problem in größerer Allgemeinheit zu studieren.
Es muß offen bleiben, wie man die Lie Algebren mit µ(g) ≥ dim g + 2 bestimmen kann.
Nach den Ergebnissen meiner Arbeit denke ich, daß die folgende Frage, die immerhin für
n = 13 wahr ist, interessant ist:

Offenes Problem. Sei g ∈ A2
n(K), n ≥ 13. Gilt µ(g) ≥ n+ 2 dann und nur dann,

wenn es keine affine Kohomologieklasse [ω] in H2(g, K) gibt ?
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