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Introduction

Lie groups and Lie algebras are of great importance in modern physics, particularly in the context of (continu-
ous) symmetry transformations. The Lie algebra of a Lie group is defined as the tangent space to the neutral
element of the group and its elements can be seen as "infinitesimal transformations". The Lie algebra of a
Lie group is uniquely determined (the converse is not true unless the group is simply connected) and many
questions about the group can be reduced to questions about the Lie algebra, which are usually easier to
handle. It is particularly pleasant if the algebra can be represented by matrices and an important result in this
area is given by Ado’s theorem, which states that any finite-dimensional Lie algebra can be represented by
(finite) matrices. In this thesis we will prove Ado’s theorem for nilpotent Lie algebras and provide a method to
construct such matrix representations. It is also worthwhile to mention that, although Lie algebras historically
arose as a means to study Lie groups, they are meanwhile often studied in their own right.

The first chapter contains the basic definitions and some helpful examples. In the second chapter a short
introduction to representation theory is given as well as the proofs to Engel’s theorem and Lie’s theorem. The
third chapter is reserved for the proof of Ado’s theorem for nilpotent Lie algebras and the theory needed for it
(also, the explicit construction of faithful representations is shown in two examples). Finally, the fourth chapter
contains the proof to Ado’s theorem for arbitrary Lie algebras as well as the needed theory.

The proofs to Engel’s and Lie’s theorems are, for the most part, based on the proofs given in [1]. The proof of
Ado’s theorem for nilpotent Lie algebras (section 3) is the same as given in [3], the proof of Ado’s theorem for
arbitrary Lie algebras is based on the one given in [5].

In the following, with the exception of the construction of the universal enveloping algebra in chapter 3.2.,
all vector spaces are assumed to be finite-dimensional. Furthermore, unless mentioned otherwise, the under-
lying fields are of characteristic zero and algebraically closed. Note however that Ado’s theorem is valid for Lie
algebras over fields of arbitrary characteristic (and, in this context, is sometimes called Iwasawa’s theorem).
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1 Lie algebras

Definition. A Lie algebra over a field F is a vector space L over F, together with an operation L × L → L,
(x, y)→ [x, y], which fulfills the following axioms:

(i) The operation [., .] is bilinear.

(ii) ∀x ∈ L : [x, x] = 0.

(iii) ∀x, y, z ∈ L : [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

The operation [., .] is usually called the bracket operation. Property (iii) is called the Jacobi identity. Note
that (ii) implies

(ii ′) ∀x, y ∈ L : [x, y] = −[y, x].

If charF 6= 2, (ii) and (ii ′) are equivalent.

An important example for a Lie agebra is the set of all linear transformation V → V (where V is any vec-
tor space of a field F), denoted by EndV or, in the context of Lie algebras, gl(V ). gl(V ) is itself a vector
space with dimension (dimV )2 and a ring w.r.t. the composition of maps. The bracket operation is defined by
[x, y] = xy− yx ∀x, y ∈ gl(V ), where xy is the composition of x and y. After a basis of V has been chosen, the
elements of gl(V ) can be represented as n × n matrices and we write gln(F). The standard basis consists of
matrices eij , having a one in the (i, j) position and zeros everywhere else. The Lie bracket is then given by

[eij , ekl] = δjkeil − δilejk.

Every vector space V with the bracket operation defined as [x, y] = 0 ∀x, y ∈ V is a Lie algebra. Such Lie
algebras are called abelian.

If L is one-dimensional, it has exactly one basis vector x with the commutation relation [x, x] = 0, so any
one-dimensional Lie algebra is abelien.

If L is two-dimensional with basis vectors x, y, it is either abelien or

[x, y] = αx+ βy.

Now define a new basis by x′ = αx+ βy and take y′ to be an orthogonal vector. It follows that

[x′, y′] = γx′

and by scaling y′ → γ−1y′ we get

[x′, y′] = x′.

Therefore, up to isomorphism, there are exactly two two-dimensional Lie algebras, one of which is abelian.

The Lie algebra sl2(R) is the vector space of all real 2 × 2-matrices with trace zero with the commutator
as Lie bracket. It is spanned by the matrices

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, g =

(
1 0
0 −1

)
.

The commutation relations are

[e, f ] = g, [e, g] = −2e, [f, g] = 2f .

More generally, sln(R)/sln(C) is the space of all real/complex n× n-matrices with trace zero.

The Heisenberg Lie algebra hn is a (2n+1)-dimensional real vector space with a basis {x1, ..., xn, y1, ..., yn, z}
and the Lie bracket defined by

[xi, yi] = z

and all other brackets equal to zero. For example, h1 can be identified with (i.e. "a faithful representation of h1
is given by", see the definitions below) the space of real matrices spanned by
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x =

0 1 0
0 0 0
0 0 0

 , y =

0 0 0
0 0 1
0 0 0

 , z =

0 0 1
0 0 0
0 0 0


and the Lie bracket is now given by the commutator.

The following example shows the connection between a Lie algebra and the corresponding Lie group (by a
naive approach). Let Aff(R) be the group of all invertible affine transformations of the line, i.e.

Aff(R) = {La,b : R→ R| La,bx = ax+ b, a, b ∈ R, a 6= 0}.

The elements of Aff(R) can be written as matrices of the form

La,b =

(
a b
0 1

)
, a 6= 0

and the transformation is given by their action on vectors of the form
(
x
1

)
. Now let l be a 2 × 2-matrix, such

that 1 + εl ∈ Aff(R) (where 1 denotes the identity matrix and ε ∈ R). Obviously l has to be of the form

l =

(
a b
0 0

)
.

These elements form the Lie algebra aff(R) (with the commutator as the Lie bracket). Note that in general one
has to use the exponential map to get from the Lie algebra to the Lie group (and to define the Lie algebra of
the Lie group). Another downside of this approach is that it doesn’t explain how the group multiplication leads
to the Lie bracket.

The affine group Aff(Rn) is the group of all invertible affine transformations Rn → Rn. As above, it is formed
by elements of the form

LA,b =

(
A b
0 1

)
, A ∈ GLn(R), b ∈ Rn

and the corresponding Lie algebra is given by

aff(Rn) = {
(
A b
0 0

)
| A ∈ gln(R), b ∈ Rn}.

Definition. A Lie algebra homomorphism between two Lie algebras L1 and L2 is a linear map φ : L1 → L2,
such that

∀x, y ∈ L1 : φ([x, y]) = [φ(x), φ(y)].

