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Abstract

The purpose of this thesis is to study almost-inner derivations of Lie algebras in an al-
gebraic way. An almost-inner derivation ϕ of a Lie algebra g is a derivation ϕ such that
ϕ(X) ∈ [X,g] for all X ∈ g. This kind of derivations arises in the study of spectral ge-
ometry, in particular in the construction of isospectral and non-isometric manifolds. The
notion has not been much studied algebraically and only in some specific cases.

In the first chapter, the geometric connection between Lie groups and Lie algebras is
explained. Further, there is an algebraic introduction to Lie algebra-theory. Those pre-
liminaries will be useful in the following chapters.

The second chapter is devoted to the concept of almost-inner derivations. First, some
special types of derivations are introduced. This concerns in particular the almost-inner
ones, which form a generalisation of the inner derivations. These notions permit to un-
derstand the underlying geometric motivation, which is worked out in the second section.
It illustrates why almost-inner derivations are interesting to study. To investigate the
concept more thoroughly, there is need of some theory concerning the definition. This is
elaborated in the last section. There is a procedure to compute the set of all almost-inner
derivations. This working method is explained and illustrated with an example. It is used
as a manual for the calculations in the rest of the thesis.

In the third chapter, special classes of Lie algebras are introduced. The first class consists
of the complex Lie algebras of dimension at most four. Next, the metabelian filiform
Lie algebras are studied. The following class concerns two-step nilpotent Lie algebras
which are defined by graphs. Further, also free nilpotent Lie algebras and Lie algebras
of strictly uppertriangular and uppertriangular matrices are treated. For these classes
(and sometimes only for specific cases), the set of all almost-inner derivations is com-
puted. For the metabelian filiform Lie algebras, it turns out that the dimension of the
set of almost-inner derivations is at most one more than the dimension of the set of inner
derivations. In all other cases, both sets are equal. The question for the free nilpotent Lie
algebras is only solved when the nilindex is two or three. In the context of almost-inner
derivations, nilpotent Lie algebras are geometrically of most importance. Therefore, the
introduced classes (except for the first and last ones) only consist of nilpotent Lie algebras.

The appendix contains some computer programs implemented in Matlab. Those algo-
rithms ease the computations. The first part checks whether or not given structure con-
stants define a Lie algebra. The second section concerns algorithms computing a basis for
the space of all derivations of a given Lie algebra.
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Samenvatting

In deze thesis worden bijna-inwendige derivaties van Lie algebra’s bestudeerd op een al-
gebräısche manier. Een bijna-inwendige derivatie ϕ van een Lie algebra g is een derivatie
ϕ zodat ϕ(X) ∈ [X,g] voor alle X ∈ g. Dit soort derivaties duikt op in de spec-
trale meetkunde, in het bijzonder bij de constructie van isospectrale en niet-isometrische
variëteiten. De bijna-inwendige derivaties zijn nog niet vaak algebräısch bestudeerd en
enkel in bepaalde specifieke gevallen.

In het eerste hoofdstuk wordt het meetkundig verband tussen Lie groepen en Lie alge-
bra’s uitgewerkt. Verder is er ook een algebräısche inleiding op Lie algebra-theorie. De
ingevoerde concepten zullen in de latere hoofdstukken terugkomen.

Het tweede hoofdstuk handelt over bijna-inwendige derivaties. Eerst worden verschillende
soorten derivaties ingevoerd. In het bijzonder zijn dat de bijna-inwendige derivaties, een
veralgemening van de inwendige derivaties. Deze noties laten het toe om de achterliggende
meetkundige motivatie te begrijpen. De tweede sectie illustreert waarom bijna-inwendige
derivaties interessant zijn om onderzoek naar te doen. Om deze concepten verder te
kunnen bestuderen, is er meer theorie nodig. Dit is uitgewerkt in het laatste deel. Het
berekenen van de verzameling van alle bijna-inwendige derivaties gebeurt aan de hand
van een vast stappenplan. Deze werkwijze is uitgelegd en gëıllustreerd aan de hand van
een voorbeeld. Het vormt de leidraad bij de berekeningen in de rest van de thesis.

In het derde hoofdstuk worden speciale klassen van Lie algebra’s ingevoerd. Het eerste
type bestaat uit de complexe Lie algebra’s waarvan de dimensie hoogstens vier is. Ver-
volgens worden meta-abelse filiforme Lie algebra’s bestudeerd. De derde klasse bevat de
twee-staps nilpotente Lie algebra’s die door grafen gedefinieerd zijn. Ook worden de vrije
nilpotente Lie algebra’s en de (strikte) bovendriehoeksmatrices behandeld. Voor al deze
klassen (in sommige gevallen enkel voor specifieke voorbeelden) is de verzameling van
bijna-inwendige derivaties berekend. Voor de meta-abelse filiforme Lie algebra’s blijkt
dat de dimensie van de verzameling bijna-inwendige derivaties hoogstens één meer is dan
de dimensie van de verzameling inwendige derivaties. In alle andere gevallen zijn beide
verzamelingen gelijk. Voor de vrije nilpotente Lie algebra’s is het resultaat enkel gekend
als de nilindex gelijk is aan twee of drie. In de context van bijna-inwendige Lie algebra’s
zijn de nilpotente Lie algebra’s meetkundig het meest van belang. Daarom bestaan de
ingevoerde klassen (op de eerste en laatste na) enkel uit nilpotente Lie algebra’s.

De appendix bevat een aantal computerprogramma’s die gëımplementeerd zijn in Matlab.
Deze algoritmes maken de berekeningen eenvoudiger. In het eerste deel wordt nagegaan
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of gegeven structuurconstanten al dan niet een Lie algebra definiëren. Het volgende deel
gaat over algoritmes die een basis berekenen voor de verzameling van derivaties voor een
gegeven Lie algebra.
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Chapter 1

Basic theory of Lie algebras

This chapter introduces the basic theory of Lie algebras which will be used in later chap-
ters. First, the geometric connection between Lie groups and Lie algebras is explained.
Then, there is an algebraic introduction to Lie algebras. This contains some well-known
examples and terminology of Lie algebras. Those preliminaries are important for the rest
of this thesis.

1.1 Lie groups and Lie algebras

In this section, the concepts of a Lie group and a Lie algebra are introduced. Lie groups
are important for geometrical purposes, but Lie algebras are easier to handle for many
computations. Therefore, to gain insight about Lie groups, the corresponding Lie algebras
are studied. The material in this section is based on [4].

Definition 1.1.1 (Lie group). A (real) Lie group G is a group which is a smooth manifold
and for which the multiplication µ and inversion ν are smooth maps.

In this definition, the maps µ ∶ G ×G → G ∶ (x, y) ↦ xy and ν ∶ G → G ∶ x ↦ x−1 are
defined as expected.

Example 1.1.2. Denote Mn(R) the space of all real (n×n)-matrices. Consider this space
as Rn2

. The determinant function det ∶ Rn2 → R ∶ A ↦ det(A) is a smooth map. Hence,
the general linear group

GL(n,R) ∶= {A ∈Mn(R) ∣ det(A) ≠ 0}

is open in Rn2
and therefore a manifold. Further, GL(n,R) is obviously a group. More-

over, the entries of the product of two matrices are polynomials in the entries of the two
matrices. Therefore, the matrix multiplication and inversion are smooth maps, which
means that GL(n,R) defines a Lie group.

The left translation is the following notion to be defined.

Definition 1.1.3 (Left translation). Let G be a Lie group and g ∈ G. The left translation
λg ∶ G→ G is defined by λg(h) = µ(g, h) = gh.

1



CHAPTER 1. BASIC THEORY OF LIE ALGEBRAS 2

Since the multiplication map of a Lie group is smooth by definition, λg defines a
diffeomorphism for the manifold G, where the inverse is given by λg−1 .

Let f ∶ M → N be a smooth map between two smooth manifolds M and N . The
differential of f at x is denoted by dfx ∶ TxM → Tf(x)N . Let X ∈ TeG and g ∈ G, then
LX(g) is defined as d(λg)e(X) ∈ TgG. It is thus the differential of the left translation in
the neutral element. The map LX ∶ G→ TG is a vector field on G, since LX(g) ∈ TgG and
LX is smooth.

The notion X(M) is used for the set of all smooth vector fields on the manifold M .
For arbitrary vector fields on a smooth manifold, the Lie bracket can be defined.

Definition 1.1.4 (Lie bracket). Let M be a smooth manifold and let ξ, η ∈ X(M) be
vector fields. The Lie bracket [ξ, η] ∈ X(M) of ξ and η is the unique vector field for which
[ξ, η] ⋅ f = ξ ⋅ (η ⋅ f) − η ⋅ (ξ ⋅ f) holds for all smooth functions f ∶M → R.

It is clear that the Lie bracket is bilinear and skew-symmetric.
Let M be a smooth manifold and let ξ, η and ζ ∈ X(M) be vector fields on M . By

calculation, it is easy to show that the Jacobi-identity

[ξ, [η, ζ]] + [η, [ζ, ξ]] + [ζ, [ξ, η]] = 0

holds. Another well-known concept in differential geometry is that of the pullback.

