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1 Introduction

Let G be a finite–dimensional connected Lie group with Lie algebra g .

Denote by E a real vector space and by Aff(E) the group of affine automor-

phisms,

Aff(E) =

{(

A b

0 1

)

| A ∈ GL(E), b ∈ E

}

Let aff(E) be the Lie algebra of Aff(E) . An affine representation α : G →
Aff(E) of G is called étale, if there exists a v ∈ E whose stabilizer Gv
is discrete in G , and whose G – orbit G · v is open in E . Its differential

̺ : g → aff(E) is a Lie algebra homomorphism such that the evaluation map

evp : g → E , x 7→ ̺(x)p = θ(x)p+ u(x) is an isomorphism for some p ∈ E ,

where θ : g → gl(E) is a linear representation and u is the translational part

of ̺ . Such a Lie algebra representation is called étale again. In that case it

follows dimE = dimG . We are interested in the following question:

(1) Which Lie groups admit étale affine representations ?

Etale affine representations of a Lie group arise in the theory of affine manifolds

and affine crystallographic groups, see [MIL]. Here the most difficult case is

when G is nilpotent. If G is reductive, étale affine representations can be

studied by methods of invariant theory of affine algebraic varieties, see [BAU],

[BU2]. The following has been proved: A semisimple Lie group G does not

admit any étale affine representation. If G is reductive such that its Lie

algebra g = s ⊕ z has 1 – dimensional center z and s is simple, then G

admits étale affine representations iff s is of type Aℓ , i.e., if G is GL(n) .

For GL(n) all such representations can be classified, see [BU2].

There is a canonical one-to-one correspondence between étale affine representa-

tions of G (up to conjugacy in Aff(G) ) and left-invariant affine structures on

G (up to affine equivalence), see Definition 1 . Given such a structure on G

we can construct many examples of affine manifolds. If G has a left-invariant

affine structure and Γ is a discrete subgroup of G , then the homogeneous

space Γ\G of right cosets inherits an affine structure. If G is nilpotent, then

Γ\G is called an affine nilmanifold. Any compact complete affine manifold
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with nilpotent fundamental group already is an affine nilmanifold ([FGH]).

Left-invariant affine structures also play an important role in the study of affine

crystallographic groups (in short ACGs), and of fundamental groups of affine

manifolds, see [MIL]. A group Γ ≤ Aff(E) is called ACG if it acts properly

discontinuously on E with compact quotient. There is the following well-

known conjecture by Auslander: An ACG is virtually polycyclic. This may

be restated as follows: The fundamental group of a compact complete affine

manifold is virtually polycyclic. The conjecture is still open, though Abels,

Margulis and Soifer recently made some progress proving the conjecture up to

dimension 6 (see [AMS]).

Milnor proved that a finitely generated torsionfree virtually polycyclic group

Γ can be realized as a subgroup of Aff(E) acting properly discontinuously.

Hence it is the fundamental group of a complete affine manifold. Auslander’s

conjecture is equivalent to the following:

A compact complete affine manifold is finitely covered by quotients of solvable

Lie groups with complete left-invariant affine structures.

Milnor asked in this context ([MIL]):

(2) Which Lie groups admit left-invariant affine structures ?

Of course, this is equivalent to our question (1). As said before, this question

is particularly difficult for nilpotent Lie groups. There was much evidence that

every nilpotent Lie group admits left-invariant affine structures. Milnor con-

jectured this to be true even for solvable Lie groups ([MIL]). Recently, however,

counterexamples were discovered ([BGR] and [BEN]). There are nilmanifolds

which are not affine. The key step here is to find n – dimensional nilpotent Lie

algebras having no faithful representations in dimension n+1 , hence no affine

representation which could arise from a left-invariant affine structure on the

Lie group G . We will present some new examples here. They are, however,

no counterexamples for the Auslander conjecture.

