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0. INTRODUCTION

Let V be a vector space over an arbitrary field k . Consider a bilinear, distributive
product V × V → V , denoted (x, y) 7→ x.y , which gives A = (V, .) the structure of
a nonassociative algebra over k .
Then A is said to be a left-symmetric algebra, or Koszul-Vinberg algebra, if

x.(y.z)− (x.y).z = y.(x.z)− (y.x).z (0.1)

for all x, y, z in A . If A is a left-symmetric algebra, then the operation

[x, y] = x.y − y.x (0.2)

is skew-symmetric and satisfies the Jacobi identity. Thus every left-symmetric algebra has
an underlying Lie algebra structure. Conversely, if g is a Lie algebra over k , then a
left-symmetric operation satisfying (0.1), (0.2) on the vector space of g will be called a
compatible left-symmetric algebra structure on g , or a left-symmetric structure on g ,
in short.
Left-symmetric structures on Lie algebras arise in the theory of affine manifolds (see below
for further explanation, k = K being the field of real or complex numbers ). One asks
whether the Lie algebra of a simply connected Lie group over K admits left-symmetric
structures. In fact, the problem of finding those Lie algebras over K which admit left-
symmetric structures is still unsolved (cf. Auslander [2], Kim [23], Medina [27], Milnor
[26]). It is conjectured that every nilpotent Lie algebra admits leftsymmetric structures
over K . Furthermore one is interested in the classification of left-symmetric structures
over K . This has been done so far only in dimensions 2, 3 and 4 (cf. Kuiper [24],
Fried and Goldman [12] and Kim [23]), but in the last case only for nilpotent Lie algebras.

1. It will be assumed in the following that all Lie algebras and Lie modules are finite-di-
mensional over k .

2. The purpose of this paper is to investigate left-symmetric structures on simple Lie
algebras over an arbitrary field k .

It is known that every Lie algebra g over K with [g, g] = g does not admit any left-
symmetric structure (Helmstetter [14], p.31). Furthermore, if g is semisimple over a
field k of characteristic 0, it follows from Whitehead’s lemma (for the first Lie algebra
cohomology with coefficients in Lie modules) that g does not admit any left-symmetric
structure (see Proposition 1.2.8.) .
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The assumption char(k) = 0 , however, is essential for the validity of these results. If k
is a modular field, then Whitehead’s lemma is no longer true, and there are even classical
simple Lie algebras which admit left-symmetric structures. Consider the following example:
Let k be a field of characteristic 3.

Let g := kx⊕ ky ⊕ kz = sl(2, k) and [x, y] = z, [z, x] = 2x, [z, y] = −2y .

It is easy to see, that the following product defines left-symmetric structures on g (de-
pending on γ ∈ k× ) :

x.x = 0
x.y = −(1 + γ−1)z
x.z = γx

y.x = (1− γ−1)z
y.y = 0
y.z = γy

z.x = (γ − 1)x
z.y = (γ + 1)y
z.z = γz

There are further left-symmetric structures on sl(2, k) (they are classified in [7], see Re-
mark 2.1.2.), but only in characteristic 3. In fact, sl(2, k) admits left-symmetric structures
if and only if char(k) = 3 .

We consider now left-symmetric structures on finite-dimensional simple modular Lie alge-
bras. The known finite-dimensional simple Lie algebras over k are of two types: classical
type (analogues over k of finite-dimensional simple Lie algebras over C ) and Cartan type
(finite-dimensional analogues over k of the infinite Lie algebras of Cartan [8] over C ,
see [22], [35]).
Let k be algebraically closed of characteristic p > 7 . Then Block and Wilson [5] proved,
that every finite-dimensional restricted Lie algebra over k is of classical or Cartan type.
It is conjectured that every nonclassical finite-dimensional simple Lie algebra over k is of
Cartan type. Recently H. Strade ([29], [30], [31]) made much progress towards the general
solution.

Let g be the Lie algebra of a connected semisimple algebraic group G of type
Al (l ≥ 1), Bl (l ≥ 3), Cl (l ≥ 2), Dl (l ≥ 4), G2, F4, E6, E7, E8 . In this paper we give
the proof of the following main theorem:

THEOREM 2.2.2. Let g be a classical Lie algebra of the above type and assume

(a) p > 2, if g is of type Al, Bl, Cl, Dl, E7

(b) p > 3, if g is of type G2, F4, E6

(c) p 6 | l + 1, if g is of type Al

If p 6 | dim g then g does not admit any left-symmetric structure.

The proof is based on the computation of the algebraic group cohomology H1(G1,M)
vanishing for certain G1-modules M of small dimension ( G1 denotes the first Frobenius
kernel of G and k is algebraically closed of characteristic p > 0 ). The results used
here are due to J.C. Jantzen [18].
More can be proved for restricted structures (cf. Proposition 2.3.5.).
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In section 3, we show that the result of Theorem 2.2.2. cannot be extended to nonrestricted
simple Lie algebras g of Cartan type: This follows from the existence of certain left-
symmetric structures (so-called adjoint structures, see Definition 1.2.4.) on g , which are
in a one-to-one correspondence with nonsingular derivations of g .
The class of simple Lie algebras over k possessing nonsingular derivations does not contain
the restricted Lie algebras, since any restrictable Lie algebra which possesses a nonsingular
derivation is nilpotent (cf. Winter [36], Cor. 4, p. 140. In characteristic 0 this has been
proved by Jacobson [17].)
In the nonrestricted case, however, there are for all p > 0 simple Lie algebras over any
field of characteristic p > 0 possessing nonsingular derivations, e.g. a simple Lie algebra
L(G, δ, f) of R. Block [3] of dimension pn − 1 .
Consequently an L(G, δ, f) admits adjoint left-symmetric structures for all characteristics
p > 0 .
The automorphism group of the left-symmetric algebras corresponding to the adjoint struc-
ture on g (induced by a nonsingular derivation D ) can be described as the subgroup of
Aut(g) which consists of the Lie automorphisms ϕ with Dϕ = rϕD , where rdim g = 1
(cf. Proposition 1.2.5.). Thus it may be possible to realize interesting finite groups as
automorphism groups of left-symmetric algebras.
Finally, some additional results are stated for p = 2 ( cf. Proposition 3.2.2. and Example
2.3.6. ).

We give a brief description of the ties between left-symmetric structures and affine mani-
folds.
Let K be the field of real or complex numbers. Left-symmetric algebras were first in-
troduced in the theory of convex homogeneous cones. E.B. Vinberg [34] established a
one-to-one correspondence between all convex homogeneous cones and so-called compact
left-symmetric algebras (Koecher used semisimple Jordan algebras for selfadjoint homoge-
neous cones). There is a large literature on left-symmetric algebras (see [7], [13], [14], [23],
[27], [34] and the references cited there).
Let M = Mn be a manifold with coordinate atlas such that the coordinate changes are
locally affine. Such a structure is called affine structure on M , and M is called affine
manifold. M is smooth. There is a natural correspondence between affine structures on
M and flat torsionfree affine connections on M .
In the context of affine manifolds it is natural to ask which Lie groups G admit complete
left-invariant affine structures. Let g be the Lie algebra of left-invariant vector fields on
G :
There is an isomorphism between the categories of left-symmetric structures on g and
simply connected Lie groups G with left-invariant structures (Goldman [13]).
Under this isomorphism the associative structures correspond to bi-invariant affine struc-
tures.
Let ∇ be the flat torsionfree affine connection on G corresponding to a given left-
invariant affine structure. Since the connection is left-invariant, for any two left-invariant
vector fields X,Y ∈ g , the covariant derivative ∇XY ∈ g is left-invariant. It follows that
covariant differentiation (X,Y ) 7→ ∇XY defines a bilinear multiplication g × g → g ,
denoted (X,Y ) 7→ XY in short. Since ∇ is locally flat, the condition that ∇ has
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zero torsion is XY − Y X = [X,Y ] and the condition that ∇ has zero curvature is
X(Y Z) − Y (XZ) = (XY − Y X)Z , which is equivalent to the left-symmetric property
(0.1). This yields the left-symmetric structure on g . Conversely one associates to a
left-symmetric structure on g a left-invariant affine structure on G (cf. [23], [27]).

