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In this paper we study the minimal dimension µ(g) of a faithful g –module for n –dimensional Lie

algebras g . This is an interesting invariant of g which is difficult to compute. It is desirable to obtain

good bounds for µ(g) , especially for nilpotent Lie algebras. Such a refinement of Ado’s theorem is

required for solving a question of J. Milnor in the theory of affine manifolds. We will determine here µ(g)

for certain Lie algebras and prove upper bounds in general. For nilpotent Lie algebras of dimension n ,

the bound nn + 1 is known. We now obtain µ(g) < α
√

n

2n with some constant α ∼ 2.76287 .

1. Introduction

Let g be an n–dimensional Lie algebra over a field K of characteristic zero. Ado’s
Theorem states that there exists a faithful representation of g of finite dimension. We
consider the following integer valued invariant of g :

µ(g, K) := min{dimK M |M is a faithful g–module}

It follows from the proof of Ado’s Theorem that µ(g, K) can be bounded by a function
depending only on n. We will write µ(g) if the field is fixed.
Virtually nothing is known about µ(g) . Interest for a refinement of Ado’s Theorem in this
respect comes from the question whether a given solvmanifold or nilmanifold admits a left-
invariant affine structure or not. In the 70’s Milnor conjectured that every solvmanifold
admits such an structure. In particular, if the conjecture was true, µ(g) ≤ n + 1 for all
solvable Lie algebras. However, there are counterexamples in dimension 10 and 11 even
in the nilpotent case [BU2]. There are filiform nilpotent Lie algebras without any affine
structure.
In [REE] it is proved that µ(g) < nk + 1 for nilpotent Lie algebras of dimension n and
nilpotency class k . Then µ(g) < nn + 1 independently of k . We will improve this
bound by showing µ(g) < α√

n
2n with α ∼ 2.76287 .

In the following we will assume char(K) = 0 if not mentioned otherwise. Note however,
that for prime characteristic p the invariant µ(g) is also an integer by Iwasawa’s Theo-
rem. Moreover g can be embedded in an associative algebra with identity over K whose
dimension is at most pm with m = n3 . This gives an upper bound for µ(g) over K ,
see [BAH], § 6.2 .

Mathematics subject classification: 17B10, 17B30 .
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First estimates of µ were made in connection with linearizable Lie groups over R and
C . Any Lie group is locally linearizable by Ado’s Theorem, but there exist nonlinearizable
Lie groups, e.g., the simply connected universal covering group of SL2(R) . However, if G
is simply connected and solvable of dimension n , then G is linearizable by a Theorem
of Malcev and isomorphic to a Lie subgroup of Tm , the group of non–singular upper
triangular matrices. It arises the question about the size of m .
For the problem it is interesting to consider filiform nilpotent Lie algebras. All known
counterexamples to the Milnor conjecture belong to this class. The bound nk + 1 for
µ(g) in that case is very rough. We provide a better bound in Proposition 7 . If g is
filiform with abelian commutator algebra, or is of dimension less than 10 , then g admits
an affine structure and we obtain a sharp result for µ(g) (see Proposition 5 ).
It is not known whether µ(g) grows polynomially or exponentially in n for nilpotent Lie
algebras. The proof of Ado’s theorem using the universal enveloping algebra does not give
a polynomial bound. If g is a solvable of dimension n with ℓ – dimensional nilradical
n , we conjecture that µ(g) ≤ µ(n) + n− ℓ.
We remark that the question of minimal faithful linear representations is also interesting
for p – groups, see [WEH].

2. First examples

Let g be a Lie algebra of dimension n . How does µ(g) depend on n ?
If g has trivial center then the adjoint representation is faithful, hence µ(g) ≤ n.
Assume g to be abelian. Then g is just a vector space. Any faithful representation φ
of g into gl(V ) , where V is a d –dimensional vector space, turns φ(g) into an n –
dimensional commutative subalgebra of Md(K) . Since φ is a monomorphism, n ≤ d2.
But, in fact, n ≤ [(d2 + 4)/4] is true:

Proposition 1. (Jacobson) Let M be a commutative subalgebra of Md(K) over an

arbitrary field K . Then dimM ≤ [d
2+4
4 ] and this bound is sharp.