Left-invariant affine structures on G also correspond to left-symmetric alge-

bra structures on g (in short, LSA-structures, see Definition 2 ). Given a

Lie algebra g over a field of arbitrary characteristic, the question of existence

of LSA-structures on g makes sense and leads to interesting structures. In

case g is a classical simple Lie algebra over a field k of prime characteris-

tic, LSA-structures on g are closely related to the first cohomology groups

H1(G1, L(λ)) , where G1 is the first Frobenius kernel of a simple algebraic

group G with Lie(G) = g and L(λ) is a highest weight module of dimension

less or equal than dimG. We have the following result (see [JAN], [BU1]):

Let G be a connected semisimple algebraic group of type Al (l ≥ 1), Bl (l ≥
3), Cl(l ≥ 2),Dl (l ≥ 4), G2, F4, E6, E7, E8 over an algebraically closed field k

of characteristic p > 2 . Let X1(T ) denote the set of restricted dominant
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weights and let g = Lie(G) . Assume that

(1) p > 3 , if G is of type G2, F4, E6, A1

(2) p 6 | l + 1, if G is of type Al
(3) p 6 | l , if G is of type Cl

Then H1(G1, L(λ)) = 0 for all λ ∈ X1(T ) with dim L(λ) ≤ dim G.

Furthermore, if g admits an LSA–structure, then p | dim g.

It is not known in general whether p | dim g implies the existence of LSA-

structures on such Lie algebras. However, it is true for sl(2, k) and sl(3, k).

In the case of sl(2, k) , all LSA-structures have been classified ([BU1]). Note

that it follows from the proof of the above result that semisimple Lie algebras

over characteristic zero do not admit LSA–structures. Hence semisimple Lie

groups do not admit étale affine representations.

2 Preliminaries

We consider affine structures on a connected Lie group G . Therefore we

recall the following definition (see [MIL]):

Definition 1.

Let M denote an n -dimensional manifold. An affine atlas on M is a

covering of M by coordinate charts such that each coordinate change between

overlapping charts is locally affine, i.e., extends to an affine automorphism

x 7→ Ax+ b , A ∈ GLn(R) , of some n -dimensional real vector space E. A

maximal affine atlas is an affine structure on M , and M together with an

affine structure is called an affine manifold.

Affine manifolds are flat – there is a natural correspondence between affine

structures on M and flat torsionfree affine connections ∇ on M . Such an

affine connection is a connection in the tangent bundle with zero torsion and

zero curvature.

Subclasses of affine manifolds are Riemannian-flat and Lorentz-flat manifolds.

Note that a manifold does not always admit an affine structure: A closed

surface admits affine structures if and only if its Euler characteristic vanishes,

i.e., if it is a torus. For higher dimensions ( n ≥ 3 ) it is in general difficult

to decide whether the manifold admits affine structures or not (see [SMI] for

more information).

Many examples of affine manifolds come from left-invariant affine structures on

Lie groups: For a Lie group G , an affine structure on G is left-invariant, if for

each g ∈ G the left-multiplication by g , Lg : G → G , is an automorphism

of the affine structure. For G simply connected let D : G → E be the
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developing map. Then there is for each g ∈ G a unique affine automorphism

α(g) of E , such that α(g) ◦D = D ◦ Lg. In that case α : G → Aff(E) is

an affine representation.

It is not difficult to see ([FGH]) that G admits a complete left-invariant struc-

ture if and only if G acts simply transitively on E as affine transformations.

By a result of Auslander, G then must be solvable ([AUS]).

Definition 2.

A left-symmetric algebra structure (or LSA–structure in short) on g over

a field k is a k –bilinear product g × g → g , (x, y) 7→ x · y satisfying the

conditions x · y − y · x = [x, y] and (x, y, z) = (y, x, z) for all x, y, z , where

(x, y, z) = x · (y · z)− (x · y) · z denotes the associator of x, y, z ∈ g.

The main definitions given so far are quite related:

Lemma 1. There is a canonical one-to-one correspondence between the

following classes of objects (up to suitable equivalence):

{Etale affine representations of G}(a)

{Left-invariant affine structures on G}(b)

{Flat torsionfree left-invariant affine connections ∇ on G}(c)

{LSA–structures on g}(d)

Proof. This is well known, see [BU3],[SEG],[KIM]. We will give some argu-

ments in order to establish notations.

