Left-invariant affine structures on reductive Lie groups

Dietrich BURDE

Yale University, 10 Hillhouse Avenue, NEW HAVEN CT 06520 - 8283

We describe left-invariant affine structures (that is, left-invariant flat torsion-free affine connections ∇) on reductive linear Lie groups G. They correspond bijectively to LSA-structures on the Lie algebra \mathfrak{g} of G. Here LSA stands for left-symmetric algebra, see [BUR], [SE2]. If \mathfrak{g} has trivial or one-dimensional center \mathfrak{z} then the affine representation $\alpha = \lambda \oplus 1$ of \mathfrak{g} , induced by any LSA-structure \mathfrak{g}_{λ} on \mathfrak{g} is radiant, i.e., the radiance obstruction $c_{\alpha} \in H^1(\mathfrak{g}, \mathfrak{g}_{\lambda})$ vanishes. If $\dim \mathfrak{z} = 1$ we prove that $\mathfrak{g} = \mathfrak{s} \oplus \mathfrak{z}$, where \mathfrak{s} is split simple, admits LSA-structures if and only if \mathfrak{s} is of type A_{ℓ} , that is $\mathfrak{g} = \mathfrak{gl}_n$. Here we have the associative LSA-structure given by ordinary matrix multiplication corresponding to the biinvariant affine structure on $\operatorname{GL}(n)$, which was believed to be essentially the only possible LSA-structure on \mathfrak{gl}_n . We exhibit interesting LSA-structures different from the associative one. They arise as certain deformations of the matrix algebra. Then we classify all LSA-structures on \mathfrak{gl}_n using a result of [BAU]. For n = 2 we compute all structures explicitely over the complex numbers.

1 Introduction

Let M denote an n-dimensional manifold (connected and without boundary). An affine atlas Φ on M is a covering of M by coordinate charts such that each coordinate change between overlapping charts in Φ is *locally affine*, i.e., extends to an affine automorphism $x \mapsto Ax + b$, $A \in \mathbf{GL}_n(\mathbb{R})$, of some n-dimensional real vector space E. A maximal affine atlas is an affine structure on M, and M together with an affine structure is called an affine manifold. An affine structure determines a differentiable structure and affine manifolds are flat – there is a natural correspondence between affine structures on M and flat torsionfree affine connections ∇ on M. Such an affine connection is a connection in the tangent bundle with zero torsion and zero curvature:

(1)
$$T_{X,Y} = \nabla_X Y - \nabla_Y X - [X,Y] = 0$$

(2)
$$R_{X,Y} = \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]} = 0$$

Subclasses of affine manifolds are *Riemannian-flat* and *Lorentz-flat* manifolds. A fundamental problem is the question of existence of affine structures. A closed surface admits affine structures if and only if its Euler characteristic vanishes ([BEZ] and [MI1]). In higher dimensions there are only certain obstructions known ([SMI]). Denote by $\mathbf{Aff}(E)$ the group of affine automorphisms,

$$\mathbf{Aff}(E) = \left\{ \begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix} \mid A \in \mathbf{GL}(E), \ b \in E \right\}$$

where the affine action is given by $\begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ 1 \end{pmatrix} = \begin{pmatrix} Ax+b \\ 1 \end{pmatrix}$.

Let M be an affine manifold. Its universal covering M inherits a unique affine structure for which the covering projection $\widetilde{M} \to M$ is an affine immersion. The group π of decktransformations acts on \widetilde{M} by affine automorphisms. There exists an affine immersion $D: \widetilde{M} \to E$, called the *developing map* (see [FGH]). It is unique up to composition with an affine automorphism of E. Hence for every $p \in \pi$ there is a unique $\alpha(p) \in \operatorname{Aff}(E)$ such that $D \circ p = \alpha(p) \circ D$. The resulting homomorphism $\alpha : \pi \to \operatorname{Aff}(E)$ is called the *affine holonomy representation* and $\alpha(\pi)$ the *affine holonomy group*. α decomposes into a linear part λ and a translational part u. Then λ is a linear representation turning E into a π -module E_{λ} and u is a crossed homomorphism for λ , i.e., an 1-cocycle in $Z^1(\pi, E_{\lambda}) : u(pq) = u(p) + \lambda(p)u(q)$. $x \in E$ is a fixed point for α if and only if $u \in B^1(\pi, E_{\lambda})$, i.e., $u(p) = x - \lambda(p)x$. The *radiance obstruction* of α is the cohomology class

$$c_{\alpha} = [u] \in H^1(\pi, E_{\lambda}).$$

For the affine manifold, the radiance obstruction c_M is the radiance obstruction of its affine holonomy representation α . If $c_M = 0$ then M is called *radiant*. Being radiant has quite a lot of consequences for M, see [GH1].

If D is a diffeomorphism, i.e., if M is affinely diffeomorph to E, then M is called *complete*. This happens if and only if ∇ is geodesically complete, see [AUM]. Compactness does not imply completeness.

Many examples of affine manifolds come from *left-invariant affine structures* on Lie groups. If G is a Lie group, an affine structure is called *left-invariant* if for each $g \in G$ the leftmultiplication by g, L_g : $G \to G$ is an automorphism of the affine structure. (Hence the affine connection ∇ is left-invariant under left-translation as well.) Suppose G is simply connected. Let $D: G \to E$ be the developing map and $\alpha(g)$ be the unique affine automorphism of E such that $D \circ L_g = \alpha(g) \circ D$. Then $\alpha: G \to \text{Aff}(E)$ is an affine representation.

Now it is not difficult to see ([FGH]) that G admits a complete left-invariant structure if and only if G acts simply transitively on E as affine transformations. In this case G must be solvable ([AUS]). If G has a left-invariant affine structure and Γ is a discrete subgroup of G, then the homogeneous space $\Gamma \setminus G$ of right cosets inherits an affine structure. If G is nilpotent, then $\Gamma \setminus G$ is called an *affine nilmanifold*.

In this context there is the following important question, also posed by Milnor ([MI2]) in the studies of fundamental groups of complete affine manifolds:

(3) Which Lie groups admit left-invariant affine structures ?

This question is particularly difficult for nilpotent Lie groups. There was much evidence that every nilpotent Lie group admits left-invariant affine structures (see [BGR]). Milnor conjectured this to be true even for solvable Lie groups ([MI2]). Recently, however, there were counterexamples discovered ([BGR] and [BEN]). There are nilmanifolds which are not affine. We will show in a forthcoming paper that the class of nilpotent Lie groups of dimension $n \ge 10$ not admitting any left-invariant affine structure is rather large. The problem of classifying left-invariant affine structures on nilpotent Lie groups (see [KIM]) still seems to be hopeless.

If G is semisimple then G admits no left-invariant affine structures ([HE2], [BUR]). It is a natural question to ask what happens in the case of a *reductive* Lie group G. We may attempt then to give a classification of all left-invariant affine structures on G. In the general case we still have plenty of left-invariant affine structures ([HE1]). If G is a reductive linear Lie group with *one-dimensional* center and [G, G] is simple, however, we are able to prove that the existence of left-invariant affine structures on G implies that G must be $\mathbf{GL}(n)$ itself. It possesses the unique (up to isomorphism) bi-invariant affine structure. By studying certain deformations of this structure we obtain interesting families of left-invariant affine structures on $\mathbf{GL}(n)$. In fact, using a result of [BAU], it follows that they exhaust all possible left-invariant affine structures on $\mathbf{GL}(n)$ for n > 2.

2 Left-invariant affine structures and LSA-structures

Let G be a finite-dimensional connected Lie group with Lie algebra \mathfrak{g} . We may assume that G is simply connected (otherwise consider \tilde{G}). The following lemma is well known (see [SE2]):

Lemma 1 There is a one-to-one correspondence between left-invariant affine structures on G and LSA-structures on \mathfrak{g} . Under this bijection, bi-invariant affine structures correspond to associative LSA-structures.

