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Abstract

The Problem of Catalan was a long standing conjecture concerning a diophantine
equation, which was recently proved by Preda Mihăilescu using methods from
Algebraic Number Theory. After some general remarks on diophantine equations
and a brief historical overview this thesis takes a look at several steps of the
proof and provides a sketch of the entire proof.
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1 Introduction

Diophantine problems have motivated many advances in number theory. To the
recent breakthrough of Wiles, solving the famous Fermat Problem, Mihăilescu
added another old Diophantine problem which was finally solved: The Problem
of Catalan. This thesis takes a look at the methods used in this proof and gives
a partial reproduction.

The brief historical overview in section 3 focuses on the partial results which
became a part of the final proof.

Results used from algebra and algebraic number theory which are not covered
in the curriculum of the bachelor’s degree in mathematics at the University of
Vienna are collected in section 4.

In sections 5 and 6 proofs of some results due to Cassels, Inkeri and Mihăilescu
are given. In section 7 the proof is sketched. While for some steps proofs are
given, others are only described or justified by citations.

Mihăilescu’s proof of the problem of Catalan was published in the articles
(Mihăilescu 2003) and (Mihăilescu 2004). Major resources also were the book
(Bilu et al. 2014) as well as the doctoral thesis (Daems 2003) and the excellent
article (Metsänkylä 2003).

2 Diophantine Equations

Diophantine equations are equations, most of the time in several variables, in
which one is interested in solutions in the integers or the rationals. That is for a
function f : Zn → Z solutions (x1, x2, . . . , xn) of

f(x1, x2, . . . , xn) = 0

are sought.

Sometimes a Diophantine equation in which one of the variables appears in an
exponent is called an exponential Diophantine equation.

There are several general questions asked about a given Diophantine equations:

1) Do solutions exist?

2) Is it decidable whether or not solutions exist?

3) How many solutions are there?
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4) What structure do the solutions have?

In general 2) has a negative answer. Hilbert’s tenth problem asked whether there
was an algorithm deciding the solvability of a Diophantine equation (considering
only polynomial functions f). In 1970 it was proved in (Matijasevič 1973) that
such an algorithm does not generally exists. This result belongs more to the
area of logic than to number theory.

One classical example of a Diophantine equation is the equation of Pythagorean
triples:
Example 2.1 (Pythagorean Triples).

a2 + b2 = c2.

Here the answer to questions 1) and 2) is positive and there are infinitely
many solutions. The structure is also well understood, as there is a standard
parametrization of the Pythagorean triples.

Another example with an infinite number of solution with a less well understood
structure are elliptic curves:
Example 2.2 (Elliptic Curves).

y2 = x3 + ax+ b,

where a, b are rational constants and rational solutions x, y are considered.

These curves played an important role in Wiles proof of Fermat’s Last Theorem
and are also very important for number theory in general.

Fermat’s Last Theorem is probably the most well known Diophantine Problem.
It states that there are no solutions to:
Example 2.3 (Fermat’s equation).

xn + yn = zn, where n ≥ 3.

Much of the theory used in this thesis was developed by Kummer while working
on this problem.

The problem the remainder of this thesis focuses on is a conjecture by Belgian
mathematician Catalan in 1842, that the only solution to
Example 2.4 (Catalan’s equation).

xm − yn = 1, where m,n ≥ 2 and x, y ≥ 1

2



is 32 − 23 = 1. Or put in words: There are no consecutive integers which are
pure powers, except 8 and 9. This problem remained unanswered for over 150
years until the conjecture was proved by Preda Mihăilescu in 2002. His proof is
the topic of this thesis.

3 Historical Overview

Catalan first stated the problem in 1842 in a list of problems and problems in
the first volume of the journal Nouvelles Annales de Mathématiques. In 1944 in a
letter by Catalan published in the Journal für reine und angewandte Mathematik,
he wrote that he could not prove it completely so far. It does not seem like he
had proved any serious partial results either.

Before taking a look at the further history of Catalan’s problem a slight refor-
mulations is necessary: Since m and n are both larger than 1, each has a prime
divisor. Denote by p a prime divisor of m and by q a prime divisor of n. Then
we have:

xm − yn = 1⇐⇒ (x
m
p )p − (y

n
q )q = 1.

Thus the existance of a solution of the equation in the previous chapter implies
the existance of a solution to the following equation:
Definition 3.1 (Catalan’s equation).

xp − yq = 1, where p, q are prime and x, y ≥ 1.

If p = q and xp − yq > 1, then xp − yq > (y + 1)p − yp > 2p − 1 > 1, thus we
can also assume p and q to be distinct. This is the equation which will referred
to as "Catalan’s equation" in the following.

The case p = 2 and q = 3 was already known before Catalan stated the
conjecture. It was proved by Euler (Euler 1915). In fact he proved that the
equation x2 − y3 = 1 has no rational solution except (0,−1), (±1, 0) and (±3, 2).
From a modern point of view his result can be interpreted as being about the
rational points on the elliptic curve defined by this equation.

The case q = 2 was solved by Victor Lebesgue1, see (Lebesgue 1850).

The case p = 2 and q > 3 was solved by Ko Chao in (Chao 1964). This completed
the even cases (i.e. where either p or q is 2), which is relevant as Mihăilescu’s
proof does not cover them.

