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We describe left-invariant affine structures (that is, left-invariant flat torsion-free affine connections ∇)

on reductive linear Lie groups G . They correspond bijectively to LSA-structures on the Lie algebra g

of G . Here LSA stands for left-symmetric algebra, see [BUR], [SE2]. If g has trivial or one- dimensional

center z then the affine representation α = λ⊕ 1 of g , induced by any LSA-structure gλ on g is

radiant, i.e., the radiance obstruction cα ∈ H1(g,gλ) vanishes. If dim z = 1 we prove that g = s⊕ z ,

where s is split simple, admits LSA-structures if and only if s is of type Aℓ , that is g = gln. Here

we have the associative LSA-structure given by ordinary matrix multiplication corresponding to the bi-

invariant affine structure on GL(n) , which was believed to be essentially the only possible LSA-structure

on gln. We exhibit interesting LSA-structures different from the associative one. They arise as certain

deformations of the matrix algebra. Then we classify all LSA-structures on gln using a result of [BAU].

For n = 2 we compute all structures explicitely over the complex numbers.

1 Introduction

Let M denote an n -dimensional manifold (connected and without boundary). An affine

atlas Φ on M is a covering of M by coordinate charts such that each coordinate change
between overlapping charts in Φ is locally affine, i.e., extends to an affine automorphism
x 7→ Ax + b , A ∈ GLn(R) , of some n -dimensional real vector space E. A maximal
affine atlas is an affine structure on M , and M together with an affine structure is
called an affine manifold. An affine structure determines a differentiable structure and
affine manifolds are flat – there is a natural correspondence between affine structures on
M and flat torsionfree affine connections ∇ on M . Such an affine connection is a
connection in the tangent bundle with zero torsion and zero curvature:

TX,Y = ∇XY −∇YX − [X, Y ] = 0(1)

RX,Y = ∇X∇Y −∇Y ∇X −∇[X,Y ] = 0(2)

Subclasses of affine manifolds are Riemannian-flat and Lorentz-flat manifolds. A funda-
mental problem is the question of existence of affine structures. A closed surface admits
affine structures if and only if its Euler characteristic vanishes ([BEZ] and [MI1]). In higher
dimensions there are only certain obstructions known ([SMI]).
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Denote by Aff(E) the group of affine automorphisms,

Aff(E) =

{(
A b

0 1

)
| A ∈ GL(E), b ∈ E

}

where the affine action is given by
(
A b
0 1

) (
x
1

)
=
(
Ax+b

1

)
.

Let M be an affine manifold. Its universal covering M̃ inherits a unique affine structure
for which the covering projection M̃ →M is an affine immersion. The group π of deck-
transformations acts on M̃ by affine automorphisms. There exists an affine immersion
D : M̃ → E , called the developing map (see [FGH]). It is unique up to composition with
an affine automorphism of E . Hence for every p ∈ π there is a unique α(p) ∈ Aff(E)
such that D ◦ p = α(p) ◦D . The resulting homomorphism α : π → Aff (E) is called the
affine holonomy representation and α(π) the affine holonomy group. α decomposes into
a linear part λ and a translational part u . Then λ is a linear representation turning
E into a π -module Eλ and u is a crossed homomorphism for λ , i.e., an 1 -cocycle
in Z1(π, Eλ) : u(pq) = u(p) + λ(p)u(q) . x ∈ E is a fixed point for α if and only if
u ∈ B1(π, Eλ) , i.e., u(p) = x−λ(p)x . The radiance obstruction of α is the cohomology
class

cα = [u] ∈ H1(π, Eλ).

For the affine manifold, the radiance obstruction cM is the radiance obstruction of its
affine holonomy representation α . If cM = 0 then M is called radiant. Being radiant
has quite a lot of consequences for M , see [GH1].

If D is a diffeomorphism, i.e., if M̃ is affinely diffeomorph to E , then M is called
complete. This happens if and only if ∇ is geodesically complete, see [AUM]. Compactness
does not imply completeness.
Many examples of affine manifolds come from left-invariant affine structures on Lie groups.
If G is a Lie group, an affine structure is called left-invariant if for each g ∈ G the left-
multiplication by g , Lg : G → G is an automorphism of the affine structure. (Hence
the affine connection ∇ is left-invariant under left-translation as well.) Suppose G is
simply connected. Let D : G→ E be the developing map and α(g) be the unique affine
automorphism of E such that D ◦ Lg = α(g) ◦D . Then α : G → Aff(E) is an affine
representation.
Now it is not difficult to see ([FGH]) that G admits a complete left-invariant structure
if and only if G acts simply transitively on E as affine transformations. In this case
G must be solvable ([AUS]). If G has a left-invariant affine structure and Γ is a dis-
crete subgroup of G , then the homogeneous space Γ\G of right cosets inherits an affine
structure. If G is nilpotent, then Γ\G is called an affine nilmanifold.
In this context there is the following important question, also posed by Milnor ([MI2]) in
the studies of fundamental groups of complete affine manifolds:

(3) Which Lie groups admit left-invariant affine structures ?