Suppose G admits a left-invariant flat torsionfree affine connection ∇ on G. Since the connection is left-invariant, for any two left-invariant vector fields $X, Y \in \mathfrak{g}$, the covariant derivative $\nabla_X Y \in \mathfrak{g}$ is left-invariant. It follows that covariant differentiation $(X, Y) \mapsto \nabla_X Y$ defines a bilinear multiplication $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, denoted by $(X, Y) \mapsto XY$ in short. Since ∇ is locally flat and torsionfree, we have by (1) and (2) of the introduction:

$$(1) \qquad [X,Y] \qquad = \quad XY - YX$$

(2)
$$[X,Y]Z = X(YZ) - Y(XZ)$$

We can rewrite (2) by using (1) as (X, Y, Z) = (Y, X, Z) where (X, Y, Z) denotes the associator of the three elements X, Y, Z in \mathfrak{g} . Thus (\mathfrak{g}, \cdot) is a *left-symmetric algebra* (or in short *LSA*) with product $x \cdot y = \nabla_X Y$, see [SE2], [BUR].

If we have any *LSA-structure* on \mathfrak{g} , i.e., a left-symmetric product $(x, y) \mapsto x \cdot y$ on \mathfrak{g} satisfying $x \cdot y - y \cdot x = [x, y]$, then denote by $\lambda : x \mapsto \lambda(x)$ the left-regular representation on the LSA $(\mathfrak{g}, \cdot) : \lambda(x)y = x \cdot y$. It is a Lie algebra representation:

$$\lambda: \mathfrak{g} \to \operatorname{End}(\mathfrak{g}), \qquad \qquad [\lambda(x), \lambda(y)] = \lambda([x, y]).$$

Denote the corresponding \mathfrak{g} -module by \mathfrak{g}_{λ} . Furthermore, the identity map $1: \mathfrak{g} \to \mathfrak{g}_{\lambda}$ is a 1-cocycle in $Z^{1}(\mathfrak{g}, \mathfrak{g}_{\lambda})$:

$$\mathbf{1}([x,y]) = \mathbf{1}(x) \cdot y - \mathbf{1}(y) \cdot x$$

Let $\mathfrak{aff}(\mathfrak{g})$ be the Lie algebra of $\mathbf{Aff}(G)$, i.e., $\mathfrak{aff}(\mathfrak{g}) = \left\{ \begin{pmatrix} A & b \\ 0 & 0 \end{pmatrix} \mid A \in \mathfrak{gl}(\mathfrak{g}), \ b \in \mathfrak{g} \right\}$ which we identify with $\mathfrak{gl}(\mathfrak{g}) \oplus \mathfrak{g}$. Denote the linear part by $\ell(A, b) = A$ and the translational part by t(A, b) = b. Now we associate to the LSA (\mathfrak{g}, \cdot) the map

$$\alpha = \lambda \oplus \mathbf{1}: \ \mathfrak{g} \to \mathfrak{aff}(\mathfrak{g})$$

It is an affine representation of \mathfrak{g} . We have $\lambda = \ell \circ \alpha$ and $t \circ \alpha = 1$. The *radiance obstruction* of α is the class [1] in $H^1(\mathfrak{g}, \mathfrak{g}_{\lambda})$, see [GH2]. For the proofs of the following proposition see [SE1], [BUR]. Let $\varrho(x)$ denote the right-multiplication by x in the LSA (\mathfrak{g}, \cdot) :

Proposition 1

- (1) A left-invariant affine structure on G is complete if and only if all $\rho(x)$ in the corresponding LSA are nilpotent endomorphisms.
- (2) If G admits a complete left-invariant affine structure then G is solvable.
- (3) If G is semisimple then G does not admit any left-invariant affine structure.

The argument for the proof of (3) is roughly the following (see [BUR]): Let G be semisimple and (\mathfrak{g}, \cdot) be an LSA corresponding to a left-invariant affine structure on G. Then $\mathbf{1} \in Z^1(\mathfrak{g}, \mathfrak{g}_{\lambda})$ and by *Whitehead's Lemma*, $\mathbf{1} \in B^1(\mathfrak{g}, \mathfrak{g}_{\lambda})$, i.e., $\mathbf{1}(x) = x \cdot e = \varrho(e)x$ for some $e \in \mathfrak{g}_{\lambda}$. Then the LSA-property and $[\mathfrak{g}, \mathfrak{g}] = \mathfrak{g}$ imply $\operatorname{tr} \lambda(x) = \operatorname{tr} \varrho(x) = 0$ for all x and hence $\operatorname{tr} \mathbf{1} = \operatorname{tr} \varrho(e) = 0$. Since the underlying field is of characteristic zero, we conclude that \mathfrak{g} must be trivial which should be excluded.

3 LSA-structures on reductive Lie algebras

Let k be an algebraically closed field of characteristic zero. A Lie algebra \mathfrak{g} is said to be *reductive* if its solvable radical $\mathfrak{r}(\mathfrak{g})$ coincides with the center $\mathfrak{z} = \mathfrak{z}(\mathfrak{g})$. Then the Lie algebra $\mathfrak{s} = [\mathfrak{g}, \mathfrak{g}]$ is semisimple and we have

$$\mathfrak{g}=\mathfrak{s}\oplus\mathfrak{z}$$

A Lie algebra \mathfrak{g} is reductive if and only if it admits a faithful completely reducible linear representation. A Lie group G is said to be reductive if its Lie algebra is reductive. Assume that (\mathfrak{g}, \cdot) is an LSA-structure on \mathfrak{g} . Since the first cohomology groups of a reductive Lie algebra do not vanish in general, we may have such structures. In fact, we know that there *are* LSA-structures on $\mathfrak{gl}_n(k)$, for example. The next question is whether the associated affine representation α is *radiant* or not. By a result of Milnor [MI2], one sufficient condition for an affine representation of \mathfrak{g} to be radiant is that the associated linear representation is completely reducible. However, the fact that \mathfrak{g} is reductive does not imply that *any* finite-dimensional representation φ of \mathfrak{g} is completely reducible. φ is completely reducible if and only if the center of \mathfrak{g} is represented by semisimple endomorphisms, see [HUM]. However, it is true that α is radiant if \mathfrak{z} is *one-dimensional*.

By saying \mathfrak{s} is *split simple* we mean that \mathfrak{s} is of one of the following types:

$$A_{\ell}, B_{\ell}, C_{\ell}, D_{\ell}, G_2, F_4, E_6, E_7, E_8$$

First we observe:

Lemma 2 Let $\mathfrak{g} = \mathfrak{s} \oplus \mathfrak{z}$ be a reductive Lie algebra with one-dimensional center, \mathfrak{s} be split simple and (\mathfrak{g}, \cdot) an LSA-structure on \mathfrak{g} . Then the algebra (\mathfrak{g}, \cdot) is simple, i.e., has no proper two-sided ideals.

Proof Any two-sided ideal \mathfrak{a} in (\mathfrak{g}, \cdot) is also a Lie ideal in \mathfrak{g} , since

$$[\mathfrak{g},\mathfrak{a}]\subset\mathfrak{g}\cdot\mathfrak{a}-\mathfrak{a}\cdot\mathfrak{g}\subset\mathfrak{a}$$

The only proper ideals in $\mathfrak{g} = \mathfrak{s} \oplus \mathfrak{z}$ are \mathfrak{s} and $\mathfrak{z} = k$. However, both (\mathfrak{a}, \cdot) and $(\mathfrak{g}/\mathfrak{a}, \cdot)$ inherit a natural LSA-structure from (\mathfrak{g}, \cdot) . Since \mathfrak{s} and $\mathfrak{g}/\mathfrak{z}$ are semisimple it follows from Proposition 1 (3) that \mathfrak{a} can neither be \mathfrak{s} nor \mathfrak{z} .