1Victor Amédée Lebesgue, not the more famous Henri Léon Lebesgue
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In (Tijdeman 1976) Tijdeman proved that there were only finitely many solutions
of Catalan’s equation using the theory of logarithmic forms, specifically Bakers
method. In fact he could even give an explicit bound for the size of the solutions:

|xm|, |yn| < 10101010320

While this was of course far out of range of calculations, it proved for the first
time that Catalan’s Problem was decidable.

Refinements of the method gave better bounds, the best of which is an upper
bound for max{p, q}, which is about 8 · 1016. However the bounds given by this
method were still far beyond of what is possible to check by calculation.

In 1960 Cassels published results now called Cassels Relations, which became
the starting point of further work (Cassels 1960). These results are presented in
section 5.

In 1999 Mihăilescu generalized a result, namely that q2|x, which Inkeri proved
in (Inkeri 1990) for regular primes q, to all primes p and q (Mihăilescu 2003).
This is the second part of chapter 5.

Mihăilescu finally proved the conjecture in 2002. This proof will be sketched in
section 7.

4 Mathematical Prerequisites

4.1 The ring of integers in a number field

In this section important results of algebraic number theory will be presented
without proofs. Proofs can be found in most algebraic number theory lecture
notes or in (Lang 1965), (Lang 1994) and (Washington 1982).

In algebraic number theory one investigates algebraic integers, which are an
analogue to the integers in finite field extensions of Q.
Definition 4.1. A number field is a finite field extension of Q.
Definition 4.2. Let A ⊂ B be an extension of commutative rings. An element
x ∈ B is called integral over A if there is a monic polynomial f with coefficients
in A such that f(x) = 0.

In the context of this thesis A will always be Z and B will be a number field.
An important result concerning integral elements is:
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Theorem 4.3. Let A ⊂ B be an extension of commutative rings. Then the
elements in B which are integral of A form a ring, called the ring of integers in
B over A or the integral closure of A in B.

There are two proofs commonly found in books and lecture notes on algebraic
number theory. On uses elementary symmetric polynomials and the other due
to Dedekind uses finitely generated modules.
Definition 4.4. A ring A is called integrally closed if the integral closure of A
in the field of fractions of A is A.

Now we can define algebraic integer:
Definition 4.5. Let K be a finite field extension of Q. The integral elements in
K over Z are called the ring of algebraic integers in K, denoted by OK .

Important properties of OK are collected in the definition of a Dedekind domain:
Definition 4.6. A Dedekind domain is an integral domain, which is Noetherian,
integrally closed and in which every nonzero prime ideal is maximal.

Dedekind domain are exactly those in which factorization of ideals into prime
ideals works:
Theorem 4.7. In a Dedekind domain every nonzero Ideal factors uniquely (up
to reordering) into prime ideals.

This is very useful because:
Theorem 4.8. The ring of integers in a number field is a Dedekind domain.

This is the main result of algebraic number theory we will be using. - In this
context the concept of an ideal is extended to that of an fractional ideal:
Definition 4.9. A subset I of a commutative ring R is a fractional ideal of R
if there is an element b ∈ R such that bI is an ideal of R.

The "fractional" is often omitted. With this definition the fractional ideals of a
number field form a group. The principal ideals form a subgroup of this group.
Definition 4.10. The class group of a number field K is the factor group of the
group of fractional ideals modulo the principal ideals, it is denoted HK or simply
H.
Theorem 4.11. The class group of a number field K is finite, it’s size is called
the class number of K, sometimes denoted as hk.

4.2 Cyclotomic Fields

The number fields used in Mihăilescu’s proof are the cyclotomic fields. The are
generated by adjoining a n-th root of unity ζ to Q. One can choose e 2πi

n to get
a specific embedding into C.
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The minimal polynomial of ζ is called the n-th cyclotomic polynomial and
denoted by Φn. We have:

Φn(x) =
∏

1≤i≤n
gcd(n,i)=1

(x− ζi).

For a prime p this simplifies to:

Φp(x) = xp − 1
x− 1 =

p−1∑
i=0

xi.

From now on we will work mostly in the field Q[ζ], where ζ is p-th root of unity
and p is prime. The ring of algebraic integers in Q[ζ] is exactly what one would
expect:
Theorem 4.12. The ring of algebraic integers in Q[ζ] is Z[ζ].

This ring has some special units:
Lemma 4.13. The elements of the form 1−ζi

1−ζj where i and j are integers not
divisible by p, are units in Z[ζ].

Proof. It is sufficient to proof that 1−ζi
1−ζj is indeed in Z[ζ] for general i and j.

Then it’s inverse 1−ζj
1−ζi is also in Z[ζ] and thus they are both units.

Now as p does not divide j and they are therefore coprime, there are m,n ∈ Z
such that mp+ nj = i. Now:

1− ζi

1− ζj = 1− ζmp+nj

1− ζj = 1− (ζj)n

1− ζj =
p−1∑
i=0

(ζj)n ∈ Z[ζ]

The elements in the subgroup generated by these units are called cyclotomic
units. It is denoted by C.

Because of this lemma the ideals (1− ζi) for i = 1, . . . , p− 1 are equal. Because

p = Φp(1) =
p−1∏
i=1

(1− ζi)

the ideal (p) decomposes in Z[ζ] as (p) = (1− ζ)p−1.
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4.3 The Group Ring

Throughout this section p and q are distinct primes larger than 2. As always ζ
is a p-th root of unity.