I am indebted to F. Grunewald and to J.C. Jantzen for many helpful discussions.

1. PRELIMINARIES

1.1. Ordinary and restricted Lie algebra cohomology

Let g be a Lie algebra over k with universal enveloping algebra U(g) and V be a
g-module (also regarded as left U(g)-module).
The ordinary Lie algebra cohomology with coefficients in g-modules V usually is defined
by means of the chain complex Homk(Λ

•g, V ) , where the n -cochains are interpreted as
k -linear alternating n -multilinear functions f : g× . . .× g→ V . The coboundary oper-
ator dn satisfies dn◦dn−1 = 0 and thus it makes sense to define the n -th cohomology
group of g by Hn(g, V ) := ker dn/ im dn−1 .
The spaces ker dn and imdn−1 are called the space of n -cocycles and n -coboundaries
respectively. From the explicit definition of dn (cf. [16], p.94) it follows that the 1-cocycle
condition is

f([x, y]) = x.f(y)− y.f(x) ∀ x, y ∈ g(1)

while the 1-coboundary condition is that

f(x) = x.e for some e ∈ V ,(2)

where the dot denotes the module product.

Lie algebra cohomology can be handled without cocycles and coboundaries as follows: One
starts with a projective resolution of k , regarded as a trivial U(g)-module

0←− k
ε
←− X0

∂1←− X1
∂2←− . . .

With this resolution and with a given g -module V one may associate the additive groups
Vi = HomU(g)(Xi, V ) . Composition with the maps ∂i gives rise to a complex

V0
δ0−→ V1

δ1−→ V2
δ2−→ . . . , i.e. δn◦δn−1 = 0 for all n .

It follows from general principles (cf. [9], [10]) that the groups associated to this complex
are independent of the particular projective resolution chosen.
The groups Hn(g, V ) defined in terms of cocycles and coboundaries can be identified
with those obtained by this latter process from a particular free resolution of k as U(g)-
module. Whenever one has an associative algebra U over k and an augmentation ε :
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U → k which is a homomorphism of U -modules one can use the above procedure (taking
X0 := U) to define cohomology groups Hn(U, V ) with coefficients in left U -modules.
One has Hn(g, V ) = Hn(U(g), V ) and Hn(g, V ) = Extn

g
(k, V ) .

Now let k be a field of characteristic p > 0 and (g, [p]) a restricted Lie algebra with
restricted universal enveloping algebra u(g) (cf. Strade, Farnsteiner [32] for definitions).
One defines the restricted cohomology groups of (g, [p]) with coefficients in a restricted
g-module M by means of

Hn
∗ (g,M) := Hn(u(g),M) .

Interpretations of Hn
∗ (g,M) have been first given by Hochschild. The Hn

∗ (g,M) can be
interpreted as the extension groups of the trivial g-module k and of M in the category
of all restricted g-modules, cf. Jantzen [20].
The study of restricted Lie algebra cohomology has proved more useful than the ordinary
one : Since the Lie algebra g = Lie(G) of an algebraic group G is restricted, methods
from representation theory of algebraic groups are available. In particular, one can use
these techniques to compute the Hochschild cohomology groups of algebraic groups with
coefficients in rational G-modules (see [18], [19] and section 1.3.):
The representation theory of G1 , the first Frobenius kernel of G , is equivalent to that
of Lie(G) as a restricted Lie algebra ([19], p.150), i.e.,

(1) The Hochschild cohomology groups Hn(G1,M) of a G1-module M and the re-
stricted cohomology of the corresponding g-module coincide.

If g is restricted , the ordinary cohomology is trivial for nonrestricted simple g-modules:

LEMMA 1.1.1 ([11], p. 131). Let g be a restricted Lie algebra and suppose that an
irreducible g-module V is not restricted. Then H•(g, V ) is trivial.

In order to prove Theorem 2.2.2. it is necessary to compute H1(g, V ) for certain left-
symmetric g-modules, which are defined in 1.2. . We need the following (cf. [19], I.9.19):
(2) The first Lie algebra cohomology H1(g, E) coincides with the first restricted Lie

algebra cohomology H1
∗ (g, E) for simple restricted modules (except for the trivial

module in case [g, g] 6= g ).

1.2. Left-symmetric g -modules

Let (x, y) 7→ x.y be a left-symmetric structure on g over k . Denote by λ : g →
End(g) , x 7→ λx (resp. %, x 7→ %x ) the operation of left- (resp. right-) multiplication,
where λx(y) = x.y and %x(y) = y.x .
One has λx − %x = ad x ∀ x ∈ g by (0.2). Thus (0.1) is equivalent to

λ[x,y] = [λx, λy] ∀ x, y ∈ g (1.2.1)

i.e. λ : g→ End(g) is a representation of g .

5



Denote by Mλ the corresponding g-module (the module product is given by the left-
symmetric product); Mλ and g are identical as vector spaces.
The identity map I : g → Mλ defines a 1-cocycle of the Lie algebra g with coefficients
in the g-module Mλ :

I(x).y − I(y).x = I([x, y]) , i.e. I ∈ Z1(g,M)

DEFINITION 1.2.1. Let M be a g-module structure on g such that the identity map
I : g→M is in Z1(g,M) . Then M is called a left-symmetric g-module.

Left-symmetric structures on g correspond bijectively to left-symmetric g-modules Mλ.
But left-symmetry of g-modules is not an invariant under g-module isomorphisms.
More precisely the following holds:

LEMMA 1.2.2. Let Mλ and Mθ be g-module structures on g and ψ : Mλ → Mθ

be a g-module isomorphism. Then one has:

Mλ is left-symmetric ⇐⇒ ψ ∈ Z1(g,Mθ) (1.2.2)

Proof: One has the implication

φ ∈ Z1(g,Mλ) =⇒ ψφ ∈ Z1(g,Mθ) ∀ φ ∈ End(g) (1.2.3)

since ψ is a g-module homomorphism, and also

φ ∈ Z1(g,Mθ) =⇒ ψ−1φ ∈ Z1(g,Mλ) ∀ φ ∈ End(g) (1.2.4)

If Mλ is left-symmetric, i.e. I ∈ Z1(g,Mλ) , then (1.2.3) implies ψ ∈ Z1(g,Mθ) .
Conversely, using (1.2.4), ψ ∈ Z1(g,Mθ) implies I = ψ−1ψ ∈ Z1(g,Mλ) , hence Mλ

is left-symmetric.

If g possesses nonsingular 1-cocycles in Mθ , this allows one to construct left-symmetric
structures on g :

COROLLARY 1.2.3. Let Mθ be a g-module structure on g and assume that there
exists an invertible ψ ∈ Z1(g,Mθ) . Define λx by

λx = ψ−1θx ψ ∀ x ∈ g (1.2.5)

Then Mλ is a left-symmetric g-module and ψ : Mλ → Mθ is a g-module isomorphism.

Proof: Condition (1.2.5) is equivalent to ψ(x.y) = x∗ψ(y) ∀x, y ∈ g , where
λx(y) = x.y and θx(y) = x∗y . Hence ψ is a g-module isomorphism.
But ψ ∈ Z1(g,Mθ) implies I ∈ Z1(g,Mλ) by (1.2.4), hence Mλ is left-symmetric by
(1.2.2).

Consider the special case where Mθ = Mad :
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DEFINITION 1.2.4. A left-symmetric structure on g is called adjoint structure, if
the corresponding left-symmetric module Mλ is isomorphic to Mad , the module of the
adjoint representation of g .

