Left-invariant affine structures on reductive Lie groups

Dietrich BURDE
Yale University, 10 Hillhouse Avenue, NEW HAVEN CT 06520 - 8283

Abstract

We describe left-invariant affine structures (that is, left-invariant flat torsion-free affine connections ∇) on reductive linear Lie groups G. They correspond bijectively to LSA-structures on the Lie algebra \mathfrak{g} of G. Here LSA stands for left-symmetric algebra, see [BUR], [SE2]. If \mathfrak{g} has trivial or one- dimensional center \mathfrak{z} then the affine representation $\alpha=\lambda \oplus 1$ of \mathfrak{g}, induced by any LSA-structure \mathfrak{g}_{λ} on \mathfrak{g} is radiant, i.e., the radiance obstruction $c_{\alpha} \in H^{1}\left(\mathfrak{g}, \mathfrak{g}_{\lambda}\right)$ vanishes. If $\operatorname{dim} \mathfrak{z}=1$ we prove that $\mathfrak{g}=\mathfrak{s} \oplus \mathfrak{z}$, where \mathfrak{s} is split simple, admits LSA-structures if and only if \mathfrak{s} is of type A_{ℓ}, that is $\mathfrak{g}=\mathfrak{g l}_{n}$. Here we have the associative LSA-structure given by ordinary matrix multiplication corresponding to the biinvariant affine structure on GL(n), which was believed to be essentially the only possible LSA-structure on $\mathfrak{g l}_{n}$. We exhibit interesting LSA-structures different from the associative one. They arise as certain deformations of the matrix algebra. Then we classify all LSA-structures on $\mathfrak{g l}_{n}$ using a result of [BAU]. For $\mathrm{n}=2$ we compute all structures explicitely over the complex numbers.

1 Introduction

Let M denote an n-dimensional manifold (connected and without boundary). An affine atlas Φ on M is a covering of M by coordinate charts such that each coordinate change between overlapping charts in Φ is locally affine, i.e., extends to an affine automorphism $x \mapsto A x+b, A \in \mathbf{G L}_{n}(\mathbb{R})$, of some n-dimensional real vector space E. A maximal affine atlas is an affine structure on M, and M together with an affine structure is called an affine manifold. An affine structure determines a differentiable structure and affine manifolds are flat - there is a natural correspondence between affine structures on M and flat torsionfree affine connections ∇ on M. Such an affine connection is a connection in the tangent bundle with zero torsion and zero curvature:

$$
\begin{align*}
& T_{X, Y}=\nabla_{X} Y-\nabla_{Y} X-[X, Y] \tag{1}\\
& R_{X, Y}=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}=0 \tag{2}\\
&
\end{align*}
$$

Subclasses of affine manifolds are Riemannian-flat and Lorentz-flat manifolds. A fundamental problem is the question of existence of affine structures. A closed surface admits affine structures if and only if its Euler characteristic vanishes ([BEZ] and [MI1]). In higher dimensions there are only certain obstructions known ([SMI]).

Denote by $\operatorname{Aff}(E)$ the group of affine automorphisms,

$$
\operatorname{Aff}(E)=\left\{\left.\left(\begin{array}{ll}
A & b \\
0 & 1
\end{array}\right) \right\rvert\, A \in \mathbf{G} \mathbf{L}(E), b \in E\right\}
$$

where the affine action is given by $\left(\begin{array}{ll}A & b \\ 0 & 1\end{array}\right)\binom{x}{1}=\binom{A x+b}{1}$.
Let M be an affine manifold. Its universal covering M inherits a unique affine structure for which the covering projection $\widetilde{M} \rightarrow M$ is an affine immersion. The group π of decktransformations acts on M by affine automorphisms. There exists an affine immersion $D: \widetilde{M} \rightarrow E$, called the developing map (see $[\mathrm{FGH}]$). It is unique up to composition with an affine automorphism of E. Hence for every $p \in \pi$ there is a unique $\alpha(p) \in \operatorname{Aff}(E)$ such that $D \circ p=\alpha(p) \circ D$. The resulting homomorphism $\alpha: \pi \rightarrow \mathbf{A f f}(E)$ is called the affine holonomy representation and $\alpha(\pi)$ the affine holonomy group. α decomposes into a linear part λ and a translational part u. Then λ is a linear representation turning E into a π-module E_{λ} and u is a crossed homomorphism for λ, i.e., an 1 -cocycle in $Z^{1}\left(\pi, E_{\lambda}\right): u(p q)=u(p)+\lambda(p) u(q) . \quad x \in E$ is a fixed point for α if and only if $u \in B^{1}\left(\pi, E_{\lambda}\right)$, i.e., $u(p)=x-\lambda(p) x$. The radiance obstruction of α is the cohomology class

$$
c_{\alpha}=[u] \in H^{1}\left(\pi, E_{\lambda}\right) .
$$

For the affine manifold, the radiance obstruction c_{M} is the radiance obstruction of its affine holonomy representation α. If $c_{M}=0$ then M is called radiant. Being radiant has quite a lot of consequences for M, see [GH1].
If D is a diffeomorphism, i.e., if \widetilde{M} is affinely diffeomorph to E, then M is called complete. This happens if and only if ∇ is geodesically complete, see [AUM]. Compactness does not imply completeness.
Many examples of affine manifolds come from left-invariant affine structures on Lie groups. If G is a Lie group, an affine structure is called left-invariant if for each $g \in G$ the leftmultiplication by $g, L_{g}: G \rightarrow G$ is an automorphism of the affine structure. (Hence the affine connection ∇ is left-invariant under left-translation as well.) Suppose G is simply connected. Let $D: G \rightarrow E$ be the developing map and $\alpha(g)$ be the unique affine automorphism of E such that $D \circ L_{g}=\alpha(g) \circ D$. Then $\alpha: G \rightarrow \mathbf{A f f}(E)$ is an affine representation.
Now it is not difficult to see ([FGH]) that G admits a complete left-invariant structure if and only if G acts simply transitively on E as affine transformations. In this case G must be solvable ([AUS]). If G has a left-invariant affine structure and Γ is a discrete subgroup of G, then the homogeneous space $\Gamma \backslash G$ of right cosets inherits an affine structure. If G is nilpotent, then $\Gamma \backslash G$ is called an affine nilmanifold.
In this context there is the following important question, also posed by Milnor ([MI2]) in the studies of fundamental groups of complete affine manifolds:
(3) Which Lie groups admit left-invariant affine structures ?

This question is particularly difficult for nilpotent Lie groups. There was much evidence that every nilpotent Lie group admits left-invariant affine structures (see [BGR]). Milnor conjectured this to be true even for solvable Lie groups ([MI2]). Recently, however, there
were counterexamples discovered ([BGR] and $[\mathrm{BEN}]$). There are nilmanifolds which are not affine. We will show in a forthcoming paper that the class of nilpotent Lie groups of dimension $n \geq 10$ not admitting any left-invariant affine structure is rather large. The problem of classifying left-invariant affine structures on nilpotent Lie groups (see [KIM]) still seems to be hopeless.
If G is semisimple then G admits no left-invariant affine structures ([HE2], [BUR]). It is a natural question to ask what happens in the case of a reductive Lie group G. We may attempt then to give a classification of all left-invariant affine structures on G. In the general case we still have plenty of left-invariant affine structures ([HE1]). If G is a reductive linear Lie group with one-dimensional center and $[G, G]$ is simple, however, we are able to prove that the existence of left-invariant affine structures on G implies that G must be $\mathbf{G L}(n)$ itself. It possesses the unique (up to isomorphism) bi-invariant affine structure. By studying certain deformations of this structure we obtain interesting families of left-invariant affine structures on $\mathbf{G L}(n)$. In fact, using a result of [BAU], it follows that they exhaust all possible left-invariant affine structures on $\mathbf{G L}(n)$ for $n>2$.

2 Left-invariant affine structures and LSA-structures

Let G be a finite-dimensional connected Lie group with Lie algebra \mathfrak{g}. We may assume that G is simply connected (otherwise consider G). The following lemma is well known (see [SE2]):

Lemma 1 There is a one-to-one correspondence between left-invariant affine structures on G and LSA-structures on \mathfrak{g}. Under this bijection, bi-invariant affine structures correspond to associative LSA-structures.