If we have any LSA–structure on g with product (x, y) 7→ x·y , then denote by

λ : x 7→ λ(x) the left-regular representation on the LSA (g, ·) : λ(x)y = x·y .

It is a Lie algebra representation: λ : g → End(g) , [λ(x), λ(y)] = λ([x, y]).

Denote the corresponding g -module by gλ . Furthermore, the identity map

1 : g → gλ is a 1 -cocycle in Z1(g, gλ) : 1([x, y]) = 1(x) · y − 1(y) · x. Let

aff(g) be the Lie algebra of Aff(G) , i.e.,

aff(g) =

{(

A b

0 0

)

| A ∈ gl(g), b ∈ g

}

which we identify with gl(g)⊕ g . Denote the linear part by ℓ(A, b) = A and

the translational part by t(A, b) = b . Now we associate to the LSA (g, ·) the

map α = λ⊕ 1 : g → aff(g). This is an affine representation of g . We have
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λ = ℓ ◦ α and t ◦ α = 1 . The corresponding affine representation of G is

étale, see [SEG].

3 Affine representations of reductive Lie groups

Let k be an algebraically closed field of characteristic zero. A Lie algebra g

is said to be reductive if its solvable radical r(g) coincides with the center z =

z(g) . Then the Lie algebra s = [g, g] is semisimple and we have g = s⊕ z. A

Lie group G is said to be reductive if its Lie algebra is reductive. Assume that

(g, ·) is an LSA-structure on g . The first cohomology groups of a reductive

Lie algebra do not vanish in general. However, if the center is one–dimensional

and the g – module is gλ arising from an étale affine representation of G ,

then we are able to prove (see [BU2]):

Proposition 1. Let (g, ·) be an LSA-structure on g . If dim z = 1 then

H0(g, gλ) = 0 and H1(g, gλ) = 0 .

Proposition 2. Let g = s⊕ z be a reductive Lie algebra such that dim z = 1

and s is of type Aℓ, Bℓ, Cℓ, Dℓ, G2, F4, E6, E7, E8. Then g admits an

LSA-structure if and only if s is of type Aℓ .

Here is a brief outline of the proof to Proposition 2 : Let dim s = n . The g –

module gλ is completely reducible as an s -module and has no invariants by

Proposition 1 , i.e., the trivial module k is not a summand in the decompo-

sition of gλ. Hence we know that gλ = ⊕iVi and
∑

i dimVi = n+1, where

Vi are irreducible s -modules with 2 ≤ dimVi ≤ dim g = n + 1 . On the

other hand, there are not many irreducible s -modules of dimension smaller

or equal to n + 1. It is possible to classify them. For a given type of s the

dimensions of these modules have to add up to dim gλ . However, in most

cases this is possible only if s is of type Al . This argument only fails in case

of type B3, D5, D7 , where the modules are

gλ = L(ω1)⊕ L(ω1)⊕ L(ω3) for B3 ,

gλ = L(ω1)⊕ L(ω1)⊕ L(ω1)⊕ L(ω5) for D5 ,

gλ = L(ω1)⊕ L(ω1)⊕ L(ω7) for D7.

Here ω1, . . . , ωℓ denote the fundamental weights and L(ωi) the heighest

weight module to ωi . The dimensions satisfy 22 = 7 + 7 + 8 , 46 =

10 + 10 + 10 + 16 and 92 = 14 + 14 + 64 respectively.

To prove the result in these cases, we use invariant theory: Let ̺ : g → aff(g)

be an étale affine representation arising from an LSA–structure. Let S be the

simply connected semisimple algebraic group with Lie algebra s. The linear

part of ̺ is the differential of a rational representation ρ : S → Aff(V ) .
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Thus we may regard V as an algebraic S – variety. If the center of g is one–

dimensional, we know that V is isomorphic to a linear S – variety. Since ̺ is

étale, we have dimV = dimS+1 and V has an S – orbit of codimension 1 .

However, it is easy to see that the above modules (where S is an orthogonal

group) do not have an S – orbit of codimension 1 .