Note that the module Mad itself is not left-symmetric (assuming that g is non-abelian),
since [x, y] = λx(y)− λy(x) = [x, y]− [y, x] = 2[x, y] is impossible. One has

PROPOSITION 1.2.5. A Lie algebra g admits adjoint structures AD if and only if g

possesses a nonsingular derivation D . In this case the left-symmetric structure on g is
given by

x.y = D−1([x,D(y)]) ∀ x, y ∈ g, (1.2.6)

D : Mλ → Mad is a g-module isomorphism and λx(y) = x.y .
If g is simple then the automorphism group of the left-symmetric algebra AD is the
subgroup of Aut(g) consisting of the Lie automorphisms ϕ with ϕD = rDϕ , where
rdim g = 1 .

Proof: Adjoint left-symmetric structures (with g-module Mλ ) correspond to g-module
isomorphisms ψ : Mλ → Mad .
Since Mλ is left-symmetric, Lemma 1.2.2. implies ψ ∈ Z1(g,Mad) . The cocycle condi-
tion for ψ is ψ([a, b]) = [a, ψ(b)]− [b, ψ(a)] , thus one has Z1(g,Mad) = Der(g) and ψ
is an invertible derivation of g .
Conversely, by Corollary 1.2.3., any nonsingular derivation D gives rise to an adjoint
left-symmetric structure (take θ = ad ) and (1.2.5) implies (1.2.6).
Let (A, λ) be a left-symmetric algebra with underlying Lie algebra g (and vector space
V of dimension n ). By definition

(i) Aut(A) = {ϕ ∈ GL(V ) | ϕλxϕ
−1 = λϕ(x) ∀ x ∈ V }

(ii) Aut(g) = {ϕ ∈ GL(V ) | ϕ ad xϕ−1 = ad ϕ(x) ∀ x ∈ V }

(iii) Aut(A) is a subgroup of Aut(g) .

Since [x, y] = x.y − y.x, ϕ ∈ Aut(A) satisfies ϕ([x, y]) = ϕ(x.y − y.x) = ϕ(x).ϕ(y) −
ϕ(y).ϕ(x) = [ϕ(x), ϕ(y)]. So (iii) follows.
Now let ψ ∈ Aut (AD) , i.e. ψλxψ

−1 = λψ(x) ∀x , where λx = D−1ad xD and
ad x = ψ−1

◦ adψ(x)◦ψ by (iii) and (ii). These equations combined yield

F ◦ adx = adx◦F ∀ x ∈ g ; F := ψ−1DψD−1 .

Since g is simple, the adjoint representation ad : g→ gl(g) is irreducible and thus Schur’s
lemma implies that F = r · id |V . But det(F ) = 1 and so rn = 1, ψD = rDψ .

Let (g, [p]) be a restricted Lie algebra over a field k of characteristic p > 0 .

DEFINITION 1.2.6. A left-symmetric structure on (g, [p]) is called restricted, if the
corresponding g-module Mλ is a restricted module, i.e., λ

x[p]
= λpx ∀ x ∈ g.
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Restricted structures remain restricted under left-symmetric algebra isomorphisms, if g

has trivial center (see [7]).
The next results relate left-symmetric structures on g to the first Lie algebra cohomology:

LEMMA 1.2.7. Let g be any nonzero Lie algebra over a field of characteristic p ≥ 0
such that [g, g] = g . Assume that g admits a left-symmetric structure Mλ .

Then

(1) tr λx = 0 and tr %nx = 0 ∀ x ∈ g and n ∈ N .
(2) %x is nilpotent ∀ x ∈ g , if p = 0 or p > dim g .
(3) If there is an e ∈ g with λe = id or %e = id then p > 0 and p | dim g .
(4) If g is semisimple (i.e., the only abelian ideal h in g is h = 0 ) then there is no

e ∈ g with λe = id .

Proof: tr λ[x,y] = tr([λx, λy]) = 0 and [g, g] = g imply tr λx = 0 ∀ x ∈ g .

Similarly %[x,y] = λ[x,y] − ad [x, y] = [λx, λy]− [ad x, ad y] gives tr %x = 0 ∀ x.

(0.1) and (0.2) imply
%y.z − %z ◦ %y = [λy, %z] ∀ y, z ∈ g. (1.2.7)

Putting y = z = x one has %2
x = %x.x− [λx, %x] and hence tr %2

x = tr %x.x = 0 ∀ x ∈ g.
By induction (use tr(A[B,C]) = tr([A,B]C) for endomorphisms A,B,C ) one obtains
tr %nx = 0 ∀ x ∈ g . This proves (1).
Let A ∈ Mn(k) be a matrix with tr(Ak) = 0 for k = 1, . . . , n . Then A is nilpotent
(cf. [16] p.43) if p = 0 . This is not true in general for p > 0 . (Take A = Ip ):

The coefficients of the characteristic polynomial
∑n

j=0(−1)jωj(A)tn−j of A satisfy the
following identity:

j
∑

i=1

(−1)i+1 tr(Ai)ωj−i(A) = j · ωj(A)

where ω0(A) = 1 and ωn+j(A) = 0 ∀ j ∈ N. If p > n this implies ωj(A) = 0 ∀ j ≥ 1
and hence A has characteristic polynomial tn .
(2) follows with A = %x and (1). By (1) one has 0 = tr λe = tr id|g = dim g or
0 = tr %e = dim g. So (3) follows.
Assume that there is an e ∈ g with λe = id|g . Then h = Ker (λ) is a Lie ideal,
since λ is a representation of g . One has [h, h] = 0 and thus h = 0 , since g is
semisimple; λ[e,x] = [λe, λx] = [id, λx] = 0 implies [e, g] ⊂ h = 0 , thus e ∈ Z(g) .
Likewise the center is zero, hence λe = 0 which is a contradiction.

PROPOSITION 1.2.8. Let g be a Lie algebra over k such that [g, g] = g and assume
that g admits a left-symmetric structure Mλ . Then H1(g,Mλ) = 0 implies
p > 0 and p | dim g .

Proof: Assume H1(g,Mλ) = 0 . Since I ∈ Z1(g,Mλ) , the identity map is a 1-
coboundary (see 1.1. (1) and (2)), i.e. there is an e ∈ g such that %e = id|g .
By Lemma 1.2.7.(3), one has p > 0 and p | dim g .
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1.3. H1(G1,M) for simple G1-modules M

Let G be a connected semisimple algebraic group over an algebraically closed field k of
prime characteristic p > 0 . Assume that G is almost simple and simple connected. Let
G1 be the first Frobenius kernel of G and T a maximal torus in G .
Denote the group of characters of T by X(T ) and the root system by R ⊂ X(T ) .
Choose a set of positive roots R+ in R . Denote the simple roots by α1, . . . , αn and the
fundamental weights by ω1, . . . , ωn , where n is the rank of T . Let X(T )+ be the set
of dominant weights and X1(T ) the set of restricted dominant weights, i.e., the set of all
∑n
i=1 riωi with ri ∈ Z and 0 ≤ ri < p for all i .

Consider on X(T ) the usual order relation where λ ≤ µ holds if and only if there are
integers ri ≥ 0 with µ− λ =

∑n
i=1 riαi .

Let B ⊃ T be the Borel subgroup of G corresponding to the negative roots and let U
be the unipotent radical of B . Each λ ∈ X(T ) defines a one dimensional module kλ of
B via the isomorphism B/U ' T . The induced module H0(λ) := indGBkλ is nonzero if
and only if λ ∈ X(T )+ . In this case the socle L(λ) of H0(λ) is the simple G-module
with highest weight λ .
(It also can be constructed as the unique simple image of the Weyl module V (λ) .)
The simple G-modules (up to isomorphism) correspond bijectively to the L(λ) with
λ ∈ X(T )+ (cf. [19], p.197). Now the L(λ) with λ ∈ X1(T ) remain simple under
restriction to G1 . One has

(1) Any simple G1-module is isomorphic to exactly one L(λ) with λ ∈ X1(T ) .

