## Cohomology of Groups and Algebras — Exercises —

Exercises WS 2018/19

**Exercise 1.** Show that the quaternion group  $Q_8$  cannot be written as a semidirect product of two non-trivial subgroups.

## Exercise 2. Let

$$1 \to G_1 \to G_2 \to \cdots \to G_n \to 1$$

be an exact sequence of finite groups. Show that

$$\prod_{i=1}^{n} |G_i|^{(-1)^i} = 1.$$

**Exercise 3.** Show that an extension of a nilpotent group by a nilpotent group need not be nilpotent.

**Exercise 4.** Classify all groups which are a semidirect product of  $\mathbb{Z}$  and  $\mathbb{Z}$ .

**Exercise 5.** Let  $n \geq 1$  be an integer. Find group homomorphisms  $\alpha$  and  $\beta$  such that

$$0 \to \mathbb{Z}/n\mathbb{Z} \xrightarrow{\alpha} \mathbb{Z}/n^2\mathbb{Z} \xrightarrow{\beta} \mathbb{Z}/n\mathbb{Z} \to 0$$

becomes a short exact sequence of abelian groups. For which n is this sequence split ?

**Exercise 6.** Consider the following commutative diagram of groups and homomorphisms with exact rows.

$$A_{1} \xrightarrow{\alpha_{1}} A_{2} \xrightarrow{\alpha_{2}} A_{3} \xrightarrow{\alpha_{3}} A_{4} \xrightarrow{\alpha_{4}} A_{5}$$

$$\downarrow f_{1} \qquad \downarrow f_{2} \qquad \downarrow f_{3} \qquad \downarrow f_{4} \qquad \downarrow f_{5}$$

$$B_{1} \xrightarrow{\beta_{1}} B_{2} \xrightarrow{\beta_{2}} B_{3} \xrightarrow{\beta_{3}} B_{4} \xrightarrow{\beta_{4}} B_{5}$$

Prove the following claims.

- (a) If  $f_2$ ,  $f_4$  are onto and  $f_5$  is one-to-one, then  $f_3$  is onto.
- (b) If  $f_2$ ,  $f_4$  are one-to-one and  $f_1$  is onto, then  $f_3$  is one-to-one.
- (c) If  $f_1, f_2$  and  $f_4, f_5$  are isomorphisms, so is  $f_3$ .

Exercise 7. Let

$$H = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbb{Z} \right\} \subseteq SL_3(\mathbb{Z})$$

be the integer Heisenberg group. Show that H is a split extension of  $\mathbb{Z}^2$  by  $\mathbb{Z}$ , i.e., there is a split short exact sequence

$$1 \to \mathbb{Z}^2 \xrightarrow{i} H \xrightarrow{\pi} \mathbb{Z} \to 1.$$

**Exercise 8.** Let H be the integer Heisenberg group and consider the

maps 
$$i: \mathbb{Z} \to H$$
,  $c \mapsto \begin{pmatrix} 1 & 0 & c \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$  and  $\pi: H \to \mathbb{Z}^2$ ,  $\begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \mapsto (a, b)$ .

Show that we obtain a short exact sequence

$$1 \to \mathbb{Z} \xrightarrow{i} H \xrightarrow{\pi} \mathbb{Z}^2 \to 1,$$

which does not split.

**Exercise 9.** Let p be a prime and  $\mathbb{Z}_{(p)} = \{\frac{n}{m} \in \mathbb{Q} \mid p \nmid m\}$  the ring of p-local numbers. Let  $\mathbb{Z}/p^{\infty} = \bigcup_{i \geq 0} \mathbb{Z}/p^i$  with the uniquely given embeddings  $\mathbb{Z}/p_i \hookrightarrow \mathbb{Z}/p^{i+1}$ . Show that there is a short exact sequence

$$0 \to \mathbb{Z}_{(p)} \to \mathbb{Q} \to \mathbb{Z}/p^{\infty} \to 0$$

which does not split.

**Exercise 10.** Let  $\mathbb{Z}[G]$  be the integral group ring of a finite group G and denote by

$$U(\mathbb{Z}[G]) = \{ \alpha \in \mathbb{Z}[G] \mid \alpha\beta = \beta\alpha = 1 \text{ for some } \beta \in \mathbb{Z}[G] \}$$

the unit group of  $\mathbb{Z}[G]$ . Let  $a, b \in G$  with  $\operatorname{ord}(a) = n$ . Show that the following elements are always units:

$$1 + (1-a)b(1+a+\cdots+a^{n-1})$$
 and  $1 + (1+a+\cdots+a^{n-1})b(1-a)$ .

**Exercise 11.** Let  $0 \to A \xrightarrow{\alpha} E \xrightarrow{\beta} G \to 1$  be a group extension of A by G and assume that A is abelian.

- (a) For  $x \in G$  choose an  $e \in E$  such that  $\beta(e) = x$ . Then set  $x \cdot a = eae^{-1}$  for  $a \in A$ . Show that this is a well-defined action of G on A so that A becomes a G-module.
- (b) Show that equivalent extensions of A by G give rise to the same action.

**Exercise 12.** Let  $G = A_5$  be the alternating group on five letters and  $A = \mathbb{Z}/7\mathbb{Z}$  be a trivial  $A_5$ -module. Compute  $H^n(G, A)$  for n = 0, 1, 2.

**Exercise 13.** Let G be a finite group and  $\mathbb{Q}$  be a G-module. Show that  $H^n(G,\mathbb{Q}) = 0$  for all  $n \geq 1$ .