Suppose G admits a left-invariant flat torsionfree affine connection ∇ on G. Since the connection is left-invariant, for any two left-invariant vector fields $X, Y \in \mathfrak{g}$, the covariant derivative $\nabla_{X} Y \in \mathfrak{g}$ is left-invariant. It follows that covariant differentiation $(X, Y) \mapsto$ $\nabla_{X} Y$ defines a bilinear multiplication $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$, denoted by $(X, Y) \mapsto X Y$ in short. Since ∇ is locally flat and torsionfree, we have by (1) and (2) of the introduction:

$$
\begin{array}{ll}
{[X, Y]} & =X Y-Y X \\
{[X, Y] Z} & =X(Y Z)-Y(X Z) \tag{2}
\end{array}
$$

We can rewrite (2) by using (1) as $(X, Y, Z)=(Y, X, Z)$ where (X, Y, Z) denotes the associator of the three elements X, Y, Z in \mathfrak{g}. Thus (\mathfrak{g}, \cdot) is a left-symmetric algebra (or in short $L S A$) with product $x \cdot y=\nabla_{X} Y$, see [SE2], [BUR].
If we have any $L S A$-structure on \mathfrak{g}, i.e., a left-symmetric product $(x, y) \mapsto x \cdot y$ on \mathfrak{g} satisfying $x \cdot y-y \cdot x=[x, y]$, then denote by $\lambda: x \mapsto \lambda(x)$ the left-regular representation on the LSA $(\mathfrak{g}, \cdot): \lambda(x) y=x \cdot y$. It is a Lie algebra representation:

$$
\lambda: \mathfrak{g} \rightarrow \operatorname{End}(\mathfrak{g}), \quad[\lambda(x), \lambda(y)]=\lambda([x, y])
$$

Denote the corresponding \mathfrak{g}-module by \mathfrak{g}_{λ}. Furthermore, the identity map $\mathbf{1}: \mathfrak{g} \rightarrow \mathfrak{g}_{\lambda}$ is a 1 -cocycle in $Z^{1}\left(\mathfrak{g}, \mathfrak{g}_{\lambda}\right)$:

$$
\mathbf{1}([x, y])=\mathbf{1}(x) \cdot y-\mathbf{1}(y) \cdot x
$$

Let $\mathfrak{a f f}(\mathfrak{g})$ be the Lie algebra of $\operatorname{Aff}(G)$, i.e., $\mathfrak{a f f}(\mathfrak{g})=\left\{\left.\left(\begin{array}{cc}A & b \\ 0 & 0\end{array}\right) \right\rvert\, A \in \mathfrak{g l}(\mathfrak{g}), b \in \mathfrak{g}\right\}$ which we identify with $\mathfrak{g l}(\mathfrak{g}) \oplus \mathfrak{g}$. Denote the linear part by $\ell(A, b)=A$ and the translational part by $t(A, b)=b$. Now we associate to the LSA (\mathfrak{g}, \cdot) the map

$$
\alpha=\lambda \oplus \mathbf{1}: \mathfrak{g} \rightarrow \mathfrak{a f f}(\mathfrak{g})
$$

It is an affine representation of \mathfrak{g}. We have $\lambda=\ell \circ \alpha$ and $t \circ \alpha=\mathbf{1}$.
The radiance obstruction of α is the class [$\mathbf{1}]$ in $H^{1}\left(\mathfrak{g}, \mathfrak{g}_{\lambda}\right)$, see [GH2]. For the proofs of the following proposition see [SE1], [BUR]. Let $\varrho(x)$ denote the right-multiplication by x in the LSA (\mathfrak{g}, \cdot) :

Proposition 1

(1) A left-invariant affine structure on G is complete if and only if all $\varrho(x)$ in the corresponding LSA are nilpotent endomorphisms.
(2) If G admits a complete left-invariant affine structure then G is solvable.
(3) If G is semisimple then G does not admit any left-invariant affine structure.

The argument for the proof of (3) is roughly the following (see [BUR]): Let G be semisimple and (\mathfrak{g}, \cdot) be an LSA corresponding to a left-invariant affine structure on G. Then $\mathbf{1} \in Z^{1}\left(\mathfrak{g}, \mathfrak{g}_{\lambda}\right)$ and by Whitehead's Lemma, $\mathbf{1} \in B^{1}\left(\mathfrak{g}, \mathfrak{g}_{\lambda}\right)$, i.e., $\mathbf{1}(x)=x \cdot e=\varrho(e) x$ for some $e \in \mathfrak{g}_{\lambda}$. Then the LSA-property and $[\mathfrak{g}, \mathfrak{g}]=\mathfrak{g}$ imply $\operatorname{tr} \lambda(x)=\operatorname{tr} \varrho(x)=0$ for all x and hence $\operatorname{tr} \mathbf{1}=\operatorname{tr} \varrho(e)=0$. Since the underlying field is of characteristic zero, we conclude that \mathfrak{g} must be trivial which should be excluded.

3 LSA-structures on reductive Lie algebras

Let k be an algebraically closed field of characteristic zero. A Lie algebra \mathfrak{g} is said to be reductive if its solvable radical $\mathfrak{r}(\mathfrak{g})$ coincides with the center $\mathfrak{z}=\mathfrak{z}(\mathfrak{g})$. Then the Lie algebra $\mathfrak{s}=[\mathfrak{g}, \mathfrak{g}]$ is semisimple and we have

$$
\mathfrak{g}=\mathfrak{s} \oplus \mathfrak{z}
$$

A Lie algebra \mathfrak{g} is reductive if and only if it admits a faithful completely reducible linear representation. A Lie group G is said to be reductive if its Lie algebra is reductive. Assume that (\mathfrak{g}, \cdot) is an LSA-structure on \mathfrak{g}. Since the first cohomology groups of a reductive Lie algebra do not vanish in general, we may have such structures. In fact, we know that there are LSA-structures on $\mathfrak{g l}_{n}(k)$, for example. The next question is whether the associated affine representation α is radiant or not. By a result of Milnor [MI2], one sufficient condition for an affine representation of \mathfrak{g} to be radiant is that
the associated linear representation is completely reducible. However, the fact that \mathfrak{g} is reductive does not imply that any finite-dimensional representation φ of \mathfrak{g} is completely reducible. φ is completely reducible if and only if the center of \mathfrak{g} is represented by semisimple endomorphisms, see [HUM]. However, it is true that α is radiant if \mathfrak{z} is one-dimensional.
By saying \mathfrak{s} is split simple we mean that \mathfrak{s} is of one of the following types:

$$
A_{\ell}, B_{\ell}, C_{\ell}, D_{\ell}, G_{2}, F_{4}, E_{6}, E_{7}, E_{8}
$$

First we observe:
Lemma 2 Let $\mathfrak{g}=\mathfrak{s} \oplus \mathfrak{z}$ be a reductive Lie algebra with one-dimensional center, \mathfrak{s} be split simple and (\mathfrak{g}, \cdot) an LSA-structure on \mathfrak{g}. Then the algebra ($\mathfrak{g}, \cdot)$ is simple, i.e., has no proper two-sided ideals.

Proof Any two-sided ideal \mathfrak{a} in (\mathfrak{g}, \cdot) is also a Lie ideal in \mathfrak{g}, since

$$
[\mathfrak{g}, \mathfrak{a}] \subset \mathfrak{g} \cdot \mathfrak{a}-\mathfrak{a} \cdot \mathfrak{g} \subset \mathfrak{a}
$$

The only proper ideals in $\mathfrak{g}=\mathfrak{s} \oplus \mathfrak{z}$ are \mathfrak{s} and $\mathfrak{z}=k$. However, both ($\mathfrak{a}, \cdot)$ and $(\mathfrak{g} / \mathfrak{a}, \cdot)$ inherit a natural LSA-structure from (\mathfrak{g}, \cdot). Since \mathfrak{s} and $\mathfrak{g} / \mathfrak{z}$ are semisimple it follows from Proposition 1 (3) that \mathfrak{a} can neither be \mathfrak{s} nor \mathfrak{z}.

Suppose that \mathfrak{g} is a linear Lie algebra. Given an LSA-structure ($\mathfrak{g}, \cdot)$, denote the \mathfrak{g} invariants of \mathfrak{g}_{λ} by $\left(\mathfrak{g}_{\lambda}\right)^{\mathfrak{g}}$. We have $H^{0}\left(\mathfrak{g}, \mathfrak{g}_{\lambda}\right)=\left(\mathfrak{g}_{\lambda}\right)^{\mathfrak{g}}$. Since \mathfrak{g} and \mathfrak{g}_{λ} are identical as vector spaces, we may view an element $y \in \mathfrak{g}_{\lambda}$ also as an element of \mathfrak{g}. Our result is:

Theorem 1 Let ($\mathfrak{g}, \cdot)$ be an LSA-structure on the reductive linear Lie algebra $\mathfrak{g}=\mathfrak{s} \oplus \mathfrak{z}$. Then $\left(\mathfrak{g}_{\lambda}\right)^{\mathfrak{g}} \cap \mathfrak{s}=0$.