The proof for K = C is due to Schur. The result implies that a faithful g –module has
dimension d with n ≤ [(d2+4)/4] , i.e., d ≥ ⌈2

√
n− 1 ⌉ where ⌈x⌉ denotes the ceiling

of x . On the other hand, it is easy to construct commutative subalgebras M of Md(K)
of dimension exactly equal to [(d2 + 4)/4] . We denote µ(g) here by µ(n) since the
number is independent of the field for abelian Lie algebras. As a corollary we obtain the
following proposition:

Proposition 2. Let g be an abelian Lie algebra of dimension n over an arbitrary
field K . Then µ(n) = ⌈2

√
n− 1 ⌉ .

Note that µ(n) = n is not true for n > 4 : Let g be an abelian Lie algebra with
basis {x1, . . . , x5} . A faithful representation λ : g → gl(V ) of dimension 4 is given
by λ(x1) = e13, λ(x2) = e23, λ(x3) = e14, λ(x4) = e24, λ(x5) = Id. Here {eij | i, j =
1, 2, 3, 4} denotes the canonical basis for the matrix algebra. In fact, µ(5) = 4 .
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Let td be the nilpotent Lie algebra of strictly upper triangular matrices of order d and
dimension n = d(d− 1)/2 . Then µ(td) = d , and this is even smaller than µ(n) in the
abelian case.

Proposition 3. Let g be a 2-step nilpotent Lie algebra of dimension n with 1-
dimensional center. Then n ≡ 1(2) and µ(g) = (n+ 3)/2 .

Proof: Let z denote the center of g . By assumption, [g, g] ⊂ z is 1-dimensional. Hence
the Lie algebra structure on g is defined by a skew-symmetric bilinear form U ∧U → K
where U is the subspace of g complementary to K . It follows from the classification
of such forms that g is isomorphic to a Heisenberg Lie algebra hm(K) . This algebras
are defined on a (2m + 1)–dimensional vector space with basis x1, . . . , xm, y1, . . . , ym, z
and brackets [xi, yi] = z . It is well known that they have a faithful (m+2)–dimensional
representation, see example 1.1.2 in [COG]. This means µ(g) ≤ m + 2 = (n + 3)/2 .
On the other hand, there are no faithful representations of smaller dimension for hm(K) .
Since we have not found a proof in the literature, we will give one:

Lemma 1. For the Heisenberg Lie algebras, µ(hm) = m+ 2 .

Proof: We first observe two facts:

(1) If the center z of a nilpotent Lie algebra g is 1-dimensional, then a representation
λ : g → gl(V ) is faithful if and only if z acts nontrivially.

(2) In case of (1) there exists a v ∈ V \0 such that λ(z)v 6= 0 , where z is a generator
of z . If V has minimal dimension, then V is spanned by v and all λ(x)v for
x ∈ g .

If ker(λ) 6= 0 then it intersects the center z nontrivially, since g is nilpotent and ker(λ)
is a nonzero ideal of g . Hence ker(λ) contains z , i.e., λ(z) = 0 . If λ(z) 6= 0 ,
then ker(λ) = 0 . This shows (1) . For the second assertion observe that v and λ(x)v
generate a faithful submodule W of V . By minimality it follows W = V .

Assume that λ is a faithful representation of hm(K) of minimal degree. Fix v ∈ V
with λ(z)v 6= 0 . We have to show dimV ≥ m+ 2 .

Consider the evaluation map ev : hm → V , x 7→ λ(x)v . Let a = ker(ev), b = im(ev) .
It is clear that a is a subalgebra of hm , not containing z .

Claim: a is abelian:

Let x, y ∈ a , then [x, y] ∈ a , i.e., λ([x, y])v = 0 . On the other hand, [x, y] ∈ z and
λ(z)v 6= 0 , hence [x, y] = 0 . We have dimV ≥ dim b = dim hm−dim a . The number on
the right hand side is minimal if a is a maximal abelian subalgebra. However, any maximal
abelian subalgebra of hm not containing z has dimension m . Hence dim b ≥ m+ 1.

