
MODULES FOR CERTAIN LIE ALGEBRAS OF MAXIMAL CLASS

D. Burde
F. Grunewald

Heinrich-Heine-Universität Düsseldorf

0. INTRODUCTION

Let g be a finite-dimensional Lie algebra over a field k of characteristic zero. By Ado’s
Theorem it is known that there exists a faithful g - module M of finite dimension. Hence
we may consider the following integer valued invariant of g :

µ(g) := min{dimk M | M is a faithful g- module}.

Particularly little seems to be known about µ(g) if g is a nilpotent Lie algebra. From a
proof of Ado’s Theorem one easily deduces an exponential bound

µ(g) ≤ c1 · exp(c2 · dimk g)

with some constants c1, c2 > 0 . On the other hand there are classes of Lie algebras g

for which one has the much better bound

µ(g) ≤ dim g + 1.

This holds, for instance, for all nilpotent Lie algebras of class ≤ 3 ( [14] ) or in low
dimensions, for Z - graded Lie algebras, or for those which posses a nonsingular derivation.
Accordingly it is quite difficult to find a nilpotent Lie algebra g with µ(g) > dim g + 1.
The first example of this phenomenon was discovered by Y. Benoist ( [2] ) :
Let a(r, s, t) be the Lie algebra given by the vector space generators e1, e2, e3, . . . and
the relations

[e1, ei] = ei+1

[e2, e3] = e5(1)

[e2, e5] = re7 + se8 + te9

for i = 1, 2, 3, . . . and r, s, t ∈ k .

Define sets A1 := k \ { 9
10 , 1} , A2 := k \ {0, 9

10 , 1, 2, 3} , A := A2 \ A3 ,

where A3 is the set of zeros of (5r2 − 10r + 3)(3r2 − 2r + 3) .
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Benoist has proved:

LEMMA: For r = 9
10 , 1 the Lie algebra a(r, s, t) is infinite-dimensional. If r 6= 9

10 , 1
then a(r, s, t) has dimension 11 , i.e. 0 = e12 = e13 = e14 = . . . and hence is nilpotent.

If r ∈ A2 , then a(r, s, t) is of maximal nilpotency class 10 , i.e. is a filiform Lie algebra.

Two algebras a(r, s, t) and a(r′, s′, t′) are isomorphic iff r′ = r, s′ = αs, t′ = α2t for

some α 6= 0 .

Concerning the invariant µ he has stated that µ(a(−2, 1, t)) > 12.
The proof in his preprint uses a detailed theory of a(−2, 1, t) - modules plus heavy com-
puter calculations.
In this paper we analyse faithful a(r, s, t) -modules for arbitrary r, s, t . We use an easy
combinatorial approach including some computer calculations to establish

THEOREM A: Let s 6= 0 and r ∈ A . Then the Lie algebra a(r, s, t) has no faithful

12 -dimensional module.

Secondly we show

THEOREM B: Let r ∈ A2 and s, t arbitrary. There exists a faithful minimal a(r, s, t) -

module of dimension 22 .

Here a faithful module M is called minimal, if it has no faithful submodule and no faithful
quotient.
Problems of the above kind are particularly important in the theory of affine actions of
connected nilpotent Lie groups G on affine space R

n . The problem here is to determine
which such G act simply transitively and affinely on R

n . This includes the problem,
pointed out by Milnor and Auslander ( [12] , [1] ), whether G always admits a complete
left-invariant locally flat affine structure or not (see [5], [10], [7], [8], [14], [13], [15] ).
It is well known that once G has such an action then the Lie algebra g of G has a
faithful module of dimension dim g+1 . More precisely, g then admits an affine structure,
i.e. a faithful linear representation

g −→ aff(Rn) ⊂ gl(Rn+1)

of Lie algebras, where aff(Rn) =
{(

y a
0 0

)
| y ∈ gl(Rn), a ∈ R

n
}

is the Lie algebra of the
affine automorphism group Aff(Rn) and n = dim g (see [7] , [13] ).
Thus the connected nilpotent Lie groups corresponding to the a(r, s, t) of Theorem A do
not admit such an action.
It should be noted, that the results are contradictory to the articles of Boyom and Nisse
([3] , [11]).
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1. PRELIMINARIES

Let k be a field of characteristic zero and a(r, s, t) as defined in the introduction.
In the following we consider the filiform algebras a(r, s, t) for r ∈ A2 .
They are generated by e1, e2 and have one-dimensional center z =< e11 > . Let

% : a(r, s, t) −→ gl(M)

be an a(r, s, t) - module. We call M a ∆ - module , if the following conditions are
satisfied:

a) M is nilpotent, that is every %(x) is a nilpotent endomorphism,
b) M is faithful,
c) dimk M = 12.

One verifies (see [2]):

LEMMA 1.1 If M is a faithful a(r, s, t) - module of minimal dimension m then one

has m ≥ 11 . If there is a faithful a(r, s, t) - module of dimension 11 or 12 then there

exists also a ∆ - module.

We will prove:

THEOREM 1.2. Let r ∈ A as above and s 6= 0 . Then there are no ∆ - modules for

a(r, s, t) .