1.1 Subalgebras, ideals, quotients

Definition. A subspace K of a Lie algebra L is called a Lie subalgebra, if

x, y ∈ K =⇒ [x, y] ∈ K.

Obviously, every one-dimensional subspace of a Lie algebra is a subalgebra. The Lie algebra sl2(C) is a
subalgebra of gl2(C).

The normalizer of a subspace K of L is defined as

NL(K) = {x ∈ L|[x,K] ⊂ K}.

NL(K) is a subalgebra of L, because for x ∈ K and x1, x2 ∈ NL(K), the Jacobi identity implies[
[x1, x2], x

]
=
[
x1, [x2, x]

]
−
[
x2, [x1, x]

]
and therefore [x1, x2] ∈ NL(K). If K is a subalgebra, NL(K) is the largest subalgebra of L which includes K
as an ideal.

Definition. A subspace I of a Lie algebra L is called an ideal, if

∀x ∈ L ∀i ∈ I : [x, i] ∈ I.
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Obviously every ideal is also a subalgebra. An example for an ideal is the center Z(L) = {x ∈ L|[x, l] =
0 ∀l ∈ L}. If Z(L) = L, L is called abelian. Another example is [L,L] = {[l1, l2]| l1, l2 ∈ L}.

Consider the Heisenberg Lie algebra hn with the basis {x1, ..., xn, y1, ..., yn, z} and the Lie bracket de-
fined by [xi, yi] = z. Then the one-dimensional subspace spanned by z is an ideal of hn, namely [hn, hn] = 〈z〉.

Proposition 1. The kernel Ker(φ) of a Lie algebra homomorphism φ : L1 → L2 is an ideal of L1, its image
Im(φ) is a subalgebra of L2.

Proof. That the kernel and the image are subspaces is a simple consequence of the linearity of homomor-
phisms. Since

[φ(x), φ(y)] = φ([x, y]),

Im(φ) is a subalgebra. Now assume x ∈ Ker(φ). Then, for every y ∈ L1,

φ([x, y]) = [φ(x), φ(y)] = [0, φ(y)] = 0

and therefore [x, y] ∈ Ker(φ).

Definition. Given a Lie algebra L and an ideal I ⊂ L, we can construct the quotient algebra L/I. Seen as a
vector space, L/I is simply the quotient space, i.e.

L/I = {x+ I | x ∈ L}, where

x+ I = {x+ i | i ∈ I}.

The bracket operation on L/I is then defined by [x + I, y + I] = [x, y] + I. It is easy to check that this is well
defined.

1.2 Nilpotent, solvable, simple and semisimple Lie algebras

Definition. A Lie algebra L is called simple, if [L,L] 6= 0 and L has no ideals except itself and 0.

Note that this implies [L,L] = L and Z(L) = 0.

The Lie algebra sl2(C) is simple:

Proof. Assume I is a non-zero ideal of sl2(R). Take x ∈ I, x 6= 0, then x = αe + βf + γg, where {e, f, g} is
the basis of sl2(R) introduced above, α, β, γ ∈ R and at least one coefficient is non-zero. Now note that

[[x, e], e] = −2βe and

[[x, f ], f ] = 2αf .

Thus, if either α or β are non-zero, I = sl2(R). On the other hand, if α = β = 0, then γ 6= 0 and, because
[x, e] = 2γx and [x, f ] = −2γy, I = sl2(R).

Definition. Given a Lie algebra L, we define a sequence of ideals by L(0) = L, L(i+1) = [L(i), L(i)]. The Lie
algebra L is called solvable if L(i) = 0 for some i.

A simple algebra is not solvable (since L(i) = L ∀i).

Definition. Given a Lie algebra L, we define a sequence of ideals by L0 = L, Li+1 = [L,Li]. The Lie algebra
L is called nilpotent if Li = 0 for some i.

Note that, since L(i) ⊂ Li ∀i, all nilpotent Lie algebras are solvable. A simple algebra is never nilpotent
(because it is not even solvable). Abelian algebras are nilpotent and therefore also solvable.

Consider again the Heisenberg Lie algebra hn. We have already seen that h1n = h
(1)
n = [hn, hn] = 〈z〉 is

one-dimensional and therefore abelian, i.e. hn is solvable with h
(2)
n = 0. Since [xi, z] = [yi, z] = 0, it is also

nilpotent with h2n = 0.

The non-abelian two-dimensional Lie algebra L with the basis {x, y} and [x, y] = x is an example for a
solvable Lie algebra, which is not nilpotent:

L(1) = L1 = [L,L] = 〈x〉,
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L(2) = [L1, L1] = 0, but

Ln = L1 ∀n ≥ 1.

Definition. A nilpotent Lie algebra of dimension n is called filiform, if Ln−2 6= 0 (and thus Ln−1 = 0).

Let L be a vector space with basis {x1, ..., xn}. If we define a bracket operation by

[x1, xi] = xi+1 for i ∈ {2, ..., n− 1},

L becomes a filiform Lie algebra and is called the standard filiform Lie algebra of dimension n.

Definition. A Lie algebra L is called semisimple, if it has no non-zero solvable ideals. This is equivalent to the
condition, that L is a direct sum of simple Lie algebras (hence the name).

Proposition 2. If L is a Lie algebra and L/Z(L) is nilpotent, then L is also nilpotent.

Proof. If L/Z(L) is nilpotent, Ln ⊂ Z(L) for some n. It follows that Ln+1 = 0.

Proposition 3. Let L be a Lie algebra.

(i) If S1 and S2 are two solvable ideals in L, then S1 + S2 is a solvable ideal in L.

(ii) If N1 and N2 are two nilpotent ideals in L, then N1 +N2 is a nilpotent ideal in L.

Proof.
(i): Clearly the sum of two ideals is another ideal. Now note that (S1 + S2)/S2

∼= S1/(S1 ∩ S2) (isomorphism
theorem). The right side is a homomorphic image of S1 and therefore solvable, which implies that the left side
is also solvable. It remains to show that, if I is a solvable ideal in a Lie algebra K and K/I is solvable, K is
solvable as well. Assume (K/I)(n) = 0, i.e. K(n) ⊂ I. Since I is solvable, I(m) = 0 for some m. It follows that
K(n+m) = 0.
The proof for (ii) is analogous.