Definition 1.1.5 (Pullback). Let f ∶M → N be a local diffeomorphism for manifolds M
and N and let ξ ∈ X(N) be a vector field on N . The pullback f∗ξ ∈ X(M) is defined by

f∗ξ(x) ∶= (dfx)−1 ○ ξ(f(x)) for all x ∈M.

Let G be a Lie group with g ∈ G and let ξ ∈ X(G) be a vector field, then (λg)∗ξ ∈ X(G).
A vector field is called left invariant if it is preserved by the pullback of the left translation
by g, where g is an arbitrary element of the Lie group.

Definition 1.1.6 (Left invariant vector field). Let G be a Lie group and let ξ ∈ X(G).
Then ξ is left invariant if and only if (λg)∗ξ = ξ for all g ∈ G.

The space of left invariant vector fields of a Lie group G is denoted by XL(G). Next
proposition reveals a relation between the tangent space at the neutral element and the
set of all left invariant vector fields of a Lie group.

Proposition 1.1.7. Let G be a Lie group and denote g = TeG. The vector field LX is left
invariant, where X ∈ g. Moreover, g is isomorphic with XL(G).

Proof. Let g, h ∈ G be arbitrary and X ∈ g. By definition,

((λg)∗LX)(h) = (d(λg)h)−1 ○LX(λg(h)) = d(λg−1)gh ○ d(λgh)e(X) = d(λh)e(X) = LX(h)
holds, which means that LX is left invariant. Hence, there are linear maps between g and
XL(G). Define

ϕ ∶ g→ XL(G) ∶X ↦ LX and ψ ∶ XL(G)→ g ∶ ξ ↦ ξ(e).
By definition, LX(e) = X, such that ψ ○ ϕ = Idg. On the other hand, if ξ ∈ XL(G) and
X = ξ(e), then

ξ(g) = ((λg−1)∗ξ)(g) = (d(λg−1)g)−1○ξ(λg−1(g)) = d(λg)e○ξ(g−1g) = d(λg)e(X) = LX(g)
is satisfied. This means that ξ = LX and ϕ○ψ is the identity on XL(G). Hence, the linear
maps ϕ and ψ are inverse linear isomorphisms between g and XL(G).
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It is easy to check that for every local diffeomorphism f ∶ M → N (where M and N
are manifolds), the equality [f∗ξ, f∗η] = f∗([ξ, η]) holds for all ξ, η ∈ X(N). In particular,
let G be a Lie group with g ∈ G and let ξ, η ∈ XL(G) be left invariant vector fields, then

λ∗g[ξ, η] = [λ∗gξ, λ∗gη] = [ξ, η]

holds, which means that [ξ, η] ∈ XL(G).

Definition 1.1.8 (Lie algebra). Let G be a Lie group. The Lie algebra of G is the tangent
space g = TeG with the map

[, ] ∶ g × g→ g ∶ (X,Y )↦ [X,Y ] = [LX , LY ](e).

Due to the last proposition, this is well-defined and [LX , LY ] = L[X,Y ] holds. In this
definition, the Lie bracket is skew-symmetric and satisfies the Jacobi-identity, since these
are properties of the Lie bracket of vector fields. Next example gives the Lie algebra of
the general linear group.

Example 1.1.9. Denote the Lie algebra of GL(n,R) with gl(n,R). It is clear that, as a
vector space, gl(n,R) = Mn(R). Let A ∈ GL(n,R) and B ∈ Mn(R). One can show that
the Lie bracket on gl(n,R) is given by

[A,B] = [LA, LB](e) = AB −BA,

for all A,B ∈Mn(R).

For the rest of this thesis, the Lie algebras will be studied algebraically instead of
geometrically.

1.2 Basic theory of Lie algebras

As showed in the first section, Lie algebras can be defined as the tangent space at the
neutral element of a Lie group. So, for every Lie group, there is a corresponding Lie
algebra. In his third fundamental theorem, Lie showed that the converse is also true for
finite-dimensional real Lie algebras. However, it is also interesting to study Lie algebras
without the underlying Lie group. In this section, an algebraic definition of a Lie algebra
is given. The notion has the same properties as before, but makes it possible to work
without the background from differential geometry. Since the Lie groups from Section
1.1 were real manifolds, the corresponding Lie algebras were real too. However, there is
no need to restrict to the case where K = R. The same reasoning as before can be done
similarly for other fields. When the field is not denoted, the result holds for arbitrary
fields.

1.2.1 Definitions

This section elaborates the terminology which will be used in later chapters. First, the
definition of an algebra is recalled.

Definition 1.2.1 (Algebra). Let K be a field. An algebra over a field K is a K-vector
space A together with a bilinear map ⋅ ∶ A ×A→ A.
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A Lie algebra is an algebra, for which the bilinear map is called the Lie bracket. This
bracket satisfies certain conditions, motivated by the corresponding properties of the Lie
bracket for vector fields.

Definition 1.2.2 (Lie algebra). Let K be a field. A Lie algebra g over K is an algebra
where the bilinear map

g × g→ g ∶ (X,Y )↦ [X,Y ]
satisfies the following properties:

• The bracket [X,X] = 0 holds for all X ∈ g;

• For all X,Y and Z ∈ g, the Jacobi identity [X, [Y,Z]]+ [Y, [Z,X]]+ [Z, [X,Y ]] = 0
is fulfilled.

The first condition implies skew-symmetry, since for all X,Y ∈ g

0 = [X + Y,X + Y ] = [X,X] + [X,Y ] + [Y,X] + [Y,Y ] = [X,Y ] + [Y,X]

holds by bilinearity of the bracket. When char(K) ≠ 2, both concepts are even equivalent.
Since a Lie algebra is a vector space, every element can be expressed uniquely as linear

combination of the basis vectors. Although a Lie algebra can have infinite dimension, only
finite-dimensional Lie algebras are studied in this thesis.

Definition 1.2.3 (Structure constants). Let g be an n-dimensional Lie algebra with basis
B = {X1,X2, . . . ,Xn}. Then there exist ckij ∈K such that

[Xi,Xj] =
n

∑
k=1

ckijXk.

These values ckij (with 1 ≤ i, j, k ≤ n) are the structure constants of g with respect to the
basis B.

The conditions imposed on the structure constants by the Jacobi identity can be cal-
culated as follows. Consider an n-dimensional Lie algebra g with basis B = {X1, . . . ,Xn}.
Let Xi,Xj and Xk be three arbitrary basis vectors, so 1 ≤ i, j, k ≤ n. Then

0 = [Xi, [Xj,Xk]] + [Xj, [Xk,Xi]] + [Xk, [Xi,Xj]]

=
n

∑
m=1

cmjk[Xi,Xm] +
n

∑
m=1

cmki[Xj,Xm] +
n

∑
m=1

cmij [Xk,Xm]

=
n

∑
m=1

(cmjk[Xi,Xm] + cmki[Xj,Xm] + cmij [Xk,Xm])

=
n

∑
m=1

(cmjk
n

∑
l=1

climXl + cmki
n

∑
l=1

cljmXl + cmij
n

∑
l=1

clkmXl)

=
n

∑
m=1

n

∑
l=1

(cmjkclim + cmkicljm + cmij clkm)Xl

holds. This means that
n

∑
m=1

(cmjkclim + cmkicljm + cmij clkm) = 0 (1.1)
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has to be satisfied for all 1 ≤ i, j, k, l ≤ n.
It suffices to specify the Lie bracket [Xi,Xj] and hence the structure constants only

when i < j, since [Xi,Xi] = 0 and [Xj,Xi] = −[Xi,Xj]. Usually, only the non-vanishing
brackets are mentioned. It can be examined whether or not an algebra with given structure
constants defines a Lie algebra, by verifying the equations (1.1) for all possible values. In
appendix A.1, algorithm checkJacobi(C) in Code A.2 checks whether or not C represents
a Lie algebra. The input is an (n×n×n)-matrix C where C(i, j, k) stands for the structure
constant ckij. For the convenience, only the non-zero entries C(i, j, k) are implemented
when i < j.

Definition 1.2.4 (Appearances of a basis vector). Let g be an n-dimensional Lie algebra
with basis B = {X1, . . . ,Xn}. A basis vector Xk is said to appear m times if there exist
exactly m different pairs {i, j} so that ckij = −ckji ≠ 0.

Of course, this definition depends on the choice of the basis.

Example 1.2.5. Let g be the four-dimensional Lie algebra over a field K with char(K) ≠ 0
and basis B = {X1,X2,X3,X4} and non-vanishing Lie brackets

[X1,X2] = X2; [X1,X3] = X2 +X3; [X1,X4] = 2X4 and [X2,X3] = X4.

It is not so hard to show that the structure constants satisfy (1.1) for all 1 ≤ i, j, k, l ≤ 4.
For this Lie algebra, X1 does not appear, X2 and X4 appear twice and X3 appears once.

An important example of a Lie algebra is the following, motivated by the example of
the first section.

Example 1.2.6. Let V be a finite-dimensional vector space over a field K. Denote the
dimension of V by dim(V ) = n. The set gl(V ) denotes all linear maps from V to V . This
is a Lie algebra for which the Lie bracket is defined by

[X,Y ] = X ○ Y − Y ○X for all X,Y ∈ gl(V ).