As a corollary we obtain Theorem A.

We can compute the Lie brackets for a(r, s, t) explicitly using (1) and the Jacobi identity
successively. In addition to the relations (1) we will also use:

[e2, e9] = − 5r3+r2−7r+3
2r(r−2)

e11(R1)

[e3, e8] = (5r3−7r2+15r−9)(1−r)
2r(r−2)(r−3)

e11(R2)

[e4, e7] = 3(5r2−6r+3)(r−1)2

2r(r−2)(r−3)
e11(R3)

[e5, e6] = 3(3−7r)(r−1)3

2r(r−2)(r−3)
e11(R4)

[e3, e4] = (1 − r)e7 − se8 − te9(R6)

[e3, e5] = (1 − r)e8 − se9 − te10(R7)
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Define

r1 := r, r2 := 2r − 1, r3 :=
5r − 3

3 − r
, r4 :=

r(5r − 3)

3 − r
, r5 :=

5r3 + r2 − 7r + 3

2r(2 − r)
.

REMARK 1.3 For some special values of r, s, t there obviously exist 12 -dimensional
faithful modules: If s = t = 0 there are many modules, e.g. the standard graded and
faithful module Mgr , defined as follows:
Let f1, . . . , f12 be a basis for Mgr . The matrix for the action of e1 is of type {10} (see
Definition 3.1) and the action of e2 is given by

e2.f1 = 0 e2.f7 = rf5

e2.f2 = 0 e2.f8 = f6

e2.f3 = r5f1 e2.f9 = f7

e2.f4 = r4f2 e2.f10 = 0
e2.f5 = r3f3 e2.f11 = −f9

e2.f6 = r2f4 e2.f12 = 2f10

One can also construct modules for all r ∈ A3 (see Remark 4.5 in the case 3r2−2r+3 =
0 ).

REMARK 1.4 If r ∈ A then the following result can be easily read off from our discussion:
For any ∆ - module M the associated a(r, 0, 0) -module M is isomorphic to Mgr

or M∗
gr . The module M is obtained from M by considering the filtration: M 0 =

M, M1 = M, M i+1 = E1M
i + E2M

i−1 and forming the associated graded object.

In Theorem B we prove that there exist faithful a(r, s, t) modules for r ∈ A2 of dimension
22 , which are minimal. Such minimal modules are necessarily cyclic. Note, that there are
different dimensions of minimal faithful a(r, s, t) - modules: For s = t = 0 the module
constructed in Theorem B has dimension 22 , whereas Mgr is of dimension 12 .

2. ∆ – MODULES

Assume that a(r, s, t) possesses a ∆ - module. Then there is a basis f1, f2, . . . , f12 of
M such that the matrices of %(e1) and %(e2) are as follows:

E1 :=




0 λ1 λ12 . . . λ64 λ66

0 0 λ2 . . . λ62 λ65
...

...
...

. . .
...

...
0 0 0 . . . λ10 λ21

0 0 0 . . . 0 λ11

0 0 0 . . . 0 0




and E2 :=




0 x1 x12 . . . x64 x66

0 0 x2 . . . x62 x65
...

...
...

. . .
...

...
0 0 0 . . . x10 x21

0 0 0 . . . 0 x11

0 0 0 . . . 0 0



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where λi is 0 or 1 such that in each row and each column of E1 is at most one

nonzero entry. (It is easy to see that this can be done by base changes of the form
fi 7→ α1if1 + . . . + αiifi . This transformation keeps the upper triangularity of E2 ). The
(i, j) -th coefficient of E1 is λi+11k−k(k−1)/2 ( i < j, k := j−i−1 ). Define the first layer

of E1 to be the first upperdiagonal containing λ1, . . . , λ11 , the second layer containing
λ12, . . . , λ21 and so on. Since M is a Lie module, the relations (1) hold with E1, E2 ,
that is Ei+1 := [E1, Ei] and

[E2, E3] = E5(N1)

[E2, E5] = rE7 + sE8 + tE9(N2)

The relations (R1), . . . , (R7) also hold for Ei and M is faithful if and only if

E11 6= 0 :

The center z of a(r, s, t) is generated by e11 . If % has nonzero kernel then ker %
intersects z nontrivially, hence %(e11) = E11 = 0 .

Let

N1 := [E2, E3] − E5, N2 := [E2, E5] − rE7 − sE8 − tE9, N4 := [E2, E10]

and use the notation Ri for the analoguous matrices corresponding to the (Ri) . Denote
the i, j -th entry of Nk, Rk by Nk

i,j and Rk
i,j respectively.

These relations define a system of polynomial equations in r, s, t, λi, xi over k . To solve
these equations it is indeed necessary to simplify the form of E1 as above. Then the
equations above are easier. Nevertheless one has two problems – the number of cases for
the possible choices of E1 is large; and secondly, one cannot use computer algorithms for
the system of equations for general r , since the equations also contain the large solution
varieties for r = 0, 9

10 , 1, 2, 3 . At this point one should note, that the calculations are
much easier for fixed r .
In order to solve the first problem we need reduction arguments.