Claim: v /∈ b , i.e., dimV ≥ dim b+ 1 ≥ m+ 2 :

Assume v ∈ b : Then there exists an x not in a and not in z such that λ(x)v = v .
(Since λ(z) is a commutator of two upper triangular endomorphisms, by Lie’s theorem it
is nilpotent. Therefore λ(z)v = v is impossible.) There must be some y ∈ a such that
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[x, y] = z . If not, x would commute with a and < a, x >= a because a is maximal
abelian. This implies x ∈ a and v = λ(x)v = 0 , contradicting the choice of v . We
obtain

λ(z)v = [λ(x), λ(y)]v = λ(x)λ(y)v − λ(y)λ(x)v = 0,

by using λ(y)v = 0 and λ(x)v = v . This is a contradiction.

Remark 1. If g is a 2-step nilpotent Lie algebra of dimension n then µ(g) ≤ n+1 ,
see proposition 4 . For two Lie algebras g1, g2 we have µ(g1 ⊕ g2) ≤ µ(g1) + µ(g2) .

Here we may have a strict inequality: Let g =
⊕k

i=1 h1. Then
∑k

i=1 µ(h1) = 3k whereas
µ(g) ≤ 2k+1 : g has basis {x1, . . . , xk, y1, . . . , yk, z1, . . . , zk} with brackets [xi, yi] = zi .
A faithful representation λ : g → gl(V ) of dimension 2k + 1 is given by

λ(xi) = e1,i+1, λ(zi) = e1,i+k+1, λ(yi) = ei+1,i+k+1.

Here {ei,j | i, j = 1, . . . , 2k + 1} denotes the canonical basis for the matrix algebra. We
have [ei,j, ek,l] = δjkei,l − δilek,j .

3. Lie algebras with an affine structure

If g is the Lie algebra of an n – dimensional connected Lie group G which admits a left-
invariant affine structure, then g is said to admit an affine structure. The left-invariant
affine structures on G are in 1–1 correspondence to so called LSA–structures on g :

Definition 1. A left-symmetric algebra structure or LSA–structure in short on g over
a field K is a K –bilinear product g× g → g , (x, y) 7→ x · y satisfying the conditions
[x, y] = x ·y−y ·x and (x, y, z) = (y, x, z) , where (x, y, z) = x · (y ·z)− (x ·y) ·z denotes
the associator of x, y, z ∈ g.

For Lie algebras admitting an affine structure a stronger version of Ado’s theorem holds
(see [BU2]):

Lemma 2. If g admits an LSA–structure then µ(g) ≤ n+ 1 .

Which Lie algebras do admit an LSA–structure ? This is a difficult question, in particular
for solvable Lie algebras. Semisimple Lie algebras over characteristic zero do not admit
LSA–structures. This is no longer true for prime characteristic. LSA-structures for certain
reductive Lie algebras can be classified ([BU1]). In the nilpotent case we have ([BU2]):

Proposition 4. Let g be a nilpotent Lie algebra of dimension n satisfying one of the
following conditions:

(1) n < 8.
(2) g is p –step nilpotent with p < 4.
(3) g is Z –graded, i.e., has a nonsingular derivation.

Then g admits an LSA–structure and µ(g) ≤ n+ 1 .
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However, there exist nilpotent Lie algebras g with µ(g) > n + 1 , see [BU2]. These are
the counterexamples to the Milnor conjecture. They are all filiform nilpotent, i.e., of step
n− 1 .
On the other hand, it is often possible to find an LSA–structure on filiform Lie algebras.
Consider the following construction:

Let g be an n – dimensional filiform Lie algebra with structure constants γki,j . Define
an index set

D0 := {(k, s) ∈ N
2 | 2 ≤ k ≤ [n/2], 2k + 1 ≤ s ≤ n}

and set D = D0 if n is odd, D = D0 ∪ {(n/2, n)} , if n is even. Since g is isomorphic
to an infinitesimal deformation of the standard graded filiform L by a 2 – cocycle ψ ∈
H2(L, L) , we can obtain a special form for the structure constants of g (see [BU3]):

Lemma 3. Let g be a complex filiform nilpotent Lie algebra of dimension n . Then
there exists a basis {e1, . . . , en} such that

(a) [e1, ei] = ei+1 for i ≥ 2
(b) The structure constants in [ei, ej ] =

∑

k γ
k
i,jek (for i ≥ 2 ) can be written as

γki,j =

[(j−i−1)/2]
∑

l=0

(−1)l
(

j − i− l − 1

l

)

αi+l,k−j+i+2l+1

where the constants αi,j are zero for all pairs (i, j) not in D .