It is easy to verify that the conditions on the Lie bracket are satisfied. Every linear
map from V to V can be represented by an (n × n)-matrix. Therefore, the vector space
gl(n,K) of all (n × n)-matrices also defines a Lie algebra, where the Lie bracket is given
by

[A,B] = AB −BA for all A,B ∈ gl(n,K).
Here, AB denotes the usual matrix multiplication. This example will turn up a lot in this
thesis.

The next definition is that of a Lie subalgebra, a vector subspace for which the Lie
bracket is conserved for all elements.

Definition 1.2.7 (Lie subalgebra). Let g be a Lie algebra. A vector subspace h ⊆ g is a
Lie subalgebra if [X,Y ] ∈ h for all X,Y ∈ h.

It is clear that a Lie subalgebra is also a Lie algebra.



CHAPTER 1. BASIC THEORY OF LIE ALGEBRAS 6

Example 1.2.8. Let K be a field and consider g = {A ∈K2×2 ∣ trace(A) = 0}. Let

(a b
c −a) and (d e

f −d)

be two arbitrary elements of g, hence a, b, c, d, e, f ∈K. Then

(a b
c −a)(d e

f −d) − (d e
f −d)(a b

c −a) = (ad + bf ae − bd
cd − af ce + ad) − (ad + ce bd − ae

af − cd bf + ad)

= ( bf − ce 2(ae − bd)
2(cd − af) ce − bf )

has zero trace, which means that g is a Lie subalgebra of gl(2,K).

A basis for g is given by

X1 ∶= (0 1
0 0

) , X2 ∶= (0 0
1 0

) and X3 ∶= (1 0
0 −1

)

and the Lie brackets are defined by [X1,X2] =X3, [X1,X3] = −2X1 and [X2,X3] = 2X2.
The next construction is that of an ideal, a special type of a subalgebra.

Definition 1.2.9 (Ideal). An ideal h of a Lie algebra g is a subspace of g such that
[X,Y ] ∈ h for all X ∈ g and all Y ∈ h.

Contrary to the definition of an ideal for rings, there is no distinction between right
and left ideals due to skew-symmetry of the Lie bracket. An important example of an
ideal is the centre of a Lie algebra.

Definition 1.2.10 (Centre). The centre Z(g) of a Lie algebra g is defined as

Z(g) = {X ∈ g ∣ [X,Y ] = 0 for all Y ∈ g}.
This is indeed an ideal of g. Next, the product of two ideals is introduced.

Definition 1.2.11 (Product of ideals). Let g be a Lie algebra over a field K with ideals
I and J . The product of I and J is given by

[I, J] = span{[X,Y ] ∈ g ∣X ∈ I and Y ∈ J}.
Let h ∈ [I, J], so there exist n ∈ N, ai ∈K,xi ∈ I and yi ∈ J (for all 1 ≤ i ≤ n) such that

h =
n

∑
i=1
ai[xi, yi]. Then,

[g, h] = [g,
n

∑
i=1

ai[xi, yi]] =
n

∑
i=1

ai[g, [xi, yi]]

for all g ∈ g. By definition of the Jacobi identity,

[g, [x, y]] = [x, [g, y]] + [[g, x], y]
holds for all g ∈ g, x ∈ I and y ∈ J . Since [g, y] ∈ J and [g, x] ∈ I, it follows that

[x, [g, y]] ∈ [I, J] and [[g, x], y] ∈ [I, J].
Hence, [g, h] ∈ [I, J] for every h ∈ [I, J] and g ∈ g, which means that [I, J] is an ideal of
g. Note that in some cases, the set of all commutators {[X,Y ] ∈ g ∣X ∈ I and Y ∈ J} is
not an ideal.
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Example 1.2.12. Define g as the set of all matrices of the form

(f(x), g(y), h(x, y)) ∶=
⎛
⎜⎜
⎝

0 f(x) h(x, y)
0 0 g(y)
0 0 0

⎞
⎟⎟
⎠
,

where f(x) ∈ R[x], g(y) ∈ R[y] and h(x, y) ∈ R[x, y]. Then, g is an (infinite-dimensional)
algebra over R with the usual commutator bracket.

Consider three arbitrary elements of g, namely A1 ∶= (f1(x), g1(y), h1(x, y)), A2 ∶=
(f2(x), g2(y), h2(x, y)) and A3 ∶= (f3(x), g3(y), h3(x, y)). By construction,

[(f1(x), g1(y), h1(x, y)), (f2(x), g2(y), h2(x, y))] = (0,0, f1(x)g2(y) − f2(x)g1(y)).

Since [A1, [A2,A3]]] = 0 holds, the Jacobi identity is satisfied and g is thus a Lie algebra.
Further, [g,g] consists of all matrices of the form

(0,0, h(x, y)) =
⎛
⎜⎜
⎝

0 0 h(x, y)
0 0 0
0 0 0

⎞
⎟⎟
⎠
,

where h(x, y) ∈ R[x, y]. Denote gc for the set of all commutators. When h(x, y) ∶=
x2 + xy + y2, it is easy to see that (0,0, h(x, y)) ∈ [g,g], but (0,0, h(x, y)) ∉ gc, although
(0,0, x2), (0,0, xy) and (0,0, y2) belong to gc. Hence, gc is not a vector space and thus
not an ideal of g.

For I = J = g, the construction [g,g] has an own name.

Definition 1.2.13 (Derived algebra). Let g be a Lie algebra over a field K. The derived
algebra of g is given by [g,g].

Since a Lie algebra is a vector space, it makes sense to consider the quotient vector
space. Let g be a Lie algebra with ideal I, then the cosets X + I = {X + Y ∣ Y ∈ I} (with
X ∈ g) form the quotient vector space

g/I = {X + I ∣X ∈ g}.

It is possible to turn this into a Lie algebra, where the Lie bracket is defined as

[X + I, Y + I] ∶= [X,Y ] + I for all X,Y ∈ g.

The value of [X,Y ]+ I only depends on the cosets, not on the particular representatives.
Let X1 + I =X2 + I and Y1 + I = Y2 + I. By bilinearity of the Lie bracket in g,

[X2, Y2] = [X1 + (X2 −X1), Y1 + (Y2 − Y1)]
= [X1, Y1] + [X2 −X1, Y1] + [X1, Y2 − Y1] + [X2 −X1, Y2 − Y1].

The last three summands belong to I, so that [X2, Y2] + I = [X1, Y1] + I. Hence, the Lie
bracket is well-defined. It is easy to verify that the Lie bracket on the quotient vector
space is bilinear and fulfills the Jacobi identity.

Like other algebraic structures, the notion of a homomorphism makes sense for Lie
algebras too.
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Definition 1.2.14 (Homomorphism). Let g1 and g2 be Lie algebras over the same field
K. A linear map ϕ ∶ g1 → g2 is a homomorphism if

ϕ([X,Y ]) = [ϕ(X), ϕ(Y )]

holds for all X,Y ∈ g1. A bijective homomorphism is called an isomorphism.

The bracket on the left side is taken in g1 and the bracket on the right side in g2.
The following example of a Lie algebra homomorphism will also show up in the next

chapter.

Example 1.2.15. Let g be a Lie algebra over a field K. The adjoint homomorphism
ad ∶ g→ gl(g) is defined as

(ad(X)) ∶ g→ g ∶ Y ↦ [X,Y ] for all X,Y ∈ g.

Since the Lie bracket is bilinear, ad(X) is linear and belongs hence to gl(g). Moreover,
ad is linear for the same reason. Let Z ∈ g be arbitrary. The Jacobi identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

is equivalent with
[[X,Y ], Z] = [X, [Y,Z]] − [Y, [X,Z]].

For all X,Y ∈ g, this means that

ad([X,Y ]) = ad(X) ○ ad(Y ) − ad(Y ) ○ ad(X)
= [ad(X),ad(Y )],

where the first bracket is taken in g and the second bracket in gl(g). Hence, the adjoint
map is indeed a Lie algebra homomorphism.

The next subsection is devoted to the introduction of some notions. Those concepts
have an important role in Chapter 3 of this thesis, where the almost-inner derivations of
special classes of Lie algebras will be computed.

1.2.2 Special constructions of Lie algebras

In the next chapter, almost-inner derivations are defined. This concept is geometrically
important, especially for nilpotent Lie algebras. This kind of Lie algebras is introduced
in this section. First, the notion of a direct sum of Lie algebras is explained.

Definition 1.2.16 (Direct sum of Lie algebras). Let g1 and g2 be two Lie algebras over
the same field K. The direct sum g = g1 ⊕ g2 of the Lie algebras g1 and g2 is the vector
space direct sum with [g1,g2] = 0.

It is clear that both g1 and g2 are ideals of g in this case.
Before the definition of a nilpotent Lie algebra can be given, some other notions have

to be elaborated. The first concept is a generalisation of the derived algebra.

Definition 1.2.17 (Derived series). Let g be a Lie algebra over a field K. The derived
series of g is the series with terms

g(1) = [g,g] and g(k) = [g(k−1),g(k−1)] for k ≥ 2.
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As for groups, the notion of solvability can also be introduced for Lie algebras.

