Affine structures on nilmanifolds

Dietrich BURDE
Yale University, 10 Hillhouse Avenue, NEW HAVEN CT 06520-8283
University of Düsseldorf, Universitätstraße 1, 40225 DÜSSELDORF

Abstract

We investigate the existence of affine structures on nilmanifolds $\Gamma \backslash G$ in the case where the Lie algebra \mathfrak{g} of the Lie group G is filiform nilpotent of dimension less or equal to 11 . Here we obtain examples of nilmanifolds without any affine structure in dimensions 10,11 . These are new counterexamples to the Milnor conjecture. So far examples in dimension 11 were known where the proof is complicated, see [BGR] and [BEN]. Using certain 2 -cocycles we realize the filiform Lie algebras as deformation algebras from a standard graded filiform algebra. Thus we study the affine algebraic variety of complex filiform nilpotent Lie algebra structures of a given dimension ≤ 11. This approach simplifies the calculations, and the counterexamples in dimension 10 are less complicated than the known ones. We also obtain results for the minimal dimension $\mu(\mathfrak{g})$ of a faithful \mathfrak{g}-module for these filiform Lie algebras \mathfrak{g}.

1 Introduction

Let M denote an n-dimensional manifold (connected and without boundary). An affine atlas Φ on M is a covering of M by coordinate charts such that each coordinate change between overlapping charts in Φ is locally affine, i.e., extends to an affine automorphism $x \mapsto A x+b, A \in \mathbf{G} \mathbf{L}_{n}(\mathbb{R})$, of some n-dimensional real vector space E. A maximal affine atlas is an affine structure on M, and M together with an affine structure is called an affine manifold. An affine structure determines a differentiable structure and affine manifolds are flat - there is a natural correspondence between affine structures on M and flat torsionfree affine connections ∇ on M. Such an affine connection is a connection in the tangent bundle with zero torsion and zero curvature.
Subclasses of affine manifolds are Riemannian-flat and Lorentz-flat manifolds. A fundamental problem is the question of existence of affine structures. A closed surface admits affine structures if and only if its Euler characteristic vanishes; in fact, a closed surface with genus $g \geq 2$ does not possess any affine connection with curvature zero ([MI1]). The torus admits affine structures, even non-Riemannian ones: Let Γ be the set of transformations $(x, y) \mapsto(x+n y+m, y+n)$ of $E=\mathbb{R}^{2}$ where $n, m \in \mathbb{Z}$. Denote by $\mathbf{A f f}(E)$ the group of affine automorphisms,

$$
\operatorname{Aff}(E)=\left\{\left.\left(\begin{array}{ll}
A & b \\
0 & 1
\end{array}\right) \right\rvert\, A \in \mathbf{G} \mathbf{L}(E), b \in E\right\}
$$

Then Γ is a discrete subgroup of $\mathbf{A f f}\left(\mathbb{R}^{2}\right)$ acting properly discontinuously on \mathbb{R}^{2}. The quotient space $\Gamma \backslash \mathbb{R}^{2}$ is diffeomorphic to a torus and is a complete compact affine manifold. The flat torsionfree connection on \mathbb{R}^{2} induces a flat torsionfree affine connection on $\Gamma \backslash \mathbb{R}^{2}$. It can be shown that the affine structure is not Riemannian.
In higher dimensions $(n \geq 3)$ the existence question is open. There are only certain obstructions known ([SMI]): If M is compact and its fundamental group is build up out of finite groups by taking free products, direct products and finite extensions, then M does not admit affine structures.
Many examples of affine manifolds come from left-invariant affine structures on Lie groups: If G is a Lie group, an affine structure on G is left-invariant, if for each $g \in G$ the left-multiplication by $g, L_{g}: G \rightarrow G$, is an automorphism of the affine structure. (The affine connection then is left-invariant under left-translations). For G simply connected let $D: G \rightarrow E$ be the developing map. Then there is for each $g \in G$ a unique affine automorphism $\alpha(g)$ of E, such that the diagram

commutes. In that case $\alpha: G \rightarrow \mathbf{A f f}(E)$ is an affine representation.
It is not difficult to see $([\mathrm{FGH}])$ that G admits a complete left-invariant structure if and only if G acts simply transitively on E as affine transformations. In this case G must be solvable ([AUS]). If G has a left-invariant affine structure and Γ is a discrete subgroup of G, then the homogeneous space $\Gamma \backslash G$ of right cosets inherits an affine structure. If G is nilpotent, then $\Gamma \backslash G$ is called an affine nilmanifold. Any compact complete affine manifold with nilpotent fundamental group is already an affine nilmanifold ([FGH]).
Left-invariant affine structures play an important role in the study of affine crystallographic groups (in short $A C G s$), and of fundamental groups of affine manifolds, see [MI2]. A group $\Gamma \leq \mathbf{A f f}(E)$ is called $A C G$ if it acts properly discontinuously on E with compact quotient. There is the following well-known conjecture (for details see [AMS]):

Auslander conjecture: $A n A C G$ is virtually polycyclic.
This may be restated as follows: The fundamental group of a compact complete affine manifold is virtually polycyclic. Milnor proved that a finitely generated torsionfree virtually polycyclic group Γ can be realized as a subgroup of $\mathbf{A f f}(E)$ acting properly discontinuously. Hence it is the fundamental group of a complete affine manifold.
If we assume that $\Gamma \subset \operatorname{Aff}(E)$ is a virtually polycyclic ACG acting on E, then there is a Lie group $G \subset \operatorname{Aff}(E)$ virtually containing Γ, acting simply transitively on E. The latter is equivalent to the fact that G admits a complete left-invariant affine structure. Indeed, Auslander's conjecture is equivalent to the following:

A compact complete affine manifold is finitely covered by quotients of solvable Lie groups with complete left-invariant affine structures.

Milnor asked in this context ([MI2]):
(1) Which Lie groups admit left-invariant affine structures?

This question is particularly difficult for nilpotent Lie groups. There was much evidence that every nilpotent Lie group admits left-invariant affine structures, see Proposition 1. Milnor conjectured this to be true even for solvable Lie groups ([MI1]). Recently, however, counterexamples were discovered ([BGR] and $[\mathrm{BEN}]$). There are nilmanifolds which are not affine. The key step here is to find n-dimensional nilpotent Lie algebras having no faithful representations in dimension $n+1$, hence no affine representation which could arise from a left-invariant affine structure on the Lie group G. In order to determine such Lie algebras we study the affine algebraic variety of all filiform Lie algebra structures in dimension ≤ 11 over \mathbb{C}. Every filiform nilpotent Lie algebra of dimension $n>7$ is isomorphic to an infinitesimal deformation of the standard graded filiform \mathfrak{g} by a 2 cocycle from a certain subspace of $H^{2}(\mathfrak{g}, \mathfrak{g})$, see [VER]. This description turns out to be useful for our question, i.e., to determine the minimal dimension $\mu(\mathfrak{g})$ of faithful \mathfrak{g} modules for such Lie algebras. We are led to new counterexamples in dimension 10 and 11. If \mathfrak{g} is a nilpotent filiform algebra of smaller dimension ($n \leq 9$) we have $\mu(\mathfrak{g})=n$. Hence these algebras do not provide counterexamples with respect to this method.

2 Preliminaries

Let G be a finite-dimensional connected Lie group with Lie algebra \mathfrak{g}. We may assume that G is simply connected (otherwise consider \widetilde{G}).

Definition 1 An affine representation $\alpha: G \rightarrow \mathbf{A f f}(E)$ is called étale, if there exists a $v \in E$ whose stabilizer G_{v} is discrete in G, and whose G - orbit $G \cdot v$ is open in E.

Definition 2 A left-symmetric algebra structure (or LSA-structure in short) on \mathfrak{g} over a field k is a k-bilinear product $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}, \quad(x, y) \mapsto x \cdot y$ satisfying the conditions $x \cdot y-y \cdot x=[x, y]$ and $(x, y, z)=(y, x, z)$ for all x, y, z, where $(x, y, z)=x \cdot(y \cdot z)-(x \cdot y) \cdot z$ denotes the associator of $x, y, z \in \mathfrak{g}$.

Lemma 1 There is a canonical one-to-one correspondence between the following classes of objects (up to suitable equivalence):
(a) $\quad\{$ Etale affine representations of $G\}$
(b) $\quad\{$ Left-invariant affine structures on $G\}$
(c) $\quad\{$ Flat torsionfree left-invariant affine connections ∇ on $G\}$
(d) $\quad\{$ LSA-structures on $\mathfrak{g}\}$

Under the bijection (b), (d), bi-invariant affine structures correspond to associative LSAstructures.