An algebraic object that plays a central role in Mihăilescu’s proof is the group
ring:
Definition 4.14. Given a commutative ring R and group G the formal linear
combinations ∑

σ∈G
aσσ

with coefficients aσ ∈ R, only finitely of which are nonzero form a ring with
component-wise addition and the following multiplication:(∑

σ∈G
aσσ

)(∑
σ∈G

bσσ

)
=
∑
σ∈G

∑
τ1τ2=σ

aτ1bτ2σ.

This ring is called the group ring and denoted R[G].

Note that the group ring is commutative if and only if the group G is commutative.

In this thesis the group G will always be either the Galois group of the field
extension Q[ζ]/Q or the Galois group of Q[ζ + ζ̄]/Q which will be denoted by
G+. Since both of these groups are abelian, the group rings will be commutative.
They are also both finite, therefore the condition that only finitely many aσ are
nonzero is irrelevant here.

The elements of G can be written as {σ1, σ2, . . . , σp−1}, where σi is the Galois
reflection which maps ζ to ζi. Thus the elements of R[G] can be written as∑p−1
i=0 niσi. The Galois reflection σ1 is the identity of R and will also be written

as 1. The Galois reflection σp−1 is complex conjugation and will be written as ι.

The ring R will always be Z,Q or Fq, where Fq is the field with q elements.

Let Z[G] act on Q[ζ] in the following way:

For θ =
∑p−1
i=0 niσi and x ∈ Q[ζ] define

xθ :=
p−1∏
i=1

σi(x)ni .

We write this operation exponentially because it satisfies:

xθ1+θ2 = xθ1xθ2 and (xθ1)θ2 = xθ1θ2 , for x ∈ Q[ζ], θ1, θ2 ∈ Z[G]
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Using this group action we can consider multiplicative abelian groups closed
under Galois reflections as Z[G] modules. These include the multiplicative group
of Q[ζ], the group of units in Z[ζ], the group of ideals and the group of principal
Z[ζ] ideals. Because of the latter two the class group H of Q[ζ] is also a Z[G]
module.

We say that an element θ ∈ Z[G] annihilates a Z[G] module if xθ is the neutral
element for all x in the module. For example θ ∈ Z[G] annihilates the H if for
every ideal a the ideal aθ is a principal ideal.

Now we can state Stickelberger’s theorem. First we define the Stickelberger
element and the Stickelberger ideal.
Definition 4.15. The Stickelberger element θS ∈ Q[G] is defined as follows:

θS :=
p−1∑
a=1

a

p
σ−1
a .

Definition 4.16. The Stickelberger ideal is defined as:

IS := Z[G] ∩ θSZ[G]

Theorem 4.17 (Stickelberger). The Stickelber Ideal is generated by the elements
θc, where

θc :=
p−1∑
a=1

⌊
ac

p

⌋
σ−1
a

and it annihilates the H.

For a proof see (Washington 1982, chapter 6).

This theorem gives us a number of nontrivial annihilators of the class group
which will be used in chapter 5.

If we have a Z[G] module M such that for all x ∈M we have xq = 1, i.e. q ∈ Z[G]
annihilates M, then it is also an Fq[G] module. To see this take two different
elements θ1 and θ2 of Z[G] such that q|θ1 − θ2. Then we have for all x ∈M :

xθ1 = xθ2xθ1−θ2 = xθ2(xq)(θ1−θ2)/q = xθ2 .

Some simple examples of such modules are Q[ζ]×/(Q[ζ]×)q or E/Eq, where E
is the group of units in Z[ζ].

An important property of Fq[G] used in Mihăilescu’s proof is that Fq[G] is
semisimple if q - p − 1. For commutative rings semisimplicity is equivalent to
being a finite product of fields.
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Lemma 4.18. If q - p− 1, the group ring F[G] is a finite product of finite fields.

Proof. G is isomorphic to the multiplicative group of the ring Z/pZ and thus is
cyclic. Therefore it has a generator σ, which satisfies σp−1 = 1 and σi 6= 1 for
1 < i < p − 1. Furthermore the σi are linearly independent over Fq. We can
write every element of the ring Fq[G] uniquely as

∑p−1
i=1 niσ

i.

Thus the map from Fq[X] to Fq[G] which maps X to σ is surjective and has
kernel (Xp−1− 1). This induces an isomorphism between Fq[X]/(Xp−1− 1) and
Fq[G].

Because q - p − 1 the derivative of Xp−1 − 1, which is (p − 1)Xp−2, does not
vanish in F̄q. Therefore Xp−1 − 1 is separable and we get:

Fq[X]/(Xp−1 − 1) ∼=
∏
g

Fq[X]/(g(X)),

where g are the irreducible polynomials that divide Xp−1 − 1.

This holds in larger generality, it is still true if G is any group of finite order and
Fq is replaced by any field whose characteristic does not divide the order of G,
see (Lang 1965, p.666).

Elements of the group ring have weight and size:
Definition 4.19. The weight w(θ) of an element θ of the group ring is defined
as:

w(θ) = w

(
p−1∑
i=0

niσi

)
:=

p−1∑
i=0

ni.