This question is particularly difficult for nilpotent Lie groups. There was much evidence
that every nilpotent Lie group admits left-invariant affine structures (see [BGR]). Milnor
conjectured this to be true even for solvable Lie groups ([MI2]). Recently, however, there
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were counterexamples discovered ([BGR] and [BEN]). There are nilmanifolds which are
not affine. We will show in a forthcoming paper that the class of nilpotent Lie groups of
dimension n ≥ 10 not admitting any left-invariant affine structure is rather large. The
problem of classifying left-invariant affine structures on nilpotent Lie groups (see [KIM])
still seems to be hopeless.
If G is semisimple then G admits no left-invariant affine structures ([HE2], [BUR]). It
is a natural question to ask what happens in the case of a reductive Lie group G . We
may attempt then to give a classification of all left-invariant affine structures on G . In
the general case we still have plenty of left-invariant affine structures ([HE1]). If G is
a reductive linear Lie group with one-dimensional center and [G,G] is simple, however,
we are able to prove that the existence of left-invariant affine structures on G implies
that G must be GL(n) itself. It possesses the unique (up to isomorphism) bi-invariant
affine structure. By studying certain deformations of this structure we obtain interesting
families of left-invariant affine structures on GL(n) . In fact, using a result of [BAU], it
follows that they exhaust all possible left-invariant affine structures on GL(n) for n > 2.

2 Left-invariant affine structures and LSA-structures

Let G be a finite-dimensional connected Lie group with Lie algebra g . We may assume
that G is simply connected (otherwise consider G̃ ). The following lemma is well known
(see [SE2]):

Lemma 1 There is a one-to-one correspondence between left-invariant affine structures

on G and LSA-structures on g . Under this bijection, bi-invariant affine structures

correspond to associative LSA-structures.

Suppose G admits a left-invariant flat torsionfree affine connection ∇ on G . Since the
connection is left-invariant, for any two left-invariant vector fields X, Y ∈ g , the covariant
derivative ∇XY ∈ g is left-invariant. It follows that covariant differentiation (X, Y ) 7→
∇XY defines a bilinear multiplication g× g → g , denoted by (X, Y ) 7→ XY in short.
Since ∇ is locally flat and torsionfree, we have by (1) and (2) of the introduction:

[X, Y ] = XY − Y X(1)

[X, Y ]Z = X(Y Z)− Y (XZ)(2)

We can rewrite (2) by using (1) as (X, Y, Z) = (Y,X, Z) where (X, Y, Z) denotes the
associator of the three elements X, Y, Z in g . Thus (g, ·) is a left-symmetric algebra (or
in short LSA) with product x · y = ∇XY , see [SE2], [BUR].
If we have any LSA-structure on g , i.e., a left-symmetric product (x, y) 7→ x · y on g

satisfying x·y−y ·x = [x, y] , then denote by λ : x 7→ λ(x) the left-regular representation
on the LSA (g, ·) : λ(x)y = x · y . It is a Lie algebra representation:

λ : g → End(g), [λ(x), λ(y)] = λ([x, y]).
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Denote the corresponding g -module by gλ . Furthermore, the identity map 1 : g → gλ
is a 1 -cocycle in Z1(g, gλ) :

1([x, y]) = 1(x) · y − 1(y) · x

Let aff(g) be the Lie algebra of Aff (G) , i.e., aff(g) =
{(

A b
0 0

)
| A ∈ gl(g), b ∈ g

}
which

we identify with gl(g) ⊕ g . Denote the linear part by ℓ(A, b) = A and the translational
part by t(A, b) = b . Now we associate to the LSA (g, ·) the map

α = λ⊕ 1 : g → aff(g)

It is an affine representation of g . We have λ = ℓ ◦ α and t ◦ α = 1 .
The radiance obstruction of α is the class [1] in H1(g, gλ) , see [GH2]. For the proofs
of the following proposition see [SE1], [BUR]. Let ̺(x) denote the right-multiplication by
x in the LSA (g, ·) :

Proposition 1

(1) A left-invariant affine structure on G is complete if and only if all ̺(x) in the

corresponding LSA are nilpotent endomorphisms.

(2) If G admits a complete left-invariant affine structure then G is solvable.

(3) If G is semisimple then G does not admit any left-invariant affine structure.

The argument for the proof of (3) is roughly the following (see [BUR]): Let G be semisim-
ple and (g, ·) be an LSA corresponding to a left-invariant affine structure on G . Then
1 ∈ Z1(g, gλ) and by Whitehead’s Lemma, 1 ∈ B1(g, gλ) , i.e., 1(x) = x · e = ̺(e)x for
some e ∈ gλ . Then the LSA-property and [g, g] = g imply tr λ(x) = tr ̺(x) = 0 for all
x and hence tr 1 = tr ̺(e) = 0 . Since the underlying field is of characteristic zero, we
conclude that g must be trivial which should be excluded.

3 LSA-structures on reductive Lie algebras

Let k be an algebraically closed field of characteristic zero. A Lie algebra g is said to
be reductive if its solvable radical r(g) coincides with the center z = z(g) . Then the Lie
algebra s = [g, g] is semisimple and we have

g = s⊕ z

A Lie algebra g is reductive if and only if it admits a faithful completely reducible linear
representation. A Lie group G is said to be reductive if its Lie algebra is reductive.
Assume that (g, ·) is an LSA-structure on g . Since the first cohomology groups of a
reductive Lie algebra do not vanish in general, we may have such structures. In fact,
we know that there are LSA-structures on gln(k) , for example. The next question is
whether the associated affine representation α is radiant or not. By a result of Milnor
[MI2], one sufficient condition for an affine representation of g to be radiant is that
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the associated linear representation is completely reducible. However, the fact that g is
reductive does not imply that any finite-dimensional representation ϕ of g is completely
reducible. ϕ is completely reducible if and only if the center of g is represented by
semisimple endomorphisms, see [HUM]. However, it is true that α is radiant if z is
one-dimensional.