Proof: This is well known, see [SEG] or [KIM]. Here is a brief reminder of some of the arguments:
Suppose G admits a left-invariant flat torsionfree affine connection ∇ on G. Since the connection is left-invariant, for any two left-invariant vector fields $X, Y \in \mathfrak{g}$, the covariant derivative $\nabla_{X} Y \in \mathfrak{g}$ is left-invariant. It follows that covariant differentiation $(X, Y) \mapsto \nabla_{X} Y$ defines a bilinear multiplication $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$, denoted by $(X, Y) \mapsto X Y$ in short. Since ∇ is locally flat and torsionfree, we have the following:

$$
\begin{array}{ll}
{[X, Y]} & =X Y-Y X \\
{[X, Y] Z} & =X(Y Z)-Y(X Z) \tag{ii}
\end{array}
$$

We can rewrite (ii) by using (i) as $(X, Y, Z)=(Y, X, Z)$. Thus ($\mathfrak{g}, \cdot \cdot$ is a leftsymmetric algebra (or LSA) with product $x \cdot y=\nabla_{X} Y$.
If we have any LSA-structure on \mathfrak{g} with product $(x, y) \mapsto x \cdot y$, then denote by $\lambda: x \mapsto$ $\lambda(x)$ the left-regular representation on the LSA $(\mathfrak{g}, \cdot): \lambda(x) y=x \cdot y$. It is a Lie algebra representation:

$$
\lambda: \mathfrak{g} \rightarrow \operatorname{End}(\mathfrak{g}), \quad[\lambda(x), \lambda(y)]=\lambda([x, y])
$$

Denote the corresponding \mathfrak{g}-module by \mathfrak{g}_{λ}. Furthermore, the identity map $\mathbf{1}: \mathfrak{g} \rightarrow \mathfrak{g}_{\lambda}$ is a 1 -cocycle in $Z^{1}\left(\mathfrak{g}, \mathfrak{g}_{\lambda}\right): \mathbf{1}([x, y])=\mathbf{1}(x) \cdot y-\mathbf{1}(y) \cdot x$. Let $\mathfrak{a f f}(\mathfrak{g})$ be the Lie algebra of $\operatorname{Aff}(G)$, i.e., $\mathfrak{a f f}(\mathfrak{g})=\left\{\left.\left(\begin{array}{cc}A & b \\ 0 & 0\end{array}\right) \right\rvert\, A \in \mathfrak{g l}(\mathfrak{g}), b \in \mathfrak{g}\right\}$ which we identify with $\mathfrak{g l}(\mathfrak{g}) \oplus \mathfrak{g}$. Denote the linear part by $\ell(A, b)=A$ and the translational part by $t(A, b)=b$. Now we associate to the LSA (\mathfrak{g}, \cdot) the map

$$
\alpha=\lambda \oplus \mathbf{1}: \mathfrak{g} \rightarrow \mathfrak{a f f}(\mathfrak{g})
$$

It is an affine representation of \mathfrak{g}. We have $\lambda=\ell \circ \alpha$ and $t \circ \alpha=\mathbf{1}$. The corresponding affine representation of G is étale, see [SEG].
If $\alpha: G \rightarrow \mathbf{A f f}(E)$ is an étale affine representation, then its differential $\varrho: \mathfrak{g} \rightarrow \mathfrak{a f f}(E)$ is a Lie algebra homomorphism such that the evaluation map $\operatorname{ev}_{p}: \mathfrak{g} \rightarrow E, x \mapsto \varrho(x) p=$ $\theta(x) p+u(x)$ is an isomorphism for some $p \in E$, where $\theta: \mathfrak{g} \rightarrow \mathfrak{g l}(E)$ is a linear representation, say E_{θ} as module, and u is the translational part of ϱ. It suffices to look at $p=0$. Then $u=\mathrm{ev}_{0}$ is a vector space isomorphism. Moreover $u \in Z^{1}\left(\mathfrak{g}, E_{\theta}\right)$, and hence $\lambda(a)=u^{-1} \circ \theta(a) \circ u$ defines an LSA-product via $a \cdot b=\lambda(a) b$ on \mathfrak{g}.

Milnor's question (1) now is equivalent to the algebraic question
(1') Which Lie algebras admit LSA-structures ?
Semisimple Lie algebras over characteristic zero do not admit LSA-structures. Certain reductive Lie algebras do, for example $\mathfrak{g l}(n)$. For more details see [BU1]. Milnor conjectured that every solvmanifold is affine, i.e., any solvable Lie algebra admits (complete) LSA-structures. It is the purpose of this paper to discuss counterexamples. We consider the nilpotent case. The following Proposition indicates where the support for Milnor's conjecture came from:

Proposition 1 Let \mathfrak{g} be a nilpotent Lie algebra of characteristic zero satisfying one of the following conditions:
(1) $\operatorname{dim} \mathfrak{g}<8$.
(2) \mathfrak{g} is p-step nilpotent with $p<4$.
(3) \mathfrak{g} is \mathbb{Z}-graded.
(4) \mathfrak{g} possesses a nonsingular derivation.
(5) \mathfrak{g} is filiform nilpotent and a quotient of a higher-dimensional filiform nilpotent Lie algebra.

Then \mathfrak{g} admits an LSA-structure.
Proof: Condition (4) is a special case of the following: Let $\psi \in Z^{1}\left(\mathfrak{g}, \mathfrak{g}_{\theta}\right)$ be a nonsingular 1 -cocycle, where $\theta: \mathfrak{g} \rightarrow \mathfrak{g l}(\mathfrak{g})$ is a representation. Then $\lambda(x):=\psi^{-1} \circ \theta(x) \circ \psi$ is defined and $\mathbf{1} \in Z^{1}\left(\mathfrak{g}, \mathfrak{g}_{\lambda}\right)$, i.e., λ defines an LSA-structure. If θ is the adjoint representation of \mathfrak{g} then an invertible $\psi \in Z^{1}(\mathfrak{g}, \mathfrak{g})$ is a nonsingular derivation. Condition (3) implies condition (4). The first two conditions are discussed in [BEN] and [MI2], the last one in [BU2].

The following Lemma is useful:
Lemma 2 If \mathfrak{g} admits an LSA-structure then \mathfrak{g} has a faithful representation of dimension $\operatorname{dim} \mathfrak{g}+1$.

Proof: The LSA-structure on \mathfrak{g} induces a faithful affine representation $\alpha: \mathfrak{g} \rightarrow \mathfrak{a f f}(\mathfrak{g})$, called the affine holonomy representation, see $[\mathrm{FGH}]$. If $\operatorname{dim} \mathfrak{g}=n$ then $\mathfrak{a f f}(\mathfrak{g}) \subset \mathfrak{g l}(n+1)$ and we obtain a faithful linear representation of dimension $n+1$.

Definition 3 Let \mathfrak{g} be a finite-dimensional Lie algebra over a field k. Define

$$
\mu(\mathfrak{g}, k):=\min \left\{\operatorname{dim}_{k} M \mid M \text { is a faithful } \mathfrak{g}-\text { module }\right\}
$$

By Ado's Theorem (and Iwasawa's in prime characteristic) we know that μ is integer valued. Properties of μ are studied in [BU2]. We summarize here a few of them. Let us assume here $k=\mathbb{C}$.

Proposition 2 Let \mathfrak{g} be a Lie algebra of dimension $n \geq 2$ over \mathbb{C}.
(1) If \mathfrak{g} is abelian then $\mu(\mathfrak{g})=\lceil 2 \sqrt{n-1}\rceil$.
(2) If \mathfrak{g} has trivial center then $\mu(\mathfrak{g}) \leq n$.
(3) If \mathfrak{g} is a Heisenberg Lie algebra $\mathfrak{h}_{2 m+1}$ of dimension $2 m+1$, then $\mu(\mathfrak{g})=m+2$.
(4) If \mathfrak{g} is solvable then $\mu(\mathfrak{g})<\frac{\alpha}{\sqrt{n}} 2^{n}$ with $\alpha \sim 2.762872$
(5) If \mathfrak{g} is p-step nilpotent then $\mu(\mathfrak{g})<1+n^{p}$.
(6) If \mathfrak{g} is filiform nilpotent then $n \leq \mu(\mathfrak{g})<\frac{\sqrt{3}}{12} \exp (\pi \sqrt{2 n / 3})$.
(7) If \mathfrak{g} satisfies one of the conditions in Proposition 1 then $\mu(\mathfrak{g}) \leq n+1$.
(8) If \mathfrak{g} is a quotient of a filiform nilpotent Lie algebra \mathfrak{g}^{\prime} with $\operatorname{dim} \mathfrak{g}^{\prime}>\operatorname{dim} \mathfrak{g}=n$ then $\mu(\mathfrak{g})=n$.
(9) If \mathfrak{g} is filiform nilpotent with abelian commutator algebra then $\mu(\mathfrak{g})=n$.
(10) If \mathfrak{g} is filiform nilpotent of dimension $n<10$ then $\mu(\mathfrak{g})=n$.