If the center of g is higher-dimensional, then the situation becomes more

complicated (see [HEL], [BU2]).

As mentioned before, in case of GL(n) we can classify all étale affine repre-

sentations, i.e., all LSA-structures on gl(n) .

Let A = (g, ·) be an LSA–structure on g . Denote by End ∗(g) the set

{τ ∈ End (g) | (1− τ)−1 exists and τ(A) ⊂ k(A)} where

k(A) := {a ∈ A | [λ(b), ̺(a)] = 0 ∀ b ∈ A}.

Here λ and ̺ denote left and right multiplication in A . Let τ ∈ End ∗(g)

with φ = (1− τ)−1 .

Then λτ (a) := φ ◦ (λ(a)− ̺(τ(a))) ◦φ−1 defines an LSA-structure on g . We

call Aτ the τ -deformation of A . The result is ([BAU],[BU2]):

Proposition 3. The τ -deformations of the full matrix algebra exhaust all

possible LSA-structures on gln(k) for n > 2. Their isomorphism classes are

parametrized by the conjugacy classes of elements X ∈ gln(k) with tr (X) =

n. In case of gl(2, k) we have one more isomorphism class.

4 Affine representations of nilpotent Lie groups

Milnor conjectured in [MIL] that every nilpotent Lie group G admits étale

affine representations, i.e., its Lie algebra g admits LSA-structures. Indeed,

many classes of nilpotent Lie algebras do admit LSA-structures (see [BU3]):

Proposition 4. Let g be a nilpotent Lie algebra of characteristic zero satis-

fying one of the following conditions:

(1) dim g < 8.

(2) g is p – step nilpotent with p < 4.

(3) g is Z – graded.

(4) g possesses a nonsingular derivation.

(5) g is filiform nilpotent and a quotient of a higher–dimensional filiform

nilpotent Lie algebra.

(6) g possesses a nonsingular 1 – cocycle in Z1(g, gθ) , where θ : g → gl(g)

is a representation.

Then g admits an LSA–structure.



Etale affine representations of Lie groups 7

However, there are nilpotent Lie algebras without any LSA-structure. To con-

struct such examples we use

Lemma 2. If g admits an LSA–structure then g has a faithful representa-

tion of dimension dim g+ 1.

Proof. The LSA–structure on g induces a faithful affine representation α :

g → aff(g) , called the affine holonomy representation. If dim g = n then

aff(g) ⊂ gl(n+ 1) and we obtain a faithful linear representation of dimension

n+ 1.

Definition 3.

Let g be a finite-dimensional Lie algebra over a field k . Define

µ(g, k) := min {dimkM |M is a faithful g–module}

By Ado’s Theorem (and Iwasawa’s in prime characteristic) we know that µ

is integer valued. It seems that there is not much known about µ in the

literature. We list a few properties proved in [BU4]:

Proposition 5. Let g be a Lie algebra of dimension n ≥ 2 over C .

(1) If g is abelian then µ(g) = ⌈2
√
n− 1⌉ .

(2) If g has trivial center then µ(g) ≤ n.

(3) If g is a Heisenberg Lie algebra h2m+1 of dimension 2m + 1 , then

µ(g) = m+ 2.

(4) If g is solvable then µ(g) < 2n.

(5) If g is filiform nilpotent with abelian commutator algebra then µ(g) = n.

(6) If g is filiform nilpotent then n ≤ µ(g) < (
√
3/12) exp(π

√

2n/3).

(7) If g admits an LSA–structure then µ(g) ≤ n+ 1.

(8) If g is a quotient of a filiform nilpotent Lie algebra g′ with dim g′ >

dim g = n then µ(g) = n.

(9) If g is filiform nilpotent of dimension n < 10 then µ(g) = n.

The key step for the construction of the counterexamples to the Milnor con-

jecture is to determine Lie algebras with µ(g) > dim g + 1 . In the following

we will construct filiform Lie algebras in dimensions 10, 11 with that prop-

erty. These algebras have no extension by any filiform Lie algebra of higher

dimension.