Definition. Let L be a Lie algebra. The preceeding proposition implies the existence of a maximal solvable
ideal in L and a maximal nilpotent ideal in L. The maximal solvable ideal is called the radical of L and denoted
by Rad(L). The maximal nilpotent ideal in L is called the nilradical and denoted by Nil(L).
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2 The representation theory of Lie algebras

Definition. A representation of a Lie algebra L on a vector space V is a Lie algebra homomorphism φ : L →
gl(V ).

Definition. A representation is called faithful, if it is one-to-one, i.e. if the homomorphism φ : L → gl(V ) is
injective.

2.1 Examples

An important example is the so called adjoint representation, defined by

ad : L→ gl(L), x→ adx, where

adx : L→ L, adx(y) = [x, y].

If L is a Lie algebra and x ∈ L, then x is called ad-nilpotent if adx is nilpotent, i.e. (adx)n = 0 for some n. The
kernel of ad is the center of L. This means that, if Z(L) = 0, ad is injective and therefore isomorphic to its
image, which is a subalgebra of gl(L). So, any simple Lie algebra is isomorphic to a linear Lie algebra.

Consider again sl2(R) with its basis {e, f, g} and the commutation relations

[e, f ] = g, [e, g] = −2e, [f, g] = 2f .

We are interested in the (faithful) representations of sl2(R) on vector spaces V of different dimensions. For
dimV = 2, this is easy: a faithful representation is given by the identity map. Now consider V = R3 ∼= sl2(R)
with basis1

0
0

 ∼= e,

0
1
0

 ∼= −g,
0
0
1

 ∼= f

and the adjoint representation. Since sl2(R) is simple, the adjoint representation is faithful, its matrix form is
given by

ade =

0 2 0
0 0 1
0 0 0

 , adf =

0 0 0
1 0 0
0 2 0

 , adg =

2 0 0
0 0 0
0 0 −2

.

As a last example consider the non-abelian two-dimensional Lie algebra with the basis {x, y} and [x, y] = x.
Note that even though this algebra is solvable, its center is zero and we can again use the adjoint representa-
tion. The matrix form is

adx =

(
0 1
0 0

)
, ady =

(
−1 0
0 0

)
.

2.2 Modules, submodules, quotient modules

In the literature one often finds the notion of (left) L-modules, which is (in this context) basically just another
way of saying "representation of L". For completeness, even though in this thesis we will always speak of
representations, a short summary of L-modules is presented in the following.

Definition. Let L be a Lie algebra. A vector space V , together with an operation L × V → V , (l, v) → l.v, is
called a (left) L-module, if

(i) (αl1 + βl2).v = α(l1.v) + β(l2.v),

(ii) l.(αv1 + βv2) = α(l.v1) + β(l.v2),

(iii) [l1, l2].v = l1.l2.v − l2.l1.v.

Given a representation φ : L→ gl(V ), the vector space V is an (left) L-module with

l.v = φ(l)(v).
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Conversely, given an L-module V , the above equation defines a representation φ : L→ gl(V ).

A L-submodule U is simply a subspace of V , which is closed w.r.t. the inherited operation, i.e. L.U ⊂ U .
Equivalentely, if φ : L → gl(V ) is a representation of L and U is a subspace of L which is left invariant under
φ(L), i.e. φ(L)(U) ⊂ U , then φ : L→ gl(U) is called a subrepresentation.

V 6= 0 is called irreducible, if its only submodules are 0 and itself. V is called completely reducible, if it is
a direct sum of irreducible submodules. Again, irreducible/completely reducible representations are defined
equivalentely.

Note that any Lie algebra L is an L-module for the adjoint representation and its L-submodules are its ideals.
Therefore, any simple Lie algebra, seen as an L-module, is irreducible. A Lie algebra is called reductive, if
its adjoint representation is completely reducible, i.e. the Lie algebra is a direct sum of ideals. An equivalent
definition is that a Lie algebra L is reductive, if every ideal I has a complementery ideal K, i.e. L = I ⊕K.

A linear map ψ : V →W , where V and W are L-modules, is called a homomorphism of L-modules, if

ψ(l.v) = l.ψ(v).

2.3 Structure theorems: Lie and Engel

The aim of this subsection is to prove the theorems of Lie and Engel, but first, a few preliminary results will be
derived.

Theorem 1. Let x ∈ gl(V ) be nilpotent. Then adx is also nilpotent.

Proof. Define

lx : gl(V )→ gl(V ), lx(y) = xy and

rx : gl(V )→ gl(V ), rx(y) = yx.

If x is nilpotent (e.g. xn = 0), then so are lx and rx:

(lx)
n = xny = 0,

(rx)
n = yxn = 0.

Therefore, adx = lx − rx is nilpotent as well (note that lx ◦ rx = rx ◦ lx):

(adx)
2n =

∑2n
k=0

(
2n
k

)
(lx)

2n−k(−rx)k = 0.

Theorem 2. Let V 6= 0 be a finite-dimensional vector space and L a subalgebra of gl(V ). If all elements of L
are nilpotent, then there exists a nonzero v ∈ V , such that l(v) = 0 ∀l ∈ L.

Proof. The proof uses induction on dimL:

dimL = 1: Denote the unique basis vector of L by lB . Then choose an arbitrary vector v ∈ V and define the
sequence v0 = v, vi+1 = lB(vi). Since lB is nilpotent, vn = 0 for some n. If we choose n minimal,
vn−1 6= 0 and l(vn−1) = 0 ∀l ∈ L.

dimL > 1: Let K be a maximal proper subalgebra of L (such an algebra exists since L is finite-dimensional and
nilpotent). Let us now show that K is an ideal of L. Since all elements of L are nilpotent and adk ∈
gl(L) ∀k ∈ K, it follows from theorem 1 that

∀k ∈ K ∃n : (adk)
n = 0, i.e. the image of ad : K → gl(L) is nilpotent.

adk also acts on the quotient space L/K by adk(l+K) = adk(l)+K = [k, l]+K. The induction hypothesis
guarantees us the existence of an vector x ∈ L, x 6∈ K, such that

adk(x+K) = 0 ∀k ∈ K, i.e. [x, k] ∈ K ∀k ∈ K.

This means K is properly included in NL(K) and since K is maximal, NL(K) = L, i.e. K is an ideal in
L.
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K + 〈x〉, where 〈x〉 denotes the span of x, is a subalgebra of L and, since K is already a maximal proper
subalgebra and x 6∈ K, it follows that

L = K + 〈x〉.