The key step for the construction of the counterexamples to the Milnor conjecture is to determine Lie algebras with

$$
\mu(\mathfrak{g})>\operatorname{dim} \mathfrak{g}+1
$$

In fact, we will construct filiform Lie algebras in dimensions 10,11 with that property. These Lie algebras are not quotients of any filiform Lie algebra of higher dimension.

3 Varieties of filiform Lie algebra structures

Let \mathfrak{g} be a p-step nilpotent Lie algebra and let $\mathfrak{g}^{0}=\mathfrak{g}, \quad \mathfrak{g}^{k}=\left[\mathfrak{g}^{k-1}, \mathfrak{g}\right]$ and $\mathfrak{g}_{0}=$ $0, \quad \mathfrak{g}_{k}=\left\{x \in \mathfrak{g}:[x, \mathfrak{g}] \subset \mathfrak{g}_{k-1}\right\}$ for $k=1,2, \ldots ;$ the series

$$
\mathfrak{g}=\mathfrak{g}^{0} \supset \mathfrak{g}^{1} \supset \ldots \supset \mathfrak{g}^{p-1} \supset \mathfrak{g}^{p}=0
$$

is called lower central series, and the series

$$
0=\mathfrak{g}_{0} \subset \mathfrak{g}_{1} \subset \ldots \subset \mathfrak{g}_{p-1} \subset \mathfrak{g}_{p}=\mathfrak{g}
$$

is called upper central series. They are both of length p. Define $F_{i}(\mathfrak{g})=\mathfrak{g}^{i-1}$ and $M_{i}(\mathfrak{g})=\mathfrak{g}_{p-i+1}$ for $i>1$. Set $F_{i}(\mathfrak{g})=M_{i}(\mathfrak{g})=\mathfrak{g}$ for $i \leq 1$. It holds $\left[F_{i}(\mathfrak{g}), M_{j}(\mathfrak{g})\right] \subset$ $M_{i+j}(\mathfrak{g})$ for $i, j \in \mathbb{Z}$. The series $F_{i}(\mathfrak{g})$ defines a filtration of \mathfrak{g} and the series $M_{i}(\mathfrak{g})$ defines a filtration of the adjoint module \mathfrak{g}. These induce a filtration on the spaces of cochains, cocycles, coboundaries and cohomology.

Definition 4 A p-step nilpotent Lie algebra of dimension n is called filiform nilpotent if $p=n-1$. Let $L=L(n)$ be the Lie algebra generated by e_{0}, \ldots, e_{n} with Lie brackets $\left[e_{0}, e_{i}\right]=e_{i+1}$ for $i=1,2, \ldots, n-1$ and the other brackets zero. L is called the standard graded filiform of dimension $n+1$.

Note that $F_{i}(\mathfrak{g})=M_{i}(\mathfrak{g})$ for filiform Lie algebras. L is graded by

$$
L=\bigoplus_{i \in \mathbb{Z}} L_{i}
$$

where L_{1} is generated by e_{0} and e_{1}, L_{i} by e_{i} for $i=2,3, \ldots, n$ and the other subspaces are zero. Setting

$$
C_{q}^{j}(L, L)=\left\{g \in C^{j}(L, L) \mid g\left(L_{i_{1}}, \ldots, L_{i_{j}}\right) \in L_{i_{1}+\ldots+i_{j}+q} \forall 1 \leq i_{1}, \ldots, i_{j}<n\right\}
$$

where $q \in \mathbb{Z}$ yields a \mathbb{Z}-grading in the space $C^{j}(L, L)$ of j-cochains compatible with the coboundary operator d, i.e., $d\left(C_{q}^{j}(L, L)\right) \subset C_{q}^{j+1}(L, L)$. Hence we have assigned gradings to the spaces of cocycles and coboundaries compatible with the filtrations of the respective spaces:

$$
\begin{gathered}
F_{k} Z^{j}(L, L)=\bigoplus_{i \geq k} Z_{i}^{j}(L, L), \quad F_{k} B^{j}(L, L)=\bigoplus_{i \geq k} B_{i}^{j}(L, L) \\
F_{k} H^{j}(L, L)=\bigoplus_{i \geq k} H_{i}^{j}(L, L)
\end{gathered}
$$

Denote by $\mathcal{L}_{n}(k)$ the affine algebraic variety of all Lie algebra structures in dimension n over k. A point in $\mathcal{L}_{n}(k)$ is a structural tensor $\left\{C_{i j}^{k}\right\}$ corresponding to a Lie algebra \mathfrak{g} with basis $\left\{v_{1}, \ldots, v_{n}\right\}$ over k such that $\left[v_{i}, v_{j}\right]=\sum C_{i j}^{k} v_{k}$. The $C_{i j}^{k}$ are called structure constants. They form a structural tensor $\gamma \in \mathfrak{g}^{*} \otimes \mathfrak{g}^{*} \otimes \mathfrak{g}$ which is identified with the bilinear skew-symmetric mapping $\gamma: \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ defining the Lie bracket on \mathfrak{g}. Nilpotent Lie algebras of class p form a subvariety $\mathcal{N}_{n}^{p}(k)$ of $\mathcal{L}_{n}(k)$. The group $\mathbf{G L}_{n}(k)$ acts on $\mathcal{L}_{n}(k)$ by $(g \cdot \gamma)(x, y)=g\left(\gamma\left(g^{-1}(x), g^{-1}(y)\right)\right)$.
Two Lie algebras in $\mathcal{L}_{n}(k)$ are isomorphic iff they belong to the same orbit of $\mathbf{G L}_{n}(k)$. Let γ be a point of $\mathcal{L}_{n}(k)$ corresponding to the Lie algebra \mathfrak{g}. Then the Zariski tangent space to $\mathcal{L}_{n}(k)$ at the point γ coincides with $Z^{2}(\mathfrak{g}, \mathfrak{g})$, and the tangent space to the orbit of \mathfrak{g} at γ coincides with $B^{2}(\mathfrak{g}, \mathfrak{g})$.

Let k be \mathbb{R} or $\mathbb{C}:$ A deformation in $\mathcal{L}_{n}(k)$ is a continuous curve $c:[0, \epsilon] \rightarrow \mathcal{L}_{n}(k), t \mapsto$ $\mathfrak{g}(t)$. For $t \in[0, \epsilon]$ denote by $\mathfrak{g}(t)$ the Lie algebra corresponding to the structural tensor $c(t) \in \mathcal{L}_{n}(k)$. If c is analytic we have the convergent series

$$
c(t)=F_{0}+F_{1} \cdot t+F_{2} \cdot t^{2}+\ldots
$$

where $F_{m}=\left\{F_{m}\right\}_{i j}^{k}=\frac{c^{(m)}(0)}{m!} \in k^{n^{3}}$. We may also consider formal series and formal deformations. The corresponding Lie algebra bracket is given by

$$
[a, b]_{t}=F_{0}(a, b)+F_{1}(a, b) t+F_{2}(a, b) t^{2}+\ldots
$$

where $[a, b]_{0}=[a, b]$ is the bracket in \mathfrak{g}. Then the Jacobi identity for $[,]_{t}$ implies $F_{1} \in Z^{2}(\mathfrak{g}, \mathfrak{g})$. These 2 -cocycles are called infinitesimal deformations. If F_{1} corresponds to a deformation (which is not always the case) then F_{1} is said to be integrable. If we have two equivalent (formal) deformations, i.e., if the corresponding Lie algebras are isomorphic, then F_{1} and F_{1}^{\prime} corresponding to these deformations are cohomological, i.e., $F_{1}-F_{1}^{\prime} \in B^{2}(\mathfrak{g}, \mathfrak{g})$.

The following Proposition describes filiform Lie algebra structures in the variety $\mathcal{N}_{n}^{n-1}(k)$ (see [VER]):

Proposition 3 (Vergne) Every filiform nilpotent Lie algebra of dimension $n+1 \geq 8$ is isomorphic to an infinitesimal deformation of the standard graded $n+1$-dimensional
filiform L. More precisely it is isomorphic to an algebra $(L)_{\psi}$ where ψ is an integrable 2 -cocycle whose cohomology class lies in

$$
\begin{array}{ll}
F_{1} H^{2}(L, L) & \text { if } n \equiv 0(2) \\
F_{1} H^{2}(L, L)+<\psi_{\frac{n-1}{2}, n}> & \text { if } n \equiv 1(2)
\end{array}
$$

Here the algebra $\mathfrak{g}_{\psi}=(L)_{\psi}$ is defined by the bracket $[a, b]_{\psi}=[a, b]_{L}+\psi(a, b)$.
The fact that this bracket satisfies the Jacobi identity means that ψ is integrable, i.e., satisfies

$$
\begin{equation*}
\psi(a, \psi(b, c))+\psi(b, \psi(c, a))+\psi(c, \psi(a, b))=0 . \tag{J}
\end{equation*}
$$

The canonical 2 -cocycles $\psi_{k, s}$ are defined by

$$
\psi_{k, s}\left(e_{i}, e_{i+1}\right)=\delta_{i k} e_{s}
$$

for pairs (k, s) with $1 \leq k \leq n-1$ and $2 k \leq s \leq n$. Hakimjanov proved ([HAK]):
Proposition 4 The cohomology classes of the cocycles $\psi_{k, s}$ with $1 \leq k \leq n, 4 \leq s \leq$ $n, 2 k+1 \leq s$ form a basis of $F_{0} H^{2}(L, L)$. This space has dimension $\frac{n^{2}-2 n-3}{4}$ if n is odd, and dimension $\frac{n^{2}-2 n-4}{4}$ if n is even.

