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We investigate the existence of affine structures on nilmanifolds Γ\G in the case where the Lie algebra

g of the Lie group G is filiform nilpotent of dimension less or equal to 11 . Here we obtain examples

of nilmanifolds without any affine structure in dimensions 10, 11 . These are new counterexamples to the

Milnor conjecture. So far examples in dimension 11 were known where the proof is complicated, see

[BGR] and [BEN]. Using certain 2 -cocycles we realize the filiform Lie algebras as deformation algebras

from a standard graded filiform algebra. Thus we study the affine algebraic variety of complex filiform

nilpotent Lie algebra structures of a given dimension ≤ 11 . This approach simplifies the calculations,

and the counterexamples in dimension 10 are less complicated than the known ones. We also obtain

results for the minimal dimension µ(g) of a faithful g -module for these filiform Lie algebras g .

1 Introduction

Let M denote an n -dimensional manifold (connected and without boundary). An affine
atlas Φ on M is a covering of M by coordinate charts such that each coordinate change
between overlapping charts in Φ is locally affine, i.e., extends to an affine automorphism
x 7→ Ax + b , A ∈ GLn(R) , of some n -dimensional real vector space E. A maximal
affine atlas is an affine structure on M , and M together with an affine structure is
called an affine manifold. An affine structure determines a differentiable structure and
affine manifolds are flat – there is a natural correspondence between affine structures on
M and flat torsionfree affine connections ∇ on M . Such an affine connection is a
connection in the tangent bundle with zero torsion and zero curvature.
Subclasses of affine manifolds are Riemannian-flat and Lorentz-flat manifolds. A funda-
mental problem is the question of existence of affine structures. A closed surface admits
affine structures if and only if its Euler characteristic vanishes; in fact, a closed surface
with genus g ≥ 2 does not possess any affine connection with curvature zero ([MI1]). The
torus admits affine structures, even non-Riemannian ones: Let Γ be the set of transfor-
mations (x, y) 7→ (x + ny +m, y + n) of E = R2 where n,m ∈ Z. Denote by Aff(E)
the group of affine automorphisms,

Aff(E) =

{(
A b

0 1

)
| A ∈ GL(E), b ∈ E

}
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Then Γ is a discrete subgroup of Aff(R2) acting properly discontinuously on R
2 . The

quotient space Γ\R2 is diffeomorphic to a torus and is a complete compact affine manifold.
The flat torsionfree connection on R2 induces a flat torsionfree affine connection on Γ\R2 .
It can be shown that the affine structure is not Riemannian.
In higher dimensions ( n ≥ 3 ) the existence question is open. There are only certain
obstructions known ([SMI]): If M is compact and its fundamental group is build up out
of finite groups by taking free products, direct products and finite extensions, then M
does not admit affine structures.
Many examples of affine manifolds come from left-invariant affine structures on Lie groups:
If G is a Lie group, an affine structure on G is left-invariant, if for each g ∈ G the
left-multiplication by g , Lg : G → G , is an automorphism of the affine structure. (The
affine connection then is left-invariant under left-translations). For G simply connected
let D : G → E be the developing map. Then there is for each g ∈ G a unique affine
automorphism α(g) of E , such that the diagram

G
D−−−−→ E

Lg

y
yα(g)

G
D−−−−→ E

commutes. In that case α : G→ Aff(E) is an affine representation.
It is not difficult to see ([FGH]) that G admits a complete left-invariant structure if and
only if G acts simply transitively on E as affine transformations. In this case G must be
solvable ([AUS]). If G has a left-invariant affine structure and Γ is a discrete subgroup
of G , then the homogeneous space Γ\G of right cosets inherits an affine structure. If
G is nilpotent, then Γ\G is called an affine nilmanifold. Any compact complete affine
manifold with nilpotent fundamental group is already an affine nilmanifold ([FGH]).
Left-invariant affine structures play an important role in the study of affine crystallographic
groups (in short ACGs), and of fundamental groups of affine manifolds, see [MI2]. A group
Γ ≤ Aff (E) is calledACG if it acts properly discontinuously on E with compact quotient.
There is the following well-known conjecture (for details see [AMS]):

Auslander conjecture: An ACG is virtually polycyclic.

This may be restated as follows: The fundamental group of a compact complete affine man-
ifold is virtually polycyclic. Milnor proved that a finitely generated torsionfree virtually
polycyclic group Γ can be realized as a subgroup of Aff (E) acting properly discontinu-
ously. Hence it is the fundamental group of a complete affine manifold.
If we assume that Γ ⊂ Aff(E) is a virtually polycyclic ACG acting on E , then there is
a Lie group G ⊂ Aff(E) virtually containing Γ , acting simply transitively on E . The
latter is equivalent to the fact that G admits a complete left-invariant affine structure.
Indeed, Auslander’s conjecture is equivalent to the following:

A compact complete affine manifold is finitely covered by quotients of solvable Lie groups
with complete left-invariant affine structures.
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Milnor asked in this context ([MI2]):

(1) Which Lie groups admit left-invariant affine structures ?

This question is particularly difficult for nilpotent Lie groups. There was much evidence
that every nilpotent Lie group admits left-invariant affine structures, see Proposition 1.
Milnor conjectured this to be true even for solvable Lie groups ([MI1]). Recently, however,
counterexamples were discovered ([BGR] and [BEN]). There are nilmanifolds which are
not affine. The key step here is to find n -dimensional nilpotent Lie algebras having no
faithful representations in dimension n + 1 , hence no affine representation which could
arise from a left-invariant affine structure on the Lie group G . In order to determine
such Lie algebras we study the affine algebraic variety of all filiform Lie algebra structures
in dimension ≤ 11 over C . Every filiform nilpotent Lie algebra of dimension n > 7
is isomorphic to an infinitesimal deformation of the standard graded filiform g by a 2 -
cocycle from a certain subspace of H2(g, g) , see [VER]. This description turns out to
be useful for our question, i.e., to determine the minimal dimension µ(g) of faithful g -
modules for such Lie algebras. We are led to new counterexamples in dimension 10 and
11 . If g is a nilpotent filiform algebra of smaller dimension ( n ≤ 9 ) we have µ(g) = n .
Hence these algebras do not provide counterexamples with respect to this method.