Suppose that \mathfrak{g} is a *linear* Lie algebra. Given an LSA-structure (\mathfrak{g}, \cdot) , denote the \mathfrak{g} invariants of \mathfrak{g}_{λ} by $(\mathfrak{g}_{\lambda})^{\mathfrak{g}}$. We have $H^{0}(\mathfrak{g}, \mathfrak{g}_{\lambda}) = (\mathfrak{g}_{\lambda})^{\mathfrak{g}}$. Since \mathfrak{g} and \mathfrak{g}_{λ} are identical
as vector spaces, we may view an element $y \in \mathfrak{g}_{\lambda}$ also as an element of \mathfrak{g} . Our result is:

Theorem 1 Let (\mathfrak{g}, \cdot) be an LSA-structure on the reductive linear Lie algebra $\mathfrak{g} = \mathfrak{s} \oplus \mathfrak{z}$. Then $(\mathfrak{g}_{\lambda})^{\mathfrak{g}} \cap \mathfrak{s} = 0$.

Corollary 1 Let (\mathfrak{g}, \cdot) be an LSA-structure on \mathfrak{g} . If dim $\mathfrak{z} = 1$ then $H^0(\mathfrak{g}, \mathfrak{g}_{\lambda}) = 0$ and $H^1(\mathfrak{g}, \mathfrak{g}_{\lambda}) = 0$. Hence the associated affine representation of \mathfrak{g} is radiant and the algebra (\mathfrak{g}, \cdot) has a unique right-identity.

Corollary 2 Let (\mathfrak{g}, \cdot) be an associative LSA-structure on \mathfrak{g} where \mathfrak{s} is simple. If $\dim \mathfrak{z} = 1$, then (\mathfrak{g}, \cdot) is isomorphic to the matrix algebra $M_n(k)$ and \mathfrak{g} is $\mathfrak{gl}_n(k)$.

Proof of the Corollaries: Let \mathfrak{z} be generated by z and $y \in (\mathfrak{g}_{\lambda})^{\mathfrak{g}}$ be nonzero; hence by the Theorem $y = s + \gamma z \in \mathfrak{s} \oplus \mathfrak{z}$ where $s \in \mathfrak{s}$ and $\gamma \neq 0$. Then $0 = \varrho(y) = \varrho(s) + \gamma \varrho(z)$. Take the trace of both sides to obtain $\operatorname{tr} \varrho(z) = 0$ (note that $\operatorname{tr} \varrho(s) = 0$ for all $s \in \mathfrak{s}$ since $\operatorname{tr} \lambda([a, b]) = \operatorname{tr}([\lambda(a), \lambda(b)])$, $[\mathfrak{s}, \mathfrak{s}] = \mathfrak{s}$ and $\operatorname{tr} \varrho(x) = \operatorname{tr} \operatorname{ad}(x) - \operatorname{tr} \lambda(x) = 0$.) Then $\operatorname{tr} \varrho(x) = 0$ for all $x \in \mathfrak{g}$ and as a consequence, all $\varrho(x)$ are nilpotent ($\operatorname{tr} \varrho(x)^2 = 0$ by $\varrho(x)^2 = \varrho(x^2) - [\lambda(x), \varrho(x)]$, and by the formulas (2.1) in [KIM], also $\operatorname{tr} \varrho(x)^n = 0$ for all n). Then by Proposition 1, \mathfrak{g} must be solvable. This is a contradiction. Thus y = 0, i.e., $(\mathfrak{g}_{\lambda})^{\mathfrak{g}} = 0$, which is the first part of Corollary 1.

The second statement of Corollary 1 follows immediately from the following fact:

Lemma 3 Let \mathfrak{g} be a reductive Lie algebra with dim $\mathfrak{z} = 1$ and M be a finitedimensional \mathfrak{g} -module. Then $H^0(\mathfrak{g}, M) = 0$ is equivalent to $H^1(\mathfrak{g}, M) = 0$.

Proof: The claim is true if \mathfrak{g} is one-dimensional (see [BAR]). Let \mathfrak{a} be an ideal of \mathfrak{g} . The Hochschild-Serre spectral sequence gives the following exact sequence:

(4)
$$0 \longrightarrow H^1(\mathfrak{g}/\mathfrak{a}, M^\mathfrak{a}) \longrightarrow H^1(\mathfrak{g}, M) \longrightarrow H^1(\mathfrak{a}, M)^\mathfrak{g}$$

Assume $H^1(\mathfrak{g}, M) = 0$. Then $H^1(\mathfrak{g}/\mathfrak{s}, M^\mathfrak{s}) = 0$ by (4) with $\mathfrak{a} = \mathfrak{s}$. Since $\mathfrak{g}/\mathfrak{s}$ is one-dimensional, we have $M^\mathfrak{g} = (M^\mathfrak{s})^{\mathfrak{g}/\mathfrak{s}} = 0$.

To show the other direction, assume $H^0(\mathfrak{g}, M) = 0$. Let M be irreducible. Then the submodule $M^{\mathfrak{z}}$ is 0 or M. In the first case, $H^1(\mathfrak{z}, M) = 0$ and (4) gives $H^1(\mathfrak{g}, M) = 0$ with $\mathfrak{a} = \mathfrak{z}$. In the second case, $M^{\mathfrak{z}} = M$ is a $\mathfrak{g}/\mathfrak{z}$ -module and $H^1(\mathfrak{g}/\mathfrak{z}, M) = 0$ since $\mathfrak{s} = \mathfrak{g}/\mathfrak{z}$ is semisimple. The claim follows again by (4) with $\mathfrak{a} = \mathfrak{z}$.

If M is reducible, let N be a proper submodule. Then $N^{\mathfrak{g}} \leq M^{\mathfrak{g}} = 0$. By induction on dim M we may assume $H^1(\mathfrak{g}, N) = 0$. The exact sequence $0 \to N \to M \to M/N \to 0$ induces the corresponding long exact sequence of H^0 and H^1 -groups. From this we derive $(M/N)^{\mathfrak{g}} = 0$. Again, by induction $H^1(\mathfrak{g}, M/N) = 0$. Looking at the H^1 -groups we obtain $H^1(\mathfrak{g}, M) = 0$.

Now the last part of Corollary 1 is easy: **1** is in $Z^1(\mathfrak{g}, \mathfrak{g}_{\lambda})$, hence also in $B^1(\mathfrak{g}, \mathfrak{g}_{\lambda})$. That means $\varrho(e) = \mathbf{1}$ for some $e \in \mathfrak{g}_{\lambda}$. If e' is another right-identity, then $\varrho(e-e') = 0$, i.e., $e - e' \in (\mathfrak{g}_{\lambda})^{\mathfrak{g}} = 0$.

If the LSA-structure is associative and $\dim \mathfrak{z} = 1$, then (\mathfrak{g}, \cdot) possesses a two-sided central identity: If $\varrho(e) = \mathbf{1}$ then $0 = [\varrho(e), \varrho(x)] = \varrho([x, e])$ for all x. Since $(\mathfrak{g}_{\lambda})^{\mathfrak{g}} = 0$ it follows [x, e] = 0 for all $x \in \mathfrak{g}$, hence $e \in \mathfrak{z}$ and $\lambda(e) = \varrho(e) = \mathbf{1}$. By Lemma 2 (\mathfrak{g}, \cdot) is a simple associative algebra with unit, hence a matrix algebra by Wedderburn's Theorem.