3. REDUCTION ARGUMENTS

Let M be a ∆ - module for a(r, s, t) , with basis {fi} and

I1 := {1, . . . , 11}, I2 := {12, . . . , 21}, . . . I10 := {64, 65}, I11 := {66}

N1 := {i ∈ I1 | λi = 0}, N2 := {i ∈ I2 | λi = 1}, . . . , N11 := {i ∈ I11 | λi = 1}.

DEFINITION 3.1 Define the type of M to be

type(M) := {N1 | N2 | . . . | N11}
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If E1 is, for instance, of Jordan type (with respect to the basis fi ) with λi = 1 for
i = 1, . . . , 9 and λi = 0 else, then type(M) = {10, 11} . Empty sets Ni are omitted in
this notation. We set type(M) = ∅ if E1 is of full block Jordan form.
If type(M) = {i11, . . . , i

1
k1

| i21, . . . , i
2
k2

| . . . | i11k11
} and M∗ is the dual module of M ,

then it is a simple matter to check that

type(M∗) = {12 − i11, . . . , 12 − i1k1
| 33 − i21, . . . , 33 − i2k2

| . . . | i11k11
}.

Computation of E11 yields the following formulas: All entries are zero except for

E11
1,11 =

10∑

i=1

ai λi,11 xi , E11
2,12 =

10∑

i=1

ai λ1,i+1 xi+1

E11
1,12 =

10∑

i=1

aiλ1,i+1xi+11 +

10∑

i=1

i−1∑

j=1

ai λi+1,j+1,j λj+11 xi+1 +

10∑

i=1

10∑

j=i+1

ai λj+1,j,i λj+11 xi

where

λi,j :=
12∏

k=1,k 6=i,j

λk, λi,j,k :=
12∏

`=1,`6=i,j,k

λ`

and (a1, a2, . . . , a10) = (−1, 9,−36, 84,−126, 126,−84, 36,−9, 1).

From this it is obvious that M is faithful only for the following types:

(a) ∅
(b) {i} i = 1, ..., 11
(c) {i, 11 | N12−i} i = 1, ..., 9
(d) {1, i | Ni} i = 3, ..., 11
(e) {i, i + 1} i = 1, ..., 10
(f) {i, i + 1 | 11 + i} i = 1, ..., 10
(g) {i, i + 1, j | 11 + i} i = 1, ..., 8 j > i + 2
(h) {i, j, j + 1 | 11 + j} j = 3, ..., 10 i < j − 1
(k) {i, i + 1, i + 2 | N2} i = 1, ..., 9

where in the last case N2 is {11 + i} , {12 + i} or {11 + i, 12 + i} .

We shall reduce this list now

LEMMA 3.2 If a(r, s, t) has a ∆ - module M then we may assume that the type of M
is one of the following:
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(1) ∅
(2) {i} i = 6, ..., 11
(3) {i, i + 1} i = 6, ..., 10
(4) {i, i + 1 | 11 + i} i = 6, ..., 10
(5) {i, i + 1, j | 11 + i} i = 6, 7, 8 j > i + 2
(6) {i, j, j + 1 | 11 + j} j = 6, ..., 10 i < j − 1

Proof: If the module M has type {i, 11 | . . .} for i = 1, ..., 9 then it follows from
the formulas for E11 that the vector space M0 generated by f1, ..., f11 is a faithful
submodule. Adding a trivial 1 -dimensional module we obtain a ∆ - module of type
{10, 11 | . . .} . If M is of type {1, i | . . .} , i = 3, ..., 11 then the dual module is of
type {j, 11 | . . .} , j = 9, ..., 1 . The types {i} , {i, i + 1 | . . .} , {i, i + 1, j | . . .} and
{i, j, j +1 | . . .} are reduced by possibly going to the dual module. Finally one has to look
at the case (k) . The equation N 1

i−1,i+2 means xi xi+1 = 0.
Denote by fi ↔ fi+1 the base change for M which interchanges fi and fi+1 and fixes
the remaining fj .

First case: xi = 0 :
One has 11 + i ∈ N2 , otherwise M is not faithful. We may apply the base change
fi ↔ fi+1 since E2 remains unchanged. Then one obtains a ∆ - module of type
{i − 1, i, i + 2 | . . .} .

Second case: xi+1 = 0 :
If N2 = {11 + i} then applying fi+1 ↔ fi+2 leads to type {i + 1, i + 2 | . . .} . If
N2 = {12 + i} then one obtains type {i, i + 1 | . . .} and the case N2 = {11 + i, 12 + i}
leads to type {i + 1} .

4. PROOF OF THE THEOREMS

Let i ∈ N and xi, xi+1, xi+2, . . . be unknowns. Set

yi+3 := xi+3 − 3 xi+2 + 3 xi+1 − xi.

Define polynomials fi, gi ∈ k[xi, . . . , xi+5] by

fi := xi+3xi+1 − 2xi+3xi + xi+2xi + yi+3

gi := r(yi+3 − 2yi+4 + yi+5) + yixi+5 − xiyi+5

As an example f12 = x15x13 − 2x15x12 + x14x12 + x15 − 3x14 + 3x13 − x12 .