Now it is not difficult to see that the classes of $\psi_{k, s}$ with $1 \leq k \leq[n / 2]-1,2 k+2 \leq s \leq n$ form a basis for $F_{1} H^{2}(L, L)$. Hence, with $\operatorname{dim} L=n+1$,

$$
\operatorname{dim} F_{1} H^{2}(L, L)= \begin{cases}\frac{(n-2)^{2}}{4}, & n \equiv 0(2) \\ \frac{(n-3)(n-1)}{4}, & n \equiv 1(2)\end{cases}
$$

We also have

$$
\begin{equation*}
\psi_{k, s}\left(e_{i}, e_{j}\right)=(-1)^{k}\binom{j-k-1}{k-i}\left(\operatorname{ade} e_{0}\right)^{i+j-2 k-1} e_{s} \tag{P}
\end{equation*}
$$

for $1 \leq i<k<j-1 \leq n-1$. In case $i>k, \psi_{k, s}\left(e_{i}, e_{j}\right)=0$ and $\psi_{k, s}\left(e_{k}, e_{j}\right)=e_{s+j-k-1}$ for $k<j$.

4 Filiform Lie algebras in dimension 10

Let $L=L(9)=<e_{0}, e_{1}, \ldots, e_{9}>$ be the standard graded filiform Lie algebra of dimension 10. According to Proposition 3 every filiform nilpotent Lie algebra of dimension 10 is
isomorphic to $\mathfrak{g}_{\psi}=(L)_{\psi}$ for some $\psi \in F_{1} H^{2}(L, L)+\left\langle\psi_{4,9}\right\rangle$. In terms of the basis of this cohomology space we may write

$$
\begin{array}{r}
\psi=\alpha_{1} \psi_{1,4}+\alpha_{2} \psi_{1,5}+\ldots+\alpha_{6} \psi_{1,9} \\
+\alpha_{7} \psi_{2,6}+\ldots+\alpha_{10} \psi_{2,9} \\
+\alpha_{11} \psi_{3,8}+\alpha_{12} \psi_{3,9} \\
+\alpha_{13} \psi_{4,9}
\end{array}
$$

For the convenience of the reader we will calculate ψ on the basis by using (P). We only list nonzero values:

$$
\begin{aligned}
& \psi\left(e_{1}, e_{2}\right)=\alpha_{1} e_{4}+\alpha_{2} e_{5}+\cdots+\alpha_{6} e_{9} \\
& \psi\left(e_{1}, e_{3}\right)=\alpha_{1} e_{5}+\alpha_{2} e_{6}+\cdots+\alpha_{5} e_{9} \\
& \psi\left(e_{1}, e_{4}\right)=\left(\alpha_{1}-\alpha_{7}\right) e_{6}+\left(\alpha_{2}-\alpha_{8}\right) e_{7}+\cdots+\left(\alpha_{4}-\alpha_{10}\right) e_{9} \\
& \psi\left(e_{1}, e_{5}\right)=\left(\alpha_{1}-2 \alpha_{7}\right) e_{7}+\left(\alpha_{2}-2 \alpha_{8}\right) e_{8}+\left(\alpha_{3}-2 \alpha_{9}\right) e_{9} \\
& \psi\left(e_{1}, e_{6}\right)=\left(\alpha_{1}-3 \alpha_{7}+\alpha_{11}\right) e_{8}+\left(\alpha_{2}-3 \alpha_{8}+\alpha_{12}\right) e_{9} \\
& \psi\left(e_{1}, e_{7}\right)=\left(\alpha_{1}-4 \alpha_{7}+3 \alpha_{11}\right) e_{9} \\
& \psi\left(e_{1}, e_{8}\right)=-\alpha_{13} e_{9} \\
& \psi\left(e_{2}, e_{3}\right)=\alpha_{7} e_{6}+\alpha_{8} e_{7}+\cdots+\alpha_{10} e_{9} \\
& \psi\left(e_{2}, e_{4}\right)=\alpha_{7} e_{7}+\alpha_{8} e_{8}+\alpha_{9} e_{9} \\
& \psi\left(e_{2}, e_{5}\right)=\left(\alpha_{7}-\alpha_{11}\right) e_{8}+\left(\alpha_{8}-\alpha_{12}\right) e_{9} \\
& \psi\left(e_{2}, e_{6}\right)=\left(\alpha_{7}-2 \alpha_{11}\right) e_{9} \\
& \psi\left(e_{2}, e_{7}\right)=\alpha_{13} e_{9} \\
& \psi\left(e_{3}, e_{4}\right)=\alpha_{11} e_{8}+\alpha_{12} e_{9} \\
& \psi\left(e_{3}, e_{5}\right)=\alpha_{11} e_{9} \\
& \psi\left(e_{3}, e_{6}\right)=-\alpha_{13} e_{9} \\
& \psi\left(e_{4}, e_{5}\right)=\alpha_{13} e_{9}
\end{aligned}
$$

The cocycle ψ is integrable iff (J) holds, i.e., iff $[a, b]_{\psi}=[a, b]_{L}+\psi(a, b)$ satisfies the Jacobi identity. This is equivalent to the following equations:

$$
\begin{gather*}
\alpha_{13}\left(2 \alpha_{3}+\alpha_{9}\right)-\alpha_{12}\left(2 \alpha_{1}+\alpha_{7}\right)-3 \alpha_{11}\left(\alpha_{2}+\alpha_{8}\right)+7 \alpha_{7} \alpha_{8}=0 \tag{1}\\
\alpha_{11}\left(2 \alpha_{1}+\alpha_{7}\right)-3 \alpha_{7}^{2}=0 \tag{2}\\
\alpha_{13}\left(2 \alpha_{1}-\alpha_{7}-\alpha_{11}\right)=0 \tag{3}
\end{gather*}
$$

Since the integrability conditions are pleasantly simple we obtain the following filiform Lie algebras \mathfrak{g}_{ψ} with bracket $[a, b]_{\psi}$:

Case A: $2 \alpha_{1}+\alpha_{7} \neq 0$:

$$
\begin{align*}
& \alpha_{1} \neq 0, \quad \alpha_{7}=-\alpha_{1}, \alpha_{11}=3 \alpha_{1}, \tag{A1}\\
& \alpha_{12}=\left(\alpha_{13} \alpha_{1}^{-1}\right)\left(2 \alpha_{3}+\alpha_{9}\right)-\left(9 \alpha_{2}+16 \alpha_{8}\right) \\
& \alpha_{1} \neq 0, \quad \alpha_{11}=\alpha_{7}=\alpha_{1}, \tag{A2}\\
& \alpha_{12}=-\left(\alpha_{1}\left(3 \alpha_{2}-4 \alpha_{8}\right)-\alpha_{13}\left(2 \alpha_{3}+\alpha_{9}\right)\right) /\left(3 \alpha_{1}\right) \\
& \alpha_{1} \neq 0, \alpha_{7}^{2} \neq \alpha_{1}^{2}, \quad \alpha_{13}=0, \alpha_{11}=3 \alpha_{7}^{2} /\left(2 \alpha_{1}+\alpha_{7}\right), \\
& \alpha_{12}=\alpha_{7}\left(14 \alpha_{1} \alpha_{8}-9 \alpha_{2} \alpha_{7}-2 \alpha_{7} \alpha_{8}\right) /\left(2 \alpha_{1}+\alpha_{7}\right)^{2}
\end{align*}
$$

Case B: $2 \alpha_{1}+\alpha_{7}=0$:

$$
\begin{gather*}
\alpha_{13}=\alpha_{7}=\alpha_{1}=0, \alpha_{11}\left(\alpha_{2}+\alpha_{8}\right)=0 \tag{B1}\\
\alpha_{13} \neq 0, \alpha_{11}=\alpha_{7}=\alpha_{1}=0, \alpha_{9}=-2 \alpha_{3} \tag{B2}
\end{gather*}
$$

We have the following result for the minimal dimension of faithful modules for these classes of Lie algebras:

Proposition 5 If \mathfrak{g}_{ψ} is a filiform Lie algebra of class A3, B1, B2 then $\mu\left(\mathfrak{g}_{\psi}\right)=10$; if \mathfrak{g}_{ψ} is of class A1, A2 satisfying the additional condition $3 \alpha_{2}+\alpha_{8}=0$ in case of class $A 1$, then $\mu\left(\mathfrak{g}_{\psi}\right)=10$ or 11 .

