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Let Ln(C) be the variety of complex n–dimensional Lie algebras. The group GLn(C) acts on it via

change of basis. An orbit O(µ) under this action consists of all structures isomorphic to µ . The

aim of this paper is to give a complete classification of orbit closures of 4-dimensional Lie algebras, i.e.,

determining all µ ∈ O(λ) where λ ∈ L4(C). Starting with a classification of complex Lie algebras of

dimension n ≤ 4 , we study the behaviour of several Lie algebra invariants under degeneration, i.e. under

transition to the orbit closure. As a corollary, we will show that all degenerations in L3(C) can be realized

via a one–parameter subgroup, but this is not the case in L4(C).

1. Introduction

Let g be a Lie algebra of dimension n over a field K . Then g determines a multiplica-
tion table relative to each basis {e1, . . . , en}. If [ei, ej] =

∑n
k=1 γk

i,jek , then (γk
i,j) ∈ Kn3

is called a structure for g and the γk
i,j the structure constants of g. The elements of

Ln(K) are exactly the Lie algebra structures. They form an affine algebraic variety and
the group GLn(K) acts on Ln(K) by (g ∗ µ)(x, y) = g(µ(g−1(x), g−1(y))) . The orbits
under this action are the isomorphism classes. We say that λ degenerates to µ or µ
is a degeneration of λ , if µ is in the Zariski closure of the orbit of λ . We denote this
by µ ∈ O(λ) or λ →deg µ . The degeneration is nontrivial if µ lies in the boundary of
O(λ) . The classification of orbit closures of a given Lie algebra in general is not known.
All the orbit closures of a given dimension have been determined only in low dimensions
for nilpotent Lie algebras [GRH], [SEE]. Special kinds of degenerations, namely contrac-

tions, have been studied by physicists [LEV]. It is useful to study degenerations which can
be realized via one–parameter subgroups. It has been asked whether every degeneration
in Ln can be realized via a 1–PSG. This turns out to be true for n ≤ 3 but does
not hold for n = 4 [STE]. In the case of nilpotent Lie algebras, however, it is true for
all n < 7 . Nevertheless it does not hold in general: recently the first author discovered
counterexamples for any dimension n ≥ 7 [BUR].
In this paper we classify all possible degenerations of Lie algebra structures in L4(C), i.e.
we determine the Zariski closure of all Lie algebras λ ∈ L4(C).

Mathematics subject classification 17B05, 17B30, 14L30 .
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2. Preliminaries

A point in Ln(K) is a Lie algebra structure which can be identified with the bilinear
skew–symmetric mapping λ : g ⊗ g → g defining the Lie bracket on g . Since the Jacobi
identity and the antisymmetry are defined by polynomial conditions, i.e. by (n3 − n)/6
algebraic equations, Ln(K) is an affine algebraic subvariety of Hom(Λ2V, V ) . GLn(K)
acts on Ln(K) via change of basis, i.e. by (g ∗µ)(x, y) = g(µ(g−1(x), g−1(y))) . An orbit
O(µ) under this action consists of all structures in a single isomorphism class. We recall
the following definitions:

Definition 1. A Lie algebra λ is said to degenerate to another Lie algebra µ , if µ
is represented by a structure which lies in the Zariski closure of the GLn(K)–orbit of a
structure which represents λ . In this case the entire orbit O(µ) lies in the closure of
O(λ) . We denote this by λ →deg µ .

Definition 2. A degeneration λ →deg µ is called a one–parameter subgroup degeneration

( 1–PSG) if it can be realized by a group homomorphism g : K∗ → GLn(K), t 7→ gt such
that µ = limt→0 gt ∗ λ .

Example 1. Any n–dimensional Lie algebra λ degenerates to the abelian Lie algebra
Kn : Let gt = t−1En , where En is the identity matrix. Then we have (gt ∗ λ)(x, y) =
t−1λ(tx, ty) = tλ(x, y) , hence limt→0 gt ∗ λ = Kn .

Remarks:

(1) The notion of a 1–PSG degeneration is independent of the choice of a basis.