By saying s is split simple we mean that s is of one of the following types:

Aℓ, Bℓ, Cℓ, Dℓ, G2, F4, E6, E7, E8

First we observe:

Lemma 2 Let g = s ⊕ z be a reductive Lie algebra with one-dimensional center, s be

split simple and (g, ·) an LSA-structure on g . Then the algebra (g, ·) is simple, i.e.,

has no proper two-sided ideals.

Proof Any two-sided ideal a in (g, ·) is also a Lie ideal in g , since

[g, a] ⊂ g · a− a · g ⊂ a

The only proper ideals in g = s⊕ z are s and z = k. However, both (a, ·) and (g/a, ·)
inherit a natural LSA-structure from (g, ·) . Since s and g/z are semisimple it follows
from Proposition 1 (3) that a can neither be s nor z .

Suppose that g is a linear Lie algebra. Given an LSA-structure (g, ·) , denote the g -
invariants of gλ by (gλ)

g . We have H0(g, gλ) = (gλ)
g . Since g and gλ are identical

as vector spaces, we may view an element y ∈ gλ also as an element of g . Our result is:

Theorem 1 Let (g, ·) be an LSA-structure on the reductive linear Lie algebra g = s⊕z .

Then (gλ)
g ∩ s = 0.

Corollary 1 Let (g, ·) be an LSA-structure on g . If dim z = 1 then H0(g, gλ) = 0
and H1(g, gλ) = 0 . Hence the associated affine representation of g is radiant and the

algebra (g, ·) has a unique right-identity.

Corollary 2 Let (g, ·) be an associative LSA-structure on g where s is simple. If

dim z = 1 , then (g, ·) is isomorphic to the matrix algebra Mn(k) and g is gln(k) .

Proof of the Corollaries: Let z be generated by z and y ∈ (gλ)
g be nonzero; hence by

the Theorem y = s+γz ∈ s⊕ z where s ∈ s and γ 6= 0 . Then 0 = ̺(y) = ̺(s)+γ̺(z).
Take the trace of both sides to obtain tr ̺(z) = 0 (note that tr ̺(s) = 0 for all s ∈ s

since tr λ([a, b]) = tr([λ(a), λ(b)]) , [s, s] = s and tr ̺(x) = tr ad(x)−tr λ(x) = 0. ) Then
tr ̺(x) = 0 for all x ∈ g and as a consequence, all ̺(x) are nilpotent ( tr ̺(x)2 = 0
by ̺(x)2 = ̺(x2) − [λ(x), ̺(x)] , and by the formulas (2.1) in [KIM], also tr ̺(x)n = 0
for all n ). Then by Proposition 1 , g must be solvable. This is a contradiction. Thus
y = 0 , i.e., (gλ)

g = 0 , which is the first part of Corollary 1 .
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The second statement of Corollary 1 follows immediately from the following fact:

Lemma 3 Let g be a reductive Lie algebra with dim z = 1 and M be a finite-

dimensional g -module. Then H0(g,M) = 0 is equivalent to H1(g,M) = 0.

Proof: The claim is true if g is one-dimensional (see [BAR]). Let a be an ideal of g .
The Hochschild-Serre spectral sequence gives the following exact sequence:

0 −→ H1(g/a,Ma) −→ H1(g,M) −→ H1(a,M)g(4)

Assume H1(g,M) = 0 . Then H1(g/s,Ms) = 0 by (4) with a = s . Since g/s is
one-dimensional, we have Mg = (Ms)g/s = 0 .
To show the other direction, assume H0(g,M) = 0 . Let M be irreducible. Then the
submodule M z is 0 or M . In the first case, H1(z,M) = 0 and (4) gives H1(g,M) =
0 with a = z . In the second case, M z = M is a g/z -module and H1(g/z,M) = 0
since s = g/z is semisimple. The claim follows again by (4) with a = z .
If M is reducible, let N be a proper submodule. Then Ng ≤Mg = 0 . By induction on
dimM we may assume H1(g, N) = 0 . The exact sequence 0 → N → M → M/N → 0
induces the corresponding long exact sequence of H0 and H1 -groups. From this we
derive (M/N)g = 0 . Again, by induction H1(g,M/N) = 0 . Looking at the H1 -groups
we obtain H1(g,M) = 0 .

Now the last part of Corollary 1 is easy: 1 is in Z1(g, gλ) , hence also in B1(g, gλ) .
That means ̺(e) = 1 for some e ∈ gλ . If e′ is another right-identity, then ̺(e−e′) = 0 ,
i.e., e− e′ ∈ (gλ)

g = 0 .
If the LSA-structure is associative and dim z = 1 , then (g, ·) posseses a two-sided central

identity: If ̺(e) = 1 then 0 = [̺(e), ̺(x)] = ̺([x, e]) for all x . Since (gλ)
g = 0 it

follows [x, e] = 0 for all x ∈ g , hence e ∈ z and λ(e) = ̺(e) = 1 . By Lemma 2
(g, ·) is a simple associative algebra with unit, hence a matrix algebra by Wedderburn’s

Theorem.