We set ek = 0 for k > n , whereas γki,j need not be zero in this case. There are

(n−3)2/4 structure constants αi,j if n is odd, and 1
4(n−2)(n−4)+1 otherwise. The

formula above can be used to define filiform Lie algebras, but the Jacobi identity is not
satisfied automatically (unless n < 8 ).

Definition 2. Let g be as above and set A := ad(e1) , B := ad(e2) . Let C be the
linear map defined by Cei = ζien with ζi ∈ C . We define linear maps λ(ei) as follows:

λ(e1) = A

λ(e2) = AtBA+ C

λ(ei) = [λ(e1), λ(ei−1)], i ≥ 3

They define an LSA–structure on g if and only if

ad(ei)ej = λ(ei)ej − λ(ej)ei(I)

λ([ei, ej]) = [λ(ei), λ(ej)](II)

If (I) and (II) are satisfied we call this the standard LSA–structure. Note that Aei =
ei+1 , Atei = ei−1 , Bei = [e2, ei] and AC = 0 .
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Under which conditions on ζi and g do equations (I), (II) hold ? We would like to
determine the filiform Lie algebras admitting a standard LSA–structure.

Lemma 4. With the notations of definition 2 we have:

(a) For i ≥ 2

ad(ei) =

i−2
∑

k=0

(−1)k
(

i− 2

k

)

Ai−k−2BAk

λ(ei) = (−1)i(AtBAi−1 + CAi−2) +
i−3
∑

k=0

(−1)k
(

i− 3

k

)

Ai−k−3BAk+1

(b) Property (1) is satisfied if and only if for k = 0, 1, . . . , [(n− 1)/2]

ζ2k+1 = γn+1
2,2k+2 =

k
∑

l=0

(−1)l−1

(

2k − l

l − 1

)

αl+1,n−2k+2l

(c) Property (2) is satisfied if and only if a system of certain linear equations in the ζ2k
holds.

For a proof see [BU3].
This construction provides an LSA–structure for many filiform Lie algebras. However,
not all admit a standard LSA–structure. The linear equations in the ζ2k do not have a
solution in all cases.

Example 1. Let g be a complex filiform Lie algebra of dimension 7 . Then there is
a basis {e1, . . . , e7} such that

[e1, ei] = ei+1, i ≥ 2

[e2, e3] = α2,5e5 + α2,6e6 + α2,7e7

[e2, e4] = α2,5e6 + α2,6e7

[e2, e5] = (α2,5 − α3,7)e7

[e3, e4] = α3,7e7

In this case, the Jacobi identity is satisfied automatically. Let λ(ei) as above. Then (I)
is satisfied iff ζ1 = ζ7 = 0, ζ3 = α2,7, ζ5 = α2,5 − 2α3,7. The condition (II) is satisfied
iff

ζ6(2α2,5 + α3,7) = 0.

We may take ζ6 = 0 , hence this defines a (standard) LSA–structure on all 7 – dimensional
filiform Lie algebras.

Proposition 5. Let g be a complex filiform nilpotent Lie algebra satisfying one of the
following conditions:
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(1) g has abelian commutator algebra.
(2) g is of dimension n < 10 .
(3) g is the quotient of another filiform nilpotent Lie algebra of higher dimension.

Then g admits an LSA–structure and µ(g) = n .

Proof: It is known that µ(g) ≥ n for filiform nilpotent Lie algebras of dimension n. To
prove equality therefore it is enough to provide a faithful representation of dimension n.
If [g, g] is abelian, then there exists a basis e1, . . . , en such that the defining Lie brackets
are as follows (see [BRA]):

[e1, ei] = ei+1, i ≥ 2

[e2, ei] = α2,5ei+2 + · · ·+ α2,nen , i = 3, . . . , n− 2

Here the Jacobi identity is satisfied automatically. Then g admits a standard LSA–
structure by setting ζi = α2,n+3−i : In fact, the product is given by:

e1.ei = ei+1 , i ≥ 2

e2.ei = α2,5ei+2 + · · ·+ α2,nen

for i = 2, . . . , n − 2 . All other products ei.ej are zero. This clearly satisfies [ei, ej] =
ei.ej − ej .ei. We have to show (ei, ej , ek) = (ej , ei, ek) for all i ≤ j ≤ k . This is clear
for i = j and i ≥ 2 . The only nontrivial case is i = 1, j = 2 :

(e1, e2, ek) = e1.(e2.ek)− (e1.e2).ek = e1.(α2,5ek+2 + · · ·+ α2,nen)− e3.ek

= α2,5ek+3 + · · ·+ α2,nen = e2.ek+1 = (e2, e1, ek)

The matrices λ(ei) are strictly lower–triangular. Its first and last column are zero. Hence
the affine representation associated to this LSA–structure has a faithful subrepresentation
of dimension n (see [BU2]), hence µ(g) = n . This proves (1) .