Corollary 1 Let (\mathfrak{g}, \cdot) be an LSA-structure on \mathfrak{g}. If $\operatorname{dim} \mathfrak{z}=1$ then $H^{0}\left(\mathfrak{g}, \mathfrak{g}_{\lambda}\right)=0$ and $H^{1}\left(\mathfrak{g}, \mathfrak{g}_{\lambda}\right)=0$. Hence the associated affine representation of \mathfrak{g} is radiant and the algebra (\mathfrak{g}, \cdot) has a unique right-identity.

Corollary 2 Let ($\mathfrak{g}, \cdot)$ be an associative LSA-structure on \mathfrak{g} where \mathfrak{s} is simple. If $\operatorname{dim} \mathfrak{z}=1$, then (\mathfrak{g}, \cdot) is isomorphic to the matrix algebra $M_{n}(k)$ and \mathfrak{g} is $\mathfrak{g l}_{n}(k)$.

Proof of the Corollaries: Let \mathfrak{z} be generated by z and $y \in\left(\mathfrak{g}_{\lambda}\right)^{\mathfrak{g}}$ be nonzero; hence by the Theorem $y=s+\gamma z \in \mathfrak{s} \oplus \mathfrak{z}$ where $s \in \mathfrak{s}$ and $\gamma \neq 0$. Then $0=\varrho(y)=\varrho(s)+\gamma \varrho(z)$. Take the trace of both sides to obtain $\operatorname{tr} \varrho(z)=0$ (note that $\operatorname{tr} \varrho(s)=0$ for all $s \in \mathfrak{s}$ since $\operatorname{tr} \lambda([a, b])=\operatorname{tr}([\lambda(a), \lambda(b)]),[\mathfrak{s}, \mathfrak{s}]=\mathfrak{s}$ and $\operatorname{tr} \varrho(x)=\operatorname{tr} \operatorname{ad}(x)-\operatorname{tr} \lambda(x)=0$.) Then $\operatorname{tr} \varrho(x)=0$ for all $x \in \mathfrak{g}$ and as a consequence, all $\varrho(x)$ are nilpotent $\left(\operatorname{tr} \varrho(x)^{2}=0\right.$ by $\varrho(x)^{2}=\varrho\left(x^{2}\right)-[\lambda(x), \varrho(x)]$, and by the formulas (2.1) in [KIM], also $\operatorname{tr} \varrho(x)^{n}=0$ for all n). Then by Proposition $1, \mathfrak{g}$ must be solvable. This is a contradiction. Thus $y=0$, i.e., $\quad\left(\mathfrak{g}_{\lambda}\right)^{\mathfrak{g}}=0$, which is the first part of Corollary 1 .

The second statement of Corollary 1 follows immediately from the following fact:
Lemma 3 Let \mathfrak{g} be a reductive Lie algebra with $\operatorname{dim} \mathfrak{z}=1$ and M be a finitedimensional \mathfrak{g}-module. Then $H^{0}(\mathfrak{g}, M)=0$ is equivalent to $H^{1}(\mathfrak{g}, M)=0$.

Proof: The claim is true if \mathfrak{g} is one-dimensional (see [BAR]). Let \mathfrak{a} be an ideal of \mathfrak{g}. The Hochschild-Serre spectral sequence gives the following exact sequence:

$$
\begin{equation*}
0 \longrightarrow H^{1}\left(\mathfrak{g} / \mathfrak{a}, M^{\mathfrak{a}}\right) \longrightarrow H^{1}(\mathfrak{g}, M) \longrightarrow H^{1}(\mathfrak{a}, M)^{\mathfrak{g}} \tag{4}
\end{equation*}
$$

Assume $H^{1}(\mathfrak{g}, M)=0$. Then $H^{1}\left(\mathfrak{g} / \mathfrak{s}, M^{\mathfrak{s}}\right)=0$ by (4) with $\mathfrak{a}=\mathfrak{s}$. Since $\mathfrak{g} / \mathfrak{s}$ is one-dimensional, we have $M^{\mathfrak{g}}=\left(M^{\mathfrak{s}}\right)^{\mathfrak{g} / \mathfrak{s}}=0$.
To show the other direction, assume $H^{0}(\mathfrak{g}, M)=0$. Let M be irreducible. Then the submodule $M^{\mathfrak{z}}$ is 0 or M. In the first case, $H^{1}(\mathfrak{z}, M)=0$ and (4) gives $H^{1}(\mathfrak{g}, M)=$ 0 with $\mathfrak{a}=\mathfrak{z}$. In the second case, $M^{\mathfrak{z}}=M$ is a $\mathfrak{g} / \mathfrak{z}$-module and $H^{1}(\mathfrak{g} / \mathfrak{z}, M)=0$ since $\mathfrak{s}=\mathfrak{g} / \mathfrak{z}$ is semisimple. The claim follows again by (4) with $\mathfrak{a}=\mathfrak{z}$.
If M is reducible, let N be a proper submodule. Then $N^{\mathfrak{g}} \leq M^{\mathfrak{g}}=0$. By induction on $\operatorname{dim} M$ we may assume $H^{1}(\mathfrak{g}, N)=0$. The exact sequence $0 \rightarrow N \rightarrow M \rightarrow M / N \rightarrow 0$ induces the corresponding long exact sequence of H^{0} and H^{1}-groups. From this we derive $(M / N)^{\mathfrak{g}}=0$. Again, by induction $H^{1}(\mathfrak{g}, M / N)=0$. Looking at the H^{1}-groups we obtain $H^{1}(\mathfrak{g}, M)=0$.

Now the last part of Corollary 1 is easy: $\mathbf{1}$ is in $Z^{1}\left(\mathfrak{g}, \mathfrak{g}_{\lambda}\right)$, hence also in $B^{1}\left(\mathfrak{g}, \mathfrak{g}_{\lambda}\right)$. That means $\varrho(e)=\mathbf{1}$ for some $e \in \mathfrak{g}_{\lambda}$. If e^{\prime} is another right-identity, then $\varrho\left(e-e^{\prime}\right)=0$, i.e., $e-e^{\prime} \in\left(\mathfrak{g}_{\lambda}\right)^{\mathfrak{g}}=0$.

If the LSA-structure is associative and $\operatorname{dim} \mathfrak{z}=1$, then (\mathfrak{g}, \cdot) posseses a two-sided central identity: If $\varrho(e)=\mathbf{1}$ then $0=[\varrho(e), \varrho(x)]=\varrho([x, e])$ for all x. Since $\left(\mathfrak{g}_{\lambda}\right)^{\mathfrak{g}}=0$ it follows $[x, e]=0$ for all $x \in \mathfrak{g}$, hence $e \in \mathfrak{z}$ and $\lambda(e)=\varrho(e)=\mathbf{1}$. By Lemma 2 (\mathfrak{g}, \cdot) is a simple associative algebra with unit, hence a matrix algebra by Wedderburn's Theorem.

Proof of Theorem 1: Consider the restriction $\mathbf{1}_{\mathfrak{s}}$ of the identity map 1: $\mathfrak{g} \rightarrow \mathfrak{g}_{\lambda}$ to \mathfrak{s}. Then $\mathbf{1}_{\mathfrak{s}} \in Z^{1}\left(\mathfrak{s}, \mathfrak{g}_{\lambda}\right)$. By Whitehead's Lemma, $\mathbf{1}_{\mathfrak{s}}$ is an one-coboundary, i.e., it exists an $e \in \mathfrak{g}_{\lambda}$ such that $x=\mathbf{1}_{\mathfrak{s}}(x)=\lambda(x) e$ for all $x \in \mathfrak{s}$. Assume that y is an element in $\left(\mathfrak{g}_{\lambda}\right)^{\mathfrak{g}} \cap \mathfrak{s}$. Then $y \in \mathfrak{s}$ and we obtain by the above (also using $\operatorname{ad}(y)=\lambda(y)$),

$$
\begin{equation*}
y=\lambda(y) e=[y, e] \tag{5}
\end{equation*}
$$

That means, y and e generate a two-dimensional solvable subalgebra of \mathfrak{g}. By Lie's Theorem, y, e are upper triangular (relative to a suitable basis). Hence $y=[y, e]$ is strictly upper triangular, i.e., nilpotent. Then by the Morozow-Jacobson Theorem there exist $\bar{y}, h \in \mathfrak{g}$ such that

$$
\begin{equation*}
[y, \bar{y}]=h, \quad[y, h]=2 y \tag{6}
\end{equation*}
$$

We have the following Lemma:

Lemma 4 Let (\mathfrak{g}, \cdot) be an LSA with Lie algebra \mathfrak{g}. If $y \in\left(\mathfrak{g}_{\lambda}\right)^{\mathfrak{g}}$ then $\operatorname{ad}(y)=\lambda(y)$ is a derivation of (\mathfrak{g}, \cdot), and in particular:

$$
\begin{equation*}
(\operatorname{ad} y)^{3}(v \cdot w)=\sum_{i=0}^{3}\binom{3}{i}(\operatorname{ad} y)^{3-i}(v) \cdot(\operatorname{ad} y)^{i}(w) \tag{7}
\end{equation*}
$$

Proof: $\quad y \in\left(\mathfrak{g}_{\lambda}\right)^{\mathfrak{g}}$ means $\varrho(y) v=v \cdot y=0$ for all $v \in \mathfrak{g}_{\lambda}$ and $\operatorname{ad}(y)=\lambda(y)-\varrho(y)=\lambda(y)$. By the LSA-property (2) we have

$$
y \cdot(v \cdot w)-(y \cdot v) \cdot w=v \cdot(y \cdot w)-(v \cdot y) \cdot w=v \cdot(y \cdot w)
$$

Hence $\lambda(y)(v \cdot w)=\lambda(y)(v) \cdot w+v \cdot \lambda(y)(w)$ and the claim follows.
We apply the Lemma as follows. By (6) we have $\operatorname{ad} y(\bar{y})=h,(\operatorname{ad} y)^{2}(\bar{y})=2 y$ and $(\operatorname{ad} y)^{3}(\bar{y})=0$. Using formula (7) we calculate:

$$
\begin{aligned}
(\operatorname{ad} y)^{3}(\bar{y} \cdot \bar{y}) & =3(\operatorname{ad} y)^{2}(\bar{y}) \cdot(\operatorname{ad} y)(\bar{y})+3(\operatorname{ad} y)(\bar{y}) \cdot(\operatorname{ad} y)^{2}(\bar{y})=6(y \cdot h+h \cdot y) \\
& =6[y, h]=12 y
\end{aligned}
$$

The following Lemma shows that the last equation implies $y=0$.
Lemma 5 Suppose $y \in \mathfrak{g}$ is a nilpotent matrix and $\alpha \neq 0$. Then $(\operatorname{ad} y)^{3}(x)=\alpha y$ for some $x \in \mathfrak{g}$ implies $y=0$.

Proof: By the Morozov-Jacobson Theorem, y can be embedded in an $\mathfrak{s l}_{2}(k) \subset \mathfrak{g}$. By Weyl's Theorem, \mathfrak{g} is completely reducible as $\mathfrak{s l}_{2}(k)$-module. Let \mathfrak{v} be a complement, i.e.,

$$
\mathfrak{g}=\mathfrak{s l}_{2}(k) \oplus \mathfrak{v}
$$

Decompose $x=s+v$ and apply $(\operatorname{ad} y)^{3}$ on both sides. We have $(\operatorname{ad} y)^{3}(s)=0$ since y is a nilpotent element in $\mathfrak{s l}_{2}(k)$. Hence $\alpha y=(\operatorname{ad} y)^{3}(x)=(\operatorname{ad} y)^{3}(v)$ is in $\mathfrak{s l}_{2}(k) \cap \mathfrak{v}=0$. Since $\alpha \neq 0$ we have $y=0$.

Remark 1 There is an elementary proof of Lemma 5. Using $(\operatorname{ad} y)(x)=y x-x y$ (matrix product) the above equation becomes $\alpha y=y^{3} x-3 y^{2} x y+3 y x y^{2}-x y^{3}$. Assuming $y^{k+1}=0 \neq y^{k}$ where $k>1$, multiply this equation by y^{k-i} from the left and by y^{i-1} from the right for $0<i<k$. We obtain k linear equations in the unknowns $x_{i}=y^{k+1-i} x y^{i+1}$ and $x_{k}=y^{k}$. The corresponding matrix has nonzero determinant $-\frac{1}{12} \alpha k(k+1)^{2}(k+2), k>1$. Hence, there is only the trivial solution, i.e., $y^{k}=0$, contradiction. Then $k=1, y=0$.

Remark 2 The first part of Corollary 1 can also be proved as follows: As an \mathfrak{s}-module, \mathfrak{g}_{λ} is completely reducible. We show $\mathfrak{g}_{\lambda}^{\mathfrak{s}}=0$ and hence also $\mathfrak{g}_{\lambda}^{\mathfrak{g}}=0$.
The \mathfrak{s}-module \mathfrak{g}_{λ} has nonzero invariants if and only if the trivial module is a summand in its decomposition: $H^{0}(\mathfrak{s}, k)=k$. Assume $\mathfrak{g}_{\lambda}=\mathfrak{v} \oplus k$ for a complementary \mathfrak{s}-module
\mathfrak{v}. Then \mathfrak{s} acts trivially on k, and for $m=v+\alpha \in \mathfrak{v} \oplus k$ we have $x \cdot m=x \cdot v \in \mathfrak{v}$ for all $x \in \mathfrak{s}$ and $m \in \mathfrak{g}_{\lambda}$. Then $x \cdot z$ and $z \cdot x$ are in \mathfrak{v} for all $x, z \in \mathfrak{s}$, hence also all commutators $[x, z]$. Since \mathfrak{s} is spanned by those commutators, we have $\mathfrak{s} \subset \mathfrak{v}$. In fact, $\mathfrak{s}=\mathfrak{v}$ because of dimension reasons. This implies that \mathfrak{s} admits an LSA-structure; a contradiction to Proposition 1. Therefore, \mathfrak{g}_{λ} does not have a summand k as an \mathfrak{s}-module.

We use Corollary 1 to show the following:
Theorem 2 Let $\mathfrak{g}=\mathfrak{s} \oplus \mathfrak{z}$ be a reductive linear Lie algebra such that $\operatorname{dim} \mathfrak{z}=1$ and \mathfrak{s} is split simple. Then \mathfrak{g} admits an LSA-structure if and only if \mathfrak{s} is of type A_{ℓ}.

Proof: First we show that if \mathfrak{s} is not of typ $A_{\ell}, B_{3}, D_{5}, D_{7}$, then \mathfrak{g} does not admit any LSA-structure. Secondly we exclude the cases where \mathfrak{s} is of type B_{3}, D_{5}, D_{7}. For \mathfrak{s} of type A_{ℓ} we already know that there exist LSA-structures.
Let $\operatorname{dim} \mathfrak{s}=n$. Since \mathfrak{g}_{λ} is completely reducible as an \mathfrak{s}-module and has no invariants, we know that

$$
\begin{equation*}
\mathfrak{g}_{\lambda}=\bigoplus_{i} V_{i} \quad \text { and } \quad \sum_{i} \operatorname{dim} V_{i}=n+1 \tag{8}
\end{equation*}
$$

where V_{i} are irreducible \mathfrak{s}-modules with $2 \leq \operatorname{dim} V_{i} \leq \operatorname{dim} \mathfrak{g}=n+1$ (\mathfrak{g}_{λ} does not contain a trivial \mathfrak{s}-module). On the other hand, there are not many irreducible \mathfrak{s} modules of small dimensions. Up to dimension n they are classified in [BUR]. Are there irreducible \mathfrak{s}-modules of dimension $n+1$? The answer is given by

Lemma 6 Let \mathfrak{s} be of type $A_{\ell}, B_{\ell}, C_{\ell}, D_{\ell}, G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$ and V be an irreducible \mathfrak{s}-module. Define $\delta_{\ell}=\delta_{\ell}(\mathfrak{s})=\operatorname{dim} \mathfrak{s}+1$. If $\ell>1$, then $\operatorname{dim} V=\delta_{\ell}$ is impossible.