Proof of Theorem 1: Consider the restriction $\mathbf{1}_{\mathfrak{s}}$ of the identity map $\mathbf{1}: \mathfrak{g} \to \mathfrak{g}_{\lambda}$ to \mathfrak{s} . Then $\mathbf{1}_{\mathfrak{s}} \in Z^{1}(\mathfrak{s}, \mathfrak{g}_{\lambda})$. By Whitehead's Lemma, $\mathbf{1}_{\mathfrak{s}}$ is an one-coboundary, i.e., it exists an $e \in \mathfrak{g}_{\lambda}$ such that $x = \mathbf{1}_{\mathfrak{s}}(x) = \lambda(x)e$ for all $x \in \mathfrak{s}$. Assume that y is an element in $(\mathfrak{g}_{\lambda})^{\mathfrak{g}} \cap \mathfrak{s}$. Then $y \in \mathfrak{s}$ and we obtain by the above (also using $\operatorname{ad}(y) = \lambda(y)$),

(5)
$$y = \lambda(y)e = [y, e]$$

That means, y and e generate a two-dimensional solvable subalgebra of \mathfrak{g} . By Lie's Theorem, y, e are upper triangular (relative to a suitable basis). Hence y = [y, e] is strictly upper triangular, i.e., *nilpotent*. Then by the Morozow-Jacobson Theorem there exist $\overline{y}, h \in \mathfrak{g}$ such that

$$[y,\overline{y}] = h, \qquad [y,h] = 2y$$

We have the following Lemma:

Lemma 4 Let (\mathfrak{g}, \cdot) be an LSA with Lie algebra \mathfrak{g} . If $y \in (\mathfrak{g}_{\lambda})^{\mathfrak{g}}$ then $\operatorname{ad}(y) = \lambda(y)$ is a derivation of (\mathfrak{g}, \cdot) , and in particular:

(7)
$$(\operatorname{ad} y)^{3}(v \cdot w) = \sum_{i=0}^{3} \binom{3}{i} (\operatorname{ad} y)^{3-i}(v) \cdot (\operatorname{ad} y)^{i}(w)$$

Proof: $y \in (\mathfrak{g}_{\lambda})^{\mathfrak{g}}$ means $\varrho(y)v = v \cdot y = 0$ for all $v \in \mathfrak{g}_{\lambda}$ and $\operatorname{ad}(y) = \lambda(y) - \varrho(y) = \lambda(y)$. By the LSA-property (2) we have

$$y \cdot (v \cdot w) - (y \cdot v) \cdot w = v \cdot (y \cdot w) - (v \cdot y) \cdot w = v \cdot (y \cdot w)$$

Hence $\lambda(y)(v \cdot w) = \lambda(y)(v) \cdot w + v \cdot \lambda(y)(w)$ and the claim follows.

We apply the Lemma as follows. By (6) we have $\operatorname{ad} y(\overline{y}) = h$, $(\operatorname{ad} y)^2(\overline{y}) = 2y$ and $(\operatorname{ad} y)^3(\overline{y}) = 0$. Using formula (7) we calculate:

$$\begin{aligned} (\operatorname{ad} y)^3(\overline{y} \cdot \overline{y}) &= 3(\operatorname{ad} y)^2(\overline{y}) \cdot (\operatorname{ad} y)(\overline{y}) + 3(\operatorname{ad} y)(\overline{y}) \cdot (\operatorname{ad} y)^2(\overline{y}) &= 6(y \cdot h + h \cdot y) \\ &= 6[y, h] = 12y \end{aligned}$$

The following Lemma shows that the last equation implies y = 0.

Lemma 5 Suppose $y \in \mathfrak{g}$ is a nilpotent matrix and $\alpha \neq 0$. Then $(\operatorname{ad} y)^3(x) = \alpha y$ for some $x \in \mathfrak{g}$ implies y = 0.

Proof: By the Morozov-Jacobson Theorem, y can be embedded in an $\mathfrak{sl}_2(k) \subset \mathfrak{g}$. By Weyl's Theorem, \mathfrak{g} is completely reducible as $\mathfrak{sl}_2(k)$ -module. Let \mathfrak{v} be a complement, i.e.,

$$\mathfrak{g} = \mathfrak{sl}_2(k) \oplus \mathfrak{v}$$

Decompose x = s + v and apply $(\operatorname{ad} y)^3$ on both sides. We have $(\operatorname{ad} y)^3(s) = 0$ since y is a nilpotent element in $\mathfrak{sl}_2(k)$. Hence $\alpha y = (\operatorname{ad} y)^3(x) = (\operatorname{ad} y)^3(v)$ is in $\mathfrak{sl}_2(k) \cap \mathfrak{v} = 0$. Since $\alpha \neq 0$ we have y = 0.

Remark 1 There is an elementary proof of Lemma 5. Using (ad y)(x) = yx - xy (matrix product) the above equation becomes $\alpha y = y^3x - 3y^2xy + 3yxy^2 - xy^3$. Assuming $y^{k+1} = 0 \neq y^k$ where k > 1, multiply this equation by y^{k-i} from the left and by y^{i-1} from the right for 0 < i < k. We obtain k linear equations in the unknowns $x_i = y^{k+1-i}xy^{i+1}$ and $x_k = y^k$. The corresponding matrix has nonzero determinant $-\frac{1}{12}\alpha k(k+1)^2(k+2)$, k > 1. Hence, there is only the trivial solution, i.e., $y^k = 0$, contradiction. Then k = 1, y = 0.

Remark 2 The first part of Corollary 1 can also be proved as follows: As an \mathfrak{s} -module, \mathfrak{g}_{λ} is completely reducible. We show $\mathfrak{g}_{\lambda}^{\mathfrak{s}} = 0$ and hence also $\mathfrak{g}_{\lambda}^{\mathfrak{g}} = 0$.

The \mathfrak{s} -module \mathfrak{g}_{λ} has nonzero invariants if and only if the trivial module is a summand in its decomposition: $H^0(\mathfrak{s}, k) = k$. Assume $\mathfrak{g}_{\lambda} = \mathfrak{v} \oplus k$ for a complementary \mathfrak{s} -module

 \mathfrak{v} . Then \mathfrak{s} acts trivially on k, and for $m = v + \alpha \in \mathfrak{v} \oplus k$ we have $x \cdot m = x \cdot v \in \mathfrak{v}$ for all $x \in \mathfrak{s}$ and $m \in \mathfrak{g}_{\lambda}$. Then $x \cdot z$ and $z \cdot x$ are in \mathfrak{v} for all $x, z \in \mathfrak{s}$, hence also all commutators [x, z]. Since \mathfrak{s} is spanned by those commutators, we have $\mathfrak{s} \subset \mathfrak{v}$. In fact, $\mathfrak{s} = \mathfrak{v}$ because of dimension reasons. This implies that \mathfrak{s} admits an LSA-structure; a contradiction to Proposition 1. Therefore, \mathfrak{g}_{λ} does not have a summand k as an \mathfrak{s} -module.

We use Corollary 1 to show the following:

Theorem 2 Let $\mathfrak{g} = \mathfrak{s} \oplus \mathfrak{z}$ be a reductive linear Lie algebra such that dim $\mathfrak{z} = 1$ and \mathfrak{s} is split simple. Then \mathfrak{g} admits an LSA-structure if and only if \mathfrak{s} is of type A_{ℓ} .

Proof: First we show that if \mathfrak{s} is *not* of typ A_{ℓ} , B_3 , D_5 , D_7 , then \mathfrak{g} does not admit any LSA-structure. Secondly we exclude the cases where \mathfrak{s} is of type B_3 , D_5 , D_7 . For \mathfrak{s} of type A_{ℓ} we already know that there exist LSA-structures.

Let dim $\mathfrak{s}=n$. Since \mathfrak{g}_λ is completely reducible as an $\,\mathfrak{s}$ -module and has no invariants, we know that

(8)
$$\mathfrak{g}_{\lambda} = \bigoplus_{i} V_{i} \quad \text{and} \quad \sum_{i} \dim V_{i} = n+1$$

where V_i are irreducible \mathfrak{s} -modules with $2 \leq \dim V_i \leq \dim \mathfrak{g} = n+1$ (\mathfrak{g}_{λ} does not contain a trivial \mathfrak{s} -module). On the other hand, there are not many irreducible \mathfrak{s} -modules of small dimensions. Up to dimension n they are classified in [BUR]. Are there irreducible \mathfrak{s} -modules of dimension n+1? The answer is given by

Lemma 6 Let \mathfrak{s} be of type A_{ℓ} , B_{ℓ} , C_{ℓ} , D_{ℓ} , G_2 , F_4 , E_6 , E_7 , E_8 and V be an irreducible \mathfrak{s} -module. Define $\delta_{\ell} = \delta_{\ell}(\mathfrak{s}) = \dim \mathfrak{s} + 1$. If $\ell > 1$, then $\dim V = \delta_{\ell}$ is impossible.