2 Preliminaries

Let G be a finite-dimensional connected Lie group with Lie algebra g . We may assume
that G is simply connected (otherwise consider G̃ ).

Definition 1 An affine representation α : G → Aff(E) is called étale, if there exists a
v ∈ E whose stabilizer Gv is discrete in G , and whose G - orbit G · v is open in E .

Definition 2 A left-symmetric algebra structure (or LSA–structure in short) on g over
a field k is a k –bilinear product g × g → g , (x, y) 7→ x · y satisfying the conditions
x·y−y·x = [x, y] and (x, y, z) = (y, x, z) for all x, y, z , where (x, y, z) = x·(y·z)−(x·y)·z
denotes the associator of x, y, z ∈ g.

Lemma 1 There is a canonical one-to-one correspondence between the following classes
of objects (up to suitable equivalence):

{Etale affine representations of G}(a)

{Left-invariant affine structures on G}(b)

{Flat torsionfree left-invariant affine connections ∇ on G}(c)

{LSA–structures on g}(d)

Under the bijection (b), (d) , bi-invariant affine structures correspond to associative LSA-
structures.
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Proof: This is well known, see [SEG] or [KIM]. Here is a brief reminder of some of the
arguments:
Suppose G admits a left-invariant flat torsionfree affine connection ∇ on G . Since
the connection is left-invariant, for any two left-invariant vector fields X, Y ∈ g , the
covariant derivative ∇XY ∈ g is left-invariant. It follows that covariant differentiation
(X, Y ) 7→ ∇XY defines a bilinear multiplication g× g → g , denoted by (X, Y ) 7→ XY
in short. Since ∇ is locally flat and torsionfree, we have the following:

[X, Y ] = XY − Y X(i)

[X, Y ]Z = X(Y Z)− Y (XZ)(ii)

We can rewrite (ii) by using (i) as (X, Y, Z) = (Y,X, Z) . Thus (g, ·) is a left-
symmetric algebra (or LSA) with product x · y = ∇XY.
If we have any LSA–structure on g with product (x, y) 7→ x ·y , then denote by λ : x 7→
λ(x) the left-regular representation on the LSA (g, ·) : λ(x)y = x · y . It is a Lie algebra
representation:

λ : g → End(g) , [λ(x), λ(y)] = λ([x, y])

Denote the corresponding g -module by gλ . Furthermore, the identity map 1 : g → gλ
is a 1 -cocycle in Z1(g, gλ) : 1([x, y]) = 1(x) · y− 1(y) · x. Let aff(g) be the Lie algebra

of Aff(G) , i.e., aff(g) =
{(

A b
0 0

)
| A ∈ gl(g), b ∈ g

}
which we identify with gl(g) ⊕ g .

Denote the linear part by ℓ(A, b) = A and the translational part by t(A, b) = b . Now
we associate to the LSA (g, ·) the map

α = λ⊕ 1 : g → aff(g)

It is an affine representation of g . We have λ = ℓ◦α and t◦α = 1 . The corresponding
affine representation of G is étale, see [SEG].
If α : G→ Aff (E) is an étale affine representation, then its differential ̺ : g → aff(E) is
a Lie algebra homomorphism such that the evaluation map evp : g → E , x 7→ ̺(x)p =
θ(x)p + u(x) is an isomorphism for some p ∈ E , where θ : g → gl(E) is a linear
representation, say Eθ as module, and u is the translational part of ̺ . It suffices to
look at p = 0 . Then u = ev0 is a vector space isomorphism. Moreover u ∈ Z1(g, Eθ) ,
and hence λ(a) = u−1 ◦ θ(a) ◦ u defines an LSA–product via a · b = λ(a)b on g.

Milnor’s question (1) now is equivalent to the algebraic question

(1’) Which Lie algebras admit LSA–structures ?

Semisimple Lie algebras over characteristic zero do not admit LSA–structures. Certain
reductive Lie algebras do, for example gl(n) . For more details see [BU1]. Milnor con-
jectured that every solvmanifold is affine, i.e., any solvable Lie algebra admits (complete)
LSA–structures. It is the purpose of this paper to discuss counterexamples. We consider
the nilpotent case. The following Proposition indicates where the support for Milnor’s
conjecture came from:
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Proposition 1 Let g be a nilpotent Lie algebra of characteristic zero satisfying one of
the following conditions:

(1) dim g < 8.
(2) g is p –step nilpotent with p < 4.
(3) g is Z –graded.
(4) g possesses a nonsingular derivation.
(5) g is filiform nilpotent and a quotient of a higher–dimensional filiform nilpotent Lie

algebra.

Then g admits an LSA–structure.

Proof: Condition (4) is a special case of the following: Let ψ ∈ Z1(g, gθ) be a nonsin-
gular 1 –cocycle, where θ : g → gl(g) is a representation.Then λ(x) := ψ−1 ◦ θ(x) ◦ ψ
is defined and 1 ∈ Z1(g, gλ) , i.e., λ defines an LSA–structure. If θ is the adjoint rep-
resentation of g then an invertible ψ ∈ Z1(g, g) is a nonsingular derivation. Condition
(3) implies condition (4) . The first two conditions are discussed in [BEN] and [MI2], the
last one in [BU2].