Notice that w is a ring homomorphism from Z[G] to Z. The kernel of this
homomorphism is called the augmentation ideal. The elements of an Ideal of
weight zero again form an ideal, which is called the augmented part of that ideal.
Definition 4.20. The size ‖θ‖ is defined as:

‖θ‖ =

∥∥∥∥∥
p−1∑
i=0

niσi

∥∥∥∥∥ :=
p−1∑
i=0
|ni|.

5 Cassels’ Relations

The start of the modern analysis of Catalan’s Problem was (Cassels 1960). In it
he proved what has become known as Cassels’ relations In this section a partial
proof of these results is given.
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First we need some preparations:

Let (x, y, p, q) be a solution of Catalan’s equation, where x and y are positive
integers and p and q are prime. The primes p and q are distinct, as it is easy to
see that xn − yn 6= 1 for y ≤ 1.

As mentioned earlier this thesis does not deal with the even cases so from now
on p and q are odd. This allows us to symmetrize the problem if we allow all
nonzero integer values for x and y: If (x, y, p, q) is a solution so is (−y,−x, q, p).
Indeed:

(−y)q − (−x)p = −yq + xp = xp − yq = 1.

Now the problem is symmetric in p and q.

To proof Cassels’ relations we need the following lemma:
Lemma 5.1. Let x 6= 1 be an integer and p prime larger than 2, then

gcd
(
xp − 1
x− 1 , x− 1

)
∈ {1, p}.

Moreover if the gcd is p then p2 - x
p−1
x−1 .

Proof. We can write xp−1
x−1 as a geometric series:

xp − 1
x− 1 =

p−1∑
i=0

xi ≡
p−1∑
i=0

1 ≡ p (mod x− 1).

Thus the gcd divides p, which means it must be either p or 1. For the second
part of the lemma we use the Binomial Theorem:

xp − 1
x− 1 = (x− 1 + 1)p − 1

x− 1 =
p∑
k=1

(
p

k

)
(x− 1)k−1 ≡ p (mod p2).

In the last step all but the last term vanish because p|x− 1 and p|
(
p
2
)
.

To use this lemma we rearrange Catalan’s equation:

xp − yq = 1⇐⇒ (x
p − 1
x− 1 )(x− 1) = yq

We also need some analytic estimates:
Lemma 5.2. For x, α ∈ R with |x| < 1. Then

|(1 + x)α − 1| ≤ max{1, (1 + x)α−1}|x||α|.
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Proof. We use Taylor’s Theorem with the error term given by the intermediate
value theorem and expand only to the first term:

(1 + x)α = 1 + α(1 + ξ)α−1ξ, for some ξ between 0 and x.

Using this we get:

|(1 + x)α − 1| = |α(1 + ξ)α−1ξ| ≤ |(1 + ξ)α−1||ξ||α| ≤ max{1, (1 + x)α−1}|x||α|.

The max in this lemma is 1 if and only if x ≥ 0 and α ≤ 1 or x ≤ 0 and α ≥ 1

Now we are ready for Cassels’ Theorem:
Theorem 5.3 (Cassel). Let (x, y, p, q) be a solution of Catalan’s equation. Then
p|y.

Proof. We follow the proof given in (Bilu et al. 2014). Cassels’ original proof
uses the same ideas, but different estimates in some places.

Because of Lemma 4.1. we only need to prove that gcd
(
xp−1
x−1 , x− 1

)
is never 1.

In this case both x− 1 and xp−1
x−1 must be q-th powers, as they are coprime and

their product is yq. We define a ∈ Z such that x− 1 = aq. Because x = 0 is not
allowed and x = 1, 2 can easily be checked to offer no solutions |a| > 1 Now we
can rewrite Catalan’s equation as follows:

xp − yq = 1⇐⇒ (aq + 1)p = yq + 1

From this we see that y and ap should be close together

Cassels’ proof makes a distinction between the cases p < q and p > q. We start
with the simpler case p < q.

To use Lemma 4.2. we rewrite Catalans equation again:

(aq + 1)p = yq + 1⇔ (aq + 1)
p
q = (yq + 1)

1
q ⇔ ap(1 + a−q)

p
q = y(1 + y−q)

1
q .

Now we can use Lemma 4.2.:

|1− (1 + a−q)
p
q )| ≤ max{1, (1 + a−q)

p
q−1}|a|−q p

q
≤ (1− |a|−q)

p
q−1|a|−q
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From this we get because of |a| > 1, p− q ≤ −2 (since they are distinct primes
larger than 2) and p < q:

|ap − ap(1 + a−q)
p
q | ≤ |a|p−q(1− |a|−q)

p
q−1 ≤ 2−2(1− 2−5)−1 < 1/3.

Again by Lemma 4.2.:

|1− (1 + y−q)
1
q | ≤ max{1, (1 + y−q)

1
q−1}|y|−q 1

q
≤ (1− |y|−q)−1|y|−q1/q,

which we use to estimate |y − y(1 + y−q)
1
q |, using |y| > 1, which can be easily

checked:

|y − y(1 + y−q)
1
q | ≤ (1− |y|−q)−1|y|1−q 1

q
< (1− 2−5)−12−4 1

5 < 1/3.

Putting together the estimates yields:

|ap − y| = |ap − ap(1 + a−q)
p
q + y(1 + y−q)

1
q − y| ≤

≤ |y − y(1 + y−q)
1
q |+ |ap − ap(1 + a−q)

p
q | < 2/3.