Proof: In dimension $\delta_{\ell} - 1$ we have always the adjoint module. Let $m_{\ell}(\mathfrak{s}) = m_{\ell}$ denote the minimal dimension of irreducible \mathfrak{s} -modules with bigger dimension than dim \mathfrak{s} . For $\ell > 8$ the values of m_{ℓ} and δ_{ℓ} are as follows:

Type	A_ℓ	B_ℓ	C_ℓ	D_ℓ
m_ℓ	$\binom{\ell+1}{3}$	$2\ell^2 + 3\ell$	$\binom{2\ell}{3} - \binom{2\ell}{1}$	$2\ell^2+\ell-1$
δ_ℓ	$(\ell+1)^2$	$2\ell^2 + \ell + 1$	$2\ell^2 + \ell + 1$	$2\ell^2 - \ell + 1$

Type	G_2	F_4	E_6	E_7	E_8
m_ℓ	27	273	351	912	3875
δ_ℓ	15	53	79	134	249

To see this, we may use the same method as in [BUR], Lemma 2.2.3. The irreducible \mathfrak{s} -modules are highest weight modules $L(\lambda)$. The Weyl group acts on the weights by conjugation and we may estimate the dimension of $L(\lambda)$ from below by the number of the weights of $L(\lambda)$ which is the sum of $|\mathcal{W}\nu|$ over the dominant weights $\nu \leq \lambda$. Besides we can use Weyl's dimension formula. The Lemma can also easily be deduced from the computations in [SAK], p.41f.

Denote by $\omega_1, \ldots, \omega_\ell$ the fundamental weights, then the following modules (for the types $A_\ell, \ldots D_\ell$ respectively) have dimension $m_\ell : L(\omega_3), L(2\omega_1), L(\omega_3), L(2\omega_1)$.

Since $m_{\ell} - \delta_{\ell}$ is always positive, Lemma 6 follows for $\ell > 8$. In the case $\ell \leq 8$ we may use the tables from [BMP] to verify the result. (Of course, \mathfrak{sl}_2 has irreducible representations in any dimension, so we must exclude $\ell = 1$).

Consider the decomposition (8). If $\ell > 8$, we have the following possibilities for the modules V_i occuring in (8) (see [BUR]):

For type A_{ℓ} we have the modules $L(\omega_1), L(\omega_2), L(2\omega_1), L(\omega_1 + \omega_{\ell})$ and their dual modules of dimension $\ell + 1, \ell(\ell + 1)/2, (\ell + 1)(\ell + 2)/2, \ell^2 + 2\ell$.

For type B_{ℓ} we have $L(\omega_1), L(\omega_2)$ of dimension $2\ell + 1, \ell(2\ell + 1)$.

For type C_{ℓ} we have $L(\omega_1), L(\omega_2), L(2\omega_1)$ of dimension $2\ell, 2\ell^2 - \ell - 1, \ell(2\ell + 1)$.

For type D_{ℓ} we have $L(\omega_1), L(\omega_2)$ of dimension $2\ell, \ell(2\ell-1)$.

It is easy to see that the dimensions cannot add up to δ_{ℓ} , except in the case of A_{ℓ} . For the exceptional types and the cases $\ell \leq 8$ we see the result from the following table. It lists the possible dimensions:

Type	$\dim L(\lambda)$	δ_{λ}	Type	$\dim L(\lambda)$	δ_{λ}
B_3	7, 8, 21	22	C_8	16, 119, 136	137
B_4	9,16,36	37	D_4	8,28	29
B_5	11, 32, 55	56	D_5	10, 16, 45	46
B_6	13, 64, 78	79	D_6	12, 32, 66	67
B_7	15, 105	106	D_7	14, 64, 91	92
B_8	17, 136	137	D_8	16, 120	121
C_2	4, 5, 10	11	G_2	7, 14	15
C_3	6, 14, 21	22	F_4	26, 52	53
C_4	8, 27, 36	37	E_6	27,78	79
C_5	10, 44, 55	56	E_7	56, 133	134
C_6	12, 65, 78	79	E_8	248	249
C_7	14, 90, 105	106			

Only in the cases B_3 , D_5 , D_7 the dimensions can add up to δ_ℓ , and hence these are the only types for \mathfrak{s} (besides A_ℓ) where we might have LSA-structures for \mathfrak{g} .

For these three cases we can deduce from the table what \mathfrak{g}_{λ} must be:

(9)
$$\mathfrak{g}_{\lambda} = L(\omega_1) \oplus L(\omega_1) \oplus L(\omega_3)$$

(10)
$$\mathfrak{g}_{\lambda} = L(\omega_1) \oplus L(\omega_1) \oplus L(\omega_1) \oplus L(\omega_5)$$

(11)
$$\mathfrak{g}_{\lambda} = L(\omega_1) \oplus L(\omega_1) \oplus L(\omega_7)$$

For the dimensions we have 22 = 7 + 7 + 8, 46 = 10 + 10 + 10 + 16 and 92 = 14 + 14 + 64 respectively.

Let $G = S \oplus k$ be a simply connected reductive algebraic group with Lie algebra $\mathfrak{g} = \mathfrak{s} \oplus k$. Let V be the rational S-module corresponding to the \mathfrak{s} -module \mathfrak{g}_{λ} . We may look at V as an algebraic S-variety and apply methods from invariant theory. The following Lemma is due to O. Baues [BAU]:

Lemma 7 Suppose $\mathfrak{g} = \mathfrak{s} \oplus k$ admits an LSA-structure. Then the corresponding S-module V has an S-orbit of codimension 1. If $W \subset V$ is a proper S-submodule, then S has an open orbit in W.

In the above cases, S is an orthogonal group and the S-modules in (9), (10), (11) do not have an S-orbit of codimension 1. This may be seen from the fact that the natural module $W = L(\omega_1)$ does not have an open S-orbit where S is an orthogonal group (see the classification in [SAK], p. 147). Hence \mathfrak{g} does not admit an LSA-structure in these cases.

Remark 3 In the general case of a reductive Lie algebra, Theorem 2 has no easy analogue: as an example, the reductive Lie algebra

$$\mathfrak{g} = \mathfrak{sp}_4(\mathbb{C}) \oplus \mathfrak{sl}_3(\mathbb{C}) \oplus \mathfrak{sl}_2(\mathbb{C}) \oplus \mathbb{C}^4$$

of dimension 25 admits LSA-structures (see [HE1]).

4 Left-invariant affine structures on GL(n)

Let \mathfrak{g} be a Lie algebra and $\mathcal{A} = (\mathfrak{g}, \cdot)$ an LSA-structure on \mathfrak{g} . We describe a procedure to obtain *new* (in general non-isomorphic) LSA-structures from $\mathcal{A} = (\mathfrak{g}, \cdot)$. We call these structures τ -deformations of \mathcal{A} , although they are not deformations in the usual sense. We apply this to the Lie algebra $\mathfrak{gl}_n(k)$ and the canonical associative LSA-structure.