The following Lemma is useful:

Lemma 2 If g admits an LSA–structure then g has a faithful representation of dimen-
sion dim g+ 1.

Proof: The LSA–structure on g induces a faithful affine representation α : g → aff(g) ,
called the affine holonomy representation, see [FGH]. If dim g = n then aff(g) ⊂ gl(n+1)
and we obtain a faithful linear representation of dimension n+ 1.

Definition 3 Let g be a finite-dimensional Lie algebra over a field k . Define

µ(g, k) := min{dimkM |M is a faithful g–module}

By Ado’s Theorem (and Iwasawa’s in prime characteristic) we know that µ is integer
valued. Properties of µ are studied in [BU2]. We summarize here a few of them. Let us
assume here k = C.

Proposition 2 Let g be a Lie algebra of dimension n ≥ 2 over C .

(1) If g is abelian then µ(g) = ⌈2
√
n− 1⌉.

(2) If g has trivial center then µ(g) ≤ n.
(3) If g is a Heisenberg Lie algebra h2m+1 of dimension 2m+1 , then µ(g) = m+2.
(4) If g is solvable then µ(g) < α√

n
2n with α ∼ 2.762872

(5) If g is p –step nilpotent then µ(g) < 1 + np.

(6) If g is filiform nilpotent then n ≤ µ(g) <
√
3

12
exp(π

√
2n/3).

(7) If g satisfies one of the conditions in Proposition 1 then µ(g) ≤ n+ 1.
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(8) If g is a quotient of a filiform nilpotent Lie algebra g′ with dim g′ > dim g = n
then µ(g) = n.

(9) If g is filiform nilpotent with abelian commutator algebra then µ(g) = n.
(10) If g is filiform nilpotent of dimension n < 10 then µ(g) = n.

The key step for the construction of the counterexamples to the Milnor conjecture is to
determine Lie algebras with

µ(g) > dim g+ 1

In fact, we will construct filiform Lie algebras in dimensions 10, 11 with that property.
These Lie algebras are not quotients of any filiform Lie algebra of higher dimension.

3 Varieties of filiform Lie algebra structures

Let g be a p –step nilpotent Lie algebra and let g0 = g, gk = [gk−1, g] and g0 =
0, gk = {x ∈ g : [x, g] ⊂ gk−1} for k = 1, 2, . . . ; the series

g = g0 ⊃ g1 ⊃ . . . ⊃ gp−1 ⊃ gp = 0

is called lower central series, and the series

0 = g0 ⊂ g1 ⊂ . . . ⊂ gp−1 ⊂ gp = g

is called upper central series. They are both of length p. Define Fi(g) = gi−1 and
Mi(g) = gp−i+1 for i > 1 . Set Fi(g) =Mi(g) = g for i ≤ 1. It holds [Fi(g),Mj(g)] ⊂
Mi+j(g) for i, j ∈ Z. The series Fi(g) defines a filtration of g and the series Mi(g)
defines a filtration of the adjoint module g. These induce a filtration on the spaces of
cochains, cocycles, coboundaries and cohomology.

Definition 4 A p –step nilpotent Lie algebra of dimension n is called filiform nilpotent
if p = n−1 . Let L = L(n) be the Lie algebra generated by e0, . . . , en with Lie brackets
[e0, ei] = ei+1 for i = 1, 2, . . . , n−1 and the other brackets zero. L is called the standard
graded filiform of dimension n+ 1 .

Note that Fi(g) =Mi(g) for filiform Lie algebras. L is graded by

L =
⊕

i∈Z

Li

where L1 is generated by e0 and e1 , Li by ei for i = 2, 3, . . . , n and the other
subspaces are zero. Setting

Cjq (L, L) = {g ∈ Cj(L, L) | g(Li1 , . . . , Lij ) ∈ Li1+...+ij+q ∀ 1 ≤ i1, . . . , ij < n}
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where q ∈ Z yields a Z –grading in the space Cj(L, L) of j –cochains compatible with
the coboundary operator d , i.e., d(Cjq (L, L)) ⊂ Cj+1

q (L, L). Hence we have assigned
gradings to the spaces of cocycles and coboundaries compatible with the filtrations of the
respective spaces:

FkZ
j(L, L) =

⊕

i≥k

Zji (L, L), FkB
j(L, L) =

⊕

i≥k

Bji (L, L),

FkH
j(L, L) =

⊕

i≥k
Hj
i (L, L)

Denote by Ln(k) the affine algebraic variety of all Lie algebra structures in dimension n
over k . A point in Ln(k) is a structural tensor {Ckij} corresponding to a Lie algebra

g with basis {v1, . . . , vn} over k such that [vi, vj] =
∑
Ckijvk. The Ckij are called

structure constants. They form a structural tensor γ ∈ g∗ ⊗ g∗ ⊗ g which is identified
with the bilinear skew-symmetric mapping γ : g ⊗ g → g defining the Lie bracket on g.
Nilpotent Lie algebras of class p form a subvariety N p

n (k) of Ln(k). The group GLn(k)
acts on Ln(k) by (g · γ)(x, y) = g(γ(g−1(x), g−1(y))).
Two Lie algebras in Ln(k) are isomorphic iff they belong to the same orbit of GLn(k).
Let γ be a point of Ln(k) corresponding to the Lie algebra g. Then the Zariski tangent
space to Ln(k) at the point γ coincides with Z2(g, g) , and the tangent space to the
orbit of g at γ coincides with B2(g, g).