LEMMA 4.1 If r ∈ A1 then the system of equations

f12 = 0, . . . , f18 = 0
g12 = 0, . . . , g16 = 0
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in the unknows x12, . . . , x21 has only the solution x12 = x13 = . . . = x21.

LEMMA 4.2 Let fi, gi be defined as above and r ∈ A . The system of equations

fi = 0 gi = 0
fi+1 = 0 gi+1 = 0
fi+2 = 0 xi+6 = 2xi+5 − 1
fi+3 = 0 xi+5 = (r − 1) + 3xi+4 − 2xi+3

has only the ”standard” solution:

xi+4 = r1, xi+3 = r2, xi+2 = r3, xi+1 = r4, xi = r5 .

Proof of Lemma 4.2 : Substituting the terms for xi+6 and xi+5 one obtains six poly-
nomial equations fi = 0, . . . , gi+1 = 0 denoted by (1), . . . , (6) . The linear combination
(6) − (4) + 3 · (3) + 3 · (2) yields

(r − 3)(xi+4 − 4xi+3 + 5xi+2 − 2xi+1 + 1) = r(3r − 5).

(Hence r 6= 3 ). Using this equation one eliminates xi+1 . By similar procedures, one
eliminates other variables and computes then resultants assuming that we have not the
standard solution. It leads to:

(10r− 9)(3r− 1)(r− 1)8(r− 2)3(r− 3)6(7r2 − 26r + 23)(3r2 − 2r + 3)(5r2 − 10r + 3) = 0

All factors except the two last factors are contradictory to the remaining equations. It
is also easy to see that the last two factors (i.e r ∈ A2 ) lead to one further solution.
(For 3r2 − 2r + 3 this is, for instance, xi = −1, xi+1 = −1, xi+2 = −r, xi+3 =
−(2r − 1), xi+4 = 3(1 − r)/2 and for 5r2 − 10r + 3 one has xi, . . . , xi+3 as before and
xi+4 = 5(1 − 2r)/3. )

Proof of Lemma 4.1: The computations are harder than in the preceding lemma, but
similar.
If yi+3 − 2yi+4 + yi+5 6= 0 , then it follows that there is no solution with r 6= 9

10 , 1 .
Otherwise eliminating and taking resultants gives the following condition :

(xi+2xi+3+5xi+3−5xi+2−1)(5xi+3−5xi+2−2)2(xi+3−xi+2)
3(xi+3+1)2(xi+3−1)xi+2 = 0.

Now one has to deal with these subcases. In fact, the case xi+3 = xi+2 leads to the
general solution.
For r = 9

10 , 1 the equations have many solutions. After cutting out these solution varieties
(by suitable eliminations) one can check the result by computer algorithms.

REMARK 4.3 For s = t = 0 one has

[e2, ei] = ri−4ei+2 i = 5, . . . , 9
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The coefficients ri involved in the above lemma are precisely those from ad e2 for the
graded algebra a(r, 0, 0) .

Let M be a module satisfying (2) given by E1 and E2 . We call M normal if
x1x2 6= 0 .

LEMMA 4.4 Let r ∈ A . There is no normal ∆ - module for a(r, s, t) .

Proof: We will prove the Lemma for types (5) , (6) and {6} , {6, 7 | . . .} (see Lemma
3.2 ) later in the general context.
Hence assume that there exists a normal ∆ - module such that λ1 = . . . = λ6 = 1, λ12 =
. . . = λ16 = 0 and λ22 = . . . = λ66 = 0 .
Set x2 = αx1 with α 6= 0 . We will show α = 1 . The equations

N1
i,i+3

: xi+2 (i + 1 − iα) = αx1 i = 1, . . . , 4

imply z := (α − 2)(2α − 3)(3α − 4)(4α − 5) 6= 0 and xi+2 = (αx1/(i + 1 − iα) . Then
substitute x14 , x15 , x16 in N1

1,5 , N1
2,6 , N1

3,7. It follows N2
1,7 : z(α−1)5(10r−9) =

0 and therefore α = 1.

It is λ7 = 1 . Otherwise the equations N 1
5,8, N1

4,8, N1
5,9 imply x7 = x17 = 0 and

x18 = λ18x1 . If λ18 = 0 then E11 = 0 , hence λ18 = 1, λ8 = 0 .
By the same argument λ9 = 1, λ19 = λ20 = 0 and N1

6,10 : λ10x1 = x10 . Now λ10 = 1
because of faithfulness, so λ21 = 0 and N1

9,12 : λ11x1 = x11 . But then E11 = 0 , a
contradiction.
Now the equations imply x7 = x1 and x17 = 5x13 − 4x12 . In the same way we have
λ8 = 1, x8 = x1 and x18 = 6x13 − 5x12 (use the equations one level higher). Repeating
this step one obtains

λi = 1 i = 1, . . . , 11
λi+11 = 0 i = 1, . . . , 11
xi = x1 i = 1, . . . , 11
xi+11 = (i − 1)x13 − (i − 2)x12 i = 1, . . . , 10

Then E11 = 0 , contradiction.