Define the associative kernel of \mathcal{A} by

$$k(\mathcal{A}) := \{ a \in \mathcal{A} \mid [\lambda(b), \varrho(a)] = 0 \text{ for all } b \in \mathcal{A} \}$$

This is an associative subalgebra of \mathcal{A} containing the center of \mathfrak{g} by the identity

$$[\lambda(b), \varrho(a)] = [\operatorname{ad} a, \lambda(b)] + \lambda([b, a])$$

Denote by $\operatorname{End}_*(\mathfrak{g})$ the set $\{\tau \in \operatorname{End}(\mathfrak{g}) \mid (1-\tau)^{-1} \text{ exists and } \tau(\mathcal{A}) \subset k(\mathcal{A})\}$. Then we have (see [HE1]):

Lemma 8 Let $\mathcal{A} = (\mathfrak{g}, \cdot)$ be an LSA-structure on \mathfrak{g} and $\tau \in \operatorname{End}_*(\mathfrak{g})$ with $\phi = (1-\tau)^{-1}$. Then $\lambda_{\tau}(a) := \phi \circ (\lambda(a) - \varrho(\tau(a))) \circ \phi^{-1}$ defines an LSA-structure on \mathfrak{g} . We call \mathcal{A}_{τ} the τ -deformation of \mathcal{A} .

In general, \mathcal{A} is not isomorphic to the deformation algebras \mathcal{A}_{τ} . This happens however, if $\tau(\mathcal{A}) = \mathfrak{z}(\mathfrak{g})$. Let \mathcal{A} be the matrix algebra $M_n(k)$ with Lie algebra $\mathfrak{gl}_n(k)$, and define τ by $\tau|_{\mathfrak{sl}_n} = 0$ and $\tau(z) \in \mathfrak{sl}_n(k)$ arbitrary, where z generates the center of \mathfrak{g} . Then $\tau^2 = 0$ and $(1 - \tau)(1 + \tau) = 1$. Hence $\tau \in \operatorname{End}_*(\mathfrak{g})$. Since also $k(\mathcal{A}) = \mathcal{A}$ we can apply the Lemma to obtain the deformation algebras \mathcal{A}_{τ} . Note that these algebras do not have a two-sided central identity except in the case $\tau = 0$: If $\overline{\varrho}(z) = 1$ in \mathcal{A}_{τ} , then $\lambda(z) - \varrho(\tau(z)) = 1$, i.e., $\varrho(\tau(z)) = 0$. Since $(\mathfrak{g}_{\lambda})^{\mathfrak{g}} = 0$ it follows $\tau(z) = 0$ and then $\tau = 0$.

As we will see later, the τ -deformations exhaust all possible LSA-structures on $\mathfrak{gl}_n(k)$ for n > 2.

By explicit calculations now we classify the left-invariant affine structures on $\mathbf{GL}_2(\mathbb{C})$, i.e., the LSA-structures on $\mathfrak{g} = \mathfrak{gl}_2(\mathbb{C})$. Let $x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $z = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ be the canonical \mathfrak{sl}_2 -basis for \mathfrak{g} . The LSA-structures are described by the endomorphisms $\lambda(x)$, $\lambda(y)$, $\lambda(h)$, $\lambda(z)$ via $\lambda(a)b = a \cdot b$.

Theorem 3 Let (\mathfrak{g}, \cdot) be an LSA-structure on \mathfrak{g} . Then it is isomorphic to \mathcal{A}_1 , $\mathcal{A}_{2,\alpha}$ or \mathcal{A}_3 defined by the matrices $\lambda(x)$, $\lambda(y)$, $\lambda(h)$, $\lambda(z)$ as follows:

where $\beta = 1 + \alpha$, $\gamma = 1 - \alpha$. Two LSA's $\mathcal{A}_{2,\alpha}$ and $\mathcal{A}_{2,\tilde{\alpha}}$ are isomorphic if and only if $\alpha^2 = \tilde{\alpha}^2$. They are associative if and only if $\alpha = 0$. In this case, $\mathcal{A}_{2,0}$ coincides with the matrix algebra $M_2(\mathbb{C})$.

Proof: Let (\mathfrak{g}, λ) be an LSA-structure on \mathfrak{g} . By Corollary 1 there is a unique $e \in \mathfrak{g}_{\lambda}$ such that $\varrho(e) = 1$. Let $e = (e_1, e_2, e_3, e_4)$, i.e., $e = e_1 x + e_2 y + e_3 h + e_4 z$. The center

of \mathfrak{g} is generated by z. Two LSA-structures (\mathfrak{g}, λ) and (\mathfrak{g}, μ) are isomorphic if and only if there is a $\psi \in \operatorname{Aut}(\mathfrak{g})$ such that $\mu(x) = \psi \circ \lambda(\psi^{-1}(x)) \circ \psi^{-1}$. The Lie algebra automorphisms of \mathfrak{g} are $\psi_A : X \mapsto AXA^{-1}$ with $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$, $\Delta = \alpha \delta - \gamma \beta \neq 0$ and $\psi_t : u \mapsto s + t \cdot z$ where u = s + z, $s \in \mathfrak{sl}_2$. For $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ we look at the generators of $\operatorname{\mathbf{GL}}(2)$, i.e., $\begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} \alpha & 0 \\ 0 & \delta \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Let $\psi_1 = \psi_{\begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix}}$, $\psi_2 = \psi_{\begin{pmatrix} \alpha & 0 \\ 0 & \delta \end{pmatrix}}$, $\psi_3 = \psi_{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}$ and $\psi_4 = \psi_t$. It is easy to see that

(a)
$$\psi_1(e_1, e_2, e_3, e_4) = (e_1 - \beta^2 e_2 - 2\beta e_3, e_2, \beta e_2 + e_3, e_4)$$

(b)
$$\psi_2(e_1, e_2, e_3, e_4) = (\alpha e_1/\delta, \, \delta e_2/\alpha, \, e_3, \, e_4)$$

(c)
$$\psi_3(e_1, e_2, e_3, e_4) = (e_2, e_1, -e_3, e_4)$$

(d) $\psi_4(e_1, e_2, e_3, e_4) = (e_1, e_2, e_3, te_4)$

Lemma 9 We may assume that the right-identity is e = x + z or $e = \alpha h + z$ or e = z.

Proof: If (\mathfrak{g}, λ) and $(\mathfrak{g}, \tilde{\lambda})$ are isomorphic LSA's, then $\varrho(e) = 1$ implies $\tilde{\varrho}(\psi(e)) = \psi \circ \varrho(e) \circ \psi^{-1} = 1$, i.e., the LSA $(\mathfrak{g}, \tilde{\lambda})$ has right-identity $\psi(e)$. First we may assume $e_2 = 0$. Otherwise let $\beta \in \mathbb{C}$ be a root of $\beta^2 e_2 + 2\beta e_3 - e_1 = 0$ and apply $(a), (c) : (\psi_3 \circ \psi_1)(e_1, e_2, e_3, e_4) = (e_2, 0, -\beta e_2 - e_3, e_4)$.

Case 1: $e_1 = 0$. If $e_3 = 0$ then $\psi_t(e) = z$ with $t = 1/e_4$ (note that $e \neq 0$). If $e_3 \neq 0$ then it follows $e_4 \neq 0$, otherwise $0 = \operatorname{tr} \varrho(e_3h) = \operatorname{tr} \varrho(e) = 4$, contradiction. Then $\psi_t(e) = e_3h + z$ with $t = 1/e_4$.