Let k be R or C : A deformation in Ln(k) is a continuous curve c : [0, ǫ] → Ln(k), t 7→
g(t) . For t ∈ [0, ǫ] denote by g(t) the Lie algebra corresponding to the structural tensor
c(t) ∈ Ln(k). If c is analytic we have the convergent series

c(t) = F0 + F1 · t+ F2 · t2 + . . .

where Fm = {Fm}kij = c(m)(0)
m! ∈ kn

3

. We may also consider formal series and formal
deformations. The corresponding Lie algebra bracket is given by

[a, b]t = F0(a, b) + F1(a, b)t+ F2(a, b)t
2 + . . .

where [a, b]0 = [a, b] is the bracket in g. Then the Jacobi identity for [ , ]t implies
F1 ∈ Z2(g, g) . These 2 –cocycles are called infinitesimal deformations. If F1 corresponds
to a deformation (which is not always the case) then F1 is said to be integrable. If
we have two equivalent (formal) deformations, i.e., if the corresponding Lie algebras are
isomorphic, then F1 and F ′

1 corresponding to these deformations are cohomological, i.e.,
F1 − F ′

1 ∈ B2(g, g).

The following Proposition describes filiform Lie algebra structures in the variety N n−1
n (k)

(see [VER]):

Proposition 3 (Vergne) Every filiform nilpotent Lie algebra of dimension n + 1 ≥ 8
is isomorphic to an infinitesimal deformation of the standard graded n + 1 –dimensional
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filiform L . More precisely it is isomorphic to an algebra (L)ψ where ψ is an integrable
2 –cocycle whose cohomology class lies in

F1H
2(L, L) if n ≡ 0(2)

F1H
2(L, L) + < ψn−1

2 ,n > if n ≡ 1(2)

Here the algebra gψ = (L)ψ is defined by the bracket [a, b]ψ = [a, b]L + ψ(a, b).
The fact that this bracket satisfies the Jacobi identity means that ψ is integrable, i.e.,
satisfies

ψ(a, ψ(b, c)) + ψ(b, ψ(c, a)) + ψ(c, ψ(a, b)) = 0.(J)

The canonical 2 –cocycles ψk,s are defined by

ψk,s(ei, ei+1) = δikes

for pairs (k, s) with 1 ≤ k ≤ n− 1 and 2k ≤ s ≤ n . Hakimjanov proved ([HAK]):

Proposition 4 The cohomology classes of the cocycles ψk,s with 1 ≤ k ≤ n, 4 ≤ s ≤
n, 2k + 1 ≤ s form a basis of F0H

2(L, L) . This space has dimension n2−2n−3
4 if n is

odd, and dimension n2−2n−4
4 if n is even.

Now it is not difficult to see that the classes of ψk,s with 1 ≤ k ≤ [n/2]−1, 2k+2 ≤ s ≤ n
form a basis for F1H

2(L, L) . Hence, with dimL = n+ 1,

dimF1H
2(L, L) =





(n− 2)2

4
, n ≡ 0(2)

(n− 3)(n− 1)

4
, n ≡ 1(2)

We also have

ψk,s(ei, ej) =(−1)k
(
j − k − 1

k − i

)
(ade0)

i+j−2k−1es(P )

for 1 ≤ i < k < j−1 ≤ n−1 . In case i > k , ψk,s(ei, ej) = 0 and ψk,s(ek, ej) = es+j−k−1

for k < j.

4 Filiform Lie algebras in dimension 10

Let L = L(9) =< e0, e1, . . . , e9 > be the standard graded filiform Lie algebra of dimension
10. According to Proposition 3 every filiform nilpotent Lie algebra of dimension 10 is
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isomorphic to gψ = (L)ψ for some ψ ∈ F1H
2(L, L)+ < ψ4,9 > . In terms of the basis of

this cohomology space we may write

ψ = α1ψ1,4 + α2ψ1,5 + . . .+ α6ψ1,9

+α7ψ2,6 + . . .+ α10ψ2,9

+α11ψ3,8 + α12ψ3,9

+α13ψ4,9

For the convenience of the reader we will calculate ψ on the basis by using (P ) . We
only list nonzero values:

ψ(e1, e2) = α1e4 + α2e5 + · · ·+ α6e9

ψ(e1, e3) = α1e5 + α2e6 + · · ·+ α5e9

ψ(e1, e4) = (α1 − α7)e6 + (α2 − α8)e7 + · · ·+ (α4 − α10)e9

ψ(e1, e5) = (α1 − 2α7)e7 + (α2 − 2α8)e8 + (α3 − 2α9)e9

ψ(e1, e6) = (α1 − 3α7 + α11)e8 + (α2 − 3α8 + α12)e9

ψ(e1, e7) = (α1 − 4α7 + 3α11)e9

ψ(e1, e8) = −α13e9

ψ(e2, e3) = α7e6 + α8e7 + · · ·+ α10e9

ψ(e2, e4) = α7e7 + α8e8 + α9e9

ψ(e2, e5) = (α7 − α11)e8 + (α8 − α12)e9

ψ(e2, e6) = (α7 − 2α11)e9

ψ(e2, e7) = α13e9

ψ(e3, e4) = α11e8 + α12e9

ψ(e3, e5) = α11e9

ψ(e3, e6) = −α13e9

ψ(e4, e5) = α13e9

The cocycle ψ is integrable iff (J) holds, i.e., iff [a, b]ψ = [a, b]L + ψ(a, b) satisfies the
Jacobi identity. This is equivalent to the following equations:

α13(2α3 + α9)−α12(2α1 + α7)− 3α11(α2 + α8) + 7α7α8 = 0(1)

α11(2α1 + α7)− 3α2
7 = 0(2)

α13(2α1 − α7 − α11) = 0(3)

Since the integrability conditions are pleasantly simple we obtain the following filiform Lie
algebras gψ with bracket [a, b]ψ :
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Case A: 2α1 + α7 6= 0 :

(A1) α1 6= 0, α7 = −α1, α11 = 3α1,
α12 = (α13α

−1
1 )(2α3 + α9)− (9α2 + 16α8)