Definition 1.2.18 (Solvable Lie algebra). A non-zero Lie algebra g over a field K is
solvable when g(k) = 0 for some k ≥ 1.

A Lie algebra for which [g,g] = 0 is called ‘abelian’. A non-abelian Lie algebra g is
‘metabelian’ when g(2) = 0. This concept will be important in Section 3.2 of the next
chapter.

Example 1.2.19. The four-dimensional Lie algebra g with basis B = {X1,X2,X3,X4}
and non-vanishing Lie brackets as in Example 1.2.5 is three-step solvable, since

g(1) = <X2,X3,X4 >; g(2) = <X4 > and g(k) = 0 for all k ≥ 3.

Another notion is that of a semisimple Lie algebra.

Definition 1.2.20 (Semisimple Lie algebra). Let g be a non-zero finite-dimensional Lie
algebra over a field K. Then g is semisimple if it has no non-zero solvable ideals.

Note that when a Lie algebra g is solvable, it cannot be semisimple, since g itself is an
ideal of g. The following Lie algebra is the standard example of a semisimple Lie algebra.

Example 1.2.21. Let g be the three-dimensional Lie algebra over a field K with char(K) ≠
2 and basis B = {X1,X2,X3} and non-vanishing Lie brackets

[X1,X2] = X3; [X1,X3] = −2X1 and [X2,X3] = 2X2.

Then g is semisimple.

This Lie algebra even does not have proper ideals. Note that this is the same Lie
algebra as in Example 1.2.8.

A notion related to solvability is nilpotency. First, the lower central series is intro-
duced.

Definition 1.2.22 (Lower central series). Let g be a Lie algebra over a field K. The
lower central series of g is the series with terms

g1 = [g,g] and gk = [g,gk−1] for k ≥ 2.

A Lie algebra is called nilpotent when there exists a natural number k such that every
Lie bracket with more than k elements vanishes.

Definition 1.2.23 (Nilpotent Lie algebras). A non-zero Lie algebra g over a field K is
nilpotent when gk = 0 for some k ≥ 1.

Most of the classes studied in Chapter 3 consist of nilpotent Lie algebras. It is easy
to see that g(k) ⊆ gk for all k ∈ N. Hence, any nilpotent Lie algebra is also solvable. The
converse is not true: the two-dimensional non-abelian Lie algebra (given by [X1,X2] =X1)
is solvable, but not nilpotent.

Definition 1.2.24 (Nilindex). Let g be a nilpotent Lie algebra. The nilindex of g is the
integer r ∈ N≥1 such that gr = 0 and gr−1 ≠ 0.
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Normally, the word ‘nilindex’ is not used for an abelian Lie algebra, since this is a
stronger property than nilpotency.

Example 1.2.25. Let g be the infinite-dimensional Lie algebra over R as in Example
1.2.12. Then g is nilpotent with nilindex two, since [A1, [A2,A3]] = 0 for all A1,A2,A3 ∈ g.

Let g be an n-dimensional Lie algebra over a field K with basis B = {X1, . . . ,Xn}.
When [g,g] = g, then gk = g for all k ∈ N. Suppose that dim([g,g]) = n − 1, say [g,g] =
span{X1, . . . ,Xn−1}. Then,

g2 = [g, [g,g]] = [g, span{X1, . . . ,Xn−1}] = [g,g] = g1

holds, which is impossible for nilpotent Lie algebras. Hence, this implies that for every
nilpotent n-dimensional Lie algebra g, the inequality dim([g,g]) ≤ n−2 is true. Moreover,

dim(gk) ≤ n − k − 1

holds for all 1 ≤ k ≤ n − 1. Therefore, the upper bound of the nilindex is equal to n − 1.
Lie algebras of dimension n with nilindex n − 1 will be studied in Section 3.2.



Chapter 2

Almost-inner derivations

In this chapter, almost-inner derivations of Lie algebras are studied. Almost-inner deriva-
tions were first introduced in [12] in the study of spectral geometry. First, the definitions
of an almost-inner derivation and of related concepts are given. The second section is
devoted to the geometric importance of the concept. Further, some first observations
and properties are stated and proven. There is a procedure to calculate AID(g). This
working method will be useful in the next chapter, were the almost-inner derivations will
be computed for special classes of Lie algebras.

2.1 Definitions

This section explains some important concepts concerning almost-inner derivations. Be-
fore the definition can be given, there are other notions which have to be introduced. The
first one is that of a derivation.

Definition 2.1.1 (Derivation). Let A be an algebra over a field K. A derivation of A is
a K-linear map D ∶ A→ A such that

D(XY ) = XD(Y ) +D(X)Y

holds for all X,Y ∈ A.

This identity is called ‘Leibniz’ rule’. The most familiar example is the following.

Example 2.1.2. Let A = C∞(R) be the vector space of all smooth functions R→ R. For
f, g ∈ A, the product fg is given by (fg)(x) = f(x)g(x). Equipped with this bilinear map,
A is an algebra. The usual derivative, given by D(f) = f ′ for all f ∈ A is a derivation of
A. Indeed, it follows from the product rule that

D(fg) = (fg)′ = f ′g + fg′ = (Df)g + fD(g)

holds for all f, g ∈ A.

It is clear that the set of all derivations of an algebra A forms a vector space, which
is denoted by Der(A). Hence, it makes sense to define the dimension of the derivations
as the dimension of the vector space. Recall that gl(A) is a Lie algebra with Lie bracket
given by

[f, g] ∶= f ○ g − g ○ f for all f, g ∈ gl(A).

11
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By using the definition of a derivation and the fact that Der(A) ⊂ gl(A), the following
equations hold for every D,E ∈ Der(A) and for every X,Y ∈ A:

[D,E](XY ) = D(E(XY )) −E(D(XY ))
= D(XE(Y ) +E(X)Y ) −E(XD(Y ) +D(X)Y )
= D(XE(Y )) +D(E(X)Y ) −E(XD(Y )) −E(D(X)Y )
= XD(E(Y )) +D(X)E(Y ) +E(X)D(Y ) +D(E(X))Y
−XE(D(Y )) −E(X)D(Y ) −D(X)E(Y ) −E(D(X))Y

= XD(E(Y )) +D(E(X))Y −XE(D(Y )) −E(D(X))Y
= X[D,E](Y ) + [D,E](X)Y.

This means that [D,E] is a derivation too and Der(A) is a Lie subalgebra of gl(A).
Let g be a Lie algebra. Then a linear map ϕ ∶ g→ g is a derivation, when

ϕ([X,Y ]) = [X,ϕ(Y )] + [ϕ(X), Y ] for all X,Y ∈ g.

Let g be a n-dimensional Lie algebra with basis B = {X1, . . . ,Xn} and structure con-
stants ckij for all 1 ≤ i, j, k ≤ n. Since a derivation is a linear map, it admits a matrix
representation. Denote with D = (dij) the corresponding matrix of the derivation ϕ, so

D(Xi) =
n

∑
j=1
dijXj.

Remark 2.1.3. In the literature, there is also another way to represent the linear trans-
formation as a matrix: the coordinate of the j-th basis vector is written down in the j-th
column of the matrix. In fact, this yields the transpose of the matrix representation which
will be used in this thesis.

By bilinearity of the Lie bracket, it suffices to check the above equation for the basis
vectors. Let Xi and Xj be two arbitrary basis vectors. Then,

D([Xi,Xj]) = D(
n

∑
l=1

clijXl) =
n

∑
l=1

clijD(Xl) =
n

∑
l=1

n

∑
k=1

clijdlkXk (2.1)

holds by bilinearity of the Lie bracket. Analogously, following equations are satisfied:

[D(Xi),Xj] + [Xi,D(Xj)] = [
n

∑
l=1

dilXl,Xj] + [Xi,
n

∑
l=1

djlXl]

=
n

∑
l=1

dil[Xl,Xj] +
n

∑
l=1

djl[Xi,Xl]

=
n

∑
l=1

n

∑
k=1

dilc
k
ljXk +

n

∑
l=1

n

∑
k=1

djlc
k
ilXk

=
n

∑
l=1

n

∑
k=1

(dilcklj + djlckil)Xk. (2.2)

Since D is a derivation,

D([Xi,Xj]) = [D(Xi),Xj] + [Xi,D(Xj)]
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is true for all 1 ≤ i, j ≤ n. This means, by combining the equations (2.1) and (2.2), that

n

∑
l=1

clijdlk =
n

∑
l=1

(dilcklj + djlckil) (2.3)

has to be satisfied for all 1 ≤ i, j, k ≤ n. This gives relations on the different matrix entries
of the derivation. An example of such a computation is postponed to Proposition 3.2.5.