**Exercise 14.** Let G be a group and A be a G-module. Fix a  $\tau$  in the center of G. Let  $\varphi \colon Z^1(G,A) \to C^1(G,A)$  be the map  $f \mapsto \varphi(f)$  where  $\varphi(f)(\sigma) = \tau f(\sigma) - f(\sigma)$  for  $\sigma \in G$ . Show that  $H^1(G,A)$  is annihilated by  $\varphi$ , i.e.,  $\varphi(Z^1(G,A)) \subseteq B^1(G,A)$ .

**Exercise 15.** Determine the group  $H^2(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z})$  by computing the 2-cocycles and 2-coboundaries, where  $\mathbb{Z}/2\mathbb{Z} = \{1, -1\}$  acts nontrivially on  $\mathbb{Z}$ .

**Exercise 16.** Let  $\mathbb{Z}$  be a trivial  $\mathbb{Q}$ -module. Compute  $H^n(\mathbb{Q}, \mathbb{Z})$  for n = 0, 1.

**Exercise 17.** Verify that the functor  $\text{Hom}(-,\mathbb{Z})$  is not exact by applying it to the short exact sequence

$$0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \to \mathbb{Z}/2 \to 0.$$

Exercise 18. Show that the category of groups is not abelian.

**Exercise 19.** Show that the category of free abelian groups is not abelian.

**Exercise 20.** Show that the category of finite abelian groups does not have enough injective objects and not enough projective objects.

**Exercise 21.** Show that the category of cyclic groups does not have all products and hence is not an abelian category.

**Exercise 22.** Let  $\mathfrak{g}$  be a semisimple finite-dimensional Lie algebra over a field K of characteristic zero. Show that  $H^1(\mathfrak{g},\mathfrak{g})=0$ .

**Exercise 23.** Sei  $\mathfrak{g} = \mathfrak{sl}_2(K)$  over a field K of arbitrary characteristic. Compute the dimension of  $H^1(\mathfrak{g},\mathfrak{g})$ .

**Exercise 24.** Let  $\mathfrak{n}_4(K)$  be the Lie algebra with basis  $(e_1, \ldots, e_4)$  and Lie bracktes  $[e_1, e_2] = e_3$ ,  $[e_1, e_3] = e_4$ . Compute  $H^2(\mathfrak{n}_4(K), K)$ .

**Exercise 25.** Show that  $H^2(\mathfrak{g}, K)$  may be regarded as a subspace of  $H^1(\mathfrak{g}, \mathfrak{g}^*)$ , where  $\mathfrak{g}^*$  denotes the coadjoint module.

**Exercise 26.** Let  $\mathfrak{g}$  be a Lie algebra over K having no nonzero invariant bilinear form. Show that  $H^2(\mathfrak{g},K)\cong H^1(\mathfrak{g},\mathfrak{g}^*)$ .

**Exercise 27.** Let  $\mathfrak{g}$  be a semisimple Lie algebra over a field K of characteristic zero. Show that  $H^3(\mathfrak{g},K)\neq 0$ .

**Exercise 28.** Use Lie algebra cohomology to classify the extensions of a 2-dimensional abelian Lie algebra by a 1-dimensional Lie algebra.

**Exercise 29.** Show that the Heisenberg Lie algebra  $\mathfrak{n}_3(K)$  is a non-split extension of  $K^2$  by K.

**Exercise 30.** Use Whitehead's second lemma to give a proof of Levi's theorem: if  $\mathfrak{g}$  is a finite-dimensional Lie algebra over a field of characteristic zero, then there is a semisimple subalgebra  $\mathfrak{s}$  such that

$$\mathfrak{g} \cong \mathrm{rad}(\mathfrak{g}) \rtimes \mathfrak{s}.$$

**Exercise 31.** Let  $\mathfrak{g}$  be a finite-dimensional Lie algebra over a field K. Show that the Euler characteristic of  $\mathfrak{g}$  is zero, i.e.,

$$\chi(\mathfrak{g}) = \sum_{i=0}^{n} (-1)^{i} \dim H^{i}(\mathfrak{g}, K) = 0.$$

**Exercise 32.** Let  $\mathfrak{g}$  be a nilpotent Lie algebra of dimension  $n \geq 2$  over a field K and

$$\sigma(\mathfrak{g}) = \sum_{i=0}^{n} \dim H^{i}(\mathfrak{g}, K)$$

be the total cohomology of  $\mathfrak{g}$ . Show that for n=4m or n=4m+2 we have  $\sigma(\mathfrak{g})\equiv 0 \bmod 4$ .

**Exercise 33.** Let  $\mathfrak{g}$  be a nilpotent Lie algebra of dimension  $n \geq 2$  over a field K of characteristic not 2. Show that for n = 4m + 1 we also have  $\sigma(\mathfrak{g}) \equiv 0 \mod 4$ .

**Exercise 34.** Give examples of *n*-dimensional nilpotent Lie algebras over a field K of characteristic zero with  $n \equiv 3 \mod 4$  such that  $\sigma(\mathfrak{g}) \not\equiv 0 \mod 4$ .

**Exercise 35.** Let  $\mathfrak{h}_m(K)$  be the (2m+1)-dimensional Heisenberg Lie algebra over a field K. Assume that K has characteristic zero. Show that the Betti numbers of  $\mathfrak{h}_m$  are not unimodal for  $m \geq 4$ .

**Exercise 36.** Find a nilpotent Lie algebra  $\mathfrak{g}$  over a field of characteristic 2, such that the Betti numbers of  $\mathfrak{g}$  are not log-concave.

\_\_\_\_\_Due: January 30, 2019 \_\_\_\_\_