Proof of Theorem 1 : Consider the restriction 1s of the identity map 1 : g → gλ to
s . Then 1s ∈ Z1(s, gλ) . By Whitehead’s Lemma, 1s is an one-coboundary, i.e., it exists
an e ∈ gλ such that x = 1s(x) = λ(x)e for all x ∈ s. Assume that y is an element in
(gλ)

g ∩ s . Then y ∈ s and we obtain by the above (also using ad(y) = λ(y) ),

y = λ(y)e = [y, e](5)

That means, y and e generate a two-dimensional solvable subalgebra of g . By Lie’s
Theorem, y, e are upper triangular (relative to a suitable basis). Hence y = [y, e] is
strictly upper triangular, i.e., nilpotent. Then by the Morozow-Jacobson Theorem there
exist y, h ∈ g such that

[y, y] = h, [y, h] = 2y(6)

We have the following Lemma:
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Lemma 4 Let (g, ·) be an LSA with Lie algebra g . If y ∈ (gλ)
g then ad(y) = λ(y)

is a derivation of (g, ·) , and in particular:

(ad y)3(v · w) =

3∑

i=0

(
3

i

)
(ad y)3−i(v) · (ad y)i(w)(7)

Proof: y ∈ (gλ)
g means ̺(y)v = v·y = 0 for all v ∈ gλ and ad(y) = λ(y)−̺(y) = λ(y).

By the LSA-property (2) we have

y · (v · w)− (y · v) · w = v · (y · w)− (v · y) · w = v · (y · w)

Hence λ(y)(v · w) = λ(y)(v) · w + v · λ(y)(w) and the claim follows.

We apply the Lemma as follows. By (6) we have ad y(y) = h , (ad y)2(y) = 2y and
(ad y)3(y) = 0 . Using formula (7) we calculate:

(ad y)3(y · y) = 3(ad y)2(y) · (ad y)(y) + 3(ad y)(y) · (ad y)2(y) = 6(y · h+ h · y)
= 6[y, h] = 12y

The following Lemma shows that the last equation implies y = 0 .

Lemma 5 Suppose y ∈ g is a nilpotent matrix and α 6= 0 . Then (ad y)3(x) = αy for

some x ∈ g implies y = 0.

Proof: By the Morozov-Jacobson Theorem, y can be embedded in an sl2(k) ⊂ g . By
Weyl’s Theorem, g is completely reducible as sl2(k) -module. Let v be a complement,
i.e.,

g = sl2(k) ⊕ v

Decompose x = s+ v and apply (ad y)3 on both sides. We have (ad y)3(s) = 0 since y
is a nilpotent element in sl2(k) . Hence αy = (ad y)3(x) = (ad y)3(v) is in sl2(k)∩v = 0 .
Since α 6= 0 we have y = 0.

Remark 1 There is an elementary proof of Lemma 5 . Using (ad y)(x) = yx − xy
(matrix product) the above equation becomes αy = y3x−3y2xy+3yxy2−xy3 . Assuming
yk+1 = 0 6= yk where k > 1 , multiply this equation by yk−i from the left and by
yi−1 from the right for 0 < i < k . We obtain k linear equations in the unknowns
xi = yk+1−ixyi+1 and xk = yk . The corresponding matrix has nonzero determinant
− 1

12
αk(k + 1)2(k + 2) , k > 1 . Hence, there is only the trivial solution, i.e., yk = 0 ,

contradiction. Then k = 1, y = 0.

Remark 2 The first part of Corollary 1 can also be proved as follows: As an s -module,
gλ is completely reducible. We show gsλ = 0 and hence also g

g

λ = 0 .
The s -module gλ has nonzero invariants if and only if the trivial module is a summand
in its decomposition: H0(s, k) = k . Assume gλ = v⊕k for a complementary s -module
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v . Then s acts trivially on k , and for m = v + α ∈ v ⊕ k we have x ·m = x · v ∈ v

for all x ∈ s and m ∈ gλ . Then x · z and z · x are in v for all x, z ∈ s , hence also
all commutators [x, z] . Since s is spanned by those commutators, we have s ⊂ v . In
fact, s = v because of dimension reasons. This implies that s admits an LSA-structure;
a contradiction to Proposition 1 . Therefore, gλ does not have a summand k as an
s -module.

We use Corollary 1 to show the following:

Theorem 2 Let g = s⊕ z be a reductive linear Lie algebra such that dim z = 1 and s

is split simple. Then g admits an LSA-structure if and only if s is of type Aℓ .

Proof: First we show that if s is not of typ Aℓ, B3, D5, D7 , then g does not admit
any LSA-structure. Secondly we exclude the cases where s is of type B3, D5, D7. For
s of type Aℓ we already know that there exist LSA-structures.

Let dim s = n . Since gλ is completely reducible as an s -module and has no invariants,
we know that

gλ =
⊕

i

Vi and
∑

i

dimVi = n+ 1(8)

where Vi are irreducible s -modules with 2 ≤ dimVi ≤ dim g = n + 1 ( gλ does not
contain a trivial s -module). On the other hand, there are not many irreducible s -
modules of small dimensions. Up to dimension n they are classified in [BUR]. Are there
irreducible s -modules of dimension n+ 1 ? The answer is given by

Lemma 6 Let s be of type Aℓ, Bℓ, Cℓ, Dℓ, G2, F4, E6, E7, E8 and V be an

irreducible s -module. Define δℓ = δℓ(s) = dim s + 1 . If ℓ > 1 , then dimV = δℓ is

impossible.