Proof: In dimension $\delta_{\ell}-1$ we have always the adjoint module. Let $m_{\ell}(\mathfrak{s})=m_{\ell}$ denote the minimal dimension of irreducible \mathfrak{s}-modules with bigger dimension than dims. For $\ell>8$ the values of m_{ℓ} and δ_{ℓ} are as follows:

Type	A_{ℓ}	B_{ℓ}	C_{ℓ}	D_{ℓ}
m_{ℓ}	$\binom{\ell+1}{3}$	$2 \ell^{2}+3 \ell$	$\binom{2 \ell}{3}-\binom{2 \ell}{1}$	$2 \ell^{2}+\ell-1$
δ_{ℓ}	$(\ell+1)^{2}$	$2 \ell^{2}+\ell+1$	$2 \ell^{2}+\ell+1$	$2 \ell^{2}-\ell+1$

Type	G_{2}	F_{4}	E_{6}	E_{7}	E_{8}
m_{ℓ}	27	273	351	912	3875
δ_{ℓ}	15	53	79	134	249

To see this, we may use the same method as in [BUR], Lemma 2.2.3. The irreducible \mathfrak{s}-modules are highest weight modules $L(\lambda)$. The Weyl group acts on the weights by conjugation and we may estimate the dimension of $L(\lambda)$ from below by the number of the weights of $L(\lambda)$ which is the sum of $|\mathcal{W} \nu|$ over the dominant weights $\nu \leq \lambda$. Besides we can use Weyl's dimension formula. The Lemma can also easily be deduced from the computations in [SAK], p.41f.
Denote by $\omega_{1}, \ldots, \omega_{\ell}$ the fundamental weights, then the following modules (for the types $A_{\ell}, \ldots D_{\ell}$ respectively) have dimension $m_{\ell}: L\left(\omega_{3}\right), L\left(2 \omega_{1}\right), L\left(\omega_{3}\right), L\left(2 \omega_{1}\right)$.
Since $m_{\ell}-\delta_{\ell}$ is always positive, Lemma 6 follows for $\ell>8$. In the case $\ell \leq 8$ we may use the tables from [BMP] to verify the result. (Of course, $\mathfrak{s l}_{2}$ has irreducible representations in any dimension, so we must exclude $\ell=1$).
Consider the decomposition (8). If $\ell>8$, we have the following possibilities for the modules V_{i} occuring in (8) (see [BUR]):
For type A_{ℓ} we have the modules $L\left(\omega_{1}\right), L\left(\omega_{2}\right), L\left(2 \omega_{1}\right), L\left(\omega_{1}+\omega_{\ell}\right)$ and their dual modules of dimension $\ell+1, \ell(\ell+1) / 2,(\ell+1)(\ell+2) / 2, \ell^{2}+2 \ell$.
For type B_{ℓ} we have $L\left(\omega_{1}\right), L\left(\omega_{2}\right)$ of dimension $2 \ell+1, \ell(2 \ell+1)$.
For type C_{ℓ} we have $L\left(\omega_{1}\right), L\left(\omega_{2}\right), L\left(2 \omega_{1}\right)$ of dimension $2 \ell, 2 \ell^{2}-\ell-1, \ell(2 \ell+1)$.
For type D_{ℓ} we have $L\left(\omega_{1}\right), L\left(\omega_{2}\right)$ of dimension $2 \ell, \ell(2 \ell-1)$.
It is easy to see that the dimensions cannot add up to δ_{ℓ}, except in the case of A_{ℓ}.
For the exceptional types and the cases $\ell \leq 8$ we see the result from the following table. It lists the possible dimensions:

Type	$\operatorname{dim} L(\lambda)$	δ_{λ}	Type	$\operatorname{dim} L(\lambda)$	δ_{λ}
B_{3}	$7,8,21$	22	C_{8}	$16,119,136$	137
B_{4}	$9,16,36$	37	D_{4}	8,28	29
B_{5}	$11,32,55$	56	D_{5}	$10,16,45$	46
B_{6}	$13,64,78$	79	D_{6}	$12,32,66$	67
B_{7}	15,105	106	D_{7}	$14,64,91$	92
B_{8}	17,136	137	D_{8}	16,120	121
C_{2}	$4,5,10$	11	G_{2}	7,14	15
C_{3}	$6,14,21$	22	F_{4}	26,52	53
C_{4}	$8,27,36$	37	E_{6}	27,78	79
C_{5}	$10,44,55$	56	E_{7}	56,133	134
C_{6}	$12,65,78$	79	E_{8}	248	249
C_{7}	$14,90,105$	106			

Only in the cases B_{3}, D_{5}, D_{7} the dimensions can add up to δ_{ℓ}, and hence these are the only types for \mathfrak{s} (besides A_{ℓ}) where we might have LSA-structures for \mathfrak{g}.

For these three cases we can deduce from the table what \mathfrak{g}_{λ} must be:

$$
\begin{array}{ll}
\mathfrak{g}_{\lambda}= & L\left(\omega_{1}\right) \oplus L\left(\omega_{1}\right) \oplus L\left(\omega_{3}\right) \\
\mathfrak{g}_{\lambda}= & L\left(\omega_{1}\right) \oplus L\left(\omega_{1}\right) \oplus L\left(\omega_{1}\right) \oplus L\left(\omega_{5}\right) \\
\mathfrak{g}_{\lambda}= & L\left(\omega_{1}\right) \oplus L\left(\omega_{1}\right) \oplus L\left(\omega_{7}\right) \tag{11}
\end{array}
$$

For the dimensions we have $22=7+7+8,46=10+10+10+16$ and $92=14+14+64$ respectively.
Let $G=S \oplus k$ be a simply connected reductive algebraic group with Lie algebra $\mathfrak{g}=\mathfrak{s} \oplus k$. Let V be the rational S-module corresponding to the \mathfrak{s}-module \mathfrak{g}_{λ}. We may look at V as an algebraic S-variety and apply methods from invariant theory. The following Lemma is due to O. Baues [BAU]:

Lemma 7 Suppose $\mathfrak{g}=\mathfrak{s} \oplus k$ admits an LSA-structure. Then the corresponding S module V has an S-orbit of codimension 1. If $W \subset V$ is a proper S-submodule, then S has an open orbit in W.

In the above cases, S is an orthogonal group and the S-modules in (9), (10), (11) do not have an S-orbit of codimension 1. This may be seen from the fact that the natural module $W=L\left(\omega_{1}\right)$ does not have an open S-orbit where S is an orthogonal group (see the classification in [SAK], p. 147). Hence \mathfrak{g} does not admit an LSA-structure in these cases.

Remark 3 In the general case of a reductive Lie algebra, Theorem 2 has no easy analogue: as an example, the reductive Lie algebra

$$
\mathfrak{g}=\mathfrak{s p}_{4}(\mathbb{C}) \oplus \mathfrak{s l}_{3}(\mathbb{C}) \oplus \mathfrak{s l}_{2}(\mathbb{C}) \oplus \mathbb{C}^{4}
$$

of dimension 25 admits LSA-structures (see [HE1]).

4 Left-invariant affine structures on GL(n)

Let \mathfrak{g} be a Lie algebra and $\mathcal{A}=(\mathfrak{g}, \cdot)$ an LSA-structure on \mathfrak{g}. We describe a procedure to obtain new (in general non-isomorphic) LSA-structures from $\mathcal{A}=(\mathfrak{g}, \cdot)$. We call these structures τ-deformations of \mathcal{A}, although they are not deformations in the usual sense. We apply this to the Lie algebra $\mathfrak{g l}_{n}(k)$ and the canonical associative LSA-structure.

Define the associative kernel of \mathcal{A} by

$$
k(\mathcal{A}):=\{a \in \mathcal{A} \mid[\lambda(b), \varrho(a)]=0 \quad \text { for all } b \in \mathcal{A}\}
$$

This is an associative subalgebra of \mathcal{A} containing the center of \mathfrak{g} by the identity

$$
[\lambda(b), \varrho(a)]=[\operatorname{ad} a, \lambda(b)]+\lambda([b, a])
$$

Denote by $\operatorname{End}_{*}(\mathfrak{g})$ the set $\left\{\tau \in \operatorname{End}(\mathfrak{g}) \mid(\mathbf{1}-\tau)^{-1}\right.$ exists and $\left.\tau(\mathcal{A}) \subset k(\mathcal{A})\right\}$. Then we have (see [HE1]):

Lemma 8 Let $\mathcal{A}=(\mathfrak{g}, \cdot)$ be an LSA-structure on \mathfrak{g} and $\tau \in \operatorname{End}_{*}(\mathfrak{g})$ with $\phi=$ $(1-\tau)^{-1}$. Then $\lambda_{\tau}(a):=\phi \circ(\lambda(a)-\varrho(\tau(a))) \circ \phi^{-1}$ defines an LSA-structure on \mathfrak{g}. We call \mathcal{A}_{τ} the τ-deformation of \mathcal{A}.