Because both ap and y are integers this implies ap = y and therefore xp − yq =
xp − apq, but as noted before two powers of the same exponent cannot have
difference one therefore we have reached a contradiction.

The second case works in a similar way but uses more intricate estimates. The
Taylor series expansion with more terms as well as some estimates involving the
p-adic value of binomial coefficients are used. For a detailed version see either
the article by Cassel or the book (Bilu et al. 2014).

From this theorem the Cassels’ Relations follow:
Korollar 5.4. Let (x, y, p, q) be a solution of Catalan’s equation. Then there
are a, u ∈ Z, such that:

x− 1 = pq−1aq, xp − 1
x− 1 = puq, and y = pau,

where p does not divide u, but may divide a.

Proof. From the theorem above and the second part of Lemma 4.1. it follows
that the multiplicity of p in xp−1

x−1 is 1 and that x−1
pq−1 and xp−1

p(x−1) are coprime and
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thus q-th powers, respectively called aq and uq. Their product yq is then pqaquq

an thus the last relation follows.

6 Results by Inkeri and Mihăilescu

6.1 An important algebraic integer

Let (x, y, p, q) be a solution of Catalan’s equation. In the previous chapter it
was proved that:

xp − 1
x− 1 = puq,

for some u ∈ Z.

The left-hand side of this equation is the p-th cyclotomic polynomial Φp(x),
while the p on the right-hand side can be expressed as Φ(1). Using the standard
factorization for Φ we get:

Φ(x)
Φ(1) =

p−1∏
i=1

x− ζi

1− ζi = uq.

Defining λi = x−ζi
1−ζi this product has the form

∏p−1
i=1 λi = uq. The λ1 is an

algebraic integers as (1− ζ)|p|x− 1 and thus (1− ζ)|(x− 1)− (1− ζ). The λi
are all conjugates of each other and thus are algebraic integers too. The λi are
also pairwise coprime:

1− ζj

ζk − ζj
λj −

1− ζk

ζk − ζj
λk = (x− ζj)− (x− ζk)

ζk − ζj
= 1, for i 6= j.

This is a valid linear combination in Z[ζ], as the coefficients on the left are
cyclotomic units and therefore in Z[ζ], as proved in the Prerequisites section.

Since Z[ζ] is not always a unique factorization domain, this does not mean that
the λi are q-th powers, but because it is a Dedekind domain it does mean that
the ideals (λi) are q-th powers of ideals.

6.2 Higher Divisibility

In his first paper (Mihăilescu 2003) on the Catalan equation Mihăilescu showed
that q2|x for any solution (x, y, p, q) (and by symmetry p2|y). This was already
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proved by Inkeri in (Inkeri 1990), for regular primes, i.e. for primes p such that
the class number of Q[ζ] is not divisible by p. In Mihăilescu paper there is no
such class number conditions.

First we need the following lemma to go from divisibility by q to divisibility by
q2.
Lemma 6.1 (Lifting the Exponent). The ring Z[ζ]/(q) contains no nilpotent
elements. Further if α, β ∈ Z[ζ] satisfy αq − βq ≡ 0 (mod q) they also satisfy
αq − βq ≡ 0 (mod q2)

Proof. Because p is the only ramified prime in Q[ζ] the ideal (q) factorises as
q1 · q2 · · · qr, for some distinct prime ideals q1, q2, . . . qr. Now by the chinese
remainder theorem we get:

Z[ζ]/(q) ∼= Z[ζ]/q1 × Z[ζ]/q2 × · · · × Z[ζ]/qr.

Because the qi are prime none of the Z[ζ]/qi contain nilpotent elements as they
are integral domains. Thus their product also contains no nilpotent elements.

Let α, β ∈ Z[ζ] satisfy αq − βq ≡ 0 (mod q). Then we have, by the Frobenius
endomorphism:

(α− β)q ≡ αq − βq ≡ 0 (mod q).

And thus α = β + kq for some ∈ Z[ζ]. Now we can expand αq:

αq = (β + kq)q =
q∑
i=0

(
q

i

)
βq−i(kq)i ≡ βq (mod q2).

This concludes the proof of the lemma.

The second part of the lemma is a special case of the "Lifting the Exponent
Lemma", a variation of which we already used when proving Cassels’ Relations.

We need another small preparatory lemma:
Lemma 6.2. Let α ∈ Z[ζ] be such that all conjugates of α have absolute value
1. Then α is a root of unity.
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Proof. Consider the polynomials

fm(x) :=
∏
σ∈G

(x− σ(αm).

Their coefficients are integers bounded by
(
n
k

)
≤ 2n and thus these are finitely

many polynomials fm. This implies that there are only finitely many powers of
α which can only be the case if α is a root of unity.

The proof uses the non-trivial annihaltors given by Stickelbergers Theorem.
Define I−S := (1− ι)IS , called the relative part of Stickelberger’s Ideal.
Lemma 6.3. For every θ ∈ I−S , (x− ζ)θ is a q-th power.

Proof. Let θ = (1− ι)θ′ and λ = x−ζ
1−ζ as in the previous section. Then

(x− ζ)(1−ι)θ′ =
(
x− ζ
x− ζ

)θ′
=
(

1− ζ
1− ζ

)θ′ (
λ

λ

)θ′
.