A derivation is completely characterised by the above equation. In appendix A.2,
algorithm derivations(C) in Code A.3 computes the equations (2.3) for an arbitrary
derivation of a given Lie algebra. As input, the (n×n×n)-matrix C contains the structure
constants of g as before. The output is an (n2×n2)-system, where every row stands for one
relation on the matrix entries. The information for dij is represented by column (i−1)n+j
in the system. The obtained relations on the matrix entries can be visualised with the
algorithm makeBasisDerivations(C). It gives as output the matrix representation of
an arbitrary derivation for the Lie algebra g, represented by the (n × n × n)-matrix C.
Moreover, also the dimension of Der(g) is printed. However, since this requires a long
computing time, it is only useful for Lie algebras when n is small (at most around fifteen).

An important class of derivations consists of the inner derivations. Let g be a Lie
algebra. For every X ∈ g, the image of the adjoint homomorphism ad(X) is called an
inner derivation.

Definition 2.1.4 (Inner derivation). Let g be a Lie algebra and X ∈ g. The map

ad(X) ∶ g→ g ∶ Y ↦ [X,Y ]

is called an inner derivation of g.

By the Jacobi identity,

ad(X)([Y,Z]) = [X, [Y,Z]]
= [[X,Y ], Z] + [Y, [X,Z]]
= [ad(X)(Y ), Z] + [Y,ad(X)(Z)]

holds for all Y,Z ∈ g. Hence, every inner derivation is indeed a derivation. The symbol
Inn(g) stands for the set of all inner derivations of the Lie algebra g.

Let ad(X) be an arbitrary inner derivation of g, so X ∈ g. Further, let D ∈ Der(g) be
an arbitrary derivation of g and let Y ∈ g. Then,

[D,ad(X)](Y ) = D([X,Y ]) − [X,D(Y )] = [D(X), Y ] = ad(D(X))(Y ) (2.4)

follows. In the first step, the Lie bracket in Der(g) is worked out, together with the
definition of the adjoint map. The second equation holds since D is a derivation. This
computation shows that Inn(g) is even an ideal of Der(g). By bilinearity, Inn(g) can be
generated by the maps ad(Xi) ∶ g→ g, where Xi is a basis vector, so 1 ≤ i ≤ n.

As every derivation, an inner derivation can be represented by a matrix. Let now g be
an n-dimensional Lie algebra over K with basis B = {X1, . . . ,Xn}. Choose k ∈ {1, . . . , n}
and denote withH = (hij) the corresponding matrix of the inner derivation ad(Xk) ∶ g→ g,
thus

ad(Xk)(Xi) =
n

∑
j=1

hijXj.
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Moreover, [Xk,Xi] =
n

∑
j=1
cjkiXj holds. Therefore, the entries of H are given by

hij = cjki = −cjik.

Consider an arbitrary X =
n

∑
k=1

akXk ∈ g, where ai ∈ K for all 1 ≤ i ≤ n and let H be the

matrix representation of ad(X) ∶ g → g. By bilinearity of the Lie bracket, the entries of
H = (hij) are given by

hij =
n

∑
k=1

−akcjik.

For all X ∈ g the map ad(X) is the zero-map if and only if X ∈ Z(g), which explains
the equation

Inn(g) ≅ g

Z(g) .

Hence, dim(Inn(g)) is easy to compute.
The following definition is the main topic of this thesis.

Definition 2.1.5 (Almost-inner derivation). Let g be a Lie algebra. A derivation ϕ is
almost-inner if ϕ(X) ∈ [X,g] for all X ∈ g.

The definition means that there exists a map B ∶ g → g such that ϕ(X) = [X,B(X)]
for all X ∈ g. Hence, an inner derivation is almost-inner for which the map B has to be
constant. The set of all almost-inner derivations of a Lie algebra g is denoted by AID(g).
Let g be a Lie algebra with ϕ1, ϕ2 ∈ AID(g). Choose X ∈ g arbitrarily. Since ϕ1 and
ϕ2 are almost-inner derivations, there exist X1 and X2 in g such that ϕ1(X) = [X,X1]
respectively ϕ2(X) = [X,X2]. It is clear that AID(g) ⊂ gl(g). According to Example
1.2.6, the Lie bracket of ϕ1 and ϕ2 is given by

[ϕ1, ϕ2](X) = ϕ1ϕ2(X) − ϕ2ϕ1(X)
= ϕ1([X,X2]) − ϕ2([X,X1])
= [ϕ1(X),X2] + [X,ϕ1(X2)] − [ϕ2(X),X1] − [X,ϕ2(X1)]
= [[X,X1],X2] + [X,ϕ1(X2)] − [[X,X2],X1] − [X,ϕ2(X1)]
= [[X,X1],X2] − [[X,X2],X1] + [X,ϕ1(X2) − ϕ2(X1)]
= [X, [X1,X2]] + [X,ϕ1(X2) − ϕ2(X1)].

The third equality holds because ϕ1 and ϕ2 are derivations. In the last step, the Jacobi
identity is used. Hence,

[ϕ1, ϕ2](X) = [X, [X1,X2] + ϕ1(X2) − ϕ2(X1)] ∈ [X,g]

holds, which means that [ϕ1, ϕ2] ∈ AID(g) is an almost-inner derivation. Therefore,
AID(g) is a subalgebra of Der(g). In Section 2.3, this definition is analysed more thor-
oughly.

A concept related to the notion of an almost-inner derivation, is a central almost-inner
derivation.

Definition 2.1.6 (Central almost-inner derivation). Let g be a Lie algebra. An almost-
inner derivation ϕ is central almost-inner if there exists an X ∈ g such that ϕ(Y ) −
ad(X)(Y ) ∈ Z(g) for all Y ∈ g.
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The set of all central almost-inner derivations of a Lie algebra g is designated by
CAID(g). Next lemma shows that CAID(g) is an ideal of AID(g) for every Lie algebra
g.

Lemma 2.1.7. Let g be a Lie algebra. Then CAID(g) is an ideal of AID(g).

Proof. Let φ ∈ CAID(g) and ϕ ∈ AID(g) be arbitrary. By the observations above, AID(g)
is a Lie algebra, hence [φ,ϕ] ∈ AID(g). The aim is to show that [φ,ϕ] is even a central
almost-inner derivation of g. Since φ is central almost-inner, there exists X ∈ g such that
φ′ ∶= φ − ad(X) and φ′(g) ⊆ Z(g). Let Y ∈ g be arbitrary. It follows from (2.4) that

[ϕ,φ](Y ) − ad(ϕ(X))(Y ) = [ϕ,φ](Y ) − [ϕ,ad(X)](Y )
= [ϕ,φ′](Y )
= ϕφ′(Y ) − φ′ϕ(Y ).

Define Ỹ ∶= φ′(Y ), then there exists Y ′ ∈ g such that ϕ(Ỹ ) = [Ỹ , Y ′]. Since Ỹ ∈ Z(g), it
follows that ϕ(Ỹ ) = 0. Hence,

[ϕ,φ](Y ) − ad(ϕ(X))(Y ) ∈ Z(g),

holds, which means that [ϕ,φ] ∈ CAID(g) is a central almost-inner derivation of g. This
completes the proof.

By definition, every inner derivation is also central almost-inner. Hence, it is clear
that the following holds for every Lie algebra g:

Inn(g) ⊆ CAID(g) ⊆ AID(g) ⊆ Der(g).

It is natural to investigate how all of these concepts are related.
In some cases, the question can be solved immediately. For semisimple complex Lie

algebras, all four concepts are equal, so Inn(g) = CAID(g) = AID(g) = Der(g).

Proposition 2.1.8. Let g be a finite-dimensional complex semisimple Lie algebra, then
the only derivations are the inner derivatons.

Proof. This fact is proven in for example [8, page 85].

This means that all almost-inner derivations are trivial for finite-dimensional complex
semisimple Lie algebras.

When the centre of a Lie algebra is trivial, all central almost-inner derivations are
inner ones.

Lemma 2.1.9. Let g be a Lie algebra with Z(g) = 0. Then Inn(g) = CAID(g) holds.

Proof. The inclusion Inn(g) ⊆ CAID(g) always holds. Suppose that ϕ ∈ CAID(g) is an
arbitrary central almost-inner derivation. By definition, there exists an element X ∈ g so
that ϕ(Y ) − ad(X)(Y ) ∈ Z(g) for all Y ∈ g. Hence, ϕ = ad(X) is an inner derivation,
which concludes the proof.

For a two-step nilpotent Lie algebra, all almost-inner derivations are also central
almost-inner.
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Lemma 2.1.10. Let g be a two-step nilpotent Lie algebra. Then CAID(g) = AID(g)
holds.

Proof. The inclusion CAID(g) ⊆ AID(g) holds by definition. Let ϕ ∈ AID(g) be an
arbitrary almost-inner derivation. Then ϕ(X) ∈ [X,g] ⊆ [g,g] ⊆ Z(g) holds since g is
two-step nilpotent. By definition, ϕ is a central almost-inner derivation.

In Section 2.3, more theory is developed which makes it possible to compute AID(g)
for a given Lie algebra g. First, a geometric motivation is given. This illustrates why it
is interesting to study almost-inner derivations.

2.2 Geometric motivation

The notion of an almost-inner derivation appeared in 1984. In their paper (see [12]),
Gordon and Wilson provide an example which gives more insight in a question in spectral
geometry. The first part of this section is devoted to this problem. Further, nilmanifolds
and different types of group automorphisms are introduced to understand the result of
Gordon and Wilson. In the last subsection, the connection with almost-inner derivations
is elaborated.