Proof of Theorem 1.2 :

Assume that there exist a ∆ - module for a(r, s, t) . We prove the result by direct com-
putation for the types listed in Lemma 3.2 . The equations are either linear or quadratic
(like the fi, gi from above). We can always solve the equations, very often by direct
application of Lemma 4.2 . We divide the cases into three parts, depending on how many
zeros are contained in the first layer of E1 (the more zeros the easier the computations).

I. Three zeros in the first layer:
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If λ1 = 1 then the computations are almost trivial. The typical computation goes as
follows:

Type {3, 9, 10 | 20} :

Since M is faithful, the formulas for E11 imply x3 6= 0 , we may assume x3 = 1 .
It follows N1

1,4 : x2 = 2x1 , N1
2,5 : x4 = −x2 , N1

3,5 : 2x5 = x4 , N2
2,7 : 3x6 = −x2 ,

N4
1,12 : 7x11 = −2x1 , R1

1,11 : 3x20 = −x1 , R1
1,10 : x9 = 0 , N1

2,6 : x1x14 = −x15 − 3 ,
N1

3,7 : 3x16 = x15 − 3 . Then R6
1,7 : r = 9/10 , a contradiction.

The types {1, i, i + 1 | i + 11} are a little bit longer. As an example we prove :

Type {1, 10, 11 | 21} :

By faithfulness x1 = 1 . If x11 = 0 then we could apply f11 ↔ f12 to obtain a module
of type {1, 10} . Thus x11 6= 0 and x10 = 0 by N2

7,12 . Then x20 = 0, 2x3 = x2, 4x5 =
6x4 − x2 by R1

1,11, N1
1,4, N2

1,6 .
Case a: x2 6= 0 : It is immediate that 3x4 = 5x6 = 6x7 = 7x8 = 8x9 = 9x21 = x2 . Then
N1

1,5 : x2x12 = 6(x13 − 2x14 − 1) , N1
2,6 : 18x15 = 15x14 − 2x13 − 3 , N1

3,7 : 40x16 =
42x15 − 9x14 − 3 and R6

1,7 : r = 9/10

Case b: x2 = 0 : One has x4 = x6 = x7 = x8 = x9 = 0 and 2x14 = x13 − 1 . The
equations N1

2,7, N1
3,8, N1

4,9, N1
5,10, N2

3,10, R7
2,10 have the solution x15 = −r1, x16 =

−r2, . . . , x19 = −r5 (and x13 = x14 = −1 ) for r ∈ A . This follows (after slight
modification) from Lemma 4.2 . Then N 1

7,12 : (5r2−10r +3)(3r2−2r +3)x21 = 0 . Since
r ∈ A one has x21 = 0 . Now N1

1,6, N1
6,12, N2

4,12 imply (10r − 9)(r − 1)5(r − 2) = 0 , a
contradiction.

II. Two zeros in the first layer:

Most of the computations for the types (4) and (3) can be done simultaneously. Moreover
we need not compute all cases, since some of them can be reduced to others. We show
that for the following types:

Type {10, 11 | 21} , Type {10, 11} :

Assume that there exists a ∆ - module of type {10, 11 | 21} . Then N 4
2,12 : x10x11 = 0 .

If x11 = 0 then we may apply f11 ↔ f12 to obtain a module of type {11} . If x10 = 0
then f10 ↔ f11 is admissible and leads to type {9, 10 | 20} .

Assume that there exists a module of type {10, 11} .
It is faithful iff x10 or x21 is nonzero. By Lemma 4.4 we have x1x2 = 0 . We may
assume x10 = 0, x21 6= 0 and x11 = 1 : The case x10 6= 0, x21 = 0 goes similarly and

if x21 6= 0 , one may apply the base change f̂11 = f11 −
x10

x21
f12 to get x̂10 = 0. x11, x21

can be chosen to be 1 . It follows x2 = . . . = x8 = 0 using elementary equations from
the relations (N1), (N2), (R3), (R4), (R7) . Then
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R7
4,12 : x18 = 3x17 − 2x16 + r − 1, N1

7,12 : x29 = 2x18 − x19 − 1, N1
8,12 : x20 = −x9.

Now we distinguish two cases:

Case a: x1 = 0.

The equations N1
2,7, N1

3,8, N1
4,9, N1

5,10 + N1
5,11, N2

2,9, N2
3,10 + N2

3,11 are precisely the equa-
tions fi, gi of Lemma 4.2 with i = 13 , hence x17 = r, x16 = 2r − 1, . . . , x13 = r5.
⇒ N1

1,6 : x12 = (20r4 − 28r3 + 27r2 − 24r + 9)/r(5r2 − 12r + 3)(r − 2) and N 1
6,10 :

x9(r − 1) = 0 , hence x9 = 0 . Now N2
1,8 : (10r − 9)(r − 1)5 = 0 , a contradiction.

Case b: x1 6= 0 .

Then N2
1,7, R4

1,10, N1
1,5 say x9 = 0, x16 = (3x15 − x14 + 1− r)/2 and x14 = (x13 − 1)/2.