Proof: In dimension δℓ−1 we have always the adjoint module. Let mℓ(s) = mℓ denote
the minimal dimension of irreducible s -modules with bigger dimension than dim s . For
ℓ > 8 the values of mℓ and δℓ are as follows:

Type Aℓ Bℓ Cℓ Dℓ

mℓ

(
ℓ+1
3

)
2ℓ2 + 3ℓ

(
2ℓ
3

)
−
(
2ℓ
1

)
2ℓ2 + ℓ− 1

δℓ (ℓ+ 1)2 2ℓ2 + ℓ+ 1 2ℓ2 + ℓ+ 1 2ℓ2 − ℓ+ 1

Type G2 F4 E6 E7 E8

mℓ 27 273 351 912 3875

δℓ 15 53 79 134 249
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To see this, we may use the same method as in [BUR], Lemma 2.2.3 . The irreducible
s -modules are highest weight modules L(λ) . The Weyl group acts on the weights by
conjugation and we may estimate the dimension of L(λ) from below by the number of
the weights of L(λ) which is the sum of |Wν| over the dominant weights ν ≤ λ . Besides
we can use Weyl’s dimension formula. The Lemma can also easily be deduced from the
computations in [SAK], p.41f.
Denote by ω1, . . . , ωℓ the fundamental weights, then the following modules (for the types
Aℓ, . . .Dℓ respectively) have dimension mℓ : L(ω3) , L(2ω1) , L(ω3) , L(2ω1) .
Since mℓ − δℓ is always positive, Lemma 6 follows for ℓ > 8 . In the case ℓ ≤ 8
we may use the tables from [BMP] to verify the result. (Of course, sl2 has irreducible
representations in any dimension, so we must exclude ℓ = 1 ).
Consider the decomposition (8) . If ℓ > 8 , we have the following possibilities for the
modules Vi occuring in (8) (see [BUR]):
For type Aℓ we have the modules L(ω1), L(ω2), L(2ω1), L(ω1 + ωℓ) and their dual
modules of dimension ℓ+ 1, ℓ(ℓ+ 1)/2, (ℓ+ 1)(ℓ+ 2)/2, ℓ2 + 2ℓ .
For type Bℓ we have L(ω1), L(ω2) of dimension 2ℓ+ 1, ℓ(2ℓ+ 1) .
For type Cℓ we have L(ω1), L(ω2), L(2ω1) of dimension 2ℓ, 2ℓ2 − ℓ− 1, ℓ(2ℓ+ 1) .
For type Dℓ we have L(ω1), L(ω2) of dimension 2ℓ, ℓ(2ℓ− 1) .
It is easy to see that the dimensions cannot add up to δℓ , except in the case of Aℓ .
For the exceptional types and the cases ℓ ≤ 8 we see the result from the following table.
It lists the possible dimensions:

Type dimL(λ) δλ Type dimL(λ) δλ

B3 7, 8, 21 22 C8 16, 119, 136 137

B4 9, 16, 36 37 D4 8, 28 29

B5 11, 32, 55 56 D5 10, 16, 45 46

B6 13, 64, 78 79 D6 12, 32, 66 67

B7 15, 105 106 D7 14, 64, 91 92

B8 17, 136 137 D8 16, 120 121

C2 4, 5, 10 11 G2 7, 14 15

C3 6, 14, 21 22 F4 26, 52 53

C4 8, 27, 36 37 E6 27, 78 79

C5 10, 44, 55 56 E7 56, 133 134

C6 12, 65, 78 79 E8 248 249

C7 14, 90, 105 106

Only in the cases B3, D5, D7 the dimensions can add up to δℓ , and hence these are the
only types for s (besides Aℓ ) where we might have LSA-structures for g .
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For these three cases we can deduce from the table what gλ must be:

gλ = L(ω1)⊕ L(ω1)⊕ L(ω3)(9)

gλ = L(ω1)⊕ L(ω1)⊕ L(ω1)⊕ L(ω5)(10)

gλ = L(ω1)⊕ L(ω1)⊕ L(ω7)(11)

For the dimensions we have 22 = 7+7+8 , 46 = 10+10+10+16 and 92 = 14+14+64
respectively.
Let G = S⊕k be a simply connected reductive algebraic group with Lie algebra g = s⊕k .
Let V be the rational S -module corresponding to the s -module gλ . We may look at
V as an algebraic S -variety and apply methods from invariant theory. The following
Lemma is due to O. Baues [BAU]:

Lemma 7 Suppose g = s ⊕ k admits an LSA-structure. Then the corresponding S -

module V has an S -orbit of codimension 1 . If W ⊂ V is a proper S -submodule,

then S has an open orbit in W.

In the above cases, S is an orthogonal group and the S -modules in (9), (10), (11) do
not have an S -orbit of codimension 1 . This may be seen from the fact that the natural
module W = L(ω1) does not have an open S -orbit where S is an orthogonal group
(see the classification in [SAK], p. 147). Hence g does not admit an LSA-structure in
these cases.