Due to the induction hypothesis there is a v ∈ V , s.t. K(v) = 0, i.e. k(v) = 0 ∀k ∈ K. Define

W = {v ∈ V |K(v) = 0} 6= 0.

It now suffices to show the existence of a v ∈ W − {0} with x(v) = 0. Note that W is stable under L, i.e.
L(W ) = {l(w)|l ∈ L, w ∈W} ⊂W , since k

(
l(w)

)
= l
(
k(w)

)
− [l, k](w) = 0.

In particular, W is stable under 〈x〉 and therefore 〈x〉|W ⊂ gl(W ). It follows (again by the induction
hypothesis) that

∃v ∈W : 〈x〉(v) = 0 and therefore L(v) = 0.

With these results we are now prepared to prove Engel’s theorem.

Engel’s theorem. If all elements of a Lie algebra L are ad-nilpotent, then L is nilpotent.

Proof. Again, by induction on dimL, the case L = 0 being trivial. The image of ad : L → gl(L) consists of
nilpotent endomorphisms and therefore satisfies the requirements of theorem 2. It follows that Z(L) 6= 0. Now
L/Z(L) consists of ad-nilpotent elements and dim

(
L/Z(L)

)
< dimL. By the induction hypothesis, L/Z(L) is

nilpotent. Due to proposition 2 L is also nilpotent.

Proposition 4. Under the assumptions of theorem 2, there exists a basis of V , relative to which the matrices
of L are strictly upper triangular.

Proof. Let v0 ∈ V be a non-zero vector, such that L(v0) = 0 (the existence of such a vector is guaranteed by
theorem 2. Define W = V/〈x0〉. Note that L|W still consists of nilpotent endomorphisms. Using induction on
dimV (the case dimV = 0 being trivial), W has a basis {v1, ..., vn−1} (mod v0) relative to which L|W consists
of strictly upper triangular matrices and {v0, ..., vn−1} is the basis of V we were looking for.

Theorem 3. Let V 6= 0 be a finite-dimensional vector space over the field F and L a solvable subalgebra of
gl(V ). Then V contains a common eigenvector for all elements of L.

Proof. The proof is done by induction on dimL and is similar to the proof of theorem 2 .

dimL = 1: There is one basis vector lB with an eigenvalue λ (F is algebraically closed). The corresponding eigen-
vector is an eigenvector for all elements α · lB in L with eigenvalues α · λ.

dimL > 1: Since L is solvable, [L,L] is a proper ideal in L.

Therefore, a subspace K of codimension one containing [L,L] exists, i.e. K is an ideal and

∃x ∈ L−K : L = K + 〈x〉.

The induction hypothesis guarantees the existence of a common eigenvector for all elements in K, i.e.
there exist v ∈W and a linear function λ : K → F, such that k(v) = λ(k) · v for every k ∈ K. Therefore

W = {v ∈ V | ∃λ : K → F : k(v) = λ(k) · v ∀k ∈ K} 6= 0.

Assume for a moment that L(W ) ⊂ W . It follows, that 〈x〉|W ⊂ gl(W ). Since the field is algebraically
closed, x has an eigenvector v ∈W , which is thus also an eigenvector for every l ∈ L = K + 〈x〉.

It remains to show that L leaves W invariant. Note that for arbitrary k ∈ K, l ∈ L, w ∈W

k
(
l(w)

)
= (l ◦ k)(w)− [l, k](w)

and thus, since K is an ideal in L and [l, k] ∈ K,

k
(
l(w)

)
= λ(k) · l(w)− λ([l, k]) · w.

It therefore suffices to show that λ([l, k]) = 0 for all k ∈ K, l ∈ L. Fix w ∈ W , l ∈ L and choose n ∈ Z+

minimal, such that w, l(w), ..., ln(w) are linearly dependent. Define

W0 = 0, Wi = 〈w, ..., li−1(w)〉.

9 Hofer Joachim



An introduction to Lie algebras and the theorem of Ado

By construction l(Wn) ⊂ Wn. We will now show that, for k ∈ K, (k ◦ li)(w) = λ(k) · li(w) + w′ with
w′ ∈ Wi, i.e. that k is an upper triangular matrix with the diagonal entries λ(k) relative to the basis
{w, ..., ln−1(w)}.

The proof is done by induction on i, the case i = 0 being trivial. Note that

(k ◦ li)(w) = (k ◦ l ◦ li−1)(w) = (l ◦ k ◦ li−1)(w)− ([l, k] ◦ li−1)(w).

Due to the induction hypothesis,

(k ◦ li−1)(w) = λ(k) · li−1(w) + w′ and ([l, k] ◦ li−1)(w) = λ([l, k]) · li−1(w) + w′′ with w′, w′′ ∈Wi−1.

Therefore,

(k ◦ li)(w) = λ(k) · li(w) + l(w′) + λ([l, k]) · li−1(w) + w′′.

Since w′ ∈ Wi−1, it follows (by construction of the Wi) that l(w′) ∈ Wi. Also, λ([l, k]) · li−1(w) ∈ Wi and
w′′ ∈Wi−1 ⊂Wi.

In particular K(Wn) ⊂ Wn. It furthermore follows that n · λ(k) = tr(k) (the trace is to be taken over Wn,
i.e. k ∈ K|Wn ⊂ gl(Wn)). If k is a commutator, the trace equals zero, in particular λ([l, k]) = 0 ∀k ∈ K.
Therefore, since the above construction can be done for arbitrary l ∈ L,

λ([l, k]) = 0 ∀k ∈ K ∀l ∈ L.

Lie’s theorem. Let V 6= 0 be a finite-dimensional vector space with dim(V ) = n and L a solvable subalgebra
of gl(V ). Then there exists a basis of V , such that the elements of L are upper triangular matrices with respect
to that basis.

Proof. Induction on n, the case n = 1 being trivial. Due to theorem 3 all elements of L have a common
eigenvector v0 ∈ V . The quotient space V/〈v0〉 has dimension dimV − 1 and due to the induction hypothesis
a basis {v1 + 〈v0〉, ..., vn−1 + 〈v0〉}, s.t. the elements of L|V/〈v0〉 are upper triangular matrices. Therefore
{v0, ..., vn−1} is a basis of V in which every element of L is an upper triangular matrix.
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3 The theorem of Ado for nilpotent Lie algebras. How can a faithful
representation be constructed?