Consider N1
2,7, N1

3,8, N1
4,9, N2

2,9, R5
3,9, R6

2,9 . If x13 = −1 then we may apply Lemma 4.2
to these equations with some modification and the result is ( N 1

2,7, N1
3,8, N1

5,10 ):

x15 = −r, x17 = −r3, x19 = −r5.

But then N1
5,11 : (r − 2)(3r2 − 2r + 3)(5r2 − 10r + 3) = 0 , contradiction.

For x13 6= −1 one can eliminate x15, x17 (using N1
2,7, N1

3,8 ). The resultant of
N1

4,9, N2
2,9 with respect to x13 must be zero, that is

(5r2 − 10r + 3)(3r2 − 2r + 3)(r2 + 4r − 1)(r2 − 4r + 31) = 0 .

But all factors are nonzero: the first two by assumtion, the last two would contradict the
preceding equations.

We also prove:

Type {9, 10 | 20} , Type {9, 10} :

One has N4
1,11 : x9x10 = 0 . If x9 = 0 we are in the case {8, 9 | 19} (apply f9 ↔ f10 ).

Hence x10 = 0, x9 6= 0 . Let λ20 be 1 or 0 . We have x1 = . . . x8 = 0 by elementary

equations and may assume x9 = 1 (Set f̂10 = x−1
9 f10 ). By N1

6,10, N2
4,10 we have x18 =

2x17 − 1 and x17 = 3x16 − 2x15 + r − 1 . The equations N1
1,6, N1

2,7, N1
3,8, N1

4,9, N2
1,8, N2

2,9

are precisely those from Lemma 4.2 , hence x16 = r1, . . . , x12 = r5 . Then R7
4,12 :

(2x20 + λ20x11)(r − 1) = 0 Note that r 6= 1 . ⇒ The only nonzero entry of E11 is
11λ20x11 . Therefore the module is not faithful for λ20 = 0 and we have proved the result
for type {9, 10} .
For λ20 = 1 we get N1

8,12 : 2x21 = x2
11 and x11 6= 0 . Furthermore N1

7,12 :
2x29 = −x19x11 . From N1

5,10, N1
2,8 we may eliminate x26, x27 . Now the equations

N1
1,7, N1

3,9, N1
4,11, N1

6,12, N1
4,10, N2

1,9, N2
3,10, R6

4,12, enforce r = 1 , a contradiction.

REMARK 4.5: The assumption r ∈ A is necessary. In fact, otherwise there are many
∆ - modules of type {10, 11} . We will give an example:
Let 3r2 − 2r + 3 = 0, s = 0 , t arbitrary and the action of E2 as follows:
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e2.f1 = 0

e2.f2 = f1

e2.f3 = 0

e2.f4 = −f2

e2.f5 = −f3

e2.f6 = −rf4

e2.f7 = (1 − 2r)f5

e2.f8 = −tf4 −
5r−3
3−r f6

e2.f9 = −2tf5 −
r−15

3(3−r)f7

e2.f10 = −tf6 + 41r+6
3(4r+3)f8

e2.f11 = 0

e2.f12 = 27t2(51−241r)
4(3485r−3351)

f6 + 9t(51−241r)
4(296r−471)

f8 + f10 + f11

III. At most one zero in the first layer:

Type ∅ :

Assume that there is an ∆ - module of type ∅ . By Lemma 4.4 x1x2 = 0 . We have
x3 = 0 , otherwise N1

1,4 implies x1 = x2 = 0 and

N1
2,5 : x4 = 0, N1

1,5 : x12 = 3, N1
3,6 : x5 = 0, N1

2,6 : x15 = −3, N1
1,6 : x15 =

−3/5, a contradiction.

If x2 6= 0 , we similarly obtain x1 = 0, x4 = . . . = x9 = 0, x14 = −3, x15 = −2, x16 =
−5r/3, x17 = (3 − 10r)/5 by

N1
1,4, N1

2,5, N2
1,6, N2

2,7, N1
6,9, R3

1,10, R4
1,10, N1

1,5, N1
2,6, N2

1,7, N1
3,8.

Then N2
2,8 : 10r − 9 = 0.

Hence x2 = 0. In this way it is easy to see that x1 = . . . = x11 = 0. Consider the
equations

fi = N1
i−11,i−6 i = 12, . . .18

gi = N2
i−11,i−4 i = 12, . . .16

These are exactly the equations from Lemma 3.1 , hence x12 = . . . = x21 . From the
formulas for E11 it is clear that M is faithful iff

x21 − 9x20 + 36x19 − 84x18 + 126x17 − 126x16 + 84x15 − 36x14 + 9x13 − x12 6= 0.

But obviously this condition now is contradicted.

Type {10} :

The condition for faithfulness of such a module is x21 6= 9x20 .

12



Case a: x20 = 0.