In general, \mathcal{A} is not isomorphic to the deformation algebras \mathcal{A}_{τ}. This happens however, if $\tau(\mathcal{A})=\mathfrak{z}(\mathfrak{g})$. Let \mathcal{A} be the matrix algebra $M_{n}(k)$ with Lie algebra $\mathfrak{g l}_{n}(k)$, and define τ by $\left.\tau\right|_{\mathfrak{s l}_{n}}=0$ and $\tau(z) \in \mathfrak{s l}_{n}(k)$ arbitrary, where z generates the center of \mathfrak{g}. Then $\tau^{2}=0$ and $(\mathbf{1}-\tau)(\mathbf{1}+\tau)=\mathbf{1}$. Hence $\tau \in \operatorname{End}_{*}(\mathfrak{g})$. Since also $k(\mathcal{A})=\mathcal{A}$ we can apply the Lemma to obtain the deformation algebras \mathcal{A}_{τ}. Note that these algebras do not have a two-sided central identity except in the case $\tau=0$: If $\bar{\varrho}(z)=\mathbf{1}$ in \mathcal{A}_{τ}, then $\lambda(z)-\varrho(\tau(z))=\mathbf{1}$, i.e., $\varrho(\tau(z))=0$. Since $\left(\mathfrak{g}_{\lambda}\right)^{\mathfrak{g}}=0$ it follows $\tau(z)=0$ and then $\tau=0$.
As we will see later, the τ-deformations exhaust all possible LSA-structures on $\mathfrak{g l}_{n}(k)$ for $n>2$.

By explicit calculations now we classify the left-invariant affine structures on $\mathbf{G L}_{2}(\mathbb{C})$, i.e., the LSA-structures on $\mathfrak{g}=\mathfrak{g l}_{2}(\mathbb{C})$. Let $x=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), y=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), h=\left(\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right), z=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ be the canonical $\mathfrak{s l}_{2}$-basis for \mathfrak{g}. The LSA-structures are described by the endomorphisms $\lambda(x), \lambda(y), \lambda(h), \lambda(z)$ via $\lambda(a) b=a \cdot b$.

Theorem 3 Let (\mathfrak{g}, \cdot) be an LSA-structure on \mathfrak{g}. Then it is isomorphic to $\mathcal{A}_{1}, \mathcal{A}_{2, \alpha}$ or \mathcal{A}_{3} defined by the matrices $\lambda(x), \lambda(y), \lambda(h), \lambda(z)$ as follows:
(i) $\quad\left(\begin{array}{cccc}0 & 1 / 2 & -1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 / 2 & 0 & 0 \\ 0 & 1 / 2 & 0 & 0\end{array}\right) \quad\left(\begin{array}{cccc}1 / 2 & 0 & 0 & -1 / 2 \\ 0 & 0 & 1 & 1 \\ -1 / 2 & 0 & 0 & 1 / 2 \\ 1 / 2 & 0 & 0 & -1 / 2\end{array}\right) \quad\left(\begin{array}{cccc}1 & 0 & 1 & -1 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right) \quad\left(\begin{array}{cccc}1 & -1 / 2 & -1 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 / 2 & 1 & 0 \\ 0 & -1 / 2 & 0 & 1\end{array}\right)$
(ii) $\left(\begin{array}{cccc}0 & 0 & -1 & \beta \\ 0 & 0 & 0 & 0 \\ 0 & \beta / 2 & 0 & 0 \\ 0 & 1 / 2 & 0 & 0\end{array}\right)$
$\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 1 & \gamma \\ -\gamma / 2 & 0 & 0 & 0 \\ 1 / 2 & 0 & 0 & 0\end{array}\right)$ $\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & \alpha & \beta \gamma \\ 0 & 0 & 1 & -\alpha\end{array}\right) \quad\left(\begin{array}{cccc}\beta & 0 & 0 & 0 \\ 0 & \gamma & 0 & 0 \\ 0 & 0 & \beta \gamma & -\alpha \beta \gamma \\ 0 & 0 & -\alpha & 1+\alpha^{2}\end{array}\right)$
(iii)

$$
\left(\begin{array}{cccc}
0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 \\
3 & 3 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1 \\
-1 & -1 / 4 & 0 & 0 \\
3 & 3 / 4 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & -3 & 0 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 3 & 0
\end{array}\right) \quad\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where $\beta=1+\alpha, \gamma=1-\alpha$. Two LSA's $\mathcal{A}_{2, \alpha}$ and $\mathcal{A}_{2, \tilde{\alpha}}$ are isomorphic if and only if $\alpha^{2}=\tilde{\alpha}^{2}$. They are associative if and only if $\alpha=0$. In this case, $\mathcal{A}_{2,0}$ coincides with the matrix algebra $M_{2}(\mathbb{C})$.

Proof: Let (\mathfrak{g}, λ) be an LSA-structure on \mathfrak{g}. By Corollary 1 there is a unique $e \in \mathfrak{g}_{\lambda}$ such that $\varrho(e)=\mathbf{1}$. Let $e=\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$, i.e., $e=e_{1} x+e_{2} y+e_{3} h+e_{4} z$. The center
of \mathfrak{g} is generated by z. Two LSA-structures (\mathfrak{g}, λ) and (\mathfrak{g}, μ) are isomorphic if and only if there is a $\psi \in \operatorname{Aut}(\mathfrak{g})$ such that $\mu(x)=\psi \circ \lambda\left(\psi^{-1}(x)\right) \circ \psi^{-1}$. The Lie algebra automorphisms of \mathfrak{g} are $\psi_{A}: X \mapsto A X A^{-1}$ with $A=\left(\begin{array}{c}\alpha \beta \\ \gamma \\ \delta\end{array}\right), \quad \Delta=\alpha \delta-\gamma \beta \neq 0$ and $\psi_{t}: u \mapsto s+t \cdot z$ where $u=s+z, s \in \mathfrak{s l}_{2}$. For $A=\left(\begin{array}{c}\alpha \\ \gamma \\ \gamma\end{array}\right)$ we look at the generators of $\mathbf{G L}(2)$, i.e., $\left(\begin{array}{ll}1 & \beta \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}\alpha & 0 \\ 0 & \delta\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Let $\psi_{1}=\psi_{\left(\begin{array}{ll}1 & \beta \\ 0 & 1\end{array}\right), \psi_{2}=\psi_{\binom{\alpha}{0}}^{0} 8}, \psi_{3}=\psi_{\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)}$ and $\psi_{4}=\psi_{t}$. It is easy to see that

$$
\begin{align*}
& \psi_{1}\left(e_{1}, e_{2}, e_{3}, e_{4}\right)=\left(e_{1}-\beta^{2} e_{2}-2 \beta e_{3}, e_{2}, \beta e_{2}+e_{3}, e_{4}\right) \tag{a}\\
& \psi_{2}\left(e_{1}, e_{2}, e_{3}, e_{4}\right)=\left(\alpha e_{1} / \delta, \delta e_{2} / \alpha, e_{3}, e_{4}\right) \tag{b}\\
& \psi_{3}\left(e_{1}, e_{2}, e_{3}, e_{4}\right)=\left(e_{2}, e_{1},-e_{3}, e_{4}\right) \tag{c}\\
& \psi_{4}\left(e_{1}, e_{2}, e_{3}, e_{4}\right)=\left(e_{1}, e_{2}, e_{3}, t e_{4}\right)
\end{align*}
$$

Lemma 9 We may assume that the right-identity is $e=x+z$ or $e=\alpha h+z$ or $e=z$.
Proof: If (\mathfrak{g}, λ) and $(\mathfrak{g}, \tilde{\lambda})$ are isomorphic LSA's, then $\varrho(e)=\mathbf{1}$ implies $\tilde{\varrho}(\psi(e))=$ $\psi \circ \varrho(e) \circ \psi^{-1}=1$, i.e., the LSA $(\mathfrak{g}, \tilde{\lambda})$ has right-identity $\psi(e)$. First we may assume $e_{2}=0$. Otherwise let $\beta \in \mathbb{C}$ be a root of $\beta^{2} e_{2}+2 \beta e_{3}-e_{1}=0$ and apply (a), (c): $\left(\psi_{3} \circ \psi_{1}\right)\left(e_{1}, e_{2}, e_{3}, e_{4}\right)=\left(e_{2}, 0,-\beta e_{2}-e_{3}, e_{4}\right)$.
Case 1: $e_{1}=0$. If $e_{3}=0$ then $\psi_{t}(e)=z$ with $t=1 / e_{4}$ (note that $e \neq 0$). If $e_{3} \neq 0$ then it follows $e_{4} \neq 0$, otherwise $0=\operatorname{tr} \varrho\left(e_{3} h\right)=\operatorname{tr} \varrho(e)=4$, contradiction. Then $\psi_{t}(e)=e_{3} h+z$ with $t=1 / e_{4}$.
Case 2: $\quad e_{1} \neq 0$. We may assume $e_{3}=0$, otherwise $\psi_{1}\left(e_{1}, 0, e_{3}, e_{4}\right)=\left(0,0, e_{3}, e_{4}\right)$ with $\beta=e_{1} / 2 e_{3}$ and we are back to case 1 . Then $\left(\psi_{t} \circ \psi_{2}\right)\left(e_{1}, 0,0, e_{4}\right)=(1,0,0,1)$ with $\delta / \alpha=e_{1}$ and $t=1 / e_{4}$. Here again $e_{4} \neq 0$ by the above argument. Hence $e=x+z$.