Proof: The above Lie algebras are generated by e_{0}, e_{1} and have one-dimensional center $\mathfrak{z}=<e_{9}>$. Let $\varrho: \mathfrak{g}_{\psi} \rightarrow \mathfrak{g l}(M)$ be a faithful representation. Then $\operatorname{dim} M \geq 10$ and the faithfulness of ϱ is equivalent to $\varrho\left(e_{9}\right) \neq 0$ (see [BGR]). Define $E_{i}=\varrho\left(e_{i}\right)$. The module M is generated by E_{0} and E_{1}. We call such a module M a Δ-module if $\operatorname{dim} M=11$ and if M is nilpotent, i.e., every $\varrho(x)$ is nilpotent. We will now construct Δ-modules M :
There is a basis $\left\{f_{1}, f_{2}, \ldots, f_{11}\right\}$ for M such that E_{0}, E_{1} are simultaneously strictly upper triangular matrices and, moreover, such that there is in each row and each column of E_{0} at most one nonzero entry (see [BGR]). Note that the center Z of a Δ-module is $\operatorname{ker}\left(E_{0}\right) \cap \operatorname{ker}\left(E_{1}\right)$ and contains f_{1}. Any subspace U of Z is a submodule, and the quotient module will be faithful iff f_{1} is not in U. Since $\mu\left(\mathfrak{g}_{\psi}\right) \geq 10$ the dimension of Z is at most 2.
Define the first layer of E_{0} to be the first upper diagonal, say $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{10}\right\}$, the second layer the second upper diagonal $\left\{\lambda_{11}, \lambda_{12}, \ldots, \lambda_{19}\right\}$ and so forth. Let N_{1} denote the set of indices i such that $\lambda_{i}=0$ in the first layer of E_{0}, N_{j} the set of indices i such that $\lambda_{i}=1$ in the j-th layer of E_{0} for $j=2,3, \ldots, 10$.

Definition 5 Define the combinatorical type of a Δ-module M (the type of E_{0}) to be

$$
\operatorname{type}(M)=\left\{N_{1}\left|N_{2}\right| \ldots \mid N_{10}\right\}
$$

Of course, this notation generalizes to n-dimensional filiform Lie algebras and their Δ modules of dimension $n+1$.
Empty sets N_{i} are omitted in this notation. If E_{0} is of full Jordan block form, i.e., if $N_{j}=\emptyset$ for all j then we set $\operatorname{type}(M)=\emptyset$. Not all types are faithful. It is easy to see that the faithfulness of M depends only on the first and second layers of E_{0}, E_{1} (the formulas for E_{9} contain only those elements from E_{0}, E_{1}, see [BGR]). It is possible to give a list of all faithful types. Moreover we can reduce the number of types as follows:

Lemma 3 Let M be a Δ-module for \mathfrak{g}_{ψ}. Then we may assume that the type of M is one of the following:
(1) \emptyset
(2) $\{i\} \quad i=5, \ldots, 10$
(3) $\{i, i+1\} \quad i=5, \ldots, 9$
(4) $\{i, i+1 \mid 10+i\} \quad i=5, \ldots, 9$
(5) $\{i, i+1, j \mid 10+i\} \quad i=5,6,7 \quad j>i+2$
(6) $\{i, j, j+1 \mid 10+j\} \quad j=6,7,8,9 \quad i<j-1$

The proof is exactly the same as for Lemma 3.2 in [BGR]. Note that types with additional entries r in the third or higher layer can also be reduced to one of the types listed (by constructing a module with $r=0$). This was not mentioned in [BGR].

To construct the Δ-modules M we specify the type of M. We obtain equations in the entries of E_{1}. It turns out that, once solved the equations involving the first and second layer of E_{1}, the remaining equations can always be easily solved by substitutions of certain x_{i} appearing as linear monomials. Thus we will describe the Δ-modules (which prove the claim of the Proposition) by specifying the type of E_{0} and the first and second layer of E_{1}. The complete solution may be found in the appendix [APP].
Denote by $\overline{\mathfrak{g}}_{\psi}$ the graded filiform algebra associated to \mathfrak{g}_{ψ} (induced by the natural filtration of \mathfrak{g}_{ψ} by degree). Also, for a \mathfrak{g}_{ψ}-module M denote the associated $\overline{\mathfrak{g}}_{\psi}$ module by \bar{M}. It is obtained from M by considering the filtration $M^{0}=M^{1}=M$ and $M^{i+1}=E_{0} M^{i}+E_{1} M_{i-1}$ and forming the associated graded module. The first two layers of E_{0}, E_{1} describe \bar{M}. Using the coefficients of ad e_{1} of $\overline{\mathfrak{g}}_{\psi}$ we construct the second layer of E_{1} for M. For a more precise statement, see Remark 1 below. Let $f=f_{11}, U=<f>$, and $E_{9}(i, j)$ denote the entry of E_{9} at position (i, j). The constructed modules are as follows:

Case B1, $\alpha_{11}=0$:
E_{0} is of type $\{1,10\}$
First layer of $E_{1}:\{1,0,0,0,0,0,0,0,0,0\}$
Second layer of $E_{1}:\{0,0,0,0,0,0,0,1,0\}$
The center of M is generated by f_{1}, f and $E_{9}(1,11)=1$. We obtain a faithful module M / U of dimension 10 .

Case B1, $\alpha_{2}+\alpha_{8}=0$:
E_{0} is of type $\{1,10\}$
First layer of $E_{1}:\{1,0,0,0,0,0,0,0,0,0\}$
Second layer of $E_{1}: \quad\left\{0,0,0,0,0,0,-\frac{\alpha_{11}}{2},-\frac{8 \alpha_{11}}{5}, 0\right\}$
The center of M is generated by f_{1}, f and $E_{9}(1,11)=1 . M / U$ is a faithful module of dimension 10

Case B2:
E_{0} is of type $\{1,10\}$
First layer of $E_{1}:\left\{1,0,0,0,0,0,0,0,-\frac{\alpha_{13}}{2}, 0\right\}$
Second layer of $E_{1}: \quad\{0,0,0,0,0,0,0,0,0\}$
The center of M is generated by f_{1}, f and $E_{9}(1,11)=1 . M / U$ is a faithful module of dimension 10 .

Case A3:
E_{0} is of type $\{10\}$
First layer of $E_{1}:\{1,0,0,0,0,0,0,0,0,0\}$
Second layer of $E_{1}:\left\{0,-\alpha_{1},-\alpha_{1}, \alpha_{7}-\alpha_{1}, 2 \alpha_{7}-\alpha_{1}, \frac{\alpha_{1}\left(5 \alpha_{7}-2 \alpha_{1}\right)}{2 \alpha_{1}+\alpha_{7}}, \frac{\left(5 \alpha_{7}-2 \alpha_{1}\right)\left(\alpha_{1}-\alpha_{7}\right)}{2 \alpha_{1}+\alpha_{7}}\right.$, $\left.\left(5 \alpha_{7}^{3}-2 \alpha_{1}^{3}+10 \alpha_{1}^{2} \alpha_{7}+16 \alpha_{1} \alpha_{7}^{2}\right) / 2\left(\alpha_{1}^{2}-\alpha_{7}^{2}\right), 0\right\}$

The center of M is generated by f_{1}, f and $E_{9}(1,11)=1 . M / U$ is a faithful module of dimension 10 .

Case $A 2$ satisfying $\alpha_{13} \neq 0$ and $33 \alpha_{2}-20 \alpha_{8}=0$:
E_{0} is of type $\{9\}$
First layer of $E_{1}: \quad\left\{-\frac{10 \alpha_{13}}{11}, 0,0,0,0,0,0,0,0,0\right\}$
Second layer of $E_{1}: \quad\left\{-\frac{23 \alpha_{2} \alpha_{13}}{22 \alpha_{1}},-\alpha_{1},-\alpha_{1}, 0, \alpha_{1}, \alpha_{1}, 0,1,-2\right\}$
The center of M is generated by f_{1} and $E_{9}(1,11)=-10 . M$ is a faithful module of dimension 11.

Case $A 2$ satisfying $\alpha_{13}=0$ and $33 \alpha_{2}-20 \alpha_{8}=0$:
E_{0} is of type $\{9\}$
First layer of $E_{1}:\{0,0,0,0,0,0,0,0,0,0\}$
Second layer of $E_{1}: \quad\left\{0,-\alpha_{1},-\alpha_{1}, 0, \alpha_{1}, \alpha_{1}, 0,1,-2\right\}$
The center of M is generated by f_{1} and $E_{9}(1,11)=-10 . M$ is a faithful module of dimension 11.