(A2) α1 6= 0, α11 = α7 = α1,
α12 = −(α1(3α2 − 4α8)− α13(2α3 + α9))/(3α1)

(A3) α1 6= 0, α2
7 6= α2

1, α13 = 0, α11 = 3α2
7/(2α1 + α7),

α12 = α7(14α1α8 − 9α2α7 − 2α7α8)/(2α1 + α7)
2

Case B: 2α1 + α7 = 0 :

α13 = α7 = α1 = 0, α11(α2 + α8) = 0(B1)

α13 6= 0, α11 = α7 = α1 = 0, α9 = −2α3(B2)

We have the following result for the minimal dimension of faithful modules for these classes
of Lie algebras:

Proposition 5 If gψ is a filiform Lie algebra of class A3, B1, B2 then µ(gψ) = 10 ;
if gψ is of class A1, A2 satisfying the additional condition 3α2 + α8 = 0 in case of
class A1 , then µ(gψ) = 10 or 11.

Proof: The above Lie algebras are generated by e0, e1 and have one–dimensional center
z =< e9 > . Let ̺ : gψ → gl(M) be a faithful representation. Then dimM ≥ 10 and
the faithfulness of ̺ is equivalent to ̺(e9) 6= 0 (see [BGR]). Define Ei = ̺(ei) . The
module M is generated by E0 and E1. We call such a module M a ∆ –module if
dimM = 11 and if M is nilpotent, i.e., every ̺(x) is nilpotent. We will now construct
∆ –modules M :
There is a basis {f1, f2, . . . , f11} for M such that E0, E1 are simultaneously strictly
upper triangular matrices and, moreover, such that there is in each row and each column
of E0 at most one nonzero entry (see [BGR]). Note that the center Z of a ∆ –module
is ker(E0) ∩ ker(E1) and contains f1 . Any subspace U of Z is a submodule, and the
quotient module will be faithful iff f1 is not in U. Since µ(gψ) ≥ 10 the dimension of
Z is at most 2.
Define the first layer of E0 to be the first upper diagonal, say {λ1, λ2, . . . , λ10} , the
second layer the second upper diagonal {λ11, λ12, . . . , λ19} and so forth. Let N1 denote
the set of indices i such that λi = 0 in the first layer of E0 , Nj the set of indices i
such that λi = 1 in the j –th layer of E0 for j = 2, 3, . . . , 10.

Definition 5 Define the combinatorical type of a ∆ –module M (the type of E0 ) to
be

type(M) = {N1 | N2 | . . . | N10}.

10



Of course, this notation generalizes to n –dimensional filiform Lie algebras and their ∆ –
modules of dimension n+ 1 .
Empty sets Ni are omitted in this notation. If E0 is of full Jordan block form, i.e., if
Nj = ∅ for all j then we set type(M) = ∅ . Not all types are faithful. It is easy to see
that the faithfulness of M depends only on the first and second layers of E0, E1 (the
formulas for E9 contain only those elements from E0, E1 , see [BGR]). It is possible to
give a list of all faithful types. Moreover we can reduce the number of types as follows:

Lemma 3 Let M be a ∆ - module for gψ . Then we may assume that the type of M
is one of the following:

(1) ∅
(2) {i} i = 5, ..., 10
(3) {i, i+ 1} i = 5, ..., 9
(4) {i, i+ 1 | 10 + i} i = 5, ..., 9
(5) {i, i+ 1, j | 10 + i} i = 5, 6, 7 j > i+ 2
(6) {i, j, j + 1 | 10 + j} j = 6, 7, 8, 9 i < j − 1

The proof is exactly the same as for Lemma 3.2 in [BGR]. Note that types with additional
entries r in the third or higher layer can also be reduced to one of the types listed (by
constructing a module with r = 0 ). This was not mentioned in [BGR].

To construct the ∆ –modules M we specify the type of M . We obtain equations in
the entries of E1 . It turns out that, once solved the equations involving the first and
second layer of E1 , the remaining equations can always be easily solved by substitutions
of certain xi appearing as linear monomials. Thus we will describe the ∆ –modules
(which prove the claim of the Proposition) by specifying the type of E0 and the first and
second layer of E1 . The complete solution may be found in the appendix [APP].
Denote by gψ the graded filiform algebra associated to gψ (induced by the natural
filtration of gψ by degree). Also, for a gψ –module M denote the associated gψ –

module by M . It is obtained from M by considering the filtration M0 = M1 = M
and M i+1 = E0M

i + E1Mi−1 and forming the associated graded module. The first two
layers of E0, E1 describe M. Using the coefficients of ad e1 of gψ we construct the
second layer of E1 for M. For a more precise statement, see Remark 1 below. Let
f = f11, U =< f > , and E9(i, j) denote the entry of E9 at position (i, j) . The
constructed modules are as follows:

Case B1 , α11 = 0 :

E0 is of type {1, 10}
First layer of E1 : {1, 0, 0, 0, 0, 0, 0, 0, 0, 0}
Second layer of E1 : {0, 0, 0, 0, 0, 0, 0, 1, 0}
The center of M is generated by f1, f and E9(1, 11) = 1 . We obtain a faithful module
M/U of dimension 10 .

Case B1 , α2 + α8 = 0 :
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E0 is of type {1, 10}
First layer of E1 : {1, 0, 0, 0, 0, 0, 0, 0, 0, 0}
Second layer of E1 : {0, 0, 0, 0, 0, 0,−α11

2 ,−8α11

5 , 0}
The center of M is generated by f1, f and E9(1, 11) = 1 . M/U is a faithful module
of dimension 10 .

Case B2 :

E0 is of type {1, 10}
First layer of E1 : {1, 0, 0, 0, 0, 0, 0, 0,−α13

2 , 0}
Second layer of E1 : {0, 0, 0, 0, 0, 0, 0, 0, 0}
The center of M is generated by f1, f and E9(1, 11) = 1 . M/U is a faithful module
of dimension 10 .