For the second assertion, note that all nilpotent Lie algebras of dimension n < 7 admit
a nonsingular derivation and hence an LSA–structure by proposition 4 . Moreover the
filiform Lie algebras of dimension n < 7 have abelian commutator algebra. The case
n = 7 is done in example 1 .

Let g be filiform of dimension 8 . Then the brackets are given by lemma 3 , with eight
parameters αk,s . The Jacobi identity is equivalent to

α4,8(2α2,5 + α3,7) = 0.

If 2α2,5 + α3,7 is nonzero, g admits a standard LSA–structure by setting ζ1 = ζ7 =
0, ζ3 = α2,8, ζ5 = α2,6 − 2α3,8 and ζ6 = α2,5(2α2,5 − 5α3,7)/(2α2,5 + α3,7) .
If 2α2,5+α3,7 = 0 , then the standard LSA–structure does not work always. But it is easy
to check that we can find a LSA–structure defined by λ(e1) = ad(e1) and some strictly
lower-triangular matrix λ(e2).
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Let g be filiform of dimension 9 . Then g depends on 9 parameters αk,s . The Jacobi
identity is equivalent to

α4,9(2α2,5 + α3,7)− 3α2
3,7 = 0.

In case 2α2,5 + α3,7 6= 0 g admits a standard LSA–structure. Otherwise the Jacobi
identity implies α2,5 = α3,7 = 0 and there are LSA–structures with λ(e1) = ad(e1) and
some strictly lower-triangular matrix λ(e2). Again the associated affine represenation has
a faithful subrepresentation of dimension n such that µ(g) = n for n < 10.

For the third assertion let h and g be filiform Lie algebras with dim h > dim g and

0 −→ a −→ h −→ g −→ 0

be a short exact sequence. We may assume that dim h = dim g + 1 = n + 1 and h =
span{e1, . . . , en+1} with [e1, ei] = ei+1. Then a ≃ z(h) = span{en+1} and the adjoint
representation of h restricted to g ≃ h/z(h) is faithful. This defines a faithful g –
module of dimension n+ 1. It is obvious that M := span{e1, e3, . . . , en+1} is a faithful
submodule of dimension n , hence µ(g) = n. It can be shown that M is isomorphic to
a module N such that Z1(g, N) possesses a nonsingular 1 – cocycle. Hence we obtain
an LSA–structure on g .

4. A general bound for nilpotent Lie algebras

In the general case of a nilpotent Lie algebra of nilpotency class k , there is the bound
µ(g) < nk + 1 given in [REE]. This seems to be a very rough bound, in particular for
k = n− 1 . One can improve this bound:

Proposition 6. Let g be a nilpotent Lie algebra of dimension n and nilpotency class
k . Then µ(g) ≤ ν(n, k) with k < n . Here ν(n, k) :=

∑k
j=0

(

n−j
k−j

)

p(j) and p(j) is the
number of partitions of j .

Proof: One can construct a faithful representation ̺ : g → gl(V ) , such that ̺(X) is
nilpotent for all X ∈ g as follows, see [COG]:
Let g(1) = g and g(i+1) = [g, g(i)]. Since g is k -step nilpotent, g(k+1) = 0 . Choose a
basis x1, . . . , xn of g such that the first n1 elements span g(k) , the first n2 elements
span g(k−1) and so on. We will take V as a quotient of the universal enveloping algebra
U(g) of g . By the Poincaré-Birkhoff-Witt Theorem the ordered monomials

xα = xα1

1 . . . xαn

n , α = (α1, . . . αn) ∈ Z
n
+

form a basis for U(g) . Let t =
∑

α cαx
α be an element of U(g) (with only finitely

many nonzero cα ). Define an order function as follows:

ord(xj) = max{m : xj ∈ g(m)} ord(xα) =
∑n

j=1 αj ord(xj)

ord(t) = min{ord(xα) : cα 6= 0} ord(1U(g)) = 0, ord(0) = ∞
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Let Um(g) = {t ∈ U(g) : ord(t) ≥ m}. One can show that it is an ideal of U(g)
having finite codimension. Define V = U(g)/Um(g). Choose a basis {t1, . . . , tl} of V
such that t1, . . . , tl1 span Um−1(g)/Um(g) , t1, . . . , tl2 span Um−2(g)/Um(g) and so
on. Then it is easy to check that the desired representation of g is obtained by setting
̺(x)(tj) = xtj (mod Um(g)). If m > k then ̺(x) · 1U(g) = x 6= 0 for all x ∈ g , so
that ̺ is faithful.

Now we will construct a bound for dimV : Choose m minimal, i.e., m = k + 1 . Let
B = {xα | ord(xα) ≤ k} be a basis for V as above. Then x1, . . . , xn1

have order k ,
xn1+1, . . . , xn2

have order k − 1 and so on. Hence

#B = #{(α1, . . . , αn) ∈ Z
n
+ |

k
∑

j=1

(k − j + 1)(αnj−1+1 + · · ·+ αnj
) ≤ k}

with n0 = 0. On the other hand, dim g(k) ≥ 1 , dim g(k−1) ≥ 2 and so on.
We can choose the xi such that ord(x1) = k, ord(x2) ≥ k − 1, ord(x3) ≥ k −
2, . . . , ord(xk) = · · · = ord(xn) ≥ 1. If actually ord(xi) = k + 1 − i for i = 1, . . . , k
and ord(xk+1) = · · · = ord(xn) = 1 , then #B will be maximal, i.e. #B ≤ ν(n, k) ,
where

ν(n, k) = #{(α1, . . . , αn) ∈ Z
n
+ | (

k
∑

j=1

(k − j + 1)αj) + αk+1 + · · ·+ αn ≤ k}.

Using the generating function (1/(1− x))r+1 =
∑

k≥0

(

r+k
k

)

xk for |x| < 1 we obtain

#{(α1, . . . , αn) ∈ Z
n
+ |

n
∑

j=1

αj ≤ k} = #{(α0, . . . , αn) ∈ Z
n+1
+ |

n
∑

j=0

αj = k} =

(

n+ k

k

)

.

Since p(k) = #{(α1, . . . , αn) ∈ Zn
+ | kα1 + (k − 1)α2 + · · ·+ αk = k} we have

ν(n, k) =
k

∑

j=0

(

n− j

k − j

)

p(j).

Example 2.

(a) Let g = span{x1, . . . , x6} with Lie brackets

[x2, x6] = −x1, [x3, x6] = −x2, [x4, x5] = −x1, [x5, x6] = −x3.

This is a 4 –step nilpotent Lie algebra of dimension 6 . We have ord(x1) = 4, ord(x2) =
3, ord(x3) = 2, ord(xi) = 1 for i = 4, 5, 6 . The proposition yields a faithful g – module
V with dimV = #B = ν(6, 4) = 51. Here nk + 1 = 1297 .
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(b) Let g =< x1, . . . , x6 | [x6, xi] = xi−1, i = 2, . . . , 6 > . This is a filiform Lie algebra
of dimension 6 . We obtain a faithful g – module V with dimV = #B = ν(6, 5) = 45.
Here nk + 1 = 7777 . But in fact, µ(g) = 6 , see proposition 5 .

To estimate ν(n, k) we introduce the following notations:

f(n) :=

√
3

2π2
exp(π

√

2n/3), α :=
√

2/πF∞(
1

2
) ∼ 2.762872, kn := [(n+ 3)/2],

Fk(q) :=
k
∏

j=1

(1− qj)−1 for |q| < 1

Lemma 5. The following holds for ν(n, k) :

(1) ν(n+ 1, k) = ν(n, k) + ν(n, k − 1) for 1 < k ≤ n
(2) ν(n, k) <

(

n
k

)

Fk(
k
n
) for 1 < k < n . One has ν(n, k) ∼

(

n
k

)

F∞( k
n
) if k, n → ∞

with k/n ≤ 1− δ for some fixed δ > 0.
(3) ν(n, k) ≤ ν(n, kn) <

α√
n
2n for fixed n > 1 and all 1 ≤ k ≤ n .