Let g be a p –step nilpotent Lie algebra and let g0 = g, gk = [gk−1, g] .

The series g = g0 ⊃ g1 ⊃ . . . ⊃ gp−1 ⊃ gp = 0 is called lower central series.

Recall that a p –step nilpotent Lie algebra of dimension n is called filiform

nilpotent if p = n− 1 .
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Definition 4.

Let L = L(n) be the Lie algebra generated by e0, . . . , en with Lie brack-

ets [e0, ei] = ei+1 for i = 1, 2, . . . , n − 1 and the other brackets zero. L is

called the standard graded filiform of dimension n+ 1 .

Consider the affine algebraic variety of all Lie algebra structures in dimension

n over C . In particular, we have the subvariety of nilpotent filiform Lie

algebra structures. The following result is due to Vergne ([VER]):

Proposition 6. Every filiform nilpotent Lie algebra of dimension n + 1 ≥ 8

is isomorphic to an infinitesimal deformation of the standard graded (n+1) –

dimensional filiform L . More precisely it is isomorphic to an algebra (L)ψ
where ψ is an integrable 2 –cocycle whose cohomology class lies in

F1H
2(L,L) if n ≡ 0(2)

F1H
2(L,L) + < ψn−1

2
,n > if n ≡ 1(2)

Here the algebra gψ = (L)ψ is defined by the bracket [a, b]ψ = [a, b]L +

ψ(a, b). The fact that ψ is integrable means that this bracket satisfies the

Jacobi identity, i.e., ψ(a, ψ(b, c)) + ψ(b, ψ(c, a)) + ψ(c, ψ(a, b)) = 0 . For the

definition of F1H
2(L,L) see [HAK]. Here we determine a canonical basis for

this space (see [BU3]):

Proposition 7. Define canonical 2 – cocycles ψk,s by ψk,s(ei, ei+1) = δikes
for pairs (k, s) with 1 ≤ k ≤ n−1 and 2k ≤ s ≤ n . The cohomology classes

of the cocycles ψk,s with 1 ≤ k ≤ [n/2]− 1, 2k + 2 ≤ s ≤ n form a basis of

F1H
2(L,L) . This space has dimension (n−2)2

4
if n is even, and dimension

(n−3)(n−1)
4 if n is odd. The following formula holds:

ψk,s(ei, ej) = (−1)k
(

j−k−1
k−i

)

(ade0)
i+j−2k−1es for 1 ≤ i < k < j − 1 ≤ n− 1 .

In case i > k , ψk,s(ei, ej) = 0 and ψk,s(ek, ej) = es+j−k−1 for k < j.

4.1 Filiform Lie algebras in dimension 10

Let L = L(9) =< e0, e1, . . . , e9 > be the standard graded filiform Lie al-

gebra of dimension 10. According to Proposition 6 every filiform nilpo-

tent Lie algebra of dimension 10 is isomorphic to gψ = (L)ψ for some

ψ ∈ F1H
2(L,L)+ < ψ4,9 > . In terms of the basis of this cohomology space

we may write

ψ = α1ψ1,4 + α2ψ1,5 + . . .+ α6ψ1,9

+α7ψ2,6 + . . . + α10ψ2,9

+α11ψ3,8 + α12ψ3,9

+α13ψ4,9
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The cocycle ψ is integrable if and only if [a, b]ψ = [a, b]L + ψ(a, b) satisfies

the Jacobi identity. This is equivalent to the following equations:

α13(2α3 + α9)−α12(2α1 + α7)− 3α11(α2 + α8) + 7α7α8 = 0(1)

α11(2α1 + α7)− 3α2
7 = 0(2)

α13(2α1 − α7 − α11) = 0(3)

Using these simple conditions we obtain the following classes of filiform Lie

algebras gψ with bracket [a, b]ψ :

Case A: 2α1 + α7 6= 0 :

Class (A1) : α1 6= 0, α7 = −α1, α11 = 3α1.

Class (A2) : α1 6= 0, α11 = α7 = α1.

Class (A3) : α1 6= 0, α2
7 6= α2

1, α11 = 3α2
7/(2α1 + α7).