As θ′ annihilates the class group and (λ) is a q-th power of an ideal, λθ′ = εαq

for some unit ε and some α ∈ Q[ζ]. Using this we get:

(x− ζ)(1−ι)θ′ =
(

1− ζ
1− ζ

)θ′
ε

ε

(α
α

)q
.

Both
(

1−ζ
1−ζ

)
and ε

ε are q-th powers. The first one is −ζ, which is a q-th power
because −1 is and all p-th roots of unity are q-th powers. The second one is a
root of unity because of the second preparatory lemma.

Thus (x− ζ)θ is a q-th power.

Now we can proof Mihăilescu’s result:
Theorem 6.4. Let (x,y,p,q) be a solution of Catalan’s problem with p and q odd
primes. Then q2|x (and by symmetry p2|y).

Proof. Let θ be in I−S . Since (1 − ζ)θ is equal to ((−ζ)(x − ζ))θ it is equalt
to (x − ζ)θ times a root of unity and therefore also a q-th power. Let us say
(x− ζ)θ = aq.

Using Cassels’ theorem that q|x, we find that aq ≡ 1 (mod q). Because of 6.1
we obtain aq ≡ 1 (mod q2).
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1 ≡ (1− ζx)θ =
∏
σ∈G

(1− σ(ζ)x)nσ

≡
∏
σ∈G

(1− nσσ(ζ)x)

≡ 1− x
∑
σ∈G

nσσζ (mod q2).

Thus x
∑
σ∈G nσσζ ≡ 0 (mod q2). Thus either q2|x or q|

∑
σ∈G nσσζ, which

would imply q|nσ for all σ. There are however elements of I−S which are not
divisible by q. For example (1− ι)θ2 = (1− ι)

∑p−1
i= p−1

2
σ−1
i . Using this as θ we

get q2|x.

Revisiting Cassels’ Relations now gives further information: From x−1 = pq−1aq

it follows by q|x that pq−1aq ≡ −1 (mod q). As pq−1 ≡ 1 (mod q), we get
aq ≡ −1 (mod q) and by Lifting the Exponent: aq ≡ −1 (mod q2).

Now that we also have q2|x from pq−1aq ≡ −1 (mod q2) and thus pq−1 ≡ 1
(mod q2). By symmetry we get:

pq−1 ≡ 1 (mod q2), qp−1 ≡ 1 (mod p2).

Primes satisfying these conditions are called double Wieferich pairs, they first
appeared in the study of the Fermat Problem. There are only five known double
Wieferich pairs and it is known that there are no other double Wieferich primes
with min{p, q} ≤ 3.2× 108. It is an open problem whether or not infinitely many
double Wieferich pairs exist.

7 Sketch of the Proof

In this section the remainder of the proof will be outlined. Some partial results
will be proved, for a complete presentation of the proof see (Bilu et al. 2014),
(Lorenz 2008) or (Daems 2003).

Mihăilescu’s proof splits the problem into two cases: q|p− 1 and q - p− 1.

7.1 The case q divides p-1

In this case the first proof of Mihăilescu proceeded as follows:

16



If q|p− 1 then p ≡ 1 (mod q) and by the Lifting the Exponent Lemma pq ≡ 1
(mod q2). But we also have pq ≡ p (mod q2) from the Wieferich Conditions and
thus p ≡ 1 (mod q2). Because q2 + 1 and 3q2 + 1 are even and 2q2 + 1 is divisible
by three, it follows that p > 4q2.

From the theory of logarithmic form mentioned in the historic overview however
it follows that p < 4q2, whenever q > 28000. This reduced this case to a very
manageable calculations, carried out easily by a computer. Before Mihăilescu’s
proof the conjecture had already been checked for much larger exponents (see
(Bilu 2002)).

Later Mihăilescu published in (Mihăilescu 2006) a different proof of this case,
without logarithmic forms which therefore also needed no computer calculations.

This proof uses Stickelberger’s Theorem together with some estimates about
Mihăilescu’s Ideal, defined as all elements θ of Z[G] such that (x− ζ)θ is a q-th
power, i.e. (x− ζ)θ ∈ (Q[ζ])q. It is denoted by IM . The augmented part of of
Mihăilescu’s Ideal is defined as all elements IM of weight 0 and is denoted by
Iaug
M .

The relative part of Stickelberger’s Ideal I−S := (1−ι)IS is a subset of Mihăilescu’s
Ideal because (x−ζ)θ is a q-th power for all θ ∈ I−S , as was shown in the previous
section. Further by multiplicativity of the weight function and w(1−ι) = 1−1 = 0,
all Elements of I−S have weight 0. Thus I−S ⊂ I

aug
M .

The contradiction is achieved by estimating the number of elements of Iaug
M and

I−S of or below a certain size r denoted by Iaug
M (r) and I−S (r) respectively.

As the structure of Stickelberger’s Ideal is relatively well understood lower bounds
for |I−S (r)| can be obtained by simple combinatorical arguments.

To get an upper bound for Iaug
M (r), the elements α(θ) such that α(θ)q = (x− ζ)θ

as well as ξ(θ), defined as the nearest root of unity to α(θ) are analyzed. By
an application of the pigeonhole principle and some estimates using heights of
algebraic numbers, it is shown that for a specific r, dependent on p, qandx there
are at most q elements in Iaug

M (r). For large enough, but not very large, p, q and
x, this contradicts the lower bounds for |I−S (r)|. The small cases do not need
computer calculation but are instead excluded by the Hyyrö Estimates which
follow from Cassels’ relations.