Case 2: $e_1 \neq 0$. We may assume $e_3 = 0$, otherwise $\psi_1(e_1, 0, e_3, e_4) = (0, 0, e_3, e_4)$ with $\beta = e_1/2e_3$ and we are back to case 1. Then $(\psi_t \circ \psi_2)(e_1, 0, 0, e_4) = (1, 0, 0, 1)$ with $\delta/\alpha = e_1$ and $t = 1/e_4$. Here again $e_4 \neq 0$ by the above argument. Hence e = x+z. \Box

The LSA-product is given by 64 structure constants via $\lambda(x)$, $\lambda(y)$, $\lambda(h)$, $\lambda(z)$. The condition $[a, b] = a \cdot b - b \cdot a$ determines 24 structure constants by linear equations. The LSA-property (2) is equivalent to quadratic equations in the structure constants. In general, they are quite difficult to solve. The existence of a non-central right-identity, however, simplifies the matter considerably. We have

(12)
$$[\lambda(z), \operatorname{ad} e] = [\lambda(z), \lambda(e)] = \lambda([z, e]) = 0$$

I. Algebras with $\varrho(e) = x + z$:

Using (12) we have $[\lambda(z), \operatorname{ad} x] = 0$ and $\varrho(x) + \varrho(z) = 1$. Also tr $\varrho(s) = 0$ for all $s \in \mathfrak{sl}_2$. This determines another 25 structure constants by *linear* equations. The remaining LSA-structure equations then are almost trivial. It is easy to see that they have a unique solution, which is given by the algebra \mathcal{A}_1 under (i) of Theorem 3.

II. Algebras with
$$\varrho(e) = \alpha h + z, \ \alpha \in \mathbb{C}$$
:

Assume first that $\alpha \neq 0$. Then $\alpha \varrho(h) + \varrho(z) = 1$ and $[\lambda(z), \operatorname{ad} h] = 0$ determine 26 structure constants. It is easy to solve the remaining equations and to obtain the

algebra $\mathcal{A}_{2,\alpha}$. It is associative if and only if $\alpha = 0$ (which we may include here as well) and the algebra is precisely $M_n(\mathbb{C})$. It is clear that two such algebras $\mathcal{A}_{2,\alpha}$ and $\mathcal{A}_{2,\tilde{\alpha}}$ are isomorphic if and only if $\alpha^2 = \tilde{\alpha}^2$: If they are isomorphic then the characteristic polynomials of $\lambda(z)$ and $\tilde{\lambda}(z)$ must be equal. This implies $\alpha^2 = \tilde{\alpha}^2$. On the other hand $\mathcal{A}_{2,\alpha}$ is isomorphic to $\mathcal{A}_{2,-\alpha}$ by ψ_3 .

III. Algebras with central right-identity $\varrho(e) = z$:

Since $\lambda(z) = \mathbf{1}$, \mathfrak{g}_{λ} is completely reducible as \mathfrak{g} -module and $\lambda(h)$ is semisimple. Because $H^0(\mathfrak{g},\mathfrak{g}_{\lambda}) = 0$, we have only two possibilities for \mathfrak{g}_{λ} . In the first case, \mathfrak{g}_{λ} is *irreducible*, and in the second case, $\mathfrak{g}_{\lambda} = V \oplus V$, where V (as an \mathfrak{sl}_2 -module) is isomorphic to the 2-dimensional natural representation of \mathfrak{sl}_2 .

Lemma 10 As matrices, $\lambda(h)$ is similar to diag (3, 1, -1, -3) or to diag (1, -1, 1, -1)and $\lambda(x)$, $\lambda(y)$ are nilpotent.

Proof: If \mathfrak{g}_{λ} is irreducible, it is (as an \mathfrak{sl}_2 -module) a highest weight module with basis v_i such that $\lambda(h)v_i = (3-2i)v_i$, $\lambda(x)v_i = (4-i)v_{i-1}$ and $\lambda(y)v_i = (i+1)v_{i+1}$ for i = 0, 1, 2, 3. With respect to this basis, $\lambda(h) = \operatorname{diag}(3, 1, -1, -3)$ and $\lambda(x), \lambda(y)$ are nilpotent. Note that this basis does not satisfy the LSA-condition (1). In the second case, choose a basis according to $V \oplus V$, where V is a highest weight module for \mathfrak{sl}_2 . \Box

Let $\lambda(x) = (a_{ij}), \lambda(y) = (b_{ij}), \lambda(h) = (c_{ij})$ with $i, j = 1, \dots, 4$. Using $\lambda(u) - \varrho(u) = ad u$ we obtain:

$$\begin{aligned} \lambda(y) &= \left(\begin{array}{c|c} Y_1 & Y_3 \\ \hline Y_2 & Y_4 \end{array} \right), \quad \lambda(h) = \left(\begin{array}{c|c} H_1 & H_3 \\ \hline H_2 & H_4 \end{array} \right), \quad \lambda(z) = \mathbf{1}, \quad \text{where} \\ Y_1 &= \begin{pmatrix} a_{12} & b_{12} \\ a_{22} & b_{22} \end{pmatrix}, \quad Y_2 = \begin{pmatrix} a_{23} - 1 & b_{32} \\ a_{42} & b_{42} \end{pmatrix}, \quad Y_3 = \begin{pmatrix} b_{13} & 0 \\ b_{23} & 1 \end{pmatrix}, \quad Y_4 = \begin{pmatrix} b_{33} & 0 \\ b_{43} & 0 \end{pmatrix}, \quad H_1 = \begin{pmatrix} a_{33} + 2 & b_{13} \\ a_{23} & b_{23} - 2 \end{pmatrix}, \\ H_2 &= \begin{pmatrix} a_{33} & b_{33} \\ a_{43} & b_{43} \end{pmatrix}, \quad H_3 = \begin{pmatrix} c_{13} & 0 \\ c_{23} & 0 \end{pmatrix}, \quad H_4 = \begin{pmatrix} c_{33} & 1 \\ c_{43} & 0 \end{pmatrix}. \end{aligned}$$

Since the trace of $\lambda(x)$, $\lambda(y)$, $\lambda(h)$ is zero, we have $a_{33} = -a_{11} - a_{22}$, $b_{33} = -a_{12} - b_{22}$ and $c_{33} = -a_{13} - b_{23}$. We simplify H_3 by applying $\psi_{\begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix}}$ or $\psi_{\begin{pmatrix} 1 & 0 \\ \gamma & 1 \end{pmatrix}}$. This respects $\lambda(z) = \mathbf{1}$ and it is not difficult to see that we can assume $H_3 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ or $H_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

Case 1: \mathfrak{g}_{λ} is irreducible.

Case a:
$$H_3 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
.
The variables of H_1, H_4 satisfy the following LSA-equations:

(a)
$$2a_{13}^2 + a_{13}b_{23} + a_{23}b_{13} - c_{43} = 0$$

(b)
$$2b_{23}^2 + a_{13}b_{23} + a_{23}b_{13} - c_{43} = 0$$

$$(c) a_{23}(a_{13}+b_{23}-2) = 0$$

(d) $b_{13}(a_{13}+b_{23}+2)=0$

From the fact that the characteristic polynomial of $\lambda(h)$ is (t-3)(t-1)(t+1)(t+3) we obtain:

(e)
$$a_{13}^2 + a_{13}b_{23} + b_{23}^2 + a_{23}b_{13} + 2(a_{13} - b_{23}) + c_{43} - 6 = 0$$

It follows that $c_{43} = 1, 3$ or 9. We obtain the following solutions:

 $H_1 = \begin{pmatrix} 3 & 0 \\ 0 & -3 \end{pmatrix}, \ H_4 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ or } H_1 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \ H_4 = \begin{pmatrix} 0 & 1 \\ 9 & 0 \end{pmatrix} \text{ or } H_1 = \begin{pmatrix} 3 & 0 \\ a_{23} & -1 \end{pmatrix}, \ H_4 = \begin{pmatrix} -2 & 1 \\ 3 & 0 \end{pmatrix} \text{ or } H_1 = \begin{pmatrix} 1 & b_{13} \\ 0 & -3 \end{pmatrix}, \ H_4 = \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix}.$

Then the remaining LSA-equations are very simple: The first solution is not possible, and all other cases are isomorphic. We may also normalize b_{13} to 1. That means we may take

$$H_1 = \begin{pmatrix} 1 & 1 \\ 0 & -3 \end{pmatrix}, \quad H_4 = \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix}$$

and we obtain the LSA \mathcal{A}_3 . Note that \mathcal{A}_3 is not associative.