3.1 Ad hoc examples

We have already seen that the adjoint representation of a Lie algebra L is faithful if the center of L is trivial
(i.e. L is simple/semisimple). Since L = Z(L)⊕ L/Z(L) (as direct sum of vector spaces), if one finds a repre-
sentation of L which is faithful on Z(L), one can then take the direct sum of that representation and the adjoint
representation to construct a representation which is faithful on L.

Next, consider an abelian Lie algebra L (i.e. the center of L is L) and the map

φ : L→ gl(L× F), x→ φx, where

φx : L× F→ L× F, (y, α)→ (αx, 0).

If the elements of L×F are written as vectors
(
y
α

)
, φx is the matrix

(
0 x
0 0

)
. This gives us a faithful represen-

tation of every abelian Lie algebra (and therefore of the center of an arbitrary Lie algebra).

3.2 The universal enveloping algebra

3.2.1 Tensor products and the tensor algebra

Let V and W be two vector spaces and V ×W = {(v, w)| v ∈ V, w ∈ W}. The free vector space F (V ×W )
on V ×W is the vector space in which the elements of V ×W form a basis, i.e.

F (V ×W ) = {
∑n
i=1 αie(vi,wi)| vi ∈ V, wi ∈W, αi ∈ F, n ∈ N},

where the e(v,w) are per definition linearly independent for different (v, w) ∈ V ×W . Now define R to be the
space generated by

e(v1+v2,w) − e(v1,w) − e(v2,w),

e(v,w1+w2) − e(v,w1) − e(v,w2),

e(αv,w) − αe(v,w),

e(v,αw) − αe(v,w)

for v, v1, v2 ∈ V , w, w1, w2 ∈W and α ∈ F.

Definition. The tensor product V ⊗ W of V and W is defined as the quotient space F (V × W )/R and its
elements are denoted by v ⊗ w.

By construction,

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w,

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2,

(αv)⊗ w = v ⊗ (αw) = α(v ⊗ w).

It follows that, if {vi} and {wi} are bases of V and W , {vi ⊗wj} is a basis of V ⊗W and that the dimension of
V ⊗W is dimV · dimW .

Definition. For a vector space V define

T iV = V ⊗i = V ⊗ ... ⊗ V (i times).

The tensor algebra of V is then defined as

TV =
⊕∞

i=0 T
iV = F⊕ V ⊕ (V ⊗ V )⊕ ....

Multiplication in TV is defined by the tensor product, i.e. for x ∈ T kV and y ∈ T lV ,

xy = x⊗ y ∈ T (k+l)V

and TV is thus an associative algebra. From now on, since it is also customary in the literature, we will write
xy instead of x⊗ y.
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3.2.2 The universal enveloping algebra of a Lie algebra

Definition. The universal enveloping algebra U(L) of a Lie algebra L is defined as the quotient of TL by the
ideal generated by xy − yx− [x, y] for x, y ∈ L.

Note that L acts on U(L) by left multiplication, i.e. we have a map:

φ : L→ gl
(
U(L)

)
, x→ φx, where

φx : U(L)→ U(L), φx(y) = xy.

Since

φ[x,y](z) = [x, y]z = (xy − yx)z = xyz − yxz = (φx ◦ φy − φy ◦ φx)(z) for z ∈ U(L),

φ([x, y]) = [φ(x), φ(y)] and φ is a Lie algebra homomorphism. Since each φx maps 1 ∈ U(L) into x, φ is
injective and therefore a faithful representation of L.

3.2.3 The Poincare-Birkhoff-Witt theorem

Let L be a Lie algebra with an ordered basis {x1, ..., xn}. The Poincare-Birkhoff-Witt theorem states that the
universal enveloping algebra U(L) is spanned by monomials of the form xα1

1 ... xαn
n , where αi ∈ N0. A proof

can be found in e.g. [1, 17.4].

3.3 Constructing a faithful representation of h1
In this subsection we will construct a faithful representation of the Heisenberg Lie algebra h1. The proof of
Ado’s theorem for nilpotent Lie algebras, presented in the next subsection, will be a direct generalisation of the
method used here. Let {x1, x2, x3} be the basis of h1 with [x2, x3] = x1 and all other commutators zero. Note
that

h01 = h1, h11 = [h1, h1] = 〈x1〉, h21 = 0.

Now consider the universal enveloping algebra U(h1) with its basis formed by the monomials

xα = xα1
1 xα2

2 xα3
3

with α ∈ Z3
+. Define U3(h1) as the subspace of U(h1) spanned by the monomials with

2α1 + α2 + α3 ≥ 3

and denote the quotient space U(h1)/U
3(h1) by V . This quotient space is now spanned by the monomials

(mod U3(h1)) with 2α1 + α2 + α3 < 3 and therefore finite. More precisely, a basis of V is given by

{x1, x22, x2x3, x23, x2, x3, 1}.

Now define, as before (see section 4.2.2), a representation φ of h1 on V by left multiplication, i.e. φx(v) = xv.
Again, since each φx maps 1 ∈ V into x 6= 0, φ is injective and therefore a faithful representation of h1 (but now
on an finite vector space). In matrix form, w.r.t. the above basis, this representation is given by:

φx1
=



0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, φx2 =



0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, φx3 =



0 0 0 0 −1 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0


.

However, we can do better (i.e. we can find a representation in a smaller dimension), but first, let’s see if we
can find a lower limit for the dimension of faithful representations of h1. We will use that, if L is a nilpotent Lie
algebra and Z(L) ⊂ [L,L], there exists a minimal faithful representation φ of L, such that Im(φ) consists of
nilpotent endomorphisms (see e.g. [4, Corollary 2.8]). Thus, due to proposition 3, there is a basis of V relative
to which the image of φ consists of strictly upper triangular matrices. This implies that any faithful representa-
tion of h1 has to be at least of dimension 3.

There is another proof for this using Lie’s theorem instead of Engel’s theorem: Let φ be a faithful repre-
sentation of h1 on a vector space V . Then Im(φ) is a solvable subalgebra of gl(V ) and, due to Lies theorem,
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there is a basis of V such that Im(φ) consists of upper triangular matrices. This obviously excludes faithful
representations of dimension 1. Now assume that we have a faithful representation on a vector space of di-
mension 2. Note that, since the commutator of two upper triangular matrices is strictly upper triangular, φ(x1)
would be a strictly upper triangular matrix (w.r.t. to some basis). But then the other commutation relations,
[φ(x2), φ(x1)] = [φ(x3), φ(x1)] = 0, imply that φ(x1) = 0, as can be verified by a straightforward calculation.
Therefore, no 2-dimensional faithful representation of h1 exists and any faithful representation of h1 has to be
at least of dimension 3.