Remark 3 In the general case of a reductive Lie algebra, Theorem 2 has no easy
analogue: as an example, the reductive Lie algebra

g = sp4(C)⊕ sl3(C)⊕ sl2(C)⊕ C
4

of dimension 25 admits LSA-structures (see [HE1]).

4 Left-invariant affine structures on GL(n)

Let g be a Lie algebra and A = (g, ·) an LSA-structure on g . We describe a procedure
to obtain new (in general non-isomorphic) LSA-structures from A = (g, ·) . We call these
structures τ -deformations of A , although they are not deformations in the usual sense.
We apply this to the Lie algebra gln(k) and the canonical associative LSA-structure.

Define the associative kernel of A by

k(A) := {a ∈ A | [λ(b), ̺(a)] = 0 for all b ∈ A}

This is an associative subalgebra of A containing the center of g by the identity

[λ(b), ̺(a)] = [ada, λ(b)] + λ([b, a])

10



Denote by End∗(g) the set {τ ∈ End(g) | (1− τ)−1 exists and τ(A) ⊂ k(A)} . Then we
have (see [HE1]):

Lemma 8 Let A = (g, ·) be an LSA-structure on g and τ ∈ End∗(g) with φ =
(1− τ)−1 . Then λτ (a) := φ◦ (λ(a)−̺(τ(a))) ◦φ−1 defines an LSA-structure on g . We

call Aτ the τ -deformation of A .

In general, A is not isomorphic to the deformation algebras Aτ . This happens however,
if τ(A) = z(g) . Let A be the matrix algebra Mn(k) with Lie algebra gln(k) , and
define τ by τ |sln = 0 and τ(z) ∈ sln(k) arbitrary, where z generates the center of g .
Then τ2 = 0 and (1− τ)(1 + τ) = 1 . Hence τ ∈ End∗(g) . Since also k(A) = A we
can apply the Lemma to obtain the deformation algebras Aτ . Note that these algebras
do not have a two-sided central identity except in the case τ = 0 : If ̺(z) = 1 in Aτ ,
then λ(z) − ̺(τ(z)) = 1 , i.e., ̺(τ(z)) = 0 . Since (gλ)

g = 0 it follows τ(z) = 0 and
then τ = 0.
As we will see later, the τ -deformations exhaust all possible LSA-structures on gln(k)
for n > 2.

By explicit calculations now we classify the left-invariant affine structures on GL2(C) ,
i.e., the LSA-structures on g = gl2(C) . Let x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
, h =

(
1 0
0 -1

)
, z =

(
1 0
0 1

)
be

the canonical sl2 -basis for g . The LSA-structures are described by the endomorphisms
λ(x), λ(y), λ(h), λ(z) via λ(a)b = a · b .

Theorem 3 Let (g, ·) be an LSA-structure on g . Then it is isomorphic to A1, A2,α

or A3 defined by the matrices λ(x), λ(y), λ(h), λ(z) as follows:

(i)




0 1/2 -1 1
0 0 0 0
0 1/2 0 0
0 1/2 0 0







1/2 0 0 -1/2
0 0 1 1

-1/2 0 0 1/2
1/2 0 0 -1/2







1 0 1 -1
0 -1 0 0
0 0 0 1
0 0 1 0







1 -1/2 -1 -1
0 1 0 0
0 1/2 1 0
0 -1/2 0 1




(ii)




0 0 -1 β
0 0 0 0
0 β/2 0 0
0 1/2 0 0







0 0 0 0
0 0 1 γ

-γ/2 0 0 0
1/2 0 0 0







1 0 0 0
0 -1 0 0
0 0 α βγ
0 0 1 -α







β 0 0 0
0 γ 0 0
0 0 βγ -αβγ
0 0 -α 1+α2




(iii)




0 0 -1 1
0 0 0 0
3 0 0 0
3 3 0 0







0 0 1 0
0 0 -1 1
-1 -1/4 0 0
3 3/4 0 0







1 1 0 0
0 -3 0 0
0 0 2 1
0 0 3 0







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




where β = 1 + α, γ = 1− α . Two LSA’s A2,α and A2,α̃ are isomorphic if and only if

α2 = α̃2 . They are associative if and only if α = 0 . In this case, A2,0 coincides with

the matrix algebra M2(C) .

Proof: Let (g, λ) be an LSA-structure on g . By Corollary 1 there is a unique e ∈ gλ
such that ̺(e) = 1 . Let e = (e1, e2, e3, e4) , i.e., e = e1x+ e2y + e3h+ e4z . The center
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of g is generated by z . Two LSA-structures (g, λ) and (g, µ) are isomorphic if and
only if there is a ψ ∈ Aut(g) such that µ(x) = ψ ◦ λ(ψ−1(x)) ◦ ψ−1 . The Lie algebra
automorphisms of g are ψA : X 7→ AXA−1 with A =

(
α β
γ δ

)
, ∆ = αδ − γβ 6= 0 and

ψt : u 7→ s + t · z where u = s + z, s ∈ sl2 . For A =
(
α β
γ δ

)
we look at the generators

of GL(2) , i.e.,
(
1 β
0 1

)
,
(
α 0
0 δ

)
,
(
0 1
1 0

)
. Let ψ1 = ψ (1 β

0 1)
, ψ2 = ψ (α0

0 δ)
, ψ3 = ψ (0 1

1 0)
and

ψ4 = ψ t . It is easy to see that

ψ1 (e1, e2, e3, e4) = (e1 − β2e2 − 2βe3, e2, βe2 + e3, e4)(a)

ψ2 (e1, e2, e3, e4) = (αe1/δ, δe2/α, e3, e4)(b)

ψ3 (e1, e2, e3, e4) = (e2, e1, −e3, e4)(c)

ψ4 (e1, e2, e3, e4) = (e1, e2, e3, te4)(d)

Lemma 9 We may assume that the right-identity is e = x+z or e = αh+z or e = z .