Case A3 :

E0 is of type {10}
First layer of E1 : {1, 0, 0, 0, 0, 0, 0, 0, 0, 0}
Second layer of E1 : {0, −α1, −α1, α7 − α1, 2α7 − α1,

α1(5α7−2α1)
2α1+α7

, (5α7−2α1)(α1−α7)
2α1+α7

,

(5α3
7 − 2α3

1 + 10α2
1α7 + 16α1α

2
7)/2(α

2
1 − α2

7), 0}
The center of M is generated by f1, f and E9(1, 11) = 1 . M/U is a faithful module
of dimension 10 .

Case A2 satisfying α13 6= 0 and 33α2 − 20α8 = 0 :

E0 is of type {9}
First layer of E1 : {−10α13

11 , 0, 0, 0, 0, 0, 0, 0, 0, 0}
Second layer of E1 : {−23α2α13

22α1
,−α1,−α1, 0, α1, α1, 0, 1,−2}

The center of M is generated by f1 and E9(1, 11) = −10 . M is a faithful module of
dimension 11 .

Case A2 satisfying α13 = 0 and 33α2 − 20α8 = 0 :

E0 is of type {9}
First layer of E1 : {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
Second layer of E1 : {0,−α1,−α1, 0, α1, α1, 0, 1,−2}
The center of M is generated by f1 and E9(1, 11) = −10 . M is a faithful module of
dimension 11 .

Case A2 satisfying α13 6= 0 , γ = 33α2 − 20α8 6= 0 and 726α2
1 − γα13 = 0 :

E0 is of type {1, 9, 10 | 19}
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First layer of E1 : {1, 0, 0, 0, 0, 0, 0, α13

11 , 0,
1
α2

1
}

Second layer of E1 : {0,−α1,−α1, 0, α1, α1, 0,
2α2

1α
2
13

121
,−2α13

11
}

The center of M is generated by f1 and E9(1, 11) = 1 . M is a faithful module of
dimension 11 .

Case A2 satisfying α13 6= 0 , γ = 33α2 − 20α8 6= 0 and 726α2
1 − γα13 6= 0 :

E0 is of type {9, 10 | 19}
First layer of E1 : {− 660α2

1α13

726α2
1−γα13

, 0, 0, 0, 0, 0, 0,
66α2

1

γ
, 0,

8712α4
1

γ2 }

Second layer of E1 : {0,−α1,−α1, 0, α1, α1, 0, 1,−132α2
1

γ
}

The center of M is generated by f1 and

E9(1, 11) = − 479160α4
1

γ(726α2
1−γα13)

. M is a faithful module of dimension 11 .

Case A2 satisfying α13 = 0 and γ = 33α2 − 20α8 6= 0 :

E0 is of type {9, 10 | 19}
First layer of E1 : {0, 0, 0, 0, 0, 0, 0, 66α

2
1

γ
, 0,

8712α4
1

γ2 }

Second layer of E1 : {0,−α1,−α1, 0, α1, α1, 0, 1,−132α2
1

γ
}

The center of M is generated by f1 and

E9(1, 11) = −660α2
1

γ
. M is a faithful module of dimension 11 .

Case A1 satisfying 3α2 + α8 = 0, α2 6= 0 and 22α2
1 − α2α13 = 0 :

E0 is of type {1, 9, 10 | 19}
First layer of E1 : {1, 0, 0, 0, 0, 0, 0, α13

11 , 0,
1
α2

1
}

Second layer of E1 : {0, 7α1, 3α1, 2α1, α1, α1, 0,
2α2

1α
2
13

121
,−2α13

11
}

The center of M is generated by f1 and E9(1, 11) = 1 . M is a faithful module of
dimension 11 .

Case A1 satisfying 3α2 + α8 = 0, α13, α2 6= 0 and γ = 22α2
1 − α2α13 6= 0 :

E0 is of type {9, 10 | 19}
First layer of E1 : {−20α2

1α13

γ
, 0, 0, 0, 0, 0, 0,

2α2
1

α2
, 0,

8α4
1

α2
2
}

Second layer of E1 : {0, 7α1, 3α1, 2α1, α1, α1,− 7α1γ
5α2α13

, 1,−4α2
1

α2
}

The center of M is generated by f1 and E9(1, 11) = −440α4
1

γα2
. M is a faithful module

of dimension 11 .
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Case A1 satisfying 3α2 + α8 = 0, α13 = 0 and α2 6= 0 :

E0 is of type {9, 10 | 19}
First layer of E1 : {0, 0, 0, 0, 0, 0, 0, 2α

2
1

α2
, 0,

8α4
1

α2
2
}

Second layer of E1 : {14α1, 7α1, 3α1, 2α1, α1, α1, 0, 1,−4α2
1

α2
}

The center of M is generated by f1 and E9(1, 11) = −20α2
1

α2
. M is a faithful module

of dimension 11 .

Case A1 satisfying 3α2 + α8 = 0 , α13 6= 0 and α2 = 0 :

E0 is of type {9}
First layer of E1 : {−10α1

11 , 0, 0, 0, 0, 0, 0, 0, α13, 0, 2α13}
Second layer of E1 : {0, 7α1, 3α1, 2α1, α1, α1,−77α1

5 , α13,−2α13}
The center of M is generated by f1 and E9(1, 11) = −10α13 . M is a faithful module
of dimension 11 .

Case A1 satisfying 3α2 + α8 = 0 and α13, α2 = 0 :

E0 is of type {9}
First layer of E1 : {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
Second layer of E1 : {14α1, 7α1, 3α1, 2α1, α1, α1, 0, 1,−2}
The center of M is generated by f1 and E9(1, 11) = −10 . M is a faithful module of
dimension 11 .