(4) ν(n, n− 1) < f(n) .

Proof: Formula (1) follows by induction using
(

n+1
j

)

=
(

n
j−1

)

+
(

n
j

)

. For (2) , let pk(j)
be the number of those partitions of j in which each term in the partition does not exceed
k . Then

∑k
j=0 p(j)q

j <
∑∞

j=0 pk(j)q
j =

∏k
j=1(1 − qj)−1 for |q| < 1 . Using this and

(

n−j
k−j

)

≤
(

n
k

)

( kn )
j we obtain

ν(n, k) =

k
∑

j=0

(

n− j

k − j

)

p(j) <

(

n

k

) k
∑

j=0

qjp(j) <

(

n

k

) k
∏

j=1

(1− qj)−1 =

(

n

k

)

Fk(q)

with q = k
n
. This proves (2) .

One can show that for fixed n , ν(n, k) becomes maximal for k = kn . Asymptotically
ν(n, kn) ∼ F∞( 1

2
)
(

n
kn

)

and
(

n
kn

)

∼ 2n/
√

πn/2 . Then it is not difficult to see that

ν(n, kn) < F∞( 12 )2
n/

√

πn/2 = α√
n
2n .

There is a convergent series for the partition function (see [RAD]). By estimating the
terms we derive p(n) < f(n + 1) − 2f(n) + f(n − 1) ∀n > 6 . Using this, it follows by
induction that ν(n, n) < f(n+ 1) − f(n) ∀n . Here ν(n, n) = p(0) + p(1) + . . .+ p(n) .
Then ν(n, n− 1) < f(n) again by induction: For small n , it is true and ν(n + 1, n) =
ν(n, n) + ν(n, n− 1) < f(n+ 1)− f(n) + ν(n, n− 1) < f(n+ 1) . This proves (4) .

The lemma shows that the bound dimV ≤ ν(n, k) for µ(g) is much better than nk+1 ,
especially if k is not small with respect to n . However, the real size of µ(g) might be
much smaller than ν(n, k) . Note that k = 1 corresponds to the abelian case. By part
(3) of the lemma we know that we may bound µ(g) independently of k as follows:
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Corollary 1. Let g be a nilpotent Lie algebra of dimension n . Then

µ(g) <
α√
n
2n.

For n = k − 1 we can improve proposition 6 :

Proposition 7. Let g be a filiform nilpotent Lie algebra of dimension n. Then

µ(g) < 1 +
n−2
∑

j=0

p(j) < 1 + f(n− 1)− f(n− 2).

Proof: Using the construction of proposition 6 with x1 = en, x2 = en−1, . . . , xn = e1
we obtain a faithful module V with basis B = {eαn

n · · · eα1

1 | ∑n
j=2(j−1)aj +α1 ≤ n−1}

for g =< e1, . . . , en > and dim V = ν(n, n− 1) . Here ord(ei) = i− 1, i = 2, . . . , n and
ord(e1) = 1 . The elements ei of g act on V by eiej = [ei, ej ] + ejei for i < j and
ejei is element of V for j ≥ i . Let U be the submodule of V generated by e1 . U
has a basis of all monomials eαn

n · · · eα1

1 with α1 6= 0 , hence dim U = ν(n−1, n−2) . The
factor module V/U is a faithful g – module of dimension ν(n, n− 1)− ν(n− 1, n− 2) =
ν(n − 1, n− 1) . Its basis B̃ contains the monomials eαn

n · · · eα2

2 of maximal order, i.e.,
with

∑n
j=2(j − 1)aj = n − 1 . These are p(n − 1) monomials. We may omit these

monomials from B̃ , except for en in order to preserve faithfulness. Then we obtain a
faithful module of dimension ν(n− 1, n− 1)− p(n− 1)+ 1 = 1+

∑n−2
j=0 p(j) . This equals

1+ν(n−2, n−2) which can be bounded by 1+f(n−1)−f(n−2) , see lemma 5 (4).
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[BRA] F. BRATZLAVSKY, Classification des algébres de Lie de dimension n, de classe n–1, dont l’idéal
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