(2) For K = C it is known that the usual analytic topology on Cn3

leads to the same
degenerations as does the Zariski topology. Therefore the following condition will
imply that λ →deg µ : ∃ gt ∈ GLn(C(t)) such that limt→0 gt ∗ λ = µ. Here C(t)
is the field of fractions of the polynomial ring C[t] .

(3) The notion of degeneration is transitive: If λ →deg µ , µ →deg ν , then λ →deg ν .
(4) Let Z(λ) denote the center of the Lie algebra λ , [λ, λ] the commutator subalgebra

of λ, λ(i) the ith derived commutator ideal, ab(λ) the dimension of a maximal
abelian subalgebra of λ and rank(λ) the rank of λ.

The following Lemma is well known and will be used for determining the orbit closures in
L4(C).

Lemma 1. Let λ →deg µ be a nontrivial degeneration. Then the following inequalities

hold:

(1) dim O(λ) > dim O(µ)
(2) dim Der(λ) < dimDer(µ)
(3) dim[λ, λ] ≥ dim[µ, µ]
(4) dim Z(λ) ≤ dim Z(µ)
(5) ab(λ) ≤ ab(µ)

2



(6) If λ is solvable of step k , then µ is solvable of step ≤ k . The same holds for

nilpotent Lie algebras. In that case, dim λ(i) ≥ dim µ(i) where λ(1) = λ, λ(i+1) =
[λ, λ(i)] .

The proof (which may be found in [STE],[SEE],[GRH]) uses the following important fact:

Let B be a Borel subgroup of GLn(K) and G be a complex reductive algebraic group

acting rationally on some algebraic set X . Let B be a Borel subgroup of G . Then

G ∗ x = G ∗ (B ∗ x) for all x ∈ X . [GRH]

The statements (1) and (2) are equivalent since we have dimO(λ) = (dim λ)2 −
dim Der(λ) . For the subvariety Nn(K) of Ln(K) consisting of nilpotent Lie algebras
and λ, µ ∈ Nn one can use the following fact: If λ →deg µ and λ lies in a B–stable
closed subset R ⊂ Nn , then µ must also be represented by a structure in R .

Two results on 1–PSG’s are the following Propositions:

Proposition 1. If λ →deg µ via a 1–PSG then µ is the associated Z–graded Lie

algebra given by the filtration on λ induced by gt . Conversely, if µ is the associated

graded Lie algebra given by some filtration on λ then λ →deg µ via a 1–PSG.

Proposition 2. Every degeneration λ →deg µ of nilpotent Lie algebras in Nn(C)
can be obtained via a one–parameter subgroup for n < 7 , but not for n ≥ 7 . Every

degeneration in L3(C) can be realized via a 1–PSG, but this is not the case in L4(C) .

Proposition 1 is proved in [GRH]; the result for Nn(C) in Proposition 2 is proved in
[BUR]. The last part will follow from our classification results in section 4 .

3. Classification of complex Lie algebras up to dimension 4

In contrast to the semisimple case, the classification of solvable Lie algebras has not been
achieved in general. Most results concern solvable Lie algebras of dimension n < 7 . The
classification for n ≤ 3 is well known [JAC]; in dimension 4 there exists a classification
over a perfect field K [PAZ]. Over the field of real numbers the classification has been
obtained up to dimension 6 , see [TUR] and the references cited therein. The complex
and real nilpotent Lie algebras of dimension n = 7 have been classified in [ROM]. For our
purpose we need a list in dimension 4 over C , such that every Lie algebra is isomorphic
to exactly one algebra of the list. The lists for K = C we found in the literature un-
fortunately contain some errors. The list in [PAZ] is incomplete over C because of some
surplus parameter restrictions. The list in [MUB] is over the field of real numbers and one
has to find the isomorphisms over C . The result of checking the details is the following:

Lemma 2. Every complex 3–dimensional Lie algebra is isomorphic to one and only one

Lie algebra of the following list:
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g Lie brackets

C3 –

n3(C) [e1, e2] = e3

r2(C) ⊕ C [e1, e2] = e1

r3(C) [e1, e2] = e2, [e1, e3] = e2 + e3

r3,λ(C) [e1, e2] = e2, [e1, e3] = λe3 , λ ∈ C
∗, |λ| ≤ 1

sl2(C) [e1, e2] = e3, [e1, e3] = −2e1, [e2, e3] = 2e2

We have r3,λ(C) ∼= r3,µ(C) iff µ = λ−1 , or µ = λ . Hence, for |λ| = 1 , we have to
parametrize λ = eiθ with θ ∈ [0, π] .