It is easy to check that we have indeed constructed faithful modules of dimension 10 or
11 for all Lie algebras gψ except for those of class A1 satisfying 3α2 + α8 6= 0.

Remark 1 For the graded algebra gψ we have [e1, ei]gr = βie2+i . Consider the set
{β2, . . . , β6} . As an example, for gψ of class A1 we obtain

{β2, . . . , β6} = {α1, α1, 2α1, 3α1, 7α1}.

Let {y1, . . . , y10} be the second layer of E1 for M . The set of coefficients {y2, . . . , y6}
(or their negative ones) coincides with {β2, . . . , β6}.

The next Proposition shows that the ”missing” case indeed provides counterexamples to
the Milnor conjecture:

Proposition 6 Let gψ = g(α1, . . . , α13) be a Lie algebra of class A1 , satisfying 3α2 +
α8 6= 0. Then 12 ≤ µ(gψ) ≤ 22 .
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Proof: Let gψ be any filiform nilpotent Lie algebra of dimension 10 . Suppose there
is any faithful module M of dimension m < 12 . By Lemma 3.2. in [BEN] we may
assume that M is nilpotent and is of dimension 11. Then is has to be isomorphic to one
of the ∆ –modules listed in Lemma 3 . We have to check, for every type of this list, if the
equations for the coefficients of E1 have a solution or not. Many of the types (especially
(5), (6) ) are done after just solving a few linear equations. The result of the computations
then is exactly Proposition 5 and 6 . In fact, the solutions for the classes of Proposition
5 were determined just by this procedure. In [BGR] we have written up the computations
in detail for 11 –dimensional algebras. The computations here are similar but a great deal
simpler. As an example for a more difficult type, assume that E0 is of type {10},
First layer of E1 : {x1, x2, . . . , x10}
Second layer of E1 : {x11, . . . , x19}
Examining the module-equations we find (assume x19 6= 0 ): x8 = 2x7, x7 = 0, x5x6 =
0, 3x6 = 2x5 and x3 = x4 = 0, 7x2 = 2x1+α13 . Then x1(2x1+α13) = α13(9x1+8α13) =
0 . This implies x1 = x2 = α13 = 0 . Furthermore x17 = 2x16−α1 , x16 = 3x15−2x14+α1

and x15 = 4x14 − 5x13 + 2x12 − 3α1 . Then we find eight equations in x11, x12, x13, x14
and α1 (see [APP]). They have only the trivial solution, i.e., α1 = 0 , contradiction. If
x19 = 0 it follows α1 = 0 by similar computations.

If gψ is of class A1 (with α13 6= 0 ) then we obtain very soon a contradiction except for
the following types:

{9}, {1, 9, 10 | 19}, {1, 8, 9 | 18}, {9, 10 | 19}, {8, 9 | 18}

However, in these cases it follows 3α2 + α8 = 0.

Let g denote gψ of class A1 satisfying 3α2+α8 6= 0. The universal enveloping algebra
U(g) has a basis of ordered monomials eα = eα9

9 · · · eα0
0 with an order function. We have

ord(e0) = 1 and ordei = i for i ≥ 1 (for details see [BGR]). Let

Um(g) = {T ∈ U(g) : ord(T ) ≥ m}

Um(g) is an ideal of U(g) of finite codimension. Define V = U(g)/Um(g).
One can show that V is a faithful g –module if m is greater than the nilpotency class
of g . Take m = 10 . Then V has a vector space basis above has the vector space basis

{eα9
9 · · · eα0

0 | 9α9 + · · ·+ 2α2 + α1 + α0 ≤ 9}

The elements ei of g act on V by eiej = [ei, ej ] + ejei for i < j . Consider the

following quotient module V̂ of V with vector space basis:

{e9, e8, e24, e7, e4e3, e3e22, e6, e4e2, e4e21, e23, e3e2e1, e3e31, e32, e22e21, e5,
e4e1, e3e2, e3e

2
1, e

2
2e1, e2e

3
1, e

5
1, e4, e3e1, e

2
2, e2e

2
1, e

4
1, e3, e2e1, e

3
1, e2, e

2
1, e1, 1}
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We have constructed a faithful g – module V̂ of dimension 33 ; Passing succesively to
faithful quotient modules we obtain a faithful representation of dimension 22.

Remark 2 Let G be a connected simply connected Lie group of dimension 10 with
filiform nilpotent Lie algebra g = g(α1, . . . , α13) . If g is of class A1 with 3α2 + α8 6=
0 then it follows from Proposition 6 that G does not admit any left-invariant affine
structure.
A natural question is, whether all other classes actually do admit left-invariant affine
structures. We don’t believe this to be true, i.e., there should be Lie algebras g with
µ(g) ≤ dim g+1 without any LSA–structure (e.g. some of the algebras of class A1, A2 ).
On the other hand we may construct left-invariant affine structures (i.e., LSA–structures)
for certain subclasses of A3, B1, B2.

Proposition 7 Let g(α1, . . . , α13) be a filiform nilpotent Lie algebra of dimension 10 .
If g satisfies on of the following conditions, then g admits an LSA-structure.

(1) g is of class A3 with g 6= g(α1, . . . , α6, 0, 0, 0, α10, 0, 0, 0) where α1, α10 6= 0.
(2) g is of class B1 with α11 6= 0 and α2 = α3 = α8 = 0
(3) gψ is of class B1 with α11 = 0 and α2(α2 − 8α8 + 6α12) = 0
(4) gψ is of class B2 and 2α8 = 5α2 and 50α4 = α2(42α12 − 133α2)/α13

Proof: If g is a quotient of a filiform nilpotent Lie algebra h of dimension 11 , then g

admits an LSA–structure by Proposition 1(5) . Then there is a surjective homomorphism
h → g with one–dimensional kernel. This property is well suited for computations. The
above algebras are precisely those admitting such a homomorphism.