Case A2 satisfying $\alpha_{13} \neq 0, \gamma=33 \alpha_{2}-20 \alpha_{8} \neq 0$ and $726 \alpha_{1}^{2}-\gamma \alpha_{13}=0$:
E_{0} is of type $\{1,9,10 \mid 19\}$

First layer of $E_{1}: \quad\left\{1,0,0,0,0,0,0, \frac{\alpha_{13}}{11}, 0, \frac{1}{\alpha_{1}^{2}}\right\}$
Second layer of $E_{1}:\left\{0,-\alpha_{1},-\alpha_{1}, 0, \alpha_{1}, \alpha_{1}, 0, \frac{2 \alpha_{1}^{2} \alpha_{13}^{2}}{121},-\frac{2 \alpha_{13}}{11}\right\}$
The center of M is generated by f_{1} and $E_{9}(1,11)=1 . M$ is a faithful module of dimension 11.

Case A2 satisfying $\alpha_{13} \neq 0, \gamma=33 \alpha_{2}-20 \alpha_{8} \neq 0$ and $726 \alpha_{1}^{2}-\gamma \alpha_{13} \neq 0$:
E_{0} is of type $\{9,10 \mid 19\}$
First layer of $E_{1}:\left\{-\frac{660 \alpha_{1}^{2} \alpha_{13}}{726 \alpha_{1}^{2}-\gamma \alpha_{13}}, 0,0,0,0,0,0, \frac{66 \alpha_{1}^{2}}{\gamma}, 0, \frac{8712 \alpha_{1}^{4}}{\gamma^{2}}\right\}$
Second layer of $E_{1}:\left\{0,-\alpha_{1},-\alpha_{1}, 0, \alpha_{1}, \alpha_{1}, 0,1,-\frac{132 \alpha_{1}^{2}}{\gamma}\right\}$
The center of M is generated by f_{1} and
$E_{9}(1,11)=-\frac{479160 \alpha_{1}^{4}}{\gamma\left(726 \alpha_{1}^{2}-\gamma \alpha_{13}\right)} . M$ is a faithful module of dimension 11.
Case $A 2$ satisfying $\alpha_{13}=0$ and $\gamma=33 \alpha_{2}-20 \alpha_{8} \neq 0$:
E_{0} is of type $\{9,10 \mid 19\}$
First layer of $E_{1}:\left\{0,0,0,0,0,0,0, \frac{66 \alpha_{1}^{2}}{\gamma}, 0, \frac{8712 \alpha_{1}^{4}}{\gamma^{2}}\right\}$
Second layer of $E_{1}:\left\{0,-\alpha_{1},-\alpha_{1}, 0, \alpha_{1}, \alpha_{1}, 0,1,-\frac{132 \alpha_{1}^{2}}{\gamma}\right\}$
The center of M is generated by f_{1} and
$E_{9}(1,11)=-\frac{660 \alpha_{1}^{2}}{\gamma} . M$ is a faithful module of dimension 11.

Case A1 satisfying $3 \alpha_{2}+\alpha_{8}=0, \alpha_{2} \neq 0$ and $22 \alpha_{1}^{2}-\alpha_{2} \alpha_{13}=0$:
E_{0} is of type $\{1,9,10 \mid 19\}$
First layer of $E_{1}:\left\{1,0,0,0,0,0,0, \frac{\alpha_{13}}{11}, 0, \frac{1}{\alpha_{1}^{2}}\right\}$
Second layer of $E_{1}:\left\{0,7 \alpha_{1}, 3 \alpha_{1}, 2 \alpha_{1}, \alpha_{1}, \alpha_{1}, 0, \frac{2 \alpha_{1}^{2} \alpha_{13}^{2}}{121},-\frac{2 \alpha_{13}}{11}\right\}$
The center of M is generated by f_{1} and $E_{9}(1,11)=1 . M$ is a faithful module of dimension 11.

Case A1 satisfying $3 \alpha_{2}+\alpha_{8}=0, \alpha_{13}, \alpha_{2} \neq 0$ and $\gamma=22 \alpha_{1}^{2}-\alpha_{2} \alpha_{13} \neq 0$:
E_{0} is of type $\{9,10 \mid 19\}$
First layer of $E_{1}:\left\{-\frac{20 \alpha_{1}^{2} \alpha_{13}}{\gamma}, 0,0,0,0,0,0, \frac{2 \alpha_{1}^{2}}{\alpha_{2}}, 0, \frac{8 \alpha_{1}^{4}}{\alpha_{2}^{2}}\right\}$
Second layer of $E_{1}: \quad\left\{0,7 \alpha_{1}, 3 \alpha_{1}, 2 \alpha_{1}, \alpha_{1}, \alpha_{1},-\frac{7 \alpha_{1} \gamma}{5 \alpha_{2} \alpha_{13}}, 1,-\frac{4 \alpha_{1}^{2}}{\alpha_{2}}\right\}$
The center of M is generated by f_{1} and $E_{9}(1,11)=-\frac{440 \alpha_{1}^{4}}{\gamma \alpha_{2}} . M$ is a faithful module of dimension 11 .

Case $A 1$ satisfying $3 \alpha_{2}+\alpha_{8}=0, \alpha_{13}=0$ and $\alpha_{2} \neq 0$:
E_{0} is of type $\{9,10 \mid 19\}$
First layer of $E_{1}: \quad\left\{0,0,0,0,0,0,0, \frac{2 \alpha_{1}^{2}}{\alpha_{2}}, 0, \frac{8 \alpha_{1}^{4}}{\alpha_{2}^{2}}\right\}$
Second layer of $E_{1}: \quad\left\{14 \alpha_{1}, 7 \alpha_{1}, 3 \alpha_{1}, 2 \alpha_{1}, \alpha_{1}, \alpha_{1}, 0,1,-\frac{4 \alpha_{1}^{2}}{\alpha_{2}}\right\}$
The center of M is generated by f_{1} and $E_{9}(1,11)=-\frac{20 \alpha_{1}^{2}}{\alpha_{2}} . M$ is a faithful module of dimension 11 .

Case $A 1$ satisfying $3 \alpha_{2}+\alpha_{8}=0, \alpha_{13} \neq 0$ and $\alpha_{2}=0$:
E_{0} is of type $\{9\}$
First layer of $E_{1}:\left\{-\frac{10 \alpha_{1}}{11}, 0,0,0,0,0,0,0, \alpha_{13}, 0,2 \alpha_{13}\right\}$
Second layer of $E_{1}:\left\{0,7 \alpha_{1}, 3 \alpha_{1}, 2 \alpha_{1}, \alpha_{1}, \alpha_{1},-\frac{77 \alpha_{1}}{5}, \alpha_{13},-2 \alpha_{13}\right\}$
The center of M is generated by f_{1} and $E_{9}(1,11)=-10 \alpha_{13} . M$ is a faithful module of dimension 11 .

Case $A 1$ satisfying $3 \alpha_{2}+\alpha_{8}=0$ and $\alpha_{13}, \alpha_{2}=0$:
E_{0} is of type $\{9\}$
First layer of $E_{1}:\{0,0,0,0,0,0,0,0,0,0,0\}$
Second layer of $E_{1}: \quad\left\{14 \alpha_{1}, 7 \alpha_{1}, 3 \alpha_{1}, 2 \alpha_{1}, \alpha_{1}, \alpha_{1}, 0,1,-2\right\}$
The center of M is generated by f_{1} and $E_{9}(1,11)=-10 . M$ is a faithful module of dimension 11.

It is easy to check that we have indeed constructed faithful modules of dimension 10 or 11 for all Lie algebras \mathfrak{g}_{ψ} except for those of class $A 1$ satisfying $3 \alpha_{2}+\alpha_{8} \neq 0$.

Remark 1 For the graded algebra $\overline{\mathfrak{g}}_{\psi}$ we have $\left[e_{1}, e_{i}\right]_{g r}=\beta_{i} e_{2+i}$. Consider the set $\left\{\beta_{2}, \ldots, \beta_{6}\right\}$. As an example, for $\overline{\mathfrak{g}}_{\psi}$ of class $A 1$ we obtain

$$
\left\{\beta_{2}, \ldots, \beta_{6}\right\}=\left\{\alpha_{1}, \alpha_{1}, 2 \alpha_{1}, 3 \alpha_{1}, 7 \alpha_{1}\right\}
$$

Let $\left\{y_{1}, \ldots, y_{10}\right\}$ be the second layer of E_{1} for M. The set of coefficients $\left\{y_{2}, \ldots, y_{6}\right\}$ (or their negative ones) coincides with $\left\{\beta_{2}, \ldots, \beta_{6}\right\}$.

The next Proposition shows that the "missing" case indeed provides counterexamples to the Milnor conjecture:

Proposition 6 Let $\mathfrak{g}_{\psi}=\mathfrak{g}\left(\alpha_{1}, \ldots, \alpha_{13}\right)$ be a Lie algebra of class A1, satisfying $3 \alpha_{2}+$ $\alpha_{8} \neq 0$. Then $12 \leq \mu\left(\mathfrak{g}_{\psi}\right) \leq 22$.