To compute the H1(G1, L(λ)) for λ ∈ X1(T ) , Jantzen [18] uses the isomorphism
H1(G1, H

0(λ))(−1) ' indGB(H1(B1, kλ)
(−1)) (cf. [19], II.12.2(2) ) to get first information

on the cohomology of the H0(λ) and then on the cohomology of the L(λ) by looking at
the obvious long exact sequence.
Let α̃ be the largest root in R . The Weyl module V (α̃) is just g with the adjoint
representation and its submodules are the ideals. Thus L(α̃) = Mad , if g is simple. If
R has two root length, let α0 be the largest short root.
The following propositions can be easily derived from [18] (cf. Prop. 6.2.,6.4.,6.5.,6.6.,6.7.).

PROPOSITION 1.3.1. Let

(a) p > 2, if g is of type Al, Bl, Cl, Dl, E7

(b) p > 3, if g is of type G2, F4, E6

(c) p 6 | l + 1, if g is of type Al
(d) p 6 | l, if g is of type Cl

and assume that λ is one of the following: zero, a minuscule weight, α0 or α̃ .
Then H1(G1, L(λ)) = 0 .

PROPOSITION 1.3.2. Let R be of type Al and suppose p > 2 . The r-th symmetric
power of the natural representation (resp. of its dual) of G = SLl+1(k) is isomorphic to
H0(rω1) (resp. to H0(rωl) ). It is irreducible for r < p and one has:
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(a) H1(G1, L(rω1)) = 0 if R is of type A1, 0 ≤ r < p and r 6= p− 2
(b) H1(G1, L(rω1)) = H1(G1, L(rωl)) = 0 if R is of type Al, l ≥ 2 and 0 ≤ r < p .

Table I shows the possible λ which occur in Proposition 1.3.1. (see [6] VI, p.232).

TABLE I

type minuscule weights largest root α̃ largest short root α0

Al, l ≥ 1 ω1, ω2, ..., ωl ω1 + ωl –

Bl, l ≥ 3 ωl ω2 ω1

Cl, l ≥ 2 ω1 2ω1 ω2

Dl, l ≥ 4 ω1, ωl−1, ωl ω2 –

G2 – ω2 ω1

F4 – ω1 ω4

E6 ω1, ω6 ω2 –

E7 ω7 ω1 –

E8 – ω8 –

2. CLASSICAL LIE ALGEBRAS

2.1. Left-symmetric structures on sl(2,k)

Let k be a field of characteristic p > 2 and g := sl (2, k) with standard basis
x =

(

0 1
0 0

)

, y =
(

0 0
1 0

)

, z =
(

1 0
0 -1

)

and [x, y] = z, [z, x] = 2x, [z, y] = −2y .

PROPOSITION 2.1.1. The classical simple Lie algebra sl (2, k) admits left-symmetric
structures if and only if p = 3 .

Proof: If p = 3 then g admits left-symmetric structures (see Introduction).
Assume now, that g admits a left-symmetric structure Mλ and that p > 3 . Since every
left-symmetric structure over k can be regarded as defined over the algebraic closure of
k , it suffices to prove the following:

(1) Let k be an algebraically closed field of characteristic p > 3 and M be a 3 -
dimensional g-module. Then H1(g,M) = 0 .

For M = Mλ Proposition 1.2.8. now implies p | dim g = 3 , which contradicts p > 3 .

The following result for g := sl (2, k) is well known (cf.[11], Theorem 4) :
If k is algebraically closed and E is an irreducible g-module then

10



(2) H1(g, E) '
{

k ⊕ k , if dim E = p− 1
0 otherwise

In order to prove (1) , consider a composition series for M . All irreducible composition
factors are of dimension less than 3 . Since p− 1 > 3 they have trivial 1-cohomology by
(2). Use the long exact sequence to obtain the result.

REMARK 2.1.2. Let k be an algebraically closed field of characteristic 3 . Then it is
possible to classify all left-symmetric structures on sl(2, k) (see [7] ). Two important
examples are the following structures which are defined by the matrices λx , λy and λz
as follows:

(i)





0 u 1
0 w −1
1 w2 + 1 −w









u u− vw2 vw
w v 1
w2 −vw −u− v









0 vw −v
−1 −1 0
−w −u− v 1





(ii)





0 0 γ
0 0 0
0 −1− γ−1 0









0 0 0
0 0 γ

1− γ−1 0 0









γ − 1 0 0
0 γ + 1 0
0 0 γ





where w := v − u and u, v ∈ k , γ ∈ k× .

2.2. Proof of the main theorem

Let G be a connected semisimple algebraic group of type Al (l ≥ 1), Bl (l ≥ 3), Cl
(l ≥ 2), Dl (l ≥ 4), G2, F4, E6, E7, E8 over an algebraically closed field k of characteristic
p > 2 . Assume that g = Lie(G) admits a left-symmetric structure Mλ and suppose
p 6 | dim g . The last condition implies p 6 | l for g of type Cl, since dimCl = l(2l+1).
Assume furthermore that

(i) p > 3 , if G is of type G2, F4, E6

(ii) p 6 | l + 1, if G is of type Al
(iii) p 6 | l , if G is of type Cl

The main theorem has been proved for g of type A1 in Prop. 2.1.1. . The general
case is treated similarly: One shows that H1(g, E) = 0 for all simple g-modules E of
dimension less than or equal to the dimension of g which implies H1(g,Mλ) = 0 . This
contradicts Prop. 1.2.8. and Theorem 2.2.2. is proven.
By Lemma 1.1.1. we may assume that E is restricted. Thus it suffices to look at restricted
cohomology only (see 1.1.(2)), i.e., to show that H1(G1, L(λ)) = 0 for all λ ∈ X1(T )
with dim L(λ) ≤ dimG (see 1.1.(1) and 1.3.(1)). Thus Theorem 2.2.2. follows from

PROPOSITION 2.2.1. Let p > 2 and G be of the above type such that (i), (ii) and
(iii) hold. Then H1(G1, L(λ)) = 0 for all λ ∈ X1(T ) with dim L(λ) ≤ dim G.

Proof : Case 1: Assume that G is of type Al (l ≥ 2) and let n := l + 1.
One has dim G = n2 − 1 and p 6 | n . There are only a few G1-modules L(λ), λ ∈

11



X1(T ), (up to isomorphism) which are of dimension less than n2. More precisely one
has λ ∈ {0, ωi, 2ω1, 2ωn−1, ω1 + ωn−1}, i subject to the condition

(

n
i

)

< n2. This
will be shown in the lemma below. According to Prop. 1.3.1. one has H1(G1, L(ωi)) =
H1(G1, L(ω1 + ωn−1)) = 0 . Since p > 2, Prop. 1.3.2. implies H1(G1, L(2ω1)) =
H1(G1, L(2ωn−1)) = 0 . It remains to prove

LEMMA 2.2.3. Let L(λ), λ ∈ X1(T ), be a simple G1-module for G of type Al, l ≥ 2
and p > 2 , p 6 | n . Assume that dim L(λ) < n2. Then L(λ) is isomorphic to one of
the following G1-modules:

λ 0 ω1 ωn−1 ω2 ωn−2 2ω1 2ωn−1

L(λ) k V V ∗ Λ2(V ) Λ2(V ∗) S2(V ) S2(V ∗)

dim L(λ) 1 n n n (n−1)
2

n (n−1)
2

n (n+1)
2

n (n+1)
2

l ∀l 5 6 6 7 7

λ ω1 + ωn−1 ω3 ω3 ω4 ω3 ω5

L(λ) Mad Λ3(V ) Λ3(V ) Λ3(V ∗) Λ3(V ) Λ3(V ∗)

dim L(λ) n2 − 1 20 35 35 56 56

Here k denotes the trivial one-dimensional representation, Λi(V ) = L(ωi) the funda-
mental representation on the i-fold alternating power of the natural module V = kn of
dimension

(

n
i

)

, S2(V ) = L(2ω1) the representation on the 2-fold symmetric power of
the module V and L(ω1 +ωn−1) the adjoint representation. One has L(ωi)

∗
' L(ωn−i)

where L(ωi)
∗

denotes the G1-module dual to L(ωi) .