Lemma 3. Every complex 4–dimensional Lie algebra is isomorphic to one and only one

Lie algebra of the following list:

g Lie brackets

C4 –

n3(C) ⊕ C [e1, e2] = e3

r2(C) ⊕ C
2 [e1, e2] = e1

r3(C) ⊕ C [e1, e2] = e2, [e1, e3] = e2 + e3

r3,λ(C) ⊕ C [e1, e2] = e2, [e1, e3] = λe3 , λ ∈ C, 0 < |λ| ≤ 1

r2(C) ⊕ r2(C) [e1, e2] = e1, [e3, e4] = e3

sl2(C) ⊕ C [e1, e2] = e3, [e1, e3] = −2e1, [e2, e3] = 2e2

n4(C) [e1, e2] = e3, [e1, e3] = e4

g1(α) [e1, e2] = e2, [e1, e3] = e3, [e1, e4] = αe4 , α ∈ C∗

g2(α, β) [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = αe2 − βe3 + e4 ,
α ∈ C∗, β ∈ C or α, β = 0

g3(α) [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = α(e2 + e3) , α ∈ C∗

g4 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e2

g5 [e1, e2] = 1
3e2 + e3, [e1, e3] = 1

3e3, [e1, e4] = 1
3e4

g6 [e1, e2] = e2, [e1, e3] = e3, [e1, e4] = 2e4, [e2, e3] = e4

g7 [e1, e2] = e3, [e1, e3] = e2, [e2, e3] = e4

g8(α) [e1, e2] = e3, [e1, e3] = −αe2 + e3, [e1, e4] = e4, [e2, e3] = e4 , α ∈ C
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Proof: The classification up to dimension 3 can be found in many books on Lie algebras,
see for example [JAC]. Lemma 3 is proved in [STE] and we will only outline the main
steps: First, up to isomorphism there is only one complex non-solvable Lie algebra in L4 ,
namely sl2(C) ⊕ C. Secondly, we take the list of all solvable Lie algebras in dimension
4 given in [PAZ], but drop the parameter restrictions given there. Over the complex
numbers we check whether there are isomorphic algebras within each family of parameters
or between all other families. That will give our above list. We test our result by comparing
it with the list given in [MUB] over R . Each Lie algebra given there is isomorphic over
C to exactly one in our list. Comparing with the list (including parameter-restrictions)
in [PAZ] we see that there are two Lie algebras for which the parameter restrictions given
in [PAZ] are too strong.

4. Degenerations of Lie algebras in dimension 3 and 4

In this section we will determine the orbit closures of the Lie algebras of Lemma 2 and
3 . In order to decide which Lie algebra structures are lying in the boundary of a given
orbit O(λ) one has to consider several isomorphism invariants which behave well under
degeneration. Since the orbits are path-connected we know that µ ∈ O(λ) implies O(µ) ⊆
O(λ). We use these invariants to determine first the Lie algebra structures which do not

belong to the orbit closure of a given orbit O(λ) : If µ has an invariant which does
not satisfy a certain condition with the corresponding invariant of λ , then µ cannot
belong to O(λ) . A good example of such an invariant is the dimension of the commutator
subalgebra, see Lemma 1 . If dim[λ, λ] < dim[µ, µ] , then µ is not in the orbit closure of
λ . The invariance arguments used here are given below. For the Lie algebra structures
which cannot be excluded by these arguments we try to construct an appropiate matrix
gt ∈ GLn(C(t)) which realizes the degeneration by λ = limt→0 gt ∗ µ.