2.2.1 Isospectral manifolds

In spectral geometry, relations between a certain kind of manifolds and spectra of dif-
ferential operators are studied. The main example is the Laplace-Beltrami operator, a
generalisation of the Laplace operator which can be used for general closed Riemannian
manifolds.

Definition 2.2.1 (Riemannian manifold). A Riemannian manifold (M,g) is a real smooth
manifold M with inner product gp on TpM for all p ∈M such that

p↦ gp(X(p), Y (p))

is a smooth function for all vectorfields X and Y on M .

The Laplace-Beltrami operator is defined as the divergence of the gradient and denoted
with ∆ or with ∇2. One of the fundamental problems in spectral geometry is to determine
to what extent the eigenvalues of the operator determine the geometry of a given manifold.
First, some notions are introduced.

Definition 2.2.2 (Spectrum). Let (M,g) be a closed Riemannian manifold where the
associated Laplace-Beltrami operator ∆ acts on functions. The spectrum spec(M,g) of
(M,g) is the set of eigenvalues of ∆.

When two Riemannian manifolds have the same spectrum, they are called ‘isospectral’.

Definition 2.2.3 (Isospectral). Two closed Riemannian manifolds (M,g) and (M ′, g′)
are isospectral when spec(M,g) = spec(M ′, g′).

For Riemannian manifolds, the right notion of an isomorphism is an isometry.



CHAPTER 2. ALMOST-INNER DERIVATIONS 17

Definition 2.2.4 (Isometry). Let f ∶M → N be a diffeomorphism between two Rieman-
nian manifolds (M,g) and (M ′, g′). Then, f is an isometry if

gp(X,Y ) = g′f(p)(dfp(X), dfp(Y ))

holds for all p ∈M and for all X,Y ∈ TpM .

One of the central questions in spectral geometry was ‘are isospectral manifolds nec-
essarily isometric?’ This can be interpreted as follows: ‘Is it possible to determine the
whole geometry of the manifold by only looking at the eigenvalues?’ It turns out that
the answer is negative. In 1964, a counterexample was given by Milnor (see [14]), who
constructed two isospectral and non-isometric flat tori of dimension 16.

In the following years, there have been many new examples, such as hyperbolic man-
ifolds and Heisenberg manifolds. In 1984, Gordon and Wilson were the first to con-
struct continuous families of isospectral manifolds which are non-isometric. In their paper
(see [12]), they used the notions of a nilmanifold and an almost-inner automorphism. This
is explained more in the following subsections.

2.2.2 Nilmanifolds

In this subsection, nilmanifolds are introduced. First, some other notions have to be
explained.

Definition 2.2.5 (Left group action). Let G be a group and X a set. A left group action
ϕ of G on X is a function

ϕ ∶ G ×X →X ∶ (g, x)↦ ϕ(g, x) = g ⋅ x

such that for all x ∈X and for all g, h ∈ G, the equations

e ⋅ x = x and gh ⋅ x = g ⋅ (h ⋅ x)

are satisfied.

Analogously, a right group action ϕ of G on X is a function

ϕ ∶X ×G→X ∶ (x, g)↦ ϕ(x, g) = x ⋅ g

such that for all x ∈X and for all g, h ∈ G, the equations

x ⋅ e = x and x ⋅ gh = (x ⋅ g) ⋅ h

hold. Due to the relation (gh)−1 = h−1g−1, a right action can be modified to a left action
by composing the action with the inverse group operation. Mostly, the set X is in fact a
topological space or even a Lie group. When X is a Lie group, the action is required to
be continuous.

Definition 2.2.6 (Orbit). Consider a group G acting on a set X by left multiplication.
The orbit of an element x ∈X is given by

G ⋅ x = {g ⋅ x ∣ g ∈ G}.
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A similar definition exists for right actions. The quotient of a left action (or the orbit
space) G/X is the set of all orbits of X under G. The quotient of a right action is denoted
with X/G. The quotient forms a partition of X, where the equivalence relation is given
by

x ∼ y ⇔ there exists g ∈ G with g ⋅ x = y.

This means that two elements x, y ∈X are equivalent if and only if their orbits coincide. If
a group action has only one orbit, it is called ‘transitive’. This means that, for all points
x, y ∈X, there is a group element g ∈ G with y = g ⋅ x.

Definition 2.2.7 (Isotropy subgroup). Consider a group G acting on a set X by left
multiplication. The isotropy subgroup Gx of an element x ∈X is given by

Gx = {g ∈ G ∣ g ⋅ x = x}.

It is clear that this defines a subgroup of G, for all points x ∈ X. A similar definition
holds for right group actions. Notice that all points in the same orbit have conjugated
isotropy subgroups. Indeed, consider x, y ∈ X with G ⋅ x = G ⋅ y. This means that there
exists g ∈ G with y = g ⋅ x. Suppose further that h ∈ Gy. Then, h ⋅ y = y is equivalent to
hg ⋅x = g ⋅x and g−1hg ⋅x = x, which means that h ∈ gGxg−1. The other inclusion is shown
similarly.

Definition 2.2.8 (Homogeneous space). Let G be a Lie group and X be a topological
space. Then X is called homogeneous for G if there exists a transitive and continuous
group action of G on X.

Consider the map lx ∶ G → X ∶ g ↦ g ⋅ x, which has G ⋅ x as image. The equation
g ⋅ x = h ⋅ x is equivalent with g−1h ⋅ x = x, which means that g−1h ∈ Gx and thus h ∈ gGx.
This implies that hGx = gGx. Hence, there is a bijection between the space of left cosets
G/Gx and the orbit G ⋅ x. Therefore, for a transitive group action, the sets X and G/Gx

are bijective for all x ∈X. For right actions, similar results can be obtained.
All ingredients are introduced to understand what a nilmanifold is. The notion was

first used by Anatoly Mal’cev in 1951. (see [13]).

Definition 2.2.9 (Nilmanifold). A nilmanifold is a quotient space H/G of a nilpotent
Lie group G and a closed subgroup H of G.

Equivalently, a nilmanifold can be seen as a homogeneous space for which the left
transitive group action comes from a nilpotent Lie group.

From all nilmanifolds, the compact ones are of most interest. As Mal’cev showed,
there exists a characterisation of compact nilmanifolds. To understand the method of
working, there are some other notions which have to be explained first.

Definition 2.2.10 (Simply connected). Let X be a path connected topological space X.
Then X is called simply connected if for any continuous map f ∶ S1 → X, there exists
a continuous map H ∶ S1 × [0,1] → X and a point x0 ∈ X such that for all z ∈ S1, the
equations

H(z,0) = f(z) and H(z,1) = x0

are satisfied.
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Intuitively, this definition means that an arbitrary closed continuous curve in X is
homotopic to a constant curve.

Another notion is that of a discrete subgroup of a given group.

Definition 2.2.11 (Discrete subgroup). A subgroup H of a topological group G is called
discrete if the subspace topology of H in G is the discrete topology. This means that there
exists an open cover of H such that every open subset contains exactly one element of H.

Consider R with the standard topology. It is clear that the integers Z form a discrete
subgroup. This is not the case for the rational numbers, since Q is dense in R.

Definition 2.2.12 (Uniform group action). A left (respectively right) action of a group
G on a topological space X is uniform (also called cocompact) if the quotient space G/X
(respectively X/G) is a compact space.

Let N be a simply connected nilpotent Lie group and Γ be a discrete subgroup. If
the subgroup Γ acts uniformly (via left multiplication) on N , then the quotient manifold
Γ/N will be a compact nilmanifold. A theorem due to Mal’cev (see [13]) shows that every
compact nilmanifold can be formed like that.

Next example shows that this is in fact a generalisation of a torus.

Example 2.2.13. Let G be an abelian Lie group, which is of course nilpotent. For ex-
ample, one can take the group of real numbers under addition, and the discrete cocompact
subgroup consisting of the integers. The resulting nilmanifold (with k ∈ N) is the gener-
alised torus

T k = Rk

Zk
.

For k = 1, this is the circle and for k = 2, this is a torus. In the literature, a nil-
manifold often is supposed to be compact. Also in this thesis, this assumption will be
made. Therefore, sometimes the above property is used as the definition of a (compact)
nilmanifold.

To obtain a Riemannian structure on an nilmanifold, choose a left-invariant metric on
G. This metric in inherited by Γ/G. In this way, a so called ‘Riemannian nilmanifold’ is
acquired.

2.2.3 Automorphisms

The concepts for Lie algebras defined in Section 2.1 are closely related to some special
types of group automorphisms. In this subsection, those notions are introduced and the
geometric interpretation is provided. Especially, almost-inner automorphisms turn up in
the study of spectral geometry of nilmanifolds. Further, the relation with almost-inner
derivations is explained.

A group automorphism is a group isomorphism from a group to itself. The set of
all automorphisms of a given group is denoted with Aut(G) and forms a group. Special
subgroups are given in the following definitions.