Proof: Let \mathfrak{g}_{ψ} be any filiform nilpotent Lie algebra of dimension 10. Suppose there is any faithful module M of dimension $m<12$. By Lemma 3.2. in [BEN] we may assume that M is nilpotent and is of dimension 11. Then is has to be isomorphic to one of the Δ-modules listed in Lemma 3. We have to check, for every type of this list, if the equations for the coefficients of E_{1} have a solution or not. Many of the types (especially $(5),(6))$ are done after just solving a few linear equations. The result of the computations then is exactly Proposition 5 and 6 . In fact, the solutions for the classes of Proposition 5 were determined just by this procedure. In [BGR] we have written up the computations in detail for 11 -dimensional algebras. The computations here are similar but a great deal simpler. As an example for a more difficult type, assume that E_{0} is of type $\{10\}$,

First layer of $E_{1}:\left\{x_{1}, x_{2}, \ldots, x_{10}\right\}$
Second layer of E_{1} : $\left\{x_{11}, \ldots, x_{19}\right\}$
Examining the module-equations we find (assume $x 19 \neq 0$): $x_{8}=2 x_{7}, x_{7}=0, x_{5} x_{6}=$ $0,3 x_{6}=2 x_{5}$ and $x_{3}=x_{4}=0,7 x_{2}=2 x_{1}+\alpha_{13}$. Then $x_{1}\left(2 x_{1}+\alpha_{13}\right)=\alpha_{13}\left(9 x_{1}+8 \alpha_{13}\right)=$ 0 . This implies $x_{1}=x_{2}=\alpha_{13}=0$. Furthermore $x_{17}=2 x_{16}-\alpha_{1}, x_{16}=3 x_{15}-2 x_{14}+\alpha_{1}$ and $x_{15}=4 x_{14}-5 x_{13}+2 x_{12}-3 \alpha_{1}$. Then we find eight equations in $x_{11}, x_{12}, x_{13}, x_{14}$ and α_{1} (see [APP]). They have only the trivial solution, i.e., $\alpha_{1}=0$, contradiction. If $x_{19}=0$ it follows $\alpha_{1}=0$ by similar computations.

If \mathfrak{g}_{ψ} is of class $A 1$ (with $\alpha_{13} \neq 0$) then we obtain very soon a contradiction except for the following types:

$$
\{9\},\{1,9,10 \mid 19\},\{1,8,9 \mid 18\},\{9,10 \mid 19\},\{8,9 \mid 18\}
$$

However, in these cases it follows $3 \alpha_{2}+\alpha_{8}=0$.
Let \mathfrak{g} denote \mathfrak{g}_{ψ} of class $A 1$ satisfying $3 \alpha_{2}+\alpha_{8} \neq 0$. The universal enveloping algebra $U(\mathfrak{g})$ has a basis of ordered monomials $e^{\alpha}=e_{9}^{\alpha_{9}} \cdots e_{0}^{\alpha_{0}}$ with an order function. We have $\operatorname{ord}\left(e_{0}\right)=1$ and $\operatorname{ord} e_{i}=i$ for $i \geq 1$ (for details see [BGR]). Let

$$
U^{m}(\mathfrak{g})=\{T \in U(\mathfrak{g}): \operatorname{ord}(T) \geq m\}
$$

$U^{m}(\mathfrak{g})$ is an ideal of $U(\mathfrak{g})$ of finite codimension. Define $V=U(\mathfrak{g}) / U^{m}(\mathfrak{g})$.
One can show that V is a faithful \mathfrak{g}-module if m is greater than the nilpotency class of \mathfrak{g}. Take $m=10$. Then V has a vector space basis above has the vector space basis

$$
\left\{e_{9}^{\alpha_{9}} \cdots e_{0}^{\alpha_{0}} \mid 9 \alpha_{9}+\cdots+2 \alpha_{2}+\alpha_{1}+\alpha_{0} \leq 9\right\}
$$

The elements e_{i} of \mathfrak{g} act on V by $e_{i} e_{j}=\left[e_{i}, e_{j}\right]+e_{j} e_{i}$ for $i<j$. Consider the following quotient module \widehat{V} of V with vector space basis:

$$
\begin{aligned}
& \left\{e_{9}, e_{8}, e_{4}^{2}, e_{7}, e_{4} e_{3}, e_{3} e_{2}^{2}, e_{6}, e_{4} e_{2}, e_{4} e_{1}^{2}, e_{3}^{2}, e_{3} e_{2} e_{1}, e_{3} e_{1}^{3}, e_{2}^{3}, e_{2}^{2} e_{1}^{2}, e_{5},\right. \\
& \left.e_{4} e_{1}, e_{3} e_{2}, e_{3} e_{1}^{2}, e_{2}^{2} e_{1}, e_{2} e_{1}^{3}, e_{1}^{5}, e_{4}, e_{3} e_{1}, e_{2}^{2}, e_{2} e_{1}^{2}, e_{1}^{4}, e_{3}, e_{2} e_{1}, e_{1}^{3}, e_{2}, e_{1}^{2}, e_{1}, 1\right\}
\end{aligned}
$$

We have constructed a faithful \mathfrak{g}-module \widehat{V} of dimension 33 ; Passing succesively to faithful quotient modules we obtain a faithful representation of dimension 22 .

Remark 2 Let G be a connected simply connected Lie group of dimension 10 with filiform nilpotent Lie algebra $\mathfrak{g}=\mathfrak{g}\left(\alpha_{1}, \ldots, \alpha_{13}\right)$. If \mathfrak{g} is of class $A 1$ with $3 \alpha_{2}+\alpha_{8} \neq$ 0 then it follows from Proposition 6 that G does not admit any left-invariant affine structure.
A natural question is, whether all other classes actually do admit left-invariant affine structures. We don't believe this to be true, i.e., there should be Lie algebras \mathfrak{g} with $\mu(\mathfrak{g}) \leq \operatorname{dim} \mathfrak{g}+1$ without any LSA-structure (e.g. some of the algebras of class A_{1}, A_{2}). On the other hand we may construct left-invariant affine structures (i.e., LSA-structures) for certain subclasses of $A 3, B 1, B 2$.

Proposition 7 Let $\mathfrak{g}\left(\alpha_{1}, \ldots, \alpha_{13}\right)$ be a filiform nilpotent Lie algebra of dimension 10 . If \mathfrak{g} satisfies on of the following conditions, then \mathfrak{g} admits an LSA-structure.
(1) \mathfrak{g} is of class A3 with $\mathfrak{g} \neq \mathfrak{g}\left(\alpha_{1}, \ldots, \alpha_{6}, 0,0,0, \alpha_{10}, 0,0,0\right)$ where $\alpha_{1}, \alpha_{10} \neq 0$.
(2) \mathfrak{g} is of class $B 1$ with $\alpha_{11} \neq 0$ and $\alpha_{2}=\alpha_{3}=\alpha_{8}=0$
(3) \mathfrak{g}_{ψ} is of class $B 1$ with $\alpha_{11}=0$ and $\alpha_{2}\left(\alpha_{2}-8 \alpha_{8}+6 \alpha_{12}\right)=0$
(4) \mathfrak{g}_{ψ} is of class B2 and $2 \alpha_{8}=5 \alpha_{2}$ and $50 \alpha_{4}=\alpha_{2}\left(42 \alpha_{12}-133 \alpha_{2}\right) / \alpha_{13}$

Proof: If \mathfrak{g} is a quotient of a filiform nilpotent Lie algebra \mathfrak{h} of dimension 11 , then \mathfrak{g} admits an LSA-structure by Proposition 1(5). Then there is a surjective homomorphism $\mathfrak{h} \rightarrow \mathfrak{g}$ with one-dimensional kernel. This property is well suited for computations. The above algebras are precisely those admitting such a homomorphism.

There is another construction to obtain LSA-structures, only depending on ad e_{1} of the Lie algebra.