Proof: If (g, λ) and (g, λ̃) are isomorphic LSA’s, then ̺(e) = 1 implies ˜̺(ψ(e)) =
ψ ◦ ̺(e) ◦ ψ−1 = 1 , i.e., the LSA (g, λ̃) has right-identity ψ(e) . First we may assume
e2 = 0 . Otherwise let β ∈ C be a root of β2e2 + 2βe3 − e1 = 0 and apply (a), (c) :
(ψ3 ◦ ψ1)(e1, e2, e3, e4) = (e2, 0,−βe2 − e3, e4) .
Case 1: e1 = 0 . If e3 = 0 then ψt(e) = z with t = 1/e4 (note that e 6= 0 ). If
e3 6= 0 then it follows e4 6= 0 , otherwise 0 = tr ̺(e3h) = tr ̺(e) = 4 , contradiction.
Then ψt(e) = e3h+ z with t = 1/e4 .
Case 2: e1 6= 0 . We may assume e3 = 0 , otherwise ψ1(e1, 0, e3, e4) = (0, 0, e3, e4)
with β = e1/2e3 and we are back to case 1. Then (ψt ◦ψ2)(e1, 0, 0, e4) = (1, 0, 0, 1) with
δ/α = e1 and t = 1/e4 . Here again e4 6= 0 by the above argument. Hence e = x+z .

The LSA-product is given by 64 structure constants via λ(x), λ(y), λ(h), λ(z) . The
condition [a, b] = a · b − b · a determines 24 structure constants by linear equations.
The LSA-property (2) is equivalent to quadratic equations in the structure constants.
In general, they are quite difficult to solve. The existence of a non-central right-identity,
however, simplifies the matter considerably. We have

[λ(z), ad e] = [λ(z), λ(e)] = λ([z, e]) = 0(12)

I. Algebras with ̺(e) = x+ z :

Using (12) we have [λ(z), adx] = 0 and ̺(x) + ̺(z) = 1 . Also tr ̺(s) = 0 for
all s ∈ sl2 . This determines another 25 structure constants by linear equations. The
remaining LSA-structure equations then are almost trivial. It is easy to see that they have
a unique solution, which is given by the algebra A1 under (i) of Theorem 3 .

II. Algebras with ̺(e) = αh+ z, α ∈ C :

Assume first that α 6= 0 . Then α̺(h) + ̺(z) = 1 and [λ(z), adh] = 0 determine
26 structure constants. It is easy to solve the remaining equations and to obtain the
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algebra A2,α . It is associative if and only if α = 0 (which we may include here as well)
and the algebra is precisely Mn(C) . It is clear that two such algebras A2,α and A2,α̃

are isomorphic if and only if α2 = α̃2 : If they are isomorphic then the characteristic
polynomials of λ(z) and λ̃(z) must be equal. This implies α2 = α̃2 . On the other hand
A2,α is isomorphic to A2,−α by ψ3 .

III. Algebras with central right-identity ̺(e) = z :

Since λ(z) = 1 , gλ is completely reducible as g -module and λ(h) is semisimple.
Because H0(g, gλ) = 0 , we have only two possibilities for gλ . In the first case, gλ
is irreducible, and in the second case, gλ = V ⊕ V , where V (as an sl2 -module) is
isomorphic to the 2 -dimensional natural representation of sl2 .

Lemma 10 As matrices, λ(h) is similar to diag (3, 1,−1,−3) or to diag (1,−1, 1,−1)
and λ(x), λ(y) are nilpotent.

Proof: If gλ is irreducible, it is (as an sl2 -module) a highest weight module with basis
vi such that λ(h)vi = (3 − 2i)vi, λ(x)vi = (4 − i)vi−1 and λ(y)vi = (i + 1)vi+1 for
i = 0, 1, 2, 3 . With respect to this basis, λ(h) = diag(3, 1,−1,−3) and λ(x), λ(y) are
nilpotent. Note that this basis does not satisfy the LSA-condition (1) . In the second case,
choose a basis according to V ⊕ V , where V is a highest weight module for sl2 .

Let λ(x) = (aij), λ(y) = (bij), λ(h) = (cij) with i, j = 1, . . . , 4 . Using λ(u) − ̺(u) =
adu we obtain:

λ(y) =

(
Y1 Y3

Y2 Y4

)
, λ(h) =

(
H1 H3

H2 H4

)
, λ(z) = 1, where

Y1 =
(
a12 b12
a22 b22

)
, Y2 =

(
a23−1 b32
a42 b42

)
, Y3 =

(
b13 0
b23 1

)
, Y4 =

(
b33 0
b43 0

)
, H1 =

(
a33+2 b13
a23 b23−2

)
,

H2 =
(
a33 b33
a43 b43

)
, H3 =

(
c13 0
c23 0

)
, H4 =

(
c33 1
c43 0

)
.