Now we are going to construct a lower-dimensional faithful representation of h1 by "downsizing" the repre-
sentation given above. First note, that the subspace W ⊂ V spanned by x22, x2x3, x23 is invariant under Im(φ),
since xw = 0 for x ∈ h1 and w ∈ W and that φ is still faithful on U = V/W = 〈x1, x2, x3, 1〉 (mod W )1, giving
us a four-dimensional representation.
The matrices are given by

φx1
=


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , φx2
=


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , φx3
=


0 −1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

.

However, we can still do better. It is easy to check that P = 〈x3〉 is invariant under φ and that φ is still faithful
on U/P . W.r.t. the basis {x1, x2, 1}, the matrices are

φx1 =

0 0 1
0 0 0
0 0 0

 , φx2 =

0 0 0
0 0 1
0 0 0

 , φx3 =

0 −1 0
0 0 0
0 0 0

.

We have thus found a faithful representation of dimension 3 and therefore, as shown above, a minimal faithful
representation.

3.4 Ado’s theorem for nilpotent Lie algebras

Ado’s theorem for nilpotent Lie algebras. Every finite-dimensional nilpotent Lie algebra L has a faithful
representation φ : L→ gl(V ) on a finite-dimensional vector space V .

Proof. Since L is nilpotent, there exists a k ∈ N, s.t. Lk = 0 and Lk−1 6= 0. Choose a basis {x1, .., xn} of L
s.t. the first n1 elements span Lk−1, the first n2 span Lk−2 and so on. Now consider the universal enveloping
algebra U(L) with its basis formed by the monomials

xα = xα1
1 ... xαn

n

with α ∈ Zn+. Let t =
∑
α cαx

α be an element of U(L) with only finitely many cα 6= 0 and define an order
function on U(L) as follows:

ord(t) = min{ord(xα)| cα 6= 0}2, where

ord(xα) =
∑n
i=1 αiord(xi) and

ord(xi) = max{s| xi ∈ Ls−1}.

Furthermore, set

ord(1) = 0 and ord(0) =∞.

Let Um(L) = {t ∈ U(L)| ord(t) ≥ m}. It is easy to show that this is an ideal in U(L) and V = U(L)/Um(L)
is finite. The representation φ of L on V is now simply given by left multiplication, i.e. φx(v) = xv. If m > k,
φx(1) = x 6= 0 ∀x ∈ L− {0} and φ is faithful.

1The faithful representation h1 → V/W is the composition of φ : h1 → V and the canonical map π : V → V/W . In slight abuse of
notation, we also denote it by φ, i.e. π ◦ φ→ φ.

2Compare this definition to the example in the last subsection, e.g., ord(−xα1
1 + 5xα2

2 xα3
3 ) = min{2α1, α2 + α3}
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3.5 Constructing a faithful representation for the standard filiform Lie algebra of di-
mension 4

Consider the four-dimensional Lie algebra L = 〈x1, x2, x3, x4〉 with the Lie bracket defined by

[x1, x2] = x3,

[x1, x3] = x4

and all other brackets equal to zero. The center of L is thus spanned by x4 and L is 3-step nilpotent, i.e.

L1 = 〈x3, x4〉,

L2 = Z(L) = 〈x4〉 and

L3 = 0.

Now define an order function on U(L) as shown in the last section, i.e.

ord(xα) = ord(xα1
1 xα2

2 xα3
3 xα4

4 ) = α1 + α2 + 2α3 + 3α4,

ord(
∑
α cαx

α) = min{ord(xα)| cα 6= 0},

and define U4(L) as the space spanned by all monomials with ord(xα) ≥ 4. U(g)/U4(g) is finite with dimension
14, an (ordered) basis is given by

{x4, x1x3, x2x3, x31, x21x2, x1x22, x32,

x3, x
2
1, x1x2, x

2
2,

x1, x2,

1}.

Note that the monomials in the first row have order 3, the ones in the second row order 2, and so on. As above,
the faithful representation φ is given by left multiplication. We could now go ahead and compute the matrix
representation as in the second to last section, but since our representation is now 14-dimensional, we refrain
from doing so for all matrices. We will however give a short example of how to do it and provide the matrix form
of φx2 :

φx2(x
2
1) = x2x

2
1

= (x1x2 − [x1, x2])x1

= x21x2 − x1[x1, x2]− [x1, x2]x1

= x21x2 − x1x3 − x3x1

= x21x2 − 2x1x3 + x4.

This short calculation determines 14 entries of the matrix form of φx2
(w.r.t. the above basis), three of which

are non-zero. The complete matrix (w.r.t. the above basis) is

φx2
=



0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 −2 0 0 0 0 0
0 0 0 0 0 0 0 1 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0



.
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3.6 Constructing a faithful representation for an abelian Lie algebra

Let’s do another easy example to end this chapter. We have already seen how to construct a faithful represen-
tation of an abelian Lie algebra in section 3.1, but since an abelian Lie algebra is trivially nilpotent, we can also
use the above construction.

Consider the Lie algebra L = C2 with the basis {x1, x2} and the Lie bracket [x1, x2] = 0. Note that L0 = L and
L1 = 0. Define the order function and U(L), Um(L) as above and consider the space

U(L)/U2(L) = 〈x1, x2, 1〉.

The representation φ : L→ gl
(
U(L)/U2(L)

)
is given by left multiplication. In matrix form,

φx1
=

0 0 1
0 0 0
0 0 0

 , φx2
=

0 0 0
0 0 1
0 0 0

.

Note that the construction shown in section 3.1 would lead to the same representation.
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4 The theorem of Ado

In this section we will prove the general version of Ado’s theorem, i.e. that every Lie algebra has a faithful finite-
dimensional representation. We will also give some examples of the construction of such representations.

4.1 Derivations

Definition. A derivation of a Lie algebra L is a linear map δ : L→ L, s.t.

δ
(
[x, y]

)
=
[
x, δ(y)

]
+
[
δ(x), y

]
∀x, y ∈ L.