Definition 2.2.14 (Inner automorphism). Let G be a Lie group. The inner automorphism
Ig ∶ G→ G of G for g ∈ G is given by Ig(x) = gxg−1.
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The notation Inn(G) stands for the set of all inner automorphisms of the group G.
It is clear that an inner automorphism is indeed an automorphism. Moreover, Inn(G) is
even a normal subgroup of Aut(G). Consider now the group homomorphism

G→ Inn(G) ∶ g ↦ (Ig ∶ G→ G).

Since the kernel of this morphism is equal to the center Z(G) of G, it follows from the
isomorphism theorems that G/Z(G) ≅ Inn(G). As explained in the previous section,
a similar statement holds for Inn(g), where g is a Lie algebra. Let G be a connected
and simply connected Lie group. One can show that Inn(G) and Aut(G) have Inn(g)
respectively Der(g) as Lie algebra. Therefore, from now on, a Lie group G is always
assumed to be connected and simply connected. An inner automorphism is a special case
of an almost-inner automorphism.

Definition 2.2.15 (Almost-inner automorphism). Let G be a Lie group. An automor-
phism ϕ of G is almost-inner if and only if for all x ∈ G, there exists g ∈ G such that
ϕ(x) = gxg−1.

This notion was introduced differently in [12], but it is in fact equivalent to this one
(see [10]). The set of all almost-inner automorphisms of G is denoted with AIA(G).
Hence, an almost-inner automorphism is a generalisation of an inner one, where g ∈ G
can depend on x ∈ G. In [12], it is proven that AIA(G) is a Lie subgroup of Aut(G). The
following theorem is due to Gordon and Wilson and is stated without proof.

Theorem 2.2.16 (Gordon and Wilson, see [12]). Let (Γ/G,g) be a compact Riemannian
nilmanifold and let ϕ ∈ AIA(G). Then (ϕ(Γ)/G,g) is isospectral to (Γ/G,g). Moreover,
(Γ/G,g) and (ϕ(Γ)/G,g) are non-isometric when ϕ ∉ Inn(G).

This theorem was first stated and proven for the equivalent notion of an almost-inner
automorphism, but it also holds for this definition (see [7], [9] and [10]). To calculate the
almost-inner automorphisms, it is often easier to consider the almost-inner derivations,
the equivalent notion on the Lie algebra level. The relation between the two concepts is
expressed in the following proposition.

Proposition 2.2.17 (DeTurck and Gordon, see [7]). Let G be a connected and simply
connected nilpotent Lie group with nilindex r. Denote the Lie algebra of G with g. Then
AIA(G) is a simply-connected nilpotent Lie group with nilindex ≤ r−1 and with Lie algebra
AID(g).

This kind of derivations has not much been studied and only in the case of very specific
Lie algebras (see [6], [11], [12], and [15]). The aim of my thesis is to study this concept
algebraically. In the next section, the definition of an almost-inner derivation is elaborated
further.

2.3 First considerations

In this section, the definition of an almost-inner derivation is elaborated further. More-
over, some basic properties are stated and proven. This theory will be very useful in the
next chapter, where almost-inner derivations of some specific classes are computed.
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2.3.1 Conditions on the parameters of an almost-inner deriva-
tion

This subsection is devoted to derive which conditions a general map have to satisfy to be an
almost-inner derivation. Let g be a Lie algebra over a field K with basis B = {X1, . . .Xn}
and structure constants ckij (where 1 ≤ i, j, k ≤ n), thus

[Xi,Xj] =
n

∑
k=1

ckijXk for all 1 ≤ i, j, k ≤ n.

Let ϕ ∈ AID(g) be an almost-inner derivation. An almost-inner derivation is a linear map
and can therefore be represented by a matrix. Let D = (dij) be the matrix representation
of ϕ with respect to B. Since every almost-inner derivation is a derivation, the conditions
for a derivation

n

∑
l=1

clijdlk =
n

∑
l=1

(dilcklj + djlckil)

has to be fulfilled too for all 1 ≤ i, j, k ≤ n. Moreover, there are other conditions imposed
by the definition of an almost-inner derivation. Indeed, there have to exist aij (with
1 ≤ i, j ≤ n) so that

ϕ(Xi) = [Xi,
n

∑
j=1

aijXj] =
n

∑
j=1

aij[Xi,Xj] =
n

∑
j=1

aij
n

∑
k=1

ckijXk. (2.5)

These values aij (with 1 ≤ i, j ≤ n) are referred to as the ‘parameters’ of ϕ with respect
to the basis B. The parameter aij is said to ‘belong to’ the basis vector Xj. Of course,
if the structure constants ckij vanish for all 1 ≤ k ≤ n, the value of the parameter aij does
not matter. This motivates the following definition.

Definition 2.3.1 (Visible and invisible parameter). Let g be a Lie algebra over a field
K with basis B = {X1, . . . ,Xn}. Let ϕ ∈ AID(g) be an almost-inner derivation with
parameters aij with respect to B (for 1 ≤ i, j ≤ n). A parameter aij is visible if there exists
a 1 ≤ k ≤ n so that ckij ≠ 0. A parameter aij is invisible if it is not visible.

By bilinearity of a derivation, the last equation implies that for an arbitrary X =
n

∑
i=1
xiXi ∈ g (where xi ∈K for all 1 ≤ i ≤ n), the image of X under ϕ is given by

ϕ(X) = ϕ(
n

∑
i=1

xiXi) =
n

∑
i=1

xiϕ(Xi) =
n

∑
i=1

n

∑
j=1

n

∑
k=1

xiaijc
k
ijXk.

Besides, there have to exist cj ∈K for 1 ≤ j ≤ n so that

ϕ(X) = [X,
n

∑
j=1

cjXj] =
n

∑
i=1

n

∑
j=1

xicj[Xi,Xj] =
n

∑
i=1

n

∑
j=1

n

∑
k=1

xicjc
k
ijXk.

Hence, there are two ways to write ϕ(X). Combining the coefficients of the right hand
side of these expressions, this gives a system of linear equations

n

∑
i=1

n

∑
j=1

xicjc
k
ij =

n

∑
i=1

n

∑
j=1

xiaijc
k
ij for all 1 ≤ k ≤ n (2.6)



CHAPTER 2. ALMOST-INNER DERIVATIONS 22

with unknowns ci ∈K for all 1 ≤ i ≤ n. Equivalently,

n

∑
i=1

n

∑
j=1

xi(aij − cj)ckij = 0 (2.7)

has to be satisfied for all 1 ≤ k ≤ n and for all xi ∈K with 1 ≤ i ≤ n. The purpose is to find
conditions on the parameters aij (with 1 ≤ i, j ≤ n) such that there exist cj (with 1 ≤ i ≤ n)
for which the system of equations (2.7) has a solution for all possible values of xi (with
1 ≤ i ≤ n). Note that the unknowns cj depend on the choices of xj. Those conditions
put in most cases some relations on the parameters. An arbitrary almost-inner derivation
ϕ ∶ g→ g can be written as

ϕ ∶ g→ g ∶X ↦D ⋅X,
where D = (dij) is the matrix representation of ϕ. Since

ϕ(Xi) =
n

∑
j=1

dijXj =
n

∑
k=1

aik
n

∑
j=1

cjikXj

holds by equation (2.5), the entries of D are given by

dij =
n

∑
k=1

aikc
j
ik. (2.8)

The next example clarifies these observations.

Example 2.3.2. Let g be the Lie algebra over R with basis B = {X1, . . . ,X8} and with
non-vanishing Lie brackets

[X1,X3] = X6; [X1,X4] = X7; [X1,X5] = X8;

[X2,X3] = X8; [X2,X4] = X6; [X2,X5] = X7.

Then, dim(AID(g)) = 7 holds.

It is clear that g is a two-step nilpotent Lie algebra. Let ϕ ∈ AID(g) an arbitrary
almost-inner derivation. By definition, there exist aij ∈ R with 1 ≤ i, j ≤ 8 such that

ϕ ∶ g→ g ∶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X1

X2

X3

X4

X5

X6

X7

X8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 a13 a14 a15
0 0 0 0 0 a24 a25 a23
0 0 0 0 0 −a31 0 −a32
0 0 0 0 0 −a42 −a41 0
0 0 0 0 0 0 −a52 −a51
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X1

X2

X3

X4

X5

X6

X7

X8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

As already mentioned in Remark 2.1.3, the matrix representations in this thesis are the
transposes of the representations sometimes used in the literature. By checking the condi-
tions (2.3) with the computer algorithms of appendix A.2, it is easy to see that a general
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derivation is given by

ϕ ∶ g→ g ∶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X1

X2

X3

X4

X5

X6

X7

X8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

b1 0 b2 b3 b4 b5 b6 b7
0 b1 b3 b4 b2 b8 b9 b10
0 0 b11 b12 b13 b14 b15 b16
0 0 b13 b11 b12 b17 b18 b19
0 0 b12 b13 b11 b20 b21 b22
0 0 0 0 0 b1 + b11 b12 b13
0 0 0 0 0 b13 b1 + b11 b12
0 0 0 0 0 b12 b13 b1 + b11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X1

X2

X3

X4

X5

X6

X7

X8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where all bi ∈ R (for all 1 ≤ i ≤ 22), which means that dim(Der(g)) = 22. There are no
relations on the parameters due to the conditions for a derivation.