7.2 The case q does not divide p-1

An important step in the second case is the following theorem due to Mihăilescu:
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Theorem 7.1. If θ =
∑p−1
i=1 niσi ∈ Z[G] is divisible by (1 + ι) and w(θ) is

divisible by q and
(x− ζ)θ ∈ (Q[ζ])q,

then θ ∈ qZ[G], i.e. q|ni for all i.

The assumption that (1 + ι) divides θ essentially means that this is a statement
about the real part Q[ζ+ ζ] (Sometimes also called "plus" part) of the cyclotomic
field. This is opposed to the first case and Stickelberger’s Theorem which belong
to the relative (or "minus") part of the cyclotomic theory.

Because Q[ζ]/(Q[ζ])q has the structure of a Fq[G] module, this statement is
equivalent to saying that the only θ ∈ Fq[G] in the augmented part of Mihăilescu’s
ideal divisible by (1 + ι) is 0. Because the proof will use some estimates it is
desirable to stay in Z[G]. However this reformulation means that we can assume
the ni to be between 0 and q − 1. Additionally because the statement is also
symmetric in passing from θ to −θ the weight of θ can be assumed to be less
than q(p−1)

2 . Define m such that w(θ) = mq.

By assumption there is an α such that (x− ζ)θ = αq. We have α ∈ Z[ζ] because
we assumed that all ni to be nonnegative. Now since w(θ) = mq:

(
1− ζ

x

)θ
=
(

1
x

)θ
(x− ζ)θ =

(
1
xmq

)
αq =

( α

xm

)q
.

The technique used to solve the Theorem is known as Runge’s method. It consists
of showing that a partial sum of a power series is already so close to the result
that they must be equal. The power series used will be:

F (T ) = (1− ζT )
θ
q =

∏
σ∈G

(1− ζσT )
nσ
q ,

where (1− ζσT )
nσ
q is defined as

∑
k≥0

(nσ
q

k

)
(−ζσT )k. Because (1 + ι) divides θ

this power series has coefficients in Q[ζ + ζ] and can be regarded as a real power
series. This power series will be used for T = 1/x. For this purpose one again
needs Hyyrö’s estimates to show that |x| is large enough.

Some calculations show that F (T ) has the form:

F (T ) =
∑
k≥0

ak
k!qk T

k,

where ak ≡ (−
∑p−1
i=1 niζ

i)k.

After using estimates about binomial power series as well as Hyyrö’s estimates and
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m ≤ p−1
2 the Runge method is successful: qm+ordq(m!)xmFm(1/x)−qm+ordq(m!)α,

where Fm is the m-th partial sum of F , is an algebraic integer all of whose
conjugates have absolute value less than 1 and therefore is 0.

If m = 0 then θ = 0 and we are done. Otherwise we can expand the partial sum:

qm+ordq(m!)α =
m∑
k=0

qm+ordq(m!) ak
k!qk x

m−k.

The left hand side as well as the first m terms of the sum are algebraic integers
divisible by q and therefore the last one qordq(m!) am

m! is as well. Thus (
∑p−1
i=1 niζ

i ≡
0 (mod q))m and this means because of the first part of 6.1 and the linear
independence of the ζi, that ni ≡ 0 (mod q) for all i. This theorem is a major
step in Mihăilescu’s proof.

We need the following definition to analyze units of Z[ζ].
Definition 7.2. An element α ∈ Z[ζ] is called q-primary if there is an β ∈ Z[ζ]
such that:

α ≡ βq (mod q).

Let E denote the group of units, C the cyclotomic units and Cq, the q-primary
cyclotomic units. To use this we look at the following modules and their
annihilators:
Lemma 7.3. The Fq[G] modules

E/CEq, C/Cq, Cq/(Cq ∩ Eq)

are cyclic. Their Annihilators, called I1, I2 and I3 respectively, are pairwise
coprime and further satisfy

I1I2I3 = (N , 1− ι),

where N is the norm element in Fq[G] (i.e.
∑p−1
i=1 σi) and ι is complex conjuga-

tion.

Because factor modules of cyclic modules are cyclic and C/Cq ∼= CEq/CqE
q

and Cq/(Cq ∩ Eq) ∼= CqE
q/Eq, it suffices to show that E/Eq is cyclic and that

annFq [G](E/Eq) = (N , 1− ι). For a proof of this see [].

Now we want to use 7.1 to show that I1I3 ⊂ (N , 1 − ι). For this purpose we
need Thaine’s theorem, a tool from the "plus" part of cyclotomic theory. For
an abelian group A denote by [A]q the group consisting elements the order of
which is a q-th power, i.e. the q-torsion subgroup.
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The special case of Thaine’s theorem we need is:
Theorem 7.4 (Thaine). Let q be a prime not dividing p−1. Then any θ ∈ Z[G]
divisible by (1 + ι) that annihilates [E/C]q also annihilates the [H]q the q-torsion
subgroup of H.

Again limiting us to elements divisible by (1 + ι) means that this is essentially
a statement about Z[G+]. For a proof see chapter 12 of (Bilu et al. 2014) or
(Washington 1982).