The space of all derivations of L, denoted by DerL, is a Lie subalgebra of gl(V ). We have already seen an
example of a derivation, namely the adjoint representation: Due to the Jacobi identity, adx is a derivation (for
arbitrary x ∈ L), i.e. adL ⊂ DerL.

4.2 Direct and semidirect sums of Lie algebras

Definition. Given two Lie algebras L1 and L2, define L to be the direct sum of L1 and L2 as vector spaces,
i.e.

L = L1 ⊕ L2.

The Lie bracket on L is then defined componentwise, i.e.[(
l1
l2

)
,

(
k1
k2

)]
=

(
[l1, k1]
[l2, k2]

)
for l1, k1 ∈ L1 and l2, k2 ∈ L2. With this bracket L is a Lie algebra and called the (external) direct sum of L1

and L2. Note that
(
L1

0

)
∼= L1 and

(
0
L2

)
∼= L2 are ideals in L.

Definition. Let L be a Lie algebra and let I1 and I2 be ideals in L, such that L = I1 ⊕ I2 as vector spaces.
Then L is called the internal direct sum of I1 and I2, also denoted by L = I1 ⊕ I2.

Definition. Given two Lie algebras L1, L2 and a Lie algebra homomorphism D : L1 → DerL2, define L to be
the direct sum of L1 and L2 as vector spaces, i.e.

L = L1 ⊕ L2.

Now define the bracket operation as[(l1
l2

)
,

(
k1
k2

)]
=

(
[l1, k1]

[l2, k2] +D(l1)k2 −D(k1)l2

)
.

L, together with this Lie bracket, becomes a Lie algebra and is called the (external) semidirect sum of L1 and
L2, denoted as

L = L1 nD L2.

Note that
(
L1

0

)
∼= L1 is a subalgebra in L and

(
0
L2

)
∼= L2 is an ideal in L.

Definition. Let L be a Lie algebra, K a subalgebra of L and I an ideal in L, such that L = K ⊕ I as vector
spaces. Then L is called the internal semidirect sum of K and I, denoted

L = K n I.

Note that an internal semidirect sum is an external semidirect sum with D(k) = adk for k ∈ K. Furthermore,
an internal semidirect sum is direct, if and only if K is an ideal in L.
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4.3 Proof of Ado’s theorem

The following result, which is also interesting in its own right, is of central importance for the proof:

Lemma (Neretin). Every finite-dimensional Lie algebra L can be embedded into a Lie algebra

g = pn n,

such that p is a reductive subalgebra and n is a nilpotent ideal.

The proof of this result will be postponed to the next subsection. Note that, since p is reductive, we can
write

g = k⊕ (qn n),

where k is the kernel of the adjoint action of p on n, q is an ideal in p, p = k ⊕ q and q ∼= p/k now acts faithfully
on n. Moreover, k and q are both reductive.

To prove Ado’s theorem we have to find a faithful representation of both k and q n n. The following propo-
sition does the trick for the former.

Proposition 5. Let L be a reductive Lie algebra. Then L = Z(L)⊕ [L,L].

Proof. Obviously Z(L) and [L,L] are both left invariant by the adjoint action of L. Furthermore, Z(L)∩ [L,L] =
0. Because [L,L] already contains all the commutators, there can’t be another complementary ideal, i.e.
L = Z(L)⊕ [L,L].

Therefore, to find a faithful representation of a reductive Lie algebra, we can take the direct sum of two
faithful representations, one of an abelian Lie algebra, the other one of a Lie algebra with trivial center. We
have already seen how to construct such representations.

Ado’s theorem. Every finite-dimensional Lie algebra L has a faithful representation φ : L → gl(V ) on a
finite-dimensional vector space V .

Proof. After the discussion above, it remains to show that the semidirect product qn n has a faithful represen-
tation if q is reductive, n is nilpotent and q acts faithfully on n.

Consider the universal enveloping algebra U(n) of n. As before, n acts on U(n) by left multiplication. Fur-
thermore, the adjoint action of q on n extends to an action on U(n) (let y1 ... yn be an arbitrary monomial in
U(n)):

[q, 1] = 0,

[q, y1 ... yn] =
∑n
i=1 y1 ... yi−1[q, yi]yi+1 ... yn for q ∈ q.

We can now combine the two actions to an action of qn n on U(n):(
q
n

)
× y1 ... yn = ny1 ... yn + [q, y1 ... yn] for n ∈ n and q ∈ q.

It can be verified that this defines a (qn n)-module structure on U(n). The rest of the proof almost mirrors the
proof of section 3.4.:

Let k ∈ N, s.t. nk = 0 and nk−1 6= 0. Define an ordered basis {x1, ..., xn}, s.t. the first n1 elements
span nk−1, the first n2 span nk−2 and so on. Let t =

∑
α cαx

α (where xα = xα1
1 ... xαn

n with α ∈ Zn+) be an
element of U(n) with only finitely many cα 6= 0 and define an order function on U(n) as follows:

ord(t) = min{ord(xα)| cα 6= 0}, where

ord(xα) =
∑n
i=1 αiord(xi),

ord(xi) = max{s| xi ∈ ns−1},

ord(1) = 0 and ord(0) =∞.

Let Um(n) = {t ∈ U(n)| ord(t) ≥ m} and note that it is left invariant by the action of qnn
(
because ord

[(
q
n

)
×

t
]
≥ ord(t) for t ∈ U(n)

)
, i.e. the action of q n n on U(n)/Um(n) is well defined. It remains to show that this

action is faithful for some m. Let m > k from now on (which implies in particular that n is fully embedded in

U(n)/Um(n)) and assume there exist n ∈ n, q ∈ q, s.t.
(
q
n

)
× t = 0 for all t ∈ U(n)/Um(n). It follows that
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n =

(
q
n

)
× 1 = 0, which also implies that

[q, n′] =

(
q
0

)
× n′ = 0 for all n′ ∈ n ⊂ U(n)/Um(n).

Since the action of q on n is faithful, q = 0.

4.4 Proof of Neretin’s lemma

For the proof we will need the following two theorems. A proof can be found in [1] (Jordan-Chevalley decom-
position) and [2] (Levi’s theorem).

Jordan-Chevalley decomposition. Let V be a vector space and x ∈ gl(V ). There exist unique xs, xn ∈
gl(V ), s.t.

x = xs + xn,

xs is diagonizable, xn is nilpotent, xs and xn commute.