Proof: Let W be the Weyl group of G and denote by w0 the unique element of W
of greatest length. Then for λ ∈ X(T )+ one has L(λ)

∗
' L(−w0 λ) . For G of type Al

it follows L(ωi)
∗
' L(ωn−i) and Mad

∗ 'Mad .

Let λ =
∑l

i=1 riωi ∈ X1(T ), 0 ≤ ri < p be the highest weight of the simple G1-module
L(λ) and assume

(1) dim L(λ) < n2.

W operates on the weights by conjugation and the W-conjugates of a weight are weights.
Denote the orbit of a weight ν under W by Wν . One has to use that each dominant
weight ν ≤ λ is a weight of L(λ) . (The fact is classical over C ; for fields of positive
characteristic this has been shown in [33], λ has to be a restricted highest weight.) Denote
by m the number of weights of L(λ) . One has

12



(2) dim L(λ) ≥ m =
∑

ν≤λ,ν dominant

| Wν |

Let ν =
∑l
i=1mi ωi be a dominant weight. The stabilizer of ν in W is generated by

the simple reflections si with mi = 0. So stabW ν is a direct product of symmetric
groups (for G of type Al ) and it is easy to compute its order and hence to compute the
order of Wν . One has:

(3) If there is only one coordinate of ν different from zero (e.g. mj 6= 0, j < n ) then
| Wν | ≥ n.

(4) If there are at least two coordinates different from zero (e.g. mk 6= 0,mj 6= 0 , 1 ≤
k < j < n ) then | Wν |≥ n2 − n. Equality holds if k = 1 (or k = n − 2 ) and
j = n− 1 and ν = m1 ω1 +mn−1 ωn−1.

If mj 6= 0 then | Wν |=
(

n
j

)

≥ n , and if mk 6= 0,mj 6= 0 then | Wν |=
(

n
j

)

·
(

j
k

)

≥
(

n
2

)

2 = n2 − n since j ≥ 2. So (3) and (4) follow.

We will show that λ ∈ {ωi, 2ω1, 2ωn−1, ω1 + ωn−1}, where
(

n
i

)

< n2. In all other cases
one obtains dim L(λ) ≥ n2 by (2), (3), (4).

1. At least two coordinates of λ are different from zero (e.g. ri and rj ):

Assume first λ = ri ωi + rj ωj . If λ is not in the root lattice then there is an i with
ωi ≤ λ , hence | Wλ |≥ n2 − n and | Wωi |≥ n by (3) and (4). This implies
dim L(λ) ≥ n2 by (2) contradicting (1) .

For λ = ν = ω1 + ωn−1 , L(λ) is the adjoint representation. Otherwise λ 6= ω1 + ωn−1

and ν ≤ λ . It follows dim L(λ) ≥ | Wν | + | Wλ |≥ 2(n2 − n) ≥ n2 which contradicts
(1) . The same applies when λ has more than two coordinates different from zero.

2. One has λ = riωi for an i :

λ lies in the root lattice. If ri = 1, one obtains the fundamental representations
of dimension

(

n
i

)

. (1) is satisfied for i = 1, 2, n − 2, n − 1 for all n and (n, i) ∈
{(6, 3), (7, 3), (7, 4), (8, 3), (8, 5)}.

Assume now ri ≥ 2 :

Choose ν := λ − αi (note that αi = 2ω1 − ωi−1 − ωi+1 ) and let 1 < i < n− 1. Then
ν = ωi−1 + (ri − 2)ωi + ωi+1 is dominant and one has | Wν |≥ n2 − n by (4) . Hence
dim L(λ) ≥ | Wν | + | Wλ |≥ n2 . It remains to look at the case i = 1(i = n− 1 is dual
to it). For r1 = 2 one has λ = 2ω1 (and λ = 2ωn−1 for rn−1 = 2 ). If r1 ≥ 3 then
ν = (r1−2)ω1 +ω2 is dominant and as before dimL(λ) ≥ n2 which contradicts (1) .

Case 2: The proofs of Proposition 2.2.1. for G of type Bl, Cl, Dl, G2, F4, E6, E7 or E8

are very similar in each case, so we omit the proof of the following lemmas. In [25] all

irreducible G1-modules of dimension less than 1
2
(dimV )

2
are classified, where V denotes

the natural module. The results are covered by our lemmas. Assume p > 2.
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LEMMA 2.2.4. Let L(λ), λ ∈ X1(T ), be a simple G1-module for G of type Bl, l ≥ 3

and dim L(λ) ≤ n(n−1)
2 , where n = 2 l + 1. Then L(λ) is isomorphic to one of the

following G1-modules:

l ∀l ∀l ∀l l = 3, 4, 5, 6

λ 0 ω1 ω2 ωl

L(λ) k V Mad L(ωl)

dim L(λ) 1 n n (n−1)
2 8, 16, 32, 64

L(ωl) denotes the spin module of dimension 2l. One has L(ωi)
∗
' L(ωi) ∀i.

LEMMA 2.2.5. Let L(λ), λ ∈ X1(T ), be a simple G1-module for G of type Cl, l ≥ 2 ,

p 6 | l and dim L(λ) ≤ n (n+1)
2 , where n = 2 l. Then L(λ) is isomorphic to one of the

following G1-modules:

l ∀l ∀l p 6 | l ∀l l = 3

λ 0 ω1 ω2 2ω1 ω3

L(λ) k V Λ2(V ) Mad L(ω3)

dim L(λ) 1 n n (n−1)
2 − 1 n (n+1)

2 14

One has L(ωi)
∗
' L(ωi) ∀i.

LEMMA 2.2.6. Let L(λ), λ ∈ X1(T ), be a simple G1-module for G of type Dl, l ≥ 4

and dimL(λ) ≤ n(n−1)
2

, where n = 2 l. Then L(λ) is isomorphic to one of the following
G1-modules:

l ∀l ∀l ∀l l = 3, 4, 5, 6 l = 3, 4, 5, 6

λ 0 ω1 ω2 ωl ωl−1

L(λ) k V Mad L(ωl) L(ωl−1)

dim L(λ) 1 n n (n−1)
2

8, 16, 32, 64 8, 16, 32, 64

Here L(ωl) and L(ωl−1) are the spin modules of dimension 2l−1. One has L(ωl−1)
∗
'

L(ωl) and L(ωi)
∗
' L(ωi) for i = 1, 2, .., l− 2.
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LEMMA 2.2.7. Let G be of type G2, F4, E6, E7, E8 and L(λ), λ ∈ X1(T ), be a simple
G1-module with dimL(λ) ≤ dimG. Then L(λ) is isomorphic to one of the modules listed
in table II:

TABLE II

type p dimG L(λ) dim L(λ)

G2 p > 3 14 k, L(ω1), L(ω2) 1, 7, 14

F4 p > 3 52 k, L(ω4), L(ω1) 1, 26, 52

E6 p > 3 78 k, L(ω1), L(ω6), L(ω2) 1, 27, 27, 78

E7 p > 2 133 k, L(ω7), L(ω1) 1, 56, 133

E8 − 248 k, L(ω8) 1, 248

One has L(λ)
∗
' L(λ) except for G of type E6 where L(ω6)

∗
' L(ω1) and L(ω2)

∗
'

L(ω2).

All weights occuring in the lemmas can also be found in table I except for λ = ω3 and G
of type C3. But in this case H0(ω3) is irreducible since p > 2. Hence H1(G1, L(ω3)) = 0
by 4.1. and 6.4. of [18]. Thus Proposition 2.2.1. follows from Proposition 1.3.1. and the
main theorem is proven.

2.3. Restricted structures

In Theorem 2.2.2. it remains open whether a classical simple Lie algebra g = Lie(G)
admits left-symmetric structures in case p | dim G. Let G be of type

Al (l ≥ 2, l 6= 5, p 6 | l + 1), Cl (l ≥ 2, p 6 | l), Dl (l ≥ 4), E6, E7, E8. (2.3.1.)