Let \mathfrak{g} be a nilpotent Lie algebra of dimension m over k with basis $\left\{e_{0}, e_{1}, \ldots, e_{m-1}\right\}$ such that $\left[e_{0}, e_{i}\right]=e_{i+1}$ and ad e_{1} maps $k\left\{e_{i}, \ldots, e_{m-1}\right\}$ into $k\left\{e_{i+1}, \ldots, e_{m-1}\right\}$. Let \mathfrak{g} be generated by e_{0}, e_{1}. Define linear maps $\lambda\left(e_{i}\right): \mathfrak{g} \rightarrow \mathfrak{g}$ by

$$
\lambda\left(e_{0}\right) e_{i}= \begin{cases}0, & i=0 \\ \frac{(i-1)}{i} e_{i+1}, & i \geq 1\end{cases}
$$

and $\lambda\left(e_{1}\right)=\operatorname{ad} e_{1}, \lambda\left(e_{i+1}\right)=\left[\lambda\left(e_{0}\right), \lambda\left(e_{i}\right)\right]$. They induce a linear map $\lambda: \mathfrak{g} \rightarrow \operatorname{End}(\mathfrak{g})$. It follows $\lambda\left(e_{0}\right) e_{i}-\lambda\left(e_{i}\right) e_{0}=e_{i+1}$ for $i \geq 1$ by induction. In fact, $\lambda\left(e_{i}\right) e_{0}=-\frac{1}{i} e_{i+1}$. Define a map $\alpha: \mathfrak{g} \rightarrow \mathfrak{a f f}(\mathfrak{g})$ by

$$
\alpha\left(e_{0}\right)=\left(\begin{array}{cc}
\lambda\left(e_{0}\right) & e_{0} \\
0 & 0
\end{array}\right), \quad \alpha\left(e_{1}\right)=\left(\begin{array}{cc}
\lambda\left(e_{1}\right) & e_{1} \\
0 & 0
\end{array}\right), \quad \alpha\left(e_{i+1}\right)=\left[\alpha\left(e_{0}\right), \alpha\left(e_{i}\right)\right],
$$

where $e_{0}=(1,0, \ldots, 0), e_{1}=(0,1,0, \ldots, 0), \ldots, e_{m-1}=(0, \ldots, 0,1)$. Again by induction (using $\lambda\left(e_{0}\right) e_{i-1}-\lambda\left(e_{i-1}\right) e_{0}=e_{i}$) we obtain

$$
\alpha\left(e_{i}\right)=\left[\alpha\left(e_{0}\right), \alpha\left(e_{i-1}\right)\right]=\left(\begin{array}{cc}
\lambda\left(e_{i}\right) & e_{i} \\
0 & 0
\end{array}\right) .
$$

Hence the image of \mathfrak{g} under α is indeed inside of $\mathfrak{a f f}(\mathfrak{g})$. However, is α an affine representation of \mathfrak{g} ? Note that α is an affine representation iff λ is a linear representation. In this case, $\lambda(b)=a \cdot b$ defines an LSA-structure on \mathfrak{g}. In general, λ need not be a representation. In low dimensions however, it is very often a reprensentation. The following result is true for filiform Lie algebras of dimension 10 :

Proposition 7 Let \mathfrak{g}_{ψ} be a filiform nilpotent Lie algebra of dimension 10 . Then the map α defined above is an affine representation of \mathfrak{g}_{ψ} iff
(1) \mathfrak{g}_{ψ} is of class A3 and $10 \alpha_{7}=\alpha_{1}, 22 \alpha_{8}=3 \alpha_{2}, \alpha_{9}=3\left(385 \alpha_{1} \alpha_{3}+23 \alpha_{2}^{2}\right) /\left(8085 \alpha_{1}\right)$
(2) \mathfrak{g}_{ψ} is of class $B 1$ with $\alpha_{11} \neq 0$ and $\alpha_{2}=\alpha_{3}=\alpha_{8}=0$
(3) \mathfrak{g}_{ψ} is of class B1 with $\alpha_{11}=0$ and $\alpha_{2}\left(\alpha_{2}-8 \alpha_{8}+6 \alpha_{12}\right)=0$
(4) \mathfrak{g}_{ψ} is of class B2 and $2 \alpha_{8}=5 \alpha_{2}$ and $50 \alpha_{4}=\alpha_{2}\left(42 \alpha_{12}-133 \alpha_{2}\right) / \alpha_{13}$

Proof: From the matrix equation $\left[E_{1}, E_{2}\right]=\alpha_{1} E_{4}+\cdots+\alpha_{6} E_{9}$ we obtain immediately $\alpha_{1}\left(10 \alpha_{7}-\alpha_{1}\right)=0$, compute the entry at position (8,3). Likewise calculations prove the result.

5 Filiform Lie algebras in dimension 11

Let $L=L(10)=<e_{0}, e_{1}, \ldots, e_{10}>$ be the standard graded filiform Lie algebra of dimension 11. Then every filiform nilpotent Lie algebra of dimension 11 is isomorphic to $\mathfrak{g}_{\psi}=(L)_{\psi}$ for some $\psi \in F_{1} H^{2}(L, L)$. In terms of the basis of this cohomology space we may write

$$
\begin{array}{r}
\psi=\quad \alpha_{1} \psi_{1,4}+\alpha_{2} \psi_{1,5}+\ldots+\alpha_{7} \psi_{1,10} \\
+\alpha_{8} \psi_{2,6}+\alpha_{9} \psi_{2,7} \ldots+\alpha_{12} \psi_{2,10} \\
+\alpha_{13} \psi_{3,8}+\ldots+\alpha_{15} \psi_{3,10} \\
+\alpha_{16} \psi_{4,10}
\end{array}
$$

The integrability of ψ is determined by four equations, see [APP]. We are interested here in the case $\alpha_{1} \neq 0$. This includes the algebras $\mathfrak{a}(r, s, t)$ of [BEN] and [BGR], choose

$$
\psi=\psi_{1,4}+(1-r) \psi_{2,6}-s \psi_{2,7}-t \psi_{2,8}+\beta_{1} \psi_{3,8}+\beta_{2} \psi_{3,9}+\beta_{3} \psi_{3,10}+\beta_{4} \psi_{4,10}
$$

with certain β_{i}, see [APP]. The integrability conditions then imply $2 \alpha_{1}+\alpha_{8} \neq 0$ and $\alpha_{1}^{2} \neq \alpha_{8}^{2}$. We have the following result:

Proposition 8 Let \mathfrak{g}_{ψ} be a filiform nilpotent Lie algebra of dimension 11 satisfying $\alpha_{1} \neq 0$. Then $\mu\left(\mathfrak{g}_{\psi}\right) \leq 12$ if and only if $\alpha_{8}=0$ or $10 \alpha_{8}=\alpha_{1}$ or $5 \alpha_{8}^{2}=2 \alpha_{1}^{2}$ or $4 \alpha_{1}^{2}-4 \alpha_{1} \alpha_{8}+3 \alpha_{8}^{2}=0$.

Proof: For $\mathfrak{g}_{\psi}=\mathfrak{a}(r, s, t)$ we obtain exactly Theorem B of [BGR], substituting $\alpha_{1}=1$ and $\alpha_{8}=1-r$ in the above equations. The proof is the same as for Theorem B. By avoiding polynomials in r, s, t the computations here are easier.

References

[AMS] H. ABELS, G.A. MARGULIS AND G.A. SOIFER, On the Zariski closure of the linear part of a properly discontinuous group of affine transformations, Preprint (1995).
[APP] APPENDIX (D. BURDE), Computer programs and a list of modules for Affine nilmanifolds (1995).
[AUS] L. AUSLANDER, Simply transitive groups of affine motions, Amer. J. Math. 99 (1977), 809-826.
[BEN] Y. BENOIST, Une nilvariété non affine, J. Diff. Geometry 41 (1995), 21-52.
[BGR] D. BURDE AND F. GRUNEWALD, Modules for certain Lie algebras of maximal class, J. pure appl. Algebra, 99 (1995), 239-254.
[BU1] D. BURDE, Left-invariant affine structures on reductive Lie groups, to appear in J. of Algebra (1996).
[BU2] D. BURDE, Faithful Lie algebra modules of minimal degree, Preprint (1996).
[FGH] D. FRIED, W. GOLDMAN AND M.W. HIRSCH, Affine manifolds with nilpotent holonomy, Comment. Math. Helv. 56 (1981), 487-523.
[GH1] W. GOLDMAN AND M.W. HIRSCH, The radiance obstruction and parallel forms on affine manifolds, Trans. Amer. Math. Soc. 286 (1984), 629-649.
[GH2] W. GOLDMAN AND M.W. HIRSCH, Affine manifolds and orbits of algebraic groups, Trans. Amer. Math. Soc. 295 (1986), 175-198.
[HAK] Y. B. HAKIMJANOV, Variété des lois d'algèbres de Lie nilpotentes Geometriae Dedicata 40 (1991), 269-295.
[KIM] H. KIM, Complete left-invariant affine structures on nilpotent Lie groups, J. Diff. Geometry 24 (1986), 373-394.
[MI1] J. MILNOR, On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1958), 215-223.
[MI2] J. MILNOR, On fundamental groups of complete affinely flat manifolds, Advances in Math. 25 (1977), 178-187.
[SEG] D. SEGAL, Free left-symmetric algebras and an analogue of the Poincaré-Birkhoff-Witt Theorem, J. Algebra 164 (1994), 750-772.
[SMI] J. SMILLIE, An obstruction to the existence of affine structures, Invent. Math. 64 (1981), 411-415.
[VER] M. VERGNE, Cohomologie des algèbres de Lie nilpotentes. Application à l'étude de la variété des algèbres de Lie nilpotentes, Bull. Math. Soc. France 78 (1970), 81-116.