Invariance arguments:

(1) Lemma 1 .
(2) Let µ ∈ Ln(C) and {e1, . . . , en} a basis of µ . If tr(ad ei) = 0 for all i , then

tr(ad xi) = 0 for all λ ∈ O(µ) and each basis {x1, . . . , xn} of λ .
(3) If λ ∈ Ln(C) is rigid, i.e., has an open orbit then no other µ ∈ Ln(C) degenerates

to λ , i.e. λ /∈ O(µ) for all µ ∈ Ln(C) with µ 6= λ.
(4) Let κλ denote the Killing form of λ ∈ Ln(C). If κλ = (0) , then κµ = (0) for all

µ ∈ O(λ).
(5) Let µ = (γi) ∈ Ln(C) with structure constants γ1, . . . , γr and (i, j) be a pair of

positive integers such that

cij(µ) :=
tr(adx)i · tr(ad y)j

tr((adx)i ◦ (ad y)j)

is independent of the Lie algebra elements x, y (i.e., the nominator polynomial and the
denominator polynomial in the structure constants coincides). Then cij(µ) = cji(µ)
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is a quotient of two polynomials in C[γ1, . . . , γr] . If neither of these polynomials
is zero, we call ci,j ∈ C(γ1, . . . , γr) an (i, j) − invariant of µ . It is clearly an
isomorphism invariant of µ . Suppose µ ∈ Ln(C) has an (i, j) – invariant cij(µ) .

Then all λ ∈ O(µ) have the same (i, j) – invariant.
(6) Let µ = (γi) ∈ Ln(C) be as in (5) and assume that either tr(adx)i · tr(ad y)j = 0

or tr((adx)i ◦ (ad y)j) = 0 ∀ x, y ∈ µ and some pair (i, j) . Then these equations
hold for all λ ∈ O(µ).

Example 2. If µ is not nilpotent, the invariant cij(µ) defined in (5) exists quite often,
e.g., cij(r2 ⊕ C2) = 1, cij(r3 ⊕ C) = 2, cij(g5) = 3, cij(g6) = (2i + 2)(2j + 2)/(2i+j + 2)
and

cij(r3,λ ⊕ C) = 1 +
λi + λj

λi+j + 1
, cij(g1(α)) =

(αi + 2)(αj + 2)

αi+j + 2

for all i, j . There are also nice invariants for g2(α, β), g3(α), g8(α). The algebra g4 has
an (i, j) – invariant (equal to 3 ) if and only if i, j ≡ 0(3), and c2i,2j(g7) = 2 . On the
other hand, r2 ⊕ r2 and sl2 ⊕ C have no (i, j) – invariant.

Proposition 4. The orbit closures in dimension 3 are as follows:

g O(g)

C3 C3

n3(C) n3(C), C
3

r2(C) ⊕ C r2(C) ⊕ C, n3(C), C3

r3(C) r3(C), r3,1(C), n3(C), C3

r3,λ6=1(C) r3,λ6=1(C), n3(C), C3

r3,1(C) r3,1(C), C3

sl2(C) sl2(C), r3,−1(C), n3(C), C
3

The possible degenerations are summarized in the following diagram:

r3,λ2 6=1(C) r2(C) ⊕ C

? �
�

�
+ ?

sl2(C) - n3(C) - C3 � r3(C)
Q

Q
Qs

6 6
�

�
�

+
r3,−1(C) r3,1(C)
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Recall that degeneration is transitive. If A → B and B → C is drawn in the diagram,
then A → C can be be drawn also. However, to keep the diagram reasonably simple we
have sometimes omitted the arrow A → C .

Proof: We carry out the arguments for the Lie algebra µ = r2(C) ⊕ C . All other cases
are similar. First, the orbit closure of µ contains µ itself and the abelian Lie algebra
C3 , see Example 1 . Since µ has an one–dimensional commutator, all Lie algebras with
higher–dimensional commutator cannot be contained in the orbit closure. That excludes
r3(C), r3,λ(C), sl2(C) . The only Lie algebra remaining is n3(C) . It is not difficult to see
that

lim
t→0

gt ∗ µ ∼= n3(C) with gt =





1 0 0
1 t−1 0

t−1 0 1





Hence n3(C) is contained in the orbit closure of µ .