In this section we answer the above question for restricted structures and for G of type
(2.3.1) by a simple argument: If p > 2 then g does not admit any restricted structure,
see Prop. 2.3.5. For G of type Bl (l ≥ 3), G2 and F4 the argument fails. Example
2.3.6. shows that Proposition 2.3.5. is not valid for p = 2. Because g is a restricted Lie
algebra, any adjoint structure on g is restricted.

LEMMA 2.3.1. Let G be a restrictable non-nilpotent Lie algebra over a field k. Then
g does not admit any adjoint structure.

Proof: g admits adjoint structures if and only if g possesses a nonsingular derivation
(see Prop. 1.2.5.). But in this case g has to be nilpotent ([36], Cor.4).
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LEMMA 2.3.2. Let Mλ be a left-symmetric g-module such that H1(g,Mλ) = 0. Then
there is no decomposition like Mλ = M⊕k, where k denotes the trivial one-dimensional
module.

Proof: Assume that Mλ = M ⊕ k and y ∈ Mλ . y can be written uniquely in the
form y = m + a where m ∈ M,a ∈ k. Let anng(y) := {x ∈ g | x.y = 0} be the
annihilator of y in g. H1(g,Mλ) = 0 implies that the map ψ : g → Mλ defined
by x 7→ x.y is bijective for some y 6= 0 . One concludes that anng(y) = ker ψ = 0 .
Since g operates trivially on k one has anng(m) = anng(y) = 0. This contradicts the
fact that the map g → M , x 7→ x.m has non-trivial kernel (namely anng(m) ) since
dimM < dimMλ = dim g.

By a similar argument any g-module N satisfying dim anng(n) > dim g− dimN ∀n ∈
N cannot be a direct summand of Mλ in the situation of the above lemma.

LEMMA 2.3.3. Let M be a g-module structure on g such that H1(g, E) = H1(g, E∗) =
0 for all composition factors E of M. Then there is a decomposition like M = N ⊕
k ⊕ · · · ⊕ k where all composition factors of N are not isomorphic to k ( M = N is
permitted).

Proof: Recall that Ext1
g
(k,M) ' H1(g,M) , Ext1

g
(M,k) ' Ext1

g
(k,M∗) ' H1(g,M∗)

and that Ext1
g
(M,N) can be interpreted as the set of classes of equivalent extensions

0→ N → V →M → 0. (The class of split extensions corresponds to the zero element in
Ext1

g
(M,N). ) By assumption Ext1

g
(E, k) = Ext1

g
(k,E) = 0 for all composition factors

E of M. Hence Ext1
g
(M ′, k) = Ext1

g
(k,M ′) = 0 for all subquotients M ′ of M by

the long exact sequence for the subquotients. If k is not a composition factor, one has
M = N and the proof is finished. Otherwise there exist submodules M ′ ⊃ M ′′ of M
such that M ′/M ′′ ' k. Since Ext1

g
(k,M ′′) = 0 it follows M ′ = M ′′ ⊕ k. Thus k is a

submodule of M. As before Ext1
g
(M/k, k) = 0. One obtains M = M/k ⊕ k and the

lemma follows by induction.

The two preceding lemmas imply the following proposition:

PROPOSITION 2.3.4. Let Mλ be a left-symmetric g-module such that H1(g,Mλ) = 0
and H1(g, E) = H1(g, E∗) = 0 for all composition factors of Mλ. Then none of the
composition factors of Mλ is isomorphic to k.

PROPOSITION 2.3.5. Let G be of one of the types listed in (2.3.1) and k a field of
characteristic p > 2. Then g does not admit any restricted structure.

Proof: Assume that Mλ is a restricted g-module:

Case 1: G is of type Al
The only g-modules which may occur as composition factors of Mλ are listed in Lemma
2.2.3. (n=l+1). Since we may assume that k is algebraically closed one has H1(g, E) = 0
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for all simple g-modules E with dim E ≤ dim g and H1(g,Mλ) = 0 by Prop. 2.2.1.
and 1.1.(1),(2). . Thus we can exclude the trivial module k as a composition factor of
Mλ by Prop. 2.3.4. . We can also exclude the adjoint module Mad by Lemma 2.3.1. .
Hence all composition factors of Mλ are isomorphic to V,Λr(V ), S2(V ) and their dual
modules (r ≥ 2). However, the dimension of Mλ is built up by the dimensions of these

modules, i.e. n2 − 1 =
∑

imi , where mi ∈ {n,
n (n−1)

2
,
(

n
r

)

< n2} .

If n > 8 one has
(

n
r

)

≥ n2 for r ≥ 3 and one obtains the equation n2 − 1 = αn +
βn (n−1)

2
+ γn (n+1)

2
where n > 2 and α, β, γ are nonnegative integers. Since this is

equivalent to 2 = n (2n − 2α − β(n − 1) − γ(n + 1)) which has no integral solution for
n > 2 one obtains a contradiction.
The case n ≤ 8 is left to the interested reader (for n = 6 one has dim Mλ = 35 and
dim Λ2(V ) = 10 , dim Λ3(V ) = 15. )

Case 2: G is of type Bl, Cl or Dl
By the same procedure as in case 1, one determines the composition factors of Mλ which
may occur (cf. Lemma 2.2.4., 2.2.5., 2.2.6.). One excludes the trivial and the adjoint
module by Prop. 2.2.1., 2.3.4. and Lemma 2.3.1. . The dimensions mi of the remaining
composition factors can be read off table III. We omit for convenience some cases where l
is small (see table III). But it can be easily checked to be correct.

For G of type Dl one obtains n (n−1)
2 = αn which implies n−1

2 ∈ N , a contradiction
since n is even (see table III). For G of type Bl , however, n−1

2 ∈ N is correct and the
conclusion fails.
For G of type Cl one has n (n+ 1) = 2αn + β(n (n− 1)− 1). Assume n ≥ 4 . Then
2(n (n− 1)− 1) > n (n+ 1) . This implies β = 1 and 2 = n(α− 2) which is impossible.

TABLE III

type n dimMλ mi

Al, l ≥ 8 l + 1 n2 − 1 n, n (n−1)
2

, n (n+1)
2

Bl, l ≥ 7 2l + 1 n (n−1)
2 n

Cl, l ≥ 4 2l n (n+1)
2 n, n (n−1)

2 − 1

Dl, l ≥ 8 2l n (n−1)
2

n

Case 3: G is of type G2, F4, E6, E7, E8

One has dim V = 7 , dim G2 = 14 resp. dim V = 26 , dim F4 = 52 . Thus the
conclusion fails for G of type G2 and F4 . However, it is obvious from table II, that
one obtains the desired contradiction for G of type E6, E7, E8 .

In the exceptional case p = 2 there are classical simple Lie algebras admitting restricted
structures:
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EXAMPLE 2.3.6. Let g = sl(3, k) and k be a field of characteristic 2 . Denote by
eij the matrix having 1 in the (i, j) position and 0 elsewhere . g has standard basis
a = e12 , b = e13 , c = e21 , d = e23 , f = e31 , g = e32 , h = e11 − e22 ,
j = e22 − e33. h and j span a Cartan subalgebra of g . The Lie multiplication is given
by

[a, j] = [b, g] = a [a, d] = [b, h] = [b, j] = b [c, j] = [d, f ] = c
[b, c] = [d, h] = d [c, g] = [f, h] = [f, j] = f [a, f ] = [g, h] = g
[a, c] = h [d, g] = j [b, f ] = h+ j

and all other products zero.
g is restricted by a[2] = · · · = g[2] = 0 and h[2] = h , j[2] = j . One may check that the
following product defines a restricted left-symmetric structure M = Mλ on sl(3, k) :

λa = e18 + e24 + e65 + e73
λb = e28 + e75
λc = e37 + e42
λd = e35 + e48
λf = e57 + e82
λg = e12 + e53 + e67 + e84
λh = e22 + e33 + e44 + e77
λj = e33 + e44 + e55 + e88

The space of invariants of M is Mg = ka⊕kg and M/Mg = R⊕N where R = 〈b̄, d̄, j̄〉
and N = 〈h̄, c̄, f̄〉 are isomorphic to the natural module. Furthermore H1(g,M) is
nontrivial.