Since Xk does not appear for 1 ≤ k ≤ 5, the structure constants ckij vanish for all
1 ≤ k ≤ 5 and all 1 ≤ i, j ≤ 8. Hence, the first five rows of the system of (2.6) for this Lie
algebra only contain zeros. The other equations are given by

−x3c1 − x4c2 + x1c3 + x2c4 = x1a13 + x2a24 − x3a31 − x4a42
−x4c1 − x5c2 + x1c4 + x2c5 = x1a14 + x2a25 − x4a41 − x5a52
−x5c1 − x3c2 + x2c3 + x1c5 = x1a15 + x2a23 − x3a32 − x5a51,

where the first row represents the conditions for k = 6; the second and third row are the
stipulations for k = 7 respectively k = 8. This can be written down as a matrix

⎛
⎜⎜
⎝

−x3 −x4 x1 x2 0 x1a13 + x2a24 − x3a31 − x4a42
−x4 −x5 0 x1 x2 x1a14 + x2a25 − x4a41 − x5a52
−x5 −x3 x2 0 x1 x1a15 + x2a23 − x3a32 − x5a51

⎞
⎟⎟
⎠
, (2.9)

in which the j-th column stands for cj (with 1 ≤ j ≤ 5); the last column is the right hand
side. This system of equations must have a solution for all possible values of xi ∈ R (with
1 ≤ i ≤ 5). The calculation goes in different steps. During the next computations, columns
with only zeros are omitted.

• Suppose that x1 = x2 = x3 = 0 and x4 ≠ 0 ≠ x5.
Then

⎛
⎜⎜
⎝

0 x4 x4a42
x4 x5 x4a41 + x5a52
x5 0 x5a51

⎞
⎟⎟
⎠
→

⎛
⎜⎜
⎝

1 0 a51
0 1 a42
0 0 x4(a41 − a51) + x5(a52 − a42)

⎞
⎟⎟
⎠

implies that
x4(a41 − a51) + x5(a52 − a42) = 0.

By choosing (x4, x5) = (1,1) and (x4, x5) = (1,−1), the equations

a41 − a51 = −(a52 − a42)
a41 − a51 = a52 − a42

have to be satisfied. Hence, a41 = a51 and a52 = a42.
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• Consider x1 = x2 = x4 = 0 and x3 ≠ 0 ≠ x5.
Analogously, it follows from

⎛
⎜⎜
⎝

x3 0 x3a31
0 x5 x5a52
x5 x3 x3a32 + x5a51

⎞
⎟⎟
⎠
→

⎛
⎜⎜
⎝

1 0 a31
0 1 a52
0 0 x3(a32 − a52) + x5(a51 − a31)

⎞
⎟⎟
⎠

that a32 = a52 and a51 = a31.

• Let x3 = x4 = x5 = 0 and x1 ≠ 0 ≠ x2. The system then becomes

⎛
⎜⎜
⎝

x1 x2 0 x1a13 + x2a24
0 x1 x2 x1a14 + x2a25
x2 0 x1 x1a15 + x2a23

⎞
⎟⎟
⎠

→
⎛
⎜⎜
⎝

x1 x2 0 x1a13 + x2a24
0 x1 x2 x1a14 + x2a25
0 −x22 x21 x21a15 + x1x2(a23 − a13) − x22a24

⎞
⎟⎟
⎠

→
⎛
⎜⎜
⎝

x21 0 −x22 x21a13 + x1x2(a24 − a14) − x22a25
0 x1 x2 x1a14 + x2a25
0 0 x31 + x32 x31a15 + x21x2(a23 − a13) + x1x22(a14 − a24) + x32a25

⎞
⎟⎟
⎠
.

This system of equations has a solution if and only if

x31a15 + x21x2(a23 − a13) + x1x22(a14 − a24) + x32a25 = 0

holds whenever x31 = −x32 and x1 ≠ 0 ≠ x2. Working over R, this gives one extra
condition

a15 − a23 + a13 + a14 − a24 − a25 = 0.

For this example, those are the only cases that have to be treated. In the system of
equations (2.9), all visible parameters belonging to X1 and X2 are multiplied with x3,
x4 or x5. Hence, to study the behaviour of those parameters, it can be assumed that
x1 = x2 = 0. It is clear from the first two cases that a31 = a41 = a51 and a32 = a42 = a52.
There will be no new conditions for the case x1 = x2 = x5 = 0 and x3 ≠ 0 ≠ x4. Analogously,
to study the behaviour of the visible parameters belonging to X3, X4 and X5, it can be
assumed that x3 = x4 = x5 = 0. This is worked out in the third case. Note that there
are no extra conditions when exactly one of X1 and X2 are equal to zero. An arbitrary
almost-inner derivation ϕ looks like

ϕ ∶ g→ g ∶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X1

X2

X3

X4

X5

X6

X7

X8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 a13 a14 a15
0 0 0 0 0 a24 a25 a23
0 0 0 0 0 b1 0 b2
0 0 0 0 0 b2 b1 0
0 0 0 0 0 0 b2 b1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X1

X2

X3

X4

X5

X6

X7

X8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,
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where a13, a14, a15, a24, a25, b1 and b2 all belong to the field R and where

a23 = a13 + a14 − a24 + a15 − a25.

Let X =
8

∑
i=1
aiXi ∈ g be arbitrary, where ai ∈ R for all 1 ≤ i ≤ 8. In matrix representation,

ad(X) =
8

∑
i=1
aiad(Xi) is given by

ad(X) ∶ g→ g ∶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X1

X2

X3

X4

X5

X6

X7

X8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 −a3 −a4 −a5
0 0 0 0 0 −a4 −a5 −a3
0 0 0 0 0 a1 0 a2
0 0 0 0 0 a2 a1 0
0 0 0 0 0 0 a2 a1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X1

X2

X3

X4

X5

X6

X7

X8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Hence, ϕ can be written as

ϕ = b1 ad(X1)+b2 ad(X2)−a13 ad(X3)−a14 ad(X4)−a15 ad(X5)+(a24−a14)ψ1+(a25−a15)ψ2.

The map ψ1 ∶ g→ g, given by

ψ1 ∶ g→ g ∶ { X2 ↦ X6 −X8

Xi ↦ 0 for all 1 ≤ i ≤ 8 with i ≠ 2

is indeed an almost-inner derivation. Let X =
8

∑
i=1
xiXi with xi ∈ R (for 1 ≤ i ≤ 8), then

ψ1(X) = x2(X6 −X8) = x2
(x21 − x1x2 + x22)

[X, (x1 − x2)X3 + x2X4 − x1X5].

Further, the derivation

ψ2 ∶ g→ g ∶ { X2 ↦ X7 −X8

Xi ↦ 0 for all 1 ≤ i ≤ 8 with i ≠ 2

is almost-inner. Consider X =
8

∑
i=1
xiXi with xi ∈ R (for 1 ≤ i ≤ 8). Then

ψ2(X) = x2(X7 −X8) = x2
(x21 − x1x2 + x22)

[X,−x2X3 + x1X4 + (x2 − x1)X5]

holds. It is clear that no linear combination of ψ1 and ψ2 belongs to Inn(g). As a con-
clusion, this shows that dim(AID(g)) = 7.

As the last example illustrates, there is in most cases a lot of computation needed to
calculate AID(g), where g is a Lie algebra. A few steps always come back. Let g be a Lie
algebra over a field K and let ϕ ∈ AID(g) be an arbitrary almost-inner derivation.

1. Choose a convenient basis B and determine the Lie brackets;
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2. Set up the matrix representation of ϕ with parameters with respect to B;

3. Derive relations on the parameters by conditions for

• a derivation

• an almost-inner derivation;

4. Determine the linearly independent almost-inner derivations and check.

The first step was very easy in the example, because this was given in advance. How-
ever, for some classes of Lie algebras, it is very hard to construct the non-vanishing Lie
brackets (this is for example the case in Section 3.4). The second step already gives an up-
per bound for the dimension. In the third step, the relations between the parameters are
checked, by combining different conditions. When all relations are revealed, it is possible
to express the dimension of the space of almost-inner derivations. If AID(g) ≠ Inn(g), it
is interesting to specify how an almost-inner derivation (which is not inner) looks like. In
some cases, it is possible to obtain a result without going through all the steps. However,
this procedure will be very useful to compute AID(g) for the Lie algebras of the classes
of Chapter 3.

In many cases, the third step is the hardest one. The conditions due to the definition of
a derivation can be computed using the algorithms of A.2. For an almost-inner derivation,
also the system of equations (2.7) has to be satisfied. This system has to hold for all
possible values of the given field. Especially for fields with infinitely many elements,
this is difficult to verify. Therefore, it is important to have some properties concerning
almost-inner derivations. This will be elaborated in the next subsection.

2.3.2 Properties to compute the almost-inner derivations

In this subsection, some first results are obtained, which ease the computation of the
space of almost-inner derivations for a given Lie algebra.

Let g be an n-dimensional Lie algebra over a field K with basis B = {X1, . . . ,