Proposition 5. The orbit closures in dimension 4 are as follows:
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g O(g)

C
4

C
4

n3 ⊕ C n3 ⊕ C, C
4

n4 n4, n3 ⊕ C, C
4

r2 ⊕ C
2 r2 ⊕ C

2, n3 ⊕ C, C
4

r3 ⊕ C r3 ⊕ C, r3,1 ⊕ C, n4, n3 ⊕ C, C
4

r
3,λ2 6=1

⊕ C r
3,λ2 6=1

⊕ C, n4, n3 ⊕ C, C
4

r3,1 ⊕ C r3,1 ⊕ C, n3 ⊕ C, C
4

r3,−1 ⊕ C r3,−1 ⊕ C, n4, n3 ⊕ C, C
4

r2 ⊕ r2 r2 ⊕ r2, g8(0), g2(0, 0), r3,λ6=0 ⊕ C, r3 ⊕ C

r2 ⊕ C
2, n4, n3 ⊕ C, C

4

g1(1) g1(1), C
4

g1(α), α 6= 1 g1(α), α 6= 1, n3 ⊕ C, C
4

g2(α, β), α 6= 0 g2(α, β), α 6= 0, n4, n3 ⊕ C, C
4

(α, β) = (1/27, 1/3) : g5

(α, β) = (γ/(γ + 2)3, (2γ + 1)/(γ + 2)2) : g1(γ)

g2(0, 0) g2(0, 0), r2 ⊕ C
2, n4, n3 ⊕ C, C

4

g3(α) g3(α), n4, n3 ⊕ C, C
4

α = 27/4 : g1(−2)

g4 g4, n4, n3 ⊕ C, C
4

g5 g5, g1(1), n3 ⊕ C, C
4

g6 g6, g1(2), n3 ⊕ C, C
4

g7 g7, r3,−1 ⊕ C, n4, n3 ⊕ C, C
4

g8(0) g8(0), r3 ⊕ C, r3,1 ⊕ C, n4, n3 ⊕ C, C
4

g8(α), α 6= 0 g8(α), α 6= 0, g2(α/8, (1 + α)/4), n4, n3 ⊕ C, C
4

α = 1/4 : g6, g1(2)

sl2 ⊕ C sl2 ⊕ C, g7, r3,−1 ⊕ C, n4, n3 ⊕ C, C
4

Proof: The degenerations in the 4 – dimensional case are very complicated because of
the wealth of solvable Lie algebras with parameters. The table shows the result of the
classification of orbit closures. For example, the orbit closure of g3(α) contains for all α
the algebras g3(α), n4, n3 ⊕ C and C4 . In the special case α = 27/4 there is one more
algebra contained in the orbit closure: g1(−2) .
We will carry out the proof for µ = r3,λ ⊕C where λ 6= 1,−1 is fixed but arbitrary. The
complete proof may be found in [STE]. As before, µ and C4 are contained in the orbit
closure. Since µ has a 2 –dimensional commutator subalgebra we can apply Lemma 1 ,
part (3) to exclude the following algebras: g1(α), g3(α), g4, g5, g6, g7, sl2 ⊕ C, g2(α, β)
with (α, β) 6= (0, 0) and g8(α) with α 6= 0 .
Next we compute that dim Der(µ) = 6 . By Lemma 1 , part (2) we know that algebras
λ with dim Der(λ) ≤ 6 except µ itself cannot be contained in the orbit closure of µ . We
have dim Der(r2 ⊕ r2) = 4 , dimDer(g8(0)) = 5 and dim Der(g2(0, 0)) = dimDer(r3 ⊕
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C) = 6 . Also dim Der(r3,λ′) = 6 for λ′ 6= 1 . Hence all algebras r3,λ′ except for λ = λ′

are not contained in the orbit closure of µ . If λ 6= i,−i , then µ has an (1, 1) – invariant

c11(µ) =
(λ + 1)2

λ2 + 1

The algebra r3,1 ⊕C has an (1, 1) – invariant c′11 = 2 . By the invariance argument (5)
we see that r3,1 ⊕ C is not contained in the orbit closure of µ . Otherwise c11(µ) = 2 ,
i.e., λ = 1 . This is a contradiction. However, if λ = i,−i the argument fails. But then
the Killing form of µ is identical to zero in contrast to the Killing form of r3,1 ⊕C . The
algebra r2 ⊕ C2 has an (1, 1) – invariant c′11 = 1 . Again this shows that the algebra is
not contained in the orbit closure of µ since c11 = 1 means λ = 0 , a contradiction. For
λ = i,−i the argument with the Killing form applies.