Since the trace of λ(x), λ(y), λ(h) is zero, we have a33 = −a11 − a22, b33 = −a12 − b22
and c33 = −a13 − b23 . We simplify H3 by applying ψ (1 β

0 1)
or ψ (1 0

γ 1)
. This respects

λ(z) = 1 and it is not difficult to see that we can assume H3 =
(
0 0
0 0

)
or H3 =

(
0 0
1 0

)
.

Case 1: gλ is irreducible.

Case a: H3 =
(
0 0
0 0

)
.

The variables of H1, H4 satisfy the following LSA-equations:

2a213 + a13b23 + a23b13 − c43 = 0(a)

2b223 + a13b23 + a23b13 − c43 = 0(b)

a23(a13 + b23 − 2) = 0(c)

b13(a13 + b23 + 2) = 0(d)
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From the fact that the characteristic polynomial of λ(h) is (t−3)(t−1)(t+1)(t+3) we
obtain:

a213 + a13b23 + b223 + a23b13 + 2(a13 − b23) + c43 − 6 = 0(e)

It follows that c43 = 1, 3 or 9 . We obtain the following solutions:

H1 =
(
3 0
0 −3

)
, H4 =

(
0 1
1 0

)
or H1 =

(
−1 0
0 1

)
, H4 =

(
0 1
9 0

)
or H1 =

(
3 0
a23 −1

)
, H4 =

(
−2 1
3 0

)

or H1 =
(
1 b13
0 −3

)
, H4 =

(
2 1
3 0

)
.

Then the remaining LSA-equations are very simple: The first solution is not possible, and
all other cases are isomorphic. We may also normalize b13 to 1 . That means we may
take

H1 =

(
1 1
0 −3

)
, H4 =

(
2 1
3 0

)

and we obtain the LSA A3 . Note that A3 is not associative.

Case b: H3 =
(
0 0
1 0

)
.

This case can be reduced to Case a by applying ψ (1 0

γ 1)
and ψ (1 β

1 δ)
.

Case 2: gλ = V ⊕ V .

The characteristic polynomial of λ(h) now is (t−1)2(t+1)2 and equation (e) becomes:

a213 + a13b23 + b223 + a23b13 + 2(a13 − b23) + c43 + 2 = 0(e)

Case a: H3 =
(
0 0
0 0

)
.

The equations (a), . . . , (e) have solutions

H1 =
(
1 0
0 −1

)
, H4 =

(
0 1
1 0

)
or H1 =

(
a13+2 0
0 a13−2

)
, H4 =

(
−2a13 1

−1 0

)

The first solution leads to the matrix algebra M2(C) , and the second one is contradictory.

Case b: H3 =
(
0 0
1 0

)
.

After a short calculation we obtain a contradiction.

The Theorem shows that there is one infinite family of non-isomorphic LSA-structures on
gl2(C) with non-central right-identity. In fact, all those structures can be obtained as
τ -deformations of the matrix algebra structure M2(C) : Define τ by τ(z) = x and zero
on sl2(C) . Then Aτ = A1 of Theorem 3 below. If τ is defined by τ(z) = αh , we
obtain precisely A2,α . Other choices of τ(z) yield isomorphic algebras.

As for the algebras with two-sided central identity, there are precisely two non-isomorphic
ones, A3 and M2(C).
In the general case the following holds:
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Theorem 4 The τ -deformations of the matrix algebra A exhaust all possible LSA-

structures on gln(k) for n > 2. Their isomorphism classes are parametrized by the

conjugacy classes of elements X ∈ gln(k) with tr(X) = n. There is exactly one LSA-

structure with a two-sided central identity – the matrix algebra structure.

Proof: This is a consequence of a classification Theorem in [BAU] to be published else-
where. Here we only present a typical case: Let τ(z) = αh where h is an element of the
Cartan subalgebra of gln(k) . We obtain a family of LSA-structures with right-identities
eα = αh+ z. We will determine the isomorphism classes of this family.
Let φ = (1− τ)−1 = (1+ τ) . We have ̺τ (αh+ z) = φ ◦ (̺(αh+ z) − ̺(αh) + (λ(αh) −
λ(αh + z) ◦ τ)) = φ(̺(z) − λ(z) ◦ τ) = φ ◦ (1 − τ) = 1. Denote by (g, α) and (g, α̃)
any two τ -deformation algebras. By the above calculation ̺(eα) = ˜̺(eα̃) = 1 . Assume
that both algebras are isomorphic. Then there is a ψ ∈ Aut(g) such that ˜̺(ψ(eα)) =
ψ ◦ ̺(eα) ◦ ψ

−1 = 1 , i.e., ψ(eα) also is a right-identity for (g, α̃) . It follows

ψ(eα) = eα̃, that is ψ(αh+ z) = α̃h+ z

by Corollary 1 . This is only possible for α̃2 = α2 : The Lie algebra automorphisms of
gln(k) are of the form X 7→ −Xt, X 7→ AXA−1 and s+z 7→ s+tz . Given the canonical
sln -basis, all αh + z are diagonal matrices. Hence conjugation acts as permutation of
the eigenvalues and the result follows.
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