The algebra sl(3, k) admits left-symmetric structures if and only if p = 2 . This is an
immediate consequence of Theorem 2.2.2. and the above example.

3. NONRESTRICTED SIMPLE LIE ALGEBRAS

If g is of classical type as in the main theorem there are only finitely many primes such
that g might admit left-symmetric structures, namely the primes dividing the dimension
of g . It is by no means easy to determine left-symmetric structures on g in this case.
The situation is different for nonrestricted simple Lie algebras of Cartan type. There
are many more left-symmetric structures and some of them can be constructed explicitly.
In view of Proposition 1.2.5. we investigate adjoint structures, induced by nonsingular
derivations of g . This leads to the problem of determining the simple Lie algebras which
possess nonsingular derivations. Necessarily one has char k > 0 and g nonrestrictable
(see [32] for definition), c.f. Lemma 2.3.1. . The following example shows that simple Lie
algebras may indeed possess nonsingular derivations :

Let k be a field of characteristic 2 and g := kx⊕ ky ⊕ kz = so (3, k) with

18



[x, y] = z, [y, z] = x, [z, x] = y . g is a nonrestricted simple Lie algebra (see [21]) and
Der (g) = {D = (αij) | αij = αji, α11 + α22 = α33} . One has det (D) = α22 (α11

2 +
α12

2 + α13
2) + α11 (α12

2 + α22
2 + α23

2) . The space of outer derivations consists of the
matrices diag (α11, α22, α11 + α22) . We may choose the nonsingular derivation

D =





1 0 0
0 0 1
0 1 1





obtaining the following adjoint left-symmetric structure on g (see 1.2.6):

x.x = 0 y.x = y z.x = y + z
x.y = y + z y.y = x z.y = 0
x.z = z y.z = x z.z = x

Let now k be an algebraically closed field of characteristic p > 7 and g be simple.
Identify g with ad (g) ⊆ Der (g) . Now Der (g) is restricted. Let h ⊆ g be a Cartan
subalgebra. Let h̄ denote the restricted subalgebra of Der (g) generated by h . Let t

denote the (unique) maximal torus of h̄ . Call dim t the toral rank of g with respect to
h .
The first step in determining the simple Lie algebras which possess nonsingular derivations
might be to consider simple Lie algebras of toral rank one. By a result of R. Wilson (cf.
[4], Th. 1.7.1.) g is simple over k and has toral rank one if and only if a) g ' sl (2, k) ,

b) g 'W (1 : n) or c) g ' H(2 : n : Φ)
(2)

. (See [35] for definitions).
W (1 : n) , n = (n) , is restricted if and only if n = 1 , i.e. the Witt algebra W (1 : 1) .
The simplest nonrestricted algebra of this type is W (1 : 2) of dimension p2 . It is
easy to see that W (1 : 2) does not possess nonsingular derivations (in the examples
computed the characteristic polynomial of a derivation is a p-polynomial, i.e. it has the
form Xpn

+ βn−1X
pn−1

+ · · · + β0X ). Thus it seems reasonable to investigate the

algebras of type c) . An algebra of Cartan type H(2 : n : Φ)
(2)

once again is isomorphic
to an algebra of a certain type (i) , (ii) or (iii) of dimension pn − 2 , pn − 1 or
pn respectively (cf. [4], Th. 1.8.1.). It is possible to identify these algebras with the
well-known algebras of R. Block and the Albert-Zassenhaus algebras ([4], Cor. 1.8.2. and
Lemma 1.8.3.): The Block algebras L(G, δ, f) with | G |= pn and G = G0 are, for
example, isomorphic to the algebras of type (ii) of dimension pn− 1 . We are concerned
with these algebras in the following section:

3.1. The algebra L(G, δ, f) of R. Block

Let k be a field of characteristic p > 0 and G be an elementary abelian p-group of
order pn which is a direct sum of m elementary abelian p-groups G0, G1, ..., Gm . For
0 ≤ i ≤ m define f : G×G→ k such that f |Gi

= fi : Gi×Gi → k is a skew-symmetric
nondegenerate biadditive form. Suppose that for each i , there exist additive functions
gi, hi : Gi → k such that fi(α, β) = gi(α)hi(β) − gi(β)hi(α) . Choose δi ∈ Gi with
gi(δi) = 0 and set δ0 = 0 , δ = δ1 + ...+ δm .
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Let L be a vector space over k with basis {uα} in one-to-one correspondence uα ↔ α
with elements of G \ {0,−δ} and define a product in L by bilinearity and

[uα, uβ ] =

m
∑

i=0

fi(αi, βi)uα+β−δi
(3.1.1)

where αi and βi denote the i-th component of α and β , respectively. Then L is
a Lie algebra over k (cf. [3] Th.1), denoted by L(G, δ, f) . It is called an algebra of
Block. Simplicity of L(G, δ, f) follows from any of the following: a) 0 6= G1 6= G ; b)
G = G0, n > 1 ; c) G = G1, n > 1, p > 2 . Furthermore the simple Lie algebra L(G, δ, f)
is restricted if and only if G0 = 0 and G1, ..., Gm have order p2 ([3], Th.8).
Note that G may be regarded as a vector space over Fp of dimension n . We can
represent the elements of G as n-tuples α = (α1, ..., αn) with coordinates in Fp .
For L(G0, 0, f) of type b) it is easy to construct nonsingular derivations. If [k : Fp] ≥
n > 1 then invertible derivations of diagonal form (i.e., the matrix is of diagonal form) can
be found. For k = Fp this construction fails, i.e. the specified derivations are singular.

Under the following restriction on f , however, it is also possible to construct nonsingular
derivations over Fp :

f(α, β) = 0 ⇐⇒ α and β are linearly dependent over Fp (3.1.2)

LEMMA 3.1.1. Let G be an elementary abelian group of order pn and let S = G\{0} .
Let M be a vector space over k with basis {uα | α ∈ S} . Set u0 = 0 . Suppose that
there is some function f : S × S → k such that the product

[uα, uβ] = f(α, β)uα+β (3.1.3)

gives M the structure of a Lie algebra.

(a) If [k : Fp] ≥ n then Der (M) contains invertible derivations over k .
(b) If f satisfies (3.1.2) then Der (M) contains invertible derivations over Fp .

Proof: We may assume G = (Z/pZ)
n

. Define a linear map D ∈ End (M) by
D(uα) = cα uα , cα ∈ k . If

cα + cβ = cα+β ∀ α, β ∈ S (3.1.4)

then it is immediate from (3.1.3) that D ∈ Der (M) .

Case (a) : Let α1, ..., αn ∈ k be linearly independent over Fp and set
ei := (0, .., 1, 0, .., 0) . α ∈ S is representable as α =

∑n
i=1 ri ei for some (r1, ..., rn) ∈

Fnp \ {(0, ..., 0)} . Set cα :=
∑n
i=1 ri αi ∈ k and define D by D(uα) = cα uα . The

distribution law in k implies (3.1.4) , thus D ∈ Der (M) . The matrix of D is of
diagonal form containing precisely the pn − 1 elements

∑n
i=1 li αi (where (l1, ..., ln)

runs through the set Fnp \ {(0, ..., 0)} ) on the diagonal. All diagonal elements
∑n
i=1 li αi
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are different from zero, otherwise α1, ..., αn would be linearly dependent over Fp . Thus
D is invertible.

Case (b) : For 1 ≤ i ≤ m let σi : G → Fp denote the projection onto the i-th
coordinate. Define Di ∈ End (M) by Di(uα) = σi(α)uα . Since σi(α)+σi(β) = σi(α+β)
one has Di ∈ Der (M) (see (3.1.4)).