There is another construction to obtain LSA-structures, only depending on ad e1 of the
Lie algebra.

Let g be a nilpotent Lie algebra of dimension m over k with basis {e0, e1, . . . , em−1}
such that [e0, ei] = ei+1 and ad e1 maps k{ei, . . . , em−1} into k{ei+1, . . . , em−1} . Let
g be generated by e0, e1 . Define linear maps λ(ei) : g → g by

λ(e0)ei =





0, i = 0

(i− 1)

i
ei+1, i ≥ 1

and λ(e1) = ad e1 , λ(ei+1) = [λ(e0), λ(ei)]. They induce a linear map λ : g → End(g) .
It follows λ(e0)ei − λ(ei)e0 = ei+1 for i ≥ 1 by induction. In fact, λ(ei)e0 = −1

i
ei+1.

Define a map α : g → aff(g) by

α(e0) =

(
λ(e0) e0
0 0

)
, α(e1) =

(
λ(e1) e1
0 0

)
, α(ei+1) = [α(e0), α(ei)],

where e0 = (1, 0, . . . , 0) , e1 = (0, 1, 0, . . . , 0), . . . , em−1 = (0, . . . , 0, 1) . Again by induc-
tion (using λ(e0)ei−1 − λ(ei−1)e0 = ei ) we obtain
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α(ei) = [α(e0), α(ei−1)] =

(
λ(ei) ei
0 0

)
.

Hence the image of g under α is indeed inside of aff(g) . However, is α an affine
representation of g ? Note that α is an affine representation iff λ is a linear represen-
tation. In this case, λ(b) = a · b defines an LSA–structure on g. In general, λ need not
be a representation. In low dimensions however, it is very often a reprensentation. The
following result is true for filiform Lie algebras of dimension 10 :

Proposition 7 Let gψ be a filiform nilpotent Lie algebra of dimension 10 . Then the
map α defined above is an affine representation of gψ iff

(1) gψ is of class A3 and 10α7 = α1, 22α8 = 3α2, α9 = 3(385α1α3 + 23α2
2)/(8085α1)

(2) gψ is of class B1 with α11 6= 0 and α2 = α3 = α8 = 0
(3) gψ is of class B1 with α11 = 0 and α2(α2 − 8α8 + 6α12) = 0
(4) gψ is of class B2 and 2α8 = 5α2 and 50α4 = α2(42α12 − 133α2)/α13

Proof: From the matrix equation [E1, E2] = α1E4 + · · ·+ α6E9 we obtain immediately
α1(10α7 −α1) = 0 , compute the entry at position (8, 3). Likewise calculations prove the
result.

5 Filiform Lie algebras in dimension 11

Let L = L(10) =< e0, e1, . . . , e10 > be the standard graded filiform Lie algebra of di-
mension 11. Then every filiform nilpotent Lie algebra of dimension 11 is isomorphic to
gψ = (L)ψ for some ψ ∈ F1H

2(L, L). In terms of the basis of this cohomology space we
may write

ψ = α1ψ1,4 + α2ψ1,5 + . . .+ α7ψ1,10

+α8ψ2,6 + α9ψ2,7 . . .+ α12ψ2,10

+α13ψ3,8 + . . .+ α15ψ3,10

+α16ψ4,10

The integrability of ψ is determined by four equations, see [APP]. We are interested here
in the case α1 6= 0. This includes the algebras a(r, s, t) of [BEN] and [BGR], choose

ψ = ψ1,4 + (1− r)ψ2,6 − sψ2,7 − tψ2,8 + β1ψ3,8 + β2ψ3,9 + β3ψ3,10 + β4ψ4,10

with certain βi , see [APP]. The integrability conditions then imply 2α1 + α8 6= 0 and
α2
1 6= α2

8. We have the following result:

Proposition 8 Let gψ be a filiform nilpotent Lie algebra of dimension 11 satisfying
α1 6= 0 . Then µ(gψ) ≤ 12 if and only if α8 = 0 or 10α8 = α1 or 5α2

8 = 2α2
1 or

4α2
1 − 4α1α8 + 3α2

8 = 0.
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Proof: For gψ = a(r, s, t) we obtain exactly Theorem B of [BGR], substituting α1 = 1
and α8 = 1 − r in the above equations. The proof is the same as for Theorem B. By
avoiding polynomials in r, s, t the computations here are easier.

References

[AMS] H. ABELS, G.A. MARGULIS AND G.A. SOIFER, On the Zariski closure of the linear part of

a properly discontinuous group of affine transformations, Preprint (1995).

[APP] APPENDIX (D. BURDE), Computer programs and a list of modules for Affine nilmanifolds

(1995).

[AUS] L. AUSLANDER, Simply transitive groups of affine motions, Amer. J. Math. 99 (1977), 809-826.
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[HAK] Y. B. HAKIMJANOV, Variété des lois d’algèbres de Lie nilpotentes Geometriae Dedicata 40

(1991), 269-295.

[KIM] H. KIM, Complete left-invariant affine structures on nilpotent Lie groups, J. Diff. Geometry 24

(1986), 373-394.

[MI1] J. MILNOR, On the existence of a connection with curvature zero, Comment. Math. Helv. 32

(1958), 215-223.

[MI2] J. MILNOR, On fundamental groups of complete affinely flat manifolds, Advances in Math. 25

(1977), 178-187.

[SEG] D. SEGAL, Free left-symmetric algebras and an analogue of the Poincaré-Birkhoff-Witt Theorem,
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des algèbres de Lie nilpotentes, Bull. Math. Soc. France 78 (1970), 81-116.

18