The LSA-product is given by 64 structure constants via $\lambda(x), \lambda(y), \lambda(h), \lambda(z)$. The condition $[a, b]=a \cdot b-b \cdot a$ determines 24 structure constants by linear equations. The LSA-property (2) is equivalent to quadratic equations in the structure constants. In general, they are quite difficult to solve. The existence of a non-central right-identity, however, simplifies the matter considerably. We have

$$
\begin{equation*}
[\lambda(z), \operatorname{ad} e]=[\lambda(z), \lambda(e)]=\lambda([z, e])=0 \tag{12}
\end{equation*}
$$

I. Algebras with $\varrho(e)=x+z$:

Using (12) we have $[\lambda(z), \operatorname{ad} x]=0$ and $\varrho(x)+\varrho(z)=\mathbf{1}$. Also $\operatorname{tr} \varrho(s)=0$ for all $s \in \mathfrak{s l}_{2}$. This determines another 25 structure constants by linear equations. The remaining LSA-structure equations then are almost trivial. It is easy to see that they have a unique solution, which is given by the algebra \mathcal{A}_{1} under (i) of Theorem 3.
II. Algebras with $\varrho(e)=\alpha h+z, \alpha \in \mathbb{C}$:

Assume first that $\alpha \neq 0$. Then $\alpha \varrho(h)+\varrho(z)=\mathbf{1}$ and $[\lambda(z), \operatorname{ad} h]=0$ determine 26 structure constants. It is easy to solve the remaining equations and to obtain the
algebra $\mathcal{A}_{2, \alpha}$. It is associative if and only if $\alpha=0$ (which we may include here as well) and the algebra is precisely $M_{n}(\mathbb{C})$. It is clear that two such algebras $\mathcal{A}_{2, \alpha}$ and $\mathcal{A}_{2, \tilde{\alpha}}$ are isomorphic if and only if $\alpha^{2}=\tilde{\alpha}^{2}$: If they are isomorphic then the characteristic polynomials of $\lambda(z)$ and $\tilde{\lambda}(z)$ must be equal. This implies $\alpha^{2}=\tilde{\alpha}^{2}$. On the other hand $\mathcal{A}_{2, \alpha}$ is isomorphic to $\mathcal{A}_{2,-\alpha}$ by ψ_{3}.
III. Algebras with central right-identity $\varrho(e)=z$:

Since $\lambda(z)=\mathbf{1}, \mathfrak{g}_{\lambda}$ is completely reducible as \mathfrak{g}-module and $\lambda(h)$ is semisimple. Because $H^{0}\left(\mathfrak{g}, \mathfrak{g}_{\lambda}\right)=0$, we have only two possibilities for \mathfrak{g}_{λ}. In the first case, \mathfrak{g}_{λ} is irreducible, and in the second case, $\mathfrak{g}_{\lambda}=V \oplus V$, where V (as an $\mathfrak{s l}_{2}$-module) is isomorphic to the 2 -dimensional natural representation of $\mathfrak{s l}_{2}$.

Lemma 10 As matrices, $\lambda(h)$ is similar to $\operatorname{diag}(3,1,-1,-3)$ or to $\operatorname{diag}(1,-1,1,-1)$ and $\lambda(x), \lambda(y)$ are nilpotent.

Proof: If \mathfrak{g}_{λ} is irreducible, it is (as an $\mathfrak{s l}_{2}$-module) a highest weight module with basis v_{i} such that $\lambda(h) v_{i}=(3-2 i) v_{i}, \lambda(x) v_{i}=(4-i) v_{i-1}$ and $\lambda(y) v_{i}=(i+1) v_{i+1}$ for $i=0,1,2,3$. With respect to this basis, $\lambda(h)=\operatorname{diag}(3,1,-1,-3)$ and $\lambda(x), \lambda(y)$ are nilpotent. Note that this basis does not satisfy the LSA-condition (1). In the second case, choose a basis according to $V \oplus V$, where V is a highest weight module for $\mathfrak{s l}_{2}$.

Let $\lambda(x)=\left(a_{i j}\right), \lambda(y)=\left(b_{i j}\right), \lambda(h)=\left(c_{i j}\right)$ with $i, j=1, \ldots, 4$. Using $\lambda(u)-\varrho(u)=$ $\operatorname{ad} u$ we obtain:
$\lambda(y)=\left(\begin{array}{l|l}Y_{1} & Y_{3} \\ \hline Y_{2} & Y_{4}\end{array}\right), \quad \lambda(h)=\left(\begin{array}{l|l}H_{1} & H_{3} \\ \hline H_{2} & H_{4}\end{array}\right), \quad \lambda(z)=\mathbf{1}, \quad$ where
$Y_{1}=\left(\begin{array}{ll}a_{12} & b_{12} \\ a_{22} & b_{22}\end{array}\right), \quad Y_{2}=\left(\begin{array}{cc}a_{23}-1 & b_{32} \\ a_{42} & b_{42}\end{array}\right), \quad Y_{3}=\left(\begin{array}{ll}b_{13} & 0 \\ b_{23} & 1\end{array}\right), \quad Y_{4}=\left(\begin{array}{ll}b_{33} & 0 \\ b_{43} & 0\end{array}\right), \quad H_{1}=\left(\begin{array}{cc}a_{33}+2 & b_{13} \\ a_{23} & b_{23}-2\end{array}\right)$,
$H_{2}=\left(\begin{array}{ll}a_{33} & b_{33} \\ a_{43} & b_{43}\end{array}\right), H_{3}=\left(\begin{array}{ll}c_{13} & 0 \\ c_{23} & 0\end{array}\right), \quad H_{4}=\left(\begin{array}{ll}c_{33} & 1 \\ c_{43} & 0\end{array}\right)$.
Since the trace of $\lambda(x), \lambda(y), \lambda(h)$ is zero, we have $a_{33}=-a_{11}-a_{22}, b_{33}=-a_{12}-b_{22}$ and $c_{33}=-a_{13}-b_{23}$. We simplify H_{3} by applying $\psi_{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)}$ or $\psi_{\left(\begin{array}{ll}1 & 0 \\ \gamma\end{array}\right)}$. This respects $\lambda(z)=\mathbf{1}$ and it is not difficult to see that we can assume $H_{3}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ or $H_{3}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$.

Case 1: \mathfrak{g}_{λ} is irreducible.
Case a: $\quad H_{3}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
The variables of H_{1}, H_{4} satisfy the following LSA-equations:

$$
\begin{align*}
2 a_{13}^{2}+a_{13} b_{23}+a_{23} b_{13}-c_{43} & =0 \tag{a}\\
2 b_{23}^{2}+a_{13} b_{23}+a_{23} b_{13}-c_{43} & =0 \\
a_{23}\left(a_{13}+b_{23}-2\right) & =0 \\
b_{13}\left(a_{13}+b_{23}+2\right) & =0
\end{align*}
$$

From the fact that the characteristic polynomial of $\lambda(h)$ is $(t-3)(t-1)(t+1)(t+3)$ we obtain:

$$
\begin{equation*}
a_{13}^{2}+a_{13} b_{23}+b_{23}^{2}+a_{23} b_{13}+2\left(a_{13}-b_{23}\right)+c_{43}-6=0 \tag{e}
\end{equation*}
$$