Assume first m = 2
Let S be ordered as follows: S = {(1, 0), ..., (1, p − 1), (2, 0), ..., (2, p − 1), ...., (p −
1, 0), ...(p − 1, p − 1)} . Denote u(i,j) by uij for 0 ≤ i, j ≤ p − 1 . The matrix of
D2 with respect to this basis is given by D2 = diag (B,B0, ..., B0) ∈ Mp2−1(Fp) where
the blocks are B = diag (1, 2, ..., p−1) and B0 = diag (0, 1, 2, ..., p−1) . Now consider the
inner derivation adu01 . One has adu01 (uij) = f( (0, 1), (i, j) )ui,j+1 by (3.1.3) ; ui,j+1

is zero if and only if (i, j) = (0, p − 1) . For i > 0 f( (0, 1), (i, j) ) is always different
from zero since α = (0, 1) and β = (i, j) are linearly independent over Fp .
Define D := adu01 +D2 ; D is a derivation of M with block matrix

D = diag (A0, A1, ..., Ap−1) ∈Mp2−1(Fp) where A0 =









1 0 . . . 0
∗ 2 . . . 0
...

...
. . .

...
∗ ∗ . . . p− 1









and

Ai =

















0 0 0 . . . 0 aip
ai1 1 0 . . . 0 0
0 ai2 2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . p− 2 0
0 0 0 . . . ai p-1 p− 1

















for some aij ∈ {f( (0, 1), (k, l) ) | 0 ≤ k, l ≤ p − 1} , i > 0 . Since det (A0) and
det (Ai) =

∏p
k=1 aik have nonzero determinant in Fp it follows that D is a nonsingular

derivation of M .
For m > 2 consider D := adu(0,...,0,1) + Dm ; D is a block matrix containing several
blocks ’of type A0 or Ai ’. By the same argument D is a nonsingular derivation of
M .

The following result is an immediate consequence of the above lemma and Theorem 11 of
Albert and Frank [1]:

PROPOSITION 3.1.2. Let G be an elementary abelian group of order pn > p and
suppose that f : G×G→ k is a skew-symmetric biadditive functional satisfying (3.1.2) .
Let L0 be a vector space over k with basis {uα | α ∈ S} where S = G \ {0} . Set
u0 = 0 . Then the product (3.1.3) gives L0 the structure of a simple Lie algebra (cf. [1] );
L0 is a nonrestricted algebra L(G0, 0, f) of Block possessing nonsingular derivations for
every prime p > 0 and integer n > 1 .

EXAMPLE 3.1.3. Take p = 2,m = 2 and S = {α1, α2, α3} = {(0, 1), (1, 0), (1, 1)} .
Set vi = vαi

, i = 1, 2, 3 and f(αi, αj) = 1 for i 6= j . The Lie product is given by
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[v1, v2] = v3, [v1, v3] = v2, [v2, v3] = v1 . One obtains the example given at the beginning
of section 3 (i.e. L0 = so (3, k) and the adjoint structure given there). More examples
(for larger primes p and different m ) can be found in [7] .

Proposition 3.1.2. allows to construct adjoint left-symmetric structures on the simple Lie
algebra L0 of characteristic p for every prime p > 0 . This contrasts with the situation
of Theorem 2.2.2. .

3.2. The Lie algebra so(n,k) of characteristic two

Let I = N \ {1, 2, 4} and n ∈ I . The algebra so (n, k) of characteristic 2 also provides
an example of a simple Lie algebra which admits adjoint left-symmetric structures.

DEFINITION 3.2.1. A matrix X = (xij) is called alternate, if xii = 0 and xij = −xji
for all i and j . Define so (n, k) = {X ∈Mn(k) | X is alternate} . This is a Lie algebra
under the bracket operation [X,Y ] = XY − Y X , being simple for any characteristic (see
[21], p.470).

PROPOSITION 3.2.2. Let k be a field of characteristic 2 containing at least n ele-
ments. Then so (n, k) , n ∈ I , is a simple nonrestricted Lie algebra possessing nonsingular
derivations.

Proof: Let ēij := eij + eji , 1 ≤ i < j ≤ n , be a basis of g = so (n, k) . One has

[ēij , ēkl] = δik ējl + δilēkj + δjk ēil + δjlēik (3.2.1)

for all indices i < j , k < l . Thus (ad ēij)
2

is of diagonal form in contrast to (ad ēij) .

Hence (ad ēij)
2
6∈ ad (g) and g is not restrictable. Define D ∈ End (g) by D(ēij) =

αij ēij , αij ∈ k . Then

(1) D ∈ Der (g) ⇐⇒ α1j + α1l = αjl ∀ 1 ≤ j < l ≤ n

This follows from (3.2.1) : D is a derivation if and only if δik(αij + αkl + αjl) ējl +
δil(αij+αkl+αkj) ēkj+δjk(αij+αkl+αil) ēil+δjl(αij+αkl+αik) ēik = 0 ∀ i < j, k < l .
The equation is non-trivial only in case that precisely two of the indices i, j, k, l are equal.
Because of the symmetry we may assume i = k and i < j, k < l, i < l . Then one has
αij + αil + αjl = 0 ∀ 1 ≤ i < j < l ≤ n . For i = 1 one obtains α1j + α1l = αjl
and conversely this implies αij + αil + αjl = (α1i + α1j) + (α1i + α1l) + (α1j + α1l) = 0 .
Now choose α12, ...α1n ∈ k such that 0, α12, ...α1n are pairwise distinct. This is possible
since | k |≥ n . It follows from (1) that det (D) =

∏

1<i<j (α1i + α1j) ·
∏

1<k α1k . Thus
D has nonzero determinant in k .

REMARK 3.2.3. It is not necessary to assume | k |≥ n . However, the construction
of a nonsingular derivation then becomes more difficult. It would be interesting to find
general conditions which may guarantee the existence of nonsingular derivations of simple
Lie algebras (or more generally of invertible 1-cocycles for g-module structures on g , see
Cor. 1.2.3.).
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6. N. BOURBAKI, Groups et algèbres de Lie, ch. IV, V et VI, Paris 1968 (Hermann).
7. D. BURDE, Linkssymmetrische Algebren und linkssymmetrische Strukturen auf Lie-

Algebren, Dissertation, Universitt Bonn, 1992.
8. E. CARTAN, Les groupes de transformations continus, infinis, simples, Ann. Sci.
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LIST OF SYMBOLS

A left-symmetric algebra
g Lie algebra
End (g) vector space endomorphisms
Aut (g) group of Lie algebra automorphisms
K field of real or complex numbers
L(G, δ, f) algebra of R. Block
∇ affine connection on a Lie group
U(g) universal enveloping algebra of g

(g, [p]) restricted Lie algebra of characteristic p
u(g) restricted universal enveloping algebra of g

Mλ left-symmetric module
Mad adjoint module
G algebraic group (1.3.)
T maximal torus in G
X(T ) group of characters of T
R root system
R+ set of positive roots
αi simple root
ωi fundamental weight
X(T )+ set of dominant weights
X1(T ) set of restricted dominant weights
B Borel subgroup of G
indGHM G-module induced by an H-module M
H0(λ) = indGBkλ
G1 first Frobenius kernel of G
L(λ) G-module of highest weight λ
W Weyl group of G
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ABSTRACT

This paper investigates left-symmetric structures on finite-dimensional simple Lie algebras
g over a field k . If k is of characteristic 0 , then g does not admit any left-symmetric
structure. This is known in the theory of affine manifolds. In the modular case, however,
such structures may exist. The main purpose of this paper is to show that classical simple
Lie algebras of characteristic p > 3 admit left-symmetric structures only in case p divides
dim(g) . The proof involves the computation of the first cohomology groups of classical Lie
algebras for certain g-modules of small dimension. Here g is regarded as the Lie algebra
of a connected semisimple algebraic group over an algebraically closed field of characteristic
p > 0 . Most of these computations are due to J.C. Jantzen.
For nonrestricted simple Lie algebras of Cartan type it is shown that many more left-
symmetric structures can be found. One studies so-called adjoint structures, induced by
nonsingular derivations of g . The simple algebra L(G, δ, f) of R. Block of dimension
pn − 1 , for example, admits adjoint structures for every p > 0 .
If p = 2 , the results are more complicated.
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