Case B: 2α1 + α7 = 0 :

Class (B1) : α13 = α7 = α1 = 0, α11(α2 + α8) = 0.

Class (B2) : α13 6= 0, α11 = α7 = α1 = 0, α9 = −2α3.

In case A, α12 is uniquely determined by equation (1) . We want to know the

minimal dimension of faithful modules for these classes of Lie algebras. The

result is:

Proposition 7. If gψ is a filiform Lie algebra of class A3, B1, B2 then

µ(gψ) = 10 ; if gψ is of class A1 satisfying the additional condition 3α2 +

α8 = 0 , or is of class A2 , then µ(gψ) = 10 or 11.

The class excluded above indeed provides counterexamples to Milnor’s

conjecture:

Proposition 8. Let gψ = g(α1, . . . , α13) be a Lie algebra of class A1 ,

satisfying 3α2 + α8 6= 0. Then 12 ≤ µ(gψ) ≤ 22 .

The proof is given in [BU3]. The rough idea is as follows: Let gψ be a

filiform nilpotent Lie algebra of dimension 10 . Suppose there is any faith-

ful module M of dimension m < 12 . By Lemma 3.2. in [BEN] we may

assume that M is nilpotent and is of dimension 11. For such modules we

construct a combinatorical type, thereby classifying such modules. Note that

the faithfulness is a strong condition which excludes many types of modules.

For each type we check the conditions for M to be a faithful nilpotent module

of dimension m < 12 . This means certain equations in the αi . The crucial

equation is 3α2 +α8 = 0. On the other hand, we construct a faithful module

of dimension 22 for all filiform Lie algebras of dimension 10 .
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Remark 1. Let G be the connected simply connected Lie group with filiform

nilpotent Lie algebra as in Proposition 8 . Then G does not admit an étale

affine representation. There is the question whether the Lie groups correspond-

ing to the other classes (see Proposition 7 ) do admit such representations. We

have not checked this in general. However for class A3 the answer is positive.

4.2 Filiform Lie algebras in dimension 11

Let L = L(10) =< e0, e1, . . . , e10 > be the standard graded filiform Lie alge-

bra of dimension 11. Then every filiform nilpotent Lie algebra of dimension

11 is isomorphic to gψ = (L)ψ for some ψ ∈ F1H
2(L,L). In terms of the

basis of this cohomology space we may write

ψ = α1ψ1,4 + α2ψ1,5 + . . .+ α7ψ1,10

+α8ψ2,6 + α9ψ2,7 . . .+ α12ψ2,10

+α13ψ3,8 + . . . + α15ψ3,10

+α16ψ4,10

The integrability of ψ is determined by four equations. We are interested here

in the case α1 6= 0. We have the following result, using the same methods as

above (see also [BGR]):

Proposition 9. Let gψ be a filiform nilpotent Lie algebra of dimension 11

satisfying α1 6= 0 . Then µ(gψ) ≤ 12 if and only if α8 = 0 or 10α8 = α1

or 5α2
8 = 2α2

1 or 4α2
1 − 4α1α8 + 3α2

8 = 0.
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Geometriae Dedicata 40 (1991), 269-295.

[HEL] J. HELMSTETTER, Algèbres symétriques à gauche, C.R. Acad. Sc.

Paris 272 (1971), 1088-1091.

[JAN] J. JANTZEN, First cohomology groups for classical Lie algebras, Prog.

Math. 95 (1991), 289-315.

[KIM] H. KIM, Complete left-invariant affine structures on nilpotent Lie

groups, J. Differential Geometry 24 (1986), 373-394.

[MIL] J. MILNOR, On fundamental groups of complete affinely flat mani-

folds, Advances in Math. 25 (1977), 178-187.

[SEG] D. SEGAL, The structure of complete left-symmetric algebras, Math.

Ann. 293 (1992), 569-578.

[SMI] J. SMILLIE, An obstruction to the existence of affine structures, In-

ventiones Math. 64 (1981), 411-415.

[VER] M. VERGNE, Cohomologie des algèbres de Lie nilpotentes. Applica-
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