Case b: $H_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

This case can be reduced to *Case a* by applying $\psi_{\binom{1}{\gamma} 1}$ and $\psi_{\binom{1}{1} \beta}$.

Case 2: $\mathfrak{g}_{\lambda} = V \oplus V$.

The characteristic polynomial of $\lambda(h)$ now is $(t-1)^2(t+1)^2$ and equation (e) becomes:

(e)
$$a_{13}^2 + a_{13}b_{23} + b_{23}^2 + a_{23}b_{13} + 2(a_{13} - b_{23}) + c_{43} + 2 = 0$$

Case a: $H_3 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

The equations $(a), \ldots, (e)$ have solutions

 $H_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad H_4 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \text{or} \quad H_1 = \begin{pmatrix} a_{13} + 2 & 0 \\ 0 & a_{13} - 2 \end{pmatrix}, \quad H_4 = \begin{pmatrix} -2a_{13} & 1 \\ -1 & 0 \end{pmatrix}$

The first solution leads to the matrix algebra $M_2(\mathbb{C})$, and the second one is contradictory.

Case b: $H_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

After a short calculation we obtain a contradiction.

The Theorem shows that there is one infinite family of non-isomorphic LSA-structures on $\mathfrak{gl}_2(\mathbb{C})$ with non-central right-identity. In fact, all those structures can be obtained as τ -deformations of the matrix algebra structure $M_2(\mathbb{C})$: Define τ by $\tau(z) = x$ and zero on $\mathfrak{sl}_2(\mathbb{C})$. Then $\mathcal{A}_{\tau} = \mathcal{A}_1$ of Theorem 3 below. If τ is defined by $\tau(z) = \alpha h$, we obtain precisely $\mathcal{A}_{2,\alpha}$. Other choices of $\tau(z)$ yield isomorphic algebras.

As for the algebras with two-sided central identity, there are precisely *two* non-isomorphic ones, \mathcal{A}_3 and $M_2(\mathbb{C})$.

In the general case the following holds:

Theorem 4 The τ -deformations of the matrix algebra \mathcal{A} exhaust all possible LSAstructures on $\mathfrak{gl}_n(k)$ for n > 2. Their isomorphism classes are parametrized by the conjugacy classes of elements $X \in \mathfrak{gl}_n(k)$ with $\operatorname{tr}(X) = n$. There is exactly one LSAstructure with a two-sided central identity – the matrix algebra structure.

Proof: This is a consequence of a classification Theorem in [BAU] to be published elsewhere. Here we only present a typical case: Let $\tau(z) = \alpha h$ where h is an element of the Cartan subalgebra of $\mathfrak{gl}_n(k)$. We obtain a family of LSA-structures with right-identities $e_{\alpha} = \alpha h + z$. We will determine the isomorphism classes of this family.

Let $\phi = (\mathbf{1} - \tau)^{-1} = (\mathbf{1} + \tau)$. We have $\varrho_{\tau}(\alpha h + z) = \phi \circ (\varrho(\alpha h + z) - \varrho(\alpha h) + (\lambda(\alpha h) - \lambda(\alpha h + z) \circ \tau)) = \phi(\varrho(z) - \lambda(z) \circ \tau) = \phi \circ (\mathbf{1} - \tau) = \mathbf{1}$. Denote by (\mathfrak{g}, α) and $(\mathfrak{g}, \tilde{\alpha})$ any two τ -deformation algebras. By the above calculation $\varrho(e_{\alpha}) = \tilde{\varrho}(e_{\tilde{\alpha}}) = \mathbf{1}$. Assume that both algebras are isomorphic. Then there is a $\psi \in \operatorname{Aut}(\mathfrak{g})$ such that $\tilde{\varrho}(\psi(e_{\alpha})) = \psi \circ \varrho(e_{\alpha}) \circ \psi^{-1} = \mathbf{1}$, i.e., $\psi(e_{\alpha})$ also is a right-identity for $(\mathfrak{g}, \tilde{\alpha})$. It follows

 $\psi(e_{\alpha}) = e_{\tilde{\alpha}}, \text{ that is } \psi(\alpha h + z) = \tilde{\alpha}h + z$

by Corollary 1. This is only possible for $\tilde{\alpha}^2 = \alpha^2$: The Lie algebra automorphisms of $\mathfrak{gl}_n(k)$ are of the form $X \mapsto -X^t$, $X \mapsto AXA^{-1}$ and $s+z \mapsto s+tz$. Given the canonical \mathfrak{sl}_n -basis, all $\alpha h + z$ are diagonal matrices. Hence conjugation acts as permutation of the eigenvalues and the result follows.

References

- [AUM] L. AUSLANDER AND L. MARKUS, Holonomy of flat affinely connected manifolds, Annals of Math. 62 (1955), 139-151.
- [AUS] L. AUSLANDER, Simply transitive groups of affine motions, Amer. J. Math. 99 (1977), 809-826.
- [BAR] D.W. BARNES, On the cohomology of soluble Lie algebras, Math. Zeitschr. 101 (1967), 343-349.
- [BAU] O. BAUES, Flache Strukturen auf GL(n), Dissertation, Düsseldorf 1995.
- [BEZ] J.P. BENZECRI, Variétés localement affines, Thèse, Princeton Univ., Princeton, N.J. (1955).
- [BEN] Y. BENOIST, Une nilvariété non affine, C.R. Acad. Sci. Paris **315** (1992), 983-986.
- [BMP] M.R. BREMNER, R.V. MOODY AND J. PATERA, Tables of dominant weight multiplicities for representations of simple Lie algebras, M. Dekker, New York (1985).
- [BGR] D. BURDE AND F. GRUNEWALD, Modules for certain Lie algebras of maximal class, J. pure appl. Algebra, **99** (1995), 239-254.
- [BUR] D. BURDE, Left-symmetric structures on simple modular Lie algebras, J. Algebra 169 (1994), 112-138.
- [FGH] D. FRIED, W. GOLDMAN AND M.W. HIRSCH, Affine manifolds with nilpotent holonomy, Comment. Math. Helv. 56 (1981), 487-523.
- [GH1] W. GOLDMAN AND M.W. HIRSCH, The radiance obstruction and parallel forms on affine manifolds, Trans. Amer. Math. Soc. 286 (1984), 629-649.
- [GH2] W. GOLDMAN AND M.W. HIRSCH, Affine manifolds and orbits of algebraic groups, Trans. Amer. Math. Soc. 295 (1986), 175-198.

- [HE1] J. HELMSTETTER, Algèbres symétriques à gauche, C.R. Acad. Sc. Paris **272** (1971), 1088-1091.
- [HE2] J. HELMSTETTER, Radical d'une algèbre symétrique a gauche, Ann. Inst. Fourier (Grenoble) 29 (1979), 17-35.
- [HUM] J.E. HUMPHREYS, Introduction to Lie algebras and Representation Theory, Springer, New York (1972).
- [KIM] H. KIM, Complete left-invariant affine structures on nilpotent Lie groups, J. Differential Geometry 24 (1986), 373-394.
- [MI1] J. MILNOR, On the existence of a connection with curvature zero, *Comment. Math. Helv.* **32** (1958), 215-223.
- [MI2] J. MILNOR, On fundamental groups of complete affinely flat manifolds, Advances in Math. 25 (1977), 178-187.
- [SAK] M. SATO, T. KIMURA, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math.J. 65 (1977), 1-155.
- [SE1] D. SEGAL, The structure of complete left-symmetric algebras, Math. Ann. 293 (1992), 569-578.
- [SE2] D. SEGAL, Free left-symmetric algebras and an analogue of the Poincaré-Birkhoff-Witt Theorem, J. Algebra 164 (1994), 750-772.
- [SMI] J. SMILLIE, An obstruction to the existence of affine structures, *Invent. Math.* **64** (1981), 411-415.