Levi’s theorem. Let L be a Lie algebra and denote its radical by r. There exists a semisimple subalgebra h,
s.t.

L = hn r.

Such a subalgebra h is usually called Levi subalgebra, Levi complement or Levi part of L.

We will now introduce the so called elementary expansions. Let L be a Lie algebra and assume it has an
ideal I of codimension one. Let L − I = 〈x〉 and d = adx : I → I with the Jordan-Chevalley decomposition
d = ds + dn. Now define

g = C2 + I (direct sum of vector spaces)

and let {y, z} be a basis of C2. With the following commutator relations, g becomes a Lie algebra:

[y, z] = 0, [y, i] = ds(i), [z, i] = dn(i),

where i ∈ I and the commutator of i1, i2 ∈ I being the same as before. Now note that the subalgebra 〈y+z〉+I
is isomorphic to L and [L,L] = [g, g]. The Lie algebra g is called an elementary expansion of L.

We are now ready to prove Neretin’s lemma: Let L be an arbitrary (finite-dimensional) Lie algebra with the
Levi decomposition

L = hnRad(L).

Note that h is semisimple (and therefore also reductive), which also implies that its action on L = h n Rad(L)
is completely reducible. Define n = Nil(L) and note that

[L,Rad(L)] ⊂ n and

[L,L] = hn [L,Rad(L)].

We remark here that any nilpotent ideal containing [L,Rad(L)] can be used instead of the nilradical. If L = hnn,
we are done. Assume from now on that h n n is a proper subalgebra of L. This implies the existence of a
subspace I of codimension one containing hnn and therefore also [L,L], i.e. I is an ideal. Now let L−I = 〈x〉
and construct the elementary expansion g of L as above, i.e. g = C2 + I = 〈y, z〉+ I. Define

h′ = 〈y〉+ h,

n′ = 〈z〉+ n.

By construction, n′ is a nilpotent ideal in g. Now note that, since the action of h on L is completely reducible,
〈x〉 is invariant under the adjoint action of h, i.e. (recall that [L,L] ⊂ I) x commutes with h. This implies that y
commutes with h as well, i.e.

h′ = 〈y〉 ⊕ h
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and h′ is reductive. By construction, since ady is diagonizable, the action of h′ on g is fully reducible. Note
that n is a proper subalgebra of n′, h is a proper subalgebra of h′ and L is a proper subalgebra of g, all with
codimension one. Therefore,

dim(g)−
[
dim(h′) + dim(n′)

]
= dim(L)−

[
dim(h) + dim(n)

]
− 1.

This process can now be repeated with g, h′, n′ instead of L, h, n until, after finitely many repitions, we get
the desired algebra.

4.5 Constructing a faithful representation of the 2-dimensional upper triangular ma-
trices

Upper triangular matrices are a standard example for a solvable Lie algebra. Consider the space L of all
complex 2-dimensional upper triangular matrices, spanned by

x1 =

(
1 0
0 −1

)
, x2 =

(
0 1
0 0

)
, x3 =

(
1 0
0 1

)
.

The Lie bracket is then given by

[x1, x2] = 2x2,

all other commutators being zero. A trivial representation is given by the identity map, so let’s see if we can
find another one. Note that

L1 = L(1) = [L,L] = 〈x2〉,

L2 = L1 and

L(2) = 0,

i.e. L is solvable but not nilpotent. The center Z(L) is spanned by x3 and the nilradical is

n = Z(L)⊕ [L,L] = 〈x2, x3〉.

Note that n is abelian. Furthermore,

L = 〈x1〉n n

and the action of 〈x1〉 on n is faithful. We can now apply the construction of section 4.3 to this example. Note
that

U(n)/U2(n) = 〈x2, x3, 1〉.

If we denote the representation of L on U(n)/U2(n) by φ, then

φx1
=

2 0 0
0 0 0
0 0 0

 , φx2
=

0 0 1
0 0 0
0 0 0

 , φx3
=

0 0 0
0 0 1
0 0 0

.

4.6 Constructing a faithful representation of an abstract Lie algebra

Consider the abstract 4-dimensional Lie algebra L with basis 〈x1, x2, x3, x4〉 and the Lie brackets

[x1, x2] = x2,

[x1, x4] = x2

and all other commutators equal to zero. L is solvable (therefore the Levi subalgebra h = 0) and the (abelian)
nilradical is

Nil(L) = 〈x2, x3, x2 − x4〉.

We could now proceed as in the last subsection to obtain a 4-dimensional representation of L. However, this
time we would like to apply Neretin’s lemma. Therefore, note that

n = Z(L)⊕ [L,L] = 〈x2, x3〉
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is a nilpotent ideal in L and contains [L,Rad(L)] = [L,L]. It can thus be used as a starting point for elementary
expansions (instead of the nilradical). An ideal containing n is given by

I = n+ 〈x4〉.

Now construct the elementary expansion

g = C2 + I = 〈y, z〉+ I with

[y, x2] = x2,

[y, x4] = x2

and define

h′ = 〈y〉,

n′ = 〈z〉+ n.

Note that h′ n n′ is of codimension one in g, i.e. we need to repeat the procedure one more time. Define

g′ = C2 + h′ n n′ = 〈y′, z′〉+ h′ n n′ with

[z′, y] = −x2.

We now have

h′′ = 〈y′, y〉,

n′′ = 〈z′〉+ n′ and

g′ = h′′ n n′′ = 〈y′〉 ⊕
(
〈y〉n n′′

)
.

We can now apply the construction of section 4.3 to get a representation φ of g′, spanned by {φy′ , φy, φz′ , φz, φx2
, φx3

}.
The representation of L is then given by

〈φx1 , φx2 , φx3 , φx4〉, where

φx1
= φy + φz and φx4

= φy′ + φz′ .

Now note that

n′′1 = 〈x2〉 and

n′′2 = 0.

The quotient algebra U(n′′)/U3(n′′) is thus spanned by

{x2, z′z, z′x3, zx3, z′2, z2, x23,

z′, z, x3,

1}.

The identity map is an obvious representation of 〈y′〉 and the matrix forms of the φxi w.r.t. the basis

{y′, x2, z′z, z′x3, zx3, z′2, z2, x23, z′, z, x3, 1}

are

φx1 =



0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



, φx2 =



0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



,

20 Hofer Joachim



An introduction to Lie algebras and the theorem of Ado

φx3 =



0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0



, φx4 =



1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



.
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