A first use of Thaine’s theorem is showing:
Lemma 7.5. Every θ ∈ I1 divisible by (1 + ι) annihilates [H]q.

Proof. We will use an important property of ideals of Z[G]: Because of 4.18
every ideal is idempotent: Because Z[G] is a product of fields, every ideal is just
the product of ideals of fields, but fields only have the 0 ideal and the the non
proper ideal, which are both idempotent. Thus all ideals in Z[G] are idempotent
specifically I1, I2 and I3.

Thus there are θ1, . . . , θm ∈ I1 such that θ = θ1 . . . θm, where m is chosen such
that |[E/C]q| = qm. Because I1 = annFq [G](E/CEq), we have Eθ1 ⊂ CEq and
thus

Eθ1θ2 ⊂ (CEq)θ2 ⊂ Cθ2 (CEq)q ⊂ CEq
2
.

Inductively we get Eθ ⊂ Eq
m . Now let εC ∈ [E/C]q. As shown above εθ =

ηεq
m

1 for some cyclotomic unit η and some unit ε1 with ε1C ∈ [E/C]q. Thus
(εC)θ = (ε1C)qm = C which means that θ annihilates [E/C]q. As a consequence
of Thaine’s theorem θ annihilates [H]q.

Similarly to 6.3 we now get information about (x− ζ)θ:
Lemma 7.6. For any element θ ∈ I1 divisible by (1 + ι) of weight 0:

(x− ζ)θ ∈ E(Q[ζ])q

Proof. As we saw in section 6 (λ) =
(
x−ζ
1−ζ

)
is the q-th power of an ideal A. As

Aq is a principal ideal, the coset of A in H belongs to [H]q. Therefore Aθ is also
principal by the previous lemma and thus (λθ) is the q-th power of a principal
ideal. Because w(θ) = 0, (1 − ζ)θ is a product of terms of the form 1−ζi

1−ζj and
therefore a cyclotomic unit.

Altogether we obtain:

(x− ζ)θ = (1− ζ)θλθ ∈ E(Q[ζ])q.
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Now the divisibility also proofed in section 6 can be used to strengthen this
result:
Lemma 7.7. For any element θ ∈ I1 divisible by (1 + ι) of weight 0:

(x− ζ)θ ∈ Cq(Q[ζ])q

Proof. First we again use that I1 is idempotent: There are θ1, θ2 ∈ I1 such that
θ = θ1θ2. Thus:

(x− ζ)θ1θ2 ∈ (E(Q[ζ])q)θ2 = Eθ2(Q[ζ])q) ⊂ C(Q[ζ])q.

This means there is an η ∈ C and an α ∈ Q[ζ] such that: (x− ζ)θ = ηαq. Using
6.4 we get ηαq ≡ (−ζ)θ (mod q2). Because (−ζ) is a root of unity so is (−ζ)θ

and thus it is a q-th power and thus η is q-primary.

By the definition of I3 we get the following result:
Lemma 7.8. For any element θ ∈ I1I3 divisible by (1 + ι) of weight 0:

(x− ζ)θ ∈ (Q[ζ])q

Proof. Writing θ = θ1θ3 with θ1 ∈ I1 and θ3 ∈ I3:

(x− ζ)θ = (x− ζ)θ1θ3 ∈ Cθ3
q (Q[ζ])q ⊂ (Q[ζ])q.

But this tells us that θ = 0 by 7.1 and thus there are no nontrivial elements in
I1I3 of weight 0, which are divisible by (1 + ι). Some simple calculation with
ideals of F[G] show that having a trivial intersection with the ideal (1+ ι)F[G]aug

of elements divisible by (1 + ι) of weight 0, means being contained in the ideal
(1− ι,N ). This means I1I3 ⊂ (1− ι,N ) = I1I2I3. Thus I2 = (1), which means,
as I2 = annFq[G](C/Cq), that C = Cq, i.e. all cyclotomic units are q-primary.
This cannot happen:
Lemma 7.9. If p > q, not all cyclotomic units in Z[ζ] are q-primary.

Proof. If all cyclotomic units are q-primary so is in particular 1 + ζq = 1−ζ(2q)
1−ζ(q) .

Thus 1 + ζq ≡ βq (mod q2), for some β ∈ Z[ζ]. Thus (1 + ζ)q ≡ 1 + ζq ≡ βq

(mod q) and by the Lifting the Exponent Lemma we get:

(1 + ζ)q ≡ (1 + ζq) (mod q2)
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Thus the polynomial f := 1
q ((1 + T )q − (1 + T q)) ∈ Z[T ] has ζ as a root modulo

q and hence also all of it’s p− 1 conjugates ζi. Consider a prime ideal q in Z[ζ]
which divides (q). All roots of f modulo q are also roots modulo q. They are
also all distinct because otherwise we would have, since (ζi − ζj) = (1− ζ):

q|(ζi − ζj)|(p),

but (p) and (q) are coprime. Thus we have p− 1 distinct roots of f in the field
Q[ζ]/q. But the degree of f is q − 1 which by assumptions is less than p− 1.

The assumption that p > q is no problem: If either p|q − 1 or q|p − 1 we can
proceed as in the previous subsection. Otherwise the problem is symmetric in p
and q as discussed in the beginning of section 5 and we can assume p > q.

This finishes Mihăilescu’s proof of the Problem of Catalan!
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