We may assume x21 = 1 . From N1
8,12, N2

6,12, N1
6,9, N1

7,10 it follows easily x6 = . . . =

x9 = 0 . Also x2 = . . . = x5 = 0 by R4
2,12, R3

2,12, N1
2,5, N1

3,6 . Applying f̂10 = f10 +βf11

one obtains x̂11 = x11−β . Hence we may assume x11 = 0. With N1
7,12 : x19 = 2x18−1

and N2
5,12 : x18 = r − 1 + 3x17 − 2x16 we are lead once more to the standard system

of Lemma 4.2 ( i = 13, N1
2,7, . . . , N

2
3,10, x17 = r, x16 = r2, . . . , x13 = r5 ) and N1

1,5 :
x1(5r2 − 10r + 3)(3r2 − 2r + 3) = 0 enforces x1 = 0 . The equations N1

1,6, N2
1,8 are

polynomials in r and x12 , which must be zero. Hence their resultant with respect to
x12 is also zero. The condition is (10r − 9)(r − 1)5(r − 2) = 0 , a contradiction.

Case b: x20 6= 0.

If x21 = 0 then x1 = . . . x8 = 0 and x18 = 3, x17 = 2, x15 = (10r − 3)/5 by
N4

1,12, R1
2,12, R1

1,11, N1
3,6, R7

5,12, R7
4,11, N1

8,12, N1
7,11 and N1

7,12, N1
6,12, N1

4,8 . Then N2
4,11 :

10r = 9 . Hence we may assume x21 = 2, x11 = 0 (apply f̂10 = f10 + βf11 ). It fol-
lows easily x1 = . . . = x8 = 0 and then x18 = 2x17 − 1, x17 = (r − 1) + 3x16 − x15

from N1
6,11, N2

4,11 . Now we are ready to apply the standard system of Lemma 4.2
( ⇒ x16 = r, x15 = 2r − 1, . . . , x12 = r5 ). We obtain x19 = 0, x20 = −1 by N1

5,10, N2
7,12

and

N1
3,9 : x29 = (2x28 − 5x27)/2

N1
4,10 : x28 = (2rx27 + 3x26 − 4x27)/3(r − 1)

N1
5,11 : x27 = (11r − 10)(r − 1) = 0

If r = 10/11 then s = 0, t = 0 by N 2
3,12 . Otherwise x27 = 0 and

N2
4,12 : x26 = (7x25 − 8s)/7

N1
3,11 : x25(32rs − 7rx24 − 48s + 21x24)/14r

N2
3,10 : s(r − 1) = 0

This implies s = 0 (we may also deduce t = 0 ), which we have excluded. For s = t = 0
however the remainig equations can be fulfilled, there are several modules of type {10} ,
see Remark 1.3 .

Type {11} :

Assume that there is a ∆ - module of type {11} . The nonzero coefficients of E11 are

x10, x21 and
∑10

i=1 aixi . We have x11 = 0 by N3
1,12 . The case x21 6= 0 reduces to

the case of type {10, 11} ; the computation is very similar. So let us assume x21 = 0 .
Moreover x1x2 = 0 by Lemma 4.4 . It is easy to see that x4 = . . . = x8 = 0 .

Case a: x10 6= 0.

It follows x2 = 0, x19 = 2x18 − 1, x18 = 3x17 − 2x16 + r− 1 by N4
1,11, N1

7,11, N2
5,11 . This

leads to the ”standard system” of Lemma 4.2 (with N 1
2,7, N1

3,8, N1
4,8, N1

5,10, N2
2,9, N2

3,10 and
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i = 13 ), hence x17 = r1, x16 = r2, . . . , x13 = r5 . N1
1,5 : x1(5r2−10r+3)(3r2−2r+3) =

0, ⇒ x1 = 0 . By N1
1,6, N2

1,8 we have (10r−9)(r−1)5 just as in case a of type {10, 11} .

Case b: x10 = 0 .

One has x2 = 0 , otherwise N1
2,6, N2

2,8, N1
1,5, N2

1,7 would imply N1
3,8 : 10r − 9 = 0 .

The module is faithful iff x1 6= 0. Now the situation is the same as in case b: of type
{10, 11} , i.e x13 = −1, x17 = −r3, x18 = −r4 and x19 = −r5 as before. After replacing
x20 by 20r4 − 28r3 + 27r2 − 24r + 9/(2 − r)(5r2 − 12r + 3) ( N1

6,11 ) we get N2
4,11 :

x1(10r − 9)(r − 1)5 = 0 , a contradiction.

The remainig cases can be proved by the same methods. They are shorter than the above
types. As a final example of such a computation we will prove

Type {6} :

Assume that there exists a such a module. From N 3
1,12 one has x6 = 0 . E11 is zero iff

x17 = x16.

Case a: x16 6= 0.

Then we may assume x16 = 1 and x5 = 0 (set f̂6 := f6 + αf7 and f̂i = fi for i 6= 6 ,
by a diagonal base change one obtains x16 = 1).
Now N1

3,7, N1
3,6 mean x3 = x4 = 0 and N1

1,4, R6
1,7 say x1 = x2 = 0 . The module

is faithful iff x17 6= 1 . N1
4,8, R7

2,9, N2
4,10 imply x7 = x8 = x9 = 0 and R4

1,11, R1
2,12 :

x10 = x11 = 0 . It is x17 6= 0 , otherwise x14 = 3, x13 = 2, x18 = −3 by N1
3,8, N1

2,7, N1
4,9

and then N2
2,9 : 10r = 9 . Substituting x14 = 2x13 − 1 and x20 = (x19 − 1)/2

(N1
2,7, N

1
6,11) yields the following system of equations:

N1
3,8 : x17(x15 − 4x13 + 3) + 2(x13 − 2) = 0

N1
5,10 : x17(x19 − x15 + 6) − 2(x19 + 2) = 0

N2
2,9 : x17(5r − 3x13 + x15 − 3) − 10r + 3x13 + 3 = 0

N2
3,10 : x17(10r + x19 − 6x13 + 3) − 10r − 3x19 + 2x13 − 1 = 0

N2
4,11 : x17(20r + 3x19 − 2x15 − 3) − 10r − 3x19 + 3 = 0

Eliminating quadratic terms one easily gets (10r − 9)(x17 − 1) = 0 , a contradiction.