Finally there are only two algebras left: n4 and n3 ⊕ C . Both algebras belong to the
orbit closure of µ . A computation shows

lim
t→0









t−1 0 0 0
0 1 0 0
0 1

t(1−λ)
1

t(λ−1) 0

0 1
t2(1−λ)

1
t2λ(λ−1)

−1
tλ









∗ µ ∼= n4

and

lim
t→0







t−1 0 0 0
0 t 0 0
0 1

1−λ
1 0

0 0 0 1






∗ µ ∼= n3 ⊕ C

This finishes the proof.

Remark: It is very difficult to summarize the degenerations in dimension 4 in a diagram.
However, degeneration trees starting from a particular algebra illustrate the classification
result. Consider the rigid algebras in L4(C) , namely sl2 ⊕C, r2 ⊕ r2 . The degeneration
tree of sl2 ⊕ C has no branches:

sl2 ⊕ C - g7
- r3,−1 ⊕ C - n4

- n3 ⊕ C - C4

The degeneration tree of r2 ⊕ r2 is as follows:
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g2(0, 0) � r2 ⊕ r2 - g8(0)

�
�

�
+ �

�
�

+
Q

Q
Qs

Q
Q

Qs
r2 ⊕ C2 r3,−1 ⊕ C r3,λ2 6=1 ⊕ C r3 ⊕ C

Q
Q

Qs
Q

Q
Qs �

�
�

+ �
�

�
+

n3 ⊕ C � n4
� r3,1 ⊕ C

Q
Q

Qs �
�

�
+

C4

Proposition 6. In L4(C) we have r2⊕r2 →deg n4 . This degeneration cannot be realized

via a 1 –PSG.

Proof: Let µ = r2 ⊕ r2 . By Proposition 5 we know that n4 ∈ O(µ) . Indeed, one can
easily check that

gt :=







1 0 0 0
t−2 −t−3 0 0

−2t−1 t−2 1 0
−t−4 1−t2

t5
−t−1 t−3







is a matrix with: limt→0 gt ∗ µ = n4. Assume that the degeneration can be realized via a
1 –PSG. According to Proposition 2 , n4 is the associated graded Lie algebra given by
some filtration on µ . Such a filtration is a family of subspaces (Vi)i∈Z such that Vk ⊃ Vl

for all k ≤ l and [Vj , Vk] ⊆ Vj+k for all j, k ∈ Z . The associated graded Lie algebra is
given by

gr(µ) =
⊕

j

Vj/Vj+1

and Lie brackets [x + Vi+1, y + Vj+1] = [xy] + Vi+j+1 for x ∈ Vi and y ∈ Vj . Since
µ is 4 –dimensional, a filtration on µ can have 2, 3 or 4 terms. First assume that
the filtration has length four: µ = Vi+4 ⊃ Vi+3 ⊃ Vi+2 ⊃ Vi+1 ⊃ Vi = 0 . Let Vi+j be
generated by f1, . . . , fj and let e1, e2, e3, e4 be the standard basis of µ with [e1, e2] = e1

and [e3, e4] = e3. Then fj =
∑4

i=1 αijei with αij ∈ C . Let A := (αij)i,j . Then
det(A) 6= 0 since {f1, f2, f3, f4} is also a basis of µ . By assumption gr(µ) is isomorphic
to n4 . In fact, we may assume gr(µ) = n4 , i.e. [f̄2, f̄4] = f̄1 and [f̄3, f̄4] = f̄2 .
Rewriting these conditions with respect to the basis {e1, e2, e3, e4} we obtain α11α22 −
α12α21 = α11α23−α13α21 = α11α41−α21α14 = α12α23−α13α22 = α11−α12α24+α22α14 =
α21 = α31 = α41 = 0 and (α13α24 − α23α14 − α12)e1 + α22e2 + α32e3 + α42e4 ∈< f1 > .
This implies det(A) = 0 , a contradiction. The other two cases can be treated likewise.
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