It follows that $c_{43}=1,3$ or 9 . We obtain the following solutions:
$H_{1}=\left(\begin{array}{ll}3 & 0 \\ 0 & -3\end{array}\right), \quad H_{4}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ or $H_{1}=\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right), \quad H_{4}=\left(\begin{array}{ll}0 & 1 \\ 9 & 0\end{array}\right)$ or $H_{1}=\left(\begin{array}{cc}3 & 0 \\ a_{23} & -1\end{array}\right), \quad H_{4}=\left(\begin{array}{rr}-2 & 1 \\ 3 & 0\end{array}\right)$ or $H_{1}=\left(\begin{array}{ll}1 & b_{13} \\ 0 & -3\end{array}\right), \quad H_{4}=\left(\begin{array}{ll}2 & 1 \\ 3 & 0\end{array}\right)$.
Then the remaining LSA-equations are very simple: The first solution is not possible, and all other cases are isomorphic. We may also normalize b_{13} to 1 . That means we may take

$$
H_{1}=\left(\begin{array}{rr}
1 & 1 \\
0 & -3
\end{array}\right), \quad H_{4}=\left(\begin{array}{ll}
2 & 1 \\
3 & 0
\end{array}\right)
$$

and we obtain the LSA \mathcal{A}_{3}. Note that \mathcal{A}_{3} is not associative.
Case b: $\quad H_{3}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$.
This case can be reduced to Case a by applying $\psi\left(\begin{array}{cc}1 & 0 \\ \gamma & 1\end{array}\right)$ and $\psi_{\left(\begin{array}{ll}1 & \beta \\ 1 & \delta\end{array}\right)}$.
Case 2: $\quad \mathfrak{g}_{\lambda}=V \oplus V$.
The characteristic polynomial of $\lambda(h)$ now is $(t-1)^{2}(t+1)^{2}$ and equation (e) becomes:

$$
\begin{equation*}
a_{13}^{2}+a_{13} b_{23}+b_{23}^{2}+a_{23} b_{13}+2\left(a_{13}-b_{23}\right)+c_{43}+2=0 \tag{e}
\end{equation*}
$$

Case a: $\quad H_{3}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
The equations $(a), \ldots,(e)$ have solutions
$H_{1}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), \quad H_{4}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \quad$ or $\quad H_{1}=\left(\begin{array}{cc}a_{13}+2 & 0 \\ 0 & a_{13}-2\end{array}\right), \quad H_{4}=\left(\begin{array}{cc}-2 a_{13} & 1 \\ -1 & 0\end{array}\right)$
The first solution leads to the matrix algebra $M_{2}(\mathbb{C})$, and the second one is contradictory.
Case b: $\quad H_{3}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$.
After a short calculation we obtain a contradiction.

The Theorem shows that there is one infinite family of non-isomorphic LSA-structures on $\mathfrak{g l}_{2}(\mathbb{C})$ with non-central right-identity. In fact, all those structures can be obtained as τ-deformations of the matrix algebra structure $M_{2}(\mathbb{C})$: Define τ by $\tau(z)=x$ and zero on $\mathfrak{s l}_{2}(\mathbb{C})$. Then $\mathcal{A}_{\tau}=\mathcal{A}_{1}$ of Theorem 3 below. If τ is defined by $\tau(z)=\alpha h$, we obtain precisely $\mathcal{A}_{2, \alpha}$. Other choices of $\tau(z)$ yield isomorphic algebras.
As for the algebras with two-sided central identity, there are precisely two non-isomorphic ones, \mathcal{A}_{3} and $M_{2}(\mathbb{C})$.
In the general case the following holds:

Theorem 4 The τ-deformations of the matrix algebra \mathcal{A} exhaust all possible LSAstructures on $\mathfrak{g l}_{n}(k)$ for $n>2$. Their isomorphism classes are parametrized by the conjugacy classes of elements $X \in \mathfrak{g l}_{n}(k)$ with $\operatorname{tr}(X)=n$. There is exactly one LSAstructure with a two-sided central identity - the matrix algebra structure.

Proof: This is a consequence of a classification Theorem in [BAU] to be published elsewhere. Here we only present a typical case: Let $\tau(z)=\alpha h$ where h is an element of the Cartan subalgebra of $\mathfrak{g l}_{n}(k)$. We obtain a family of LSA-structures with right-identities $e_{\alpha}=\alpha h+z$. We will determine the isomorphism classes of this family.
Let $\phi=(\mathbf{1}-\tau)^{-1}=(\mathbf{1}+\tau)$. We have $\varrho_{\tau}(\alpha h+z)=\phi \circ(\varrho(\alpha h+z)-\varrho(\alpha h)+(\lambda(\alpha h)-$ $\lambda(\alpha h+z) \circ \tau))=\phi(\varrho(z)-\lambda(z) \circ \tau)=\phi \circ(\mathbf{1}-\tau)=1$. Denote by (\mathfrak{g}, α) and $(\mathfrak{g}, \tilde{\alpha})$ any two τ-deformation algebras. By the above calculation $\varrho\left(e_{\alpha}\right)=\tilde{\varrho}\left(e_{\tilde{\alpha}}\right)=\mathbf{1}$. Assume that both algebras are isomorphic. Then there is a $\psi \in \operatorname{Aut}(\mathfrak{g})$ such that $\tilde{\varrho}\left(\psi\left(e_{\alpha}\right)\right)=$ $\psi \circ \varrho\left(e_{\alpha}\right) \circ \psi^{-1}=\mathbf{1}$, i.e., $\psi\left(e_{\alpha}\right)$ also is a right-identity for $(\mathfrak{g}, \tilde{\alpha})$. It follows

$$
\psi\left(e_{\alpha}\right)=e_{\tilde{\alpha}}, \quad \text { that is } \quad \psi(\alpha h+z)=\tilde{\alpha} h+z
$$

by Corollary 1 . This is only possible for $\tilde{\alpha}^{2}=\alpha^{2}$: The Lie algebra automorphisms of $\mathfrak{g l}_{n}(k)$ are of the form $X \mapsto-X^{t}, X \mapsto A X A^{-1}$ and $s+z \mapsto s+t z$. Given the canonical $\mathfrak{s l}_{n}$-basis, all $\alpha h+z$ are diagonal matrices. Hence conjugation acts as permutation of the eigenvalues and the result follows.

References

[AUM] L. AUSLANDER AND L. MARKUS, Holonomy of flat affinely connected manifolds, Annals of Math. 62 (1955), 139-151.
[AUS] L. AUSLANDER, Simply transitive groups of affine motions, Amer. J. Math. 99 (1977), 809-826.
[BAR] D.W. BARNES, On the cohomology of soluble Lie algebras, Math. Zeitschr. 101 (1967), 343-349.
[BAU] O. BAUES, Flache Strukturen auf GL(n), Dissertation, Düsseldorf 1995.
[BEZ] J.P. BENZECRI, Variétés localement affines, Thèse, Princeton Univ., Princeton, N.J. (1955).
[BEN] Y. BENOIST, Une nilvariété non affine, C.R. Acad. Sci. Paris 315 (1992), 983-986.
[BMP] M.R. BREMNER, R.V. MOODY AND J. PATERA, Tables of dominant weight multiplicities for representations of simple Lie algebras, M. Dekker, New York (1985).
[BGR] D. BURDE AND F. GRUNEWALD, Modules for certain Lie algebras of maximal class, J. pure appl. Algebra, 99 (1995), 239-254.
[BUR] D. BURDE, Left-symmetric structures on simple modular Lie algebras, J. Algebra 169 (1994), 112-138.
[FGH] D. FRIED, W. GOLDMAN AND M.W. HIRSCH, Affine manifolds with nilpotent holonomy, Comment. Math. Helv. 56 (1981), 487-523.
[GH1] W. GOLDMAN AND M.W. HIRSCH, The radiance obstruction and parallel forms on affine manifolds, Trans. Amer. Math. Soc. 286 (1984), 629-649.
[GH2] W. GOLDMAN AND M.W. HIRSCH, Affine manifolds and orbits of algebraic groups, Trans. Amer. Math. Soc. 295 (1986), 175-198.
[HE1] J. HELMSTETTER, Algèbres symétriques à gauche, C.R. Acad. Sc. Paris 272 (1971), 10881091.
[HE2] J. HELMSTETTER, Radical d'une algèbre symétrique a gauche, Ann. Inst. Fourier (Grenoble) 29 (1979), 17-35.
[HUM] J.E. HUMPHREYS, Introduction to Lie algebras and Representation Theory, Springer, New York (1972).
[KIM] H. KIM, Complete left-invariant affine structures on nilpotent Lie groups, J. Differential Geometry 24 (1986), 373-394.
[MI1] J. MILNOR, On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1958), 215-223.
[MI2] J. MILNOR, On fundamental groups of complete affinely flat manifolds, Advances in Math. $\mathbf{2 5}$ (1977), 178-187.
[SAK] M. SATO, T. KIMURA, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math.J. 65 (1977), 1-155.
[SE1] D. SEGAL, The structure of complete left-symmetric algebras, Math. Ann. 293 (1992), 569-578.
[SE2] D. SEGAL, Free left-symmetric algebras and an analogue of the Poincaré-Birkhoff-Witt Theorem, J. Algebra 164 (1994), 750-772.
[SMI] J. SMILLIE, An obstruction to the existence of affine structures, Invent. Math. 64 (1981), 411-415.