Case b: x16 = 0. This case is reduced to case a: by duality.

We will now prove Theorem B:
The following Birkhoff Embedding Theorem is a special case of Ado’s Theorem:

THEOREM: Let g be a nilpotent Lie algebra over k . Then there is a finite-dimensional

vectorspace V together with a faithful representation % : g −→ gl(V ) , such that %(X)
is nilpotent for all X ∈ g.
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The construction goes as follows (see [6]):
Let g be k -step nilpotent, g(1) = g and g(i+1) = [g, g(i)]. Choose a basis X1, . . . , Xn

of g such that the first n1 elements span g(k) , the first n2 elements span g(k−1) and
so on. We will construct V as a quotient of the universal enveloping algebra U(g) of
g . By the Poincaré-Birkhoff-Witt Theorem the ordered monomials

Xα = Xα1

1 . . .Xαn

n , α = (α1, . . . αn) ∈ Z
n
+

form a basis for U(g) . Let T =
∑

α cαXα be an element of U(g) (with only finitely
many nonzero cα ). Define an order function as follows:

ord(Xj) := max{m : Xj ∈ g(m)} ord(Xα) :=
∑n

j=1 αj ord(Xj)

ord(T ) := min{ord(Xα) : cα 6= 0} ord(1U(g)) = 0, ord(0) = ∞

One can show that the order function satisfies:

ord(T1 + · · ·+ Tj) ≥ min{ord(T1), . . . , ord(Tj)}

ord(T1 . . . Tj) ≥ ord(T1) + · · ·+ ord(Tj)

Now let

Um(g) = {T ∈ U(g) : ord(T ) ≥ m}

From the above it is clear that Um(g) is an ideal of U(g) having finite codimension.
Define

V = U(g)/Um(g).

Choose a basis {T1, . . . , Tl} of V such that T1, . . . , Tl1 span Um−1(g)/Um(g) ,
T1, . . . , Tl2 span Um−2(g)/Um(g) and so on. Then it is easy to check that the desired
representation of g is obtained by setting

%(X)(Tj) = XTj (mod Um(g)).

If m > k then %(X) · 1U(g) = X 6= 0 for all X ∈ g , so that % is faithful.

Now let g = a(r, s, t) : Take {X1, . . . , Xn} = {e11, . . . , e1}, eα = eα11

11 · · · eα1

1 . One has
ord(e1) = ord(e2) = 1 and ord(ei) = i − 1 for i > 2 . The module V described above
has the vector space basis ( k = 10 , choose m = 11 ):

{eα11

11 · · · eα1

1 | 10α11 + 9α10 + · · ·+ 2α3 + α2 + α1 ≤ 10}

The elements ei of g act on V by eiej = [ei, ej ] + ejei for i < j (otherwise the
monomial eiej is already in the right order, i.e is element of V ). We may factor out
any proper submodule of V not containing e11 to obtain a faithful g -module of smaller
dimension. It is preferable to factor out only monomials, not linear combinations of mono-
mials. If one factors out as many monomials as possible it is not difficult to see that one
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is led to a quotient module V̂ of V with the following remainig monomials as a vector
space base for V̂ :

{e11, e10, e9, e2
5, e8, e5e4, e4e

2
3, e7, e5e3, e5e

2
2, e2

4, e4e3e2, e4e
3
2, e3

3, e2
3e

2
2, e6,

e5e2, e4e3, e4e
2
2, e2

3e2, e3e
3
2, e5

2, e5, e4e2, e2
3, e3e

2
2, e4

2, e4, e3e2, e3
2, e3, e2

2, e2, 1}

We have constructed a faithful a(r, s, t) - module V̂ of dimension 34 ; the action of
e1, e2 can be written down explicitly. This module has a seven-dimensional center Z
containing e11 . Factor out a subspace of Z complementary to the vector space generated
by e11 . The quotient is of dimension 28 and has a four-dimensional center. Repeat the
forgoing step to obtain a faithful module which has also a four-dimensional center. The
next quotient W finally has one-dimensional center e11 . Every proper submodule of W
intersects this center nontrivially, i.e contains e11 .
The computation of the centers is much simpler for fixed r (take for example r = 1/2
or r = −2 ). The dimension of the centers does not depend on r, s, t as long as r ∈ A .
The dimension of W is 34 − 6 − 3 − 3 = 22 and W is cyclic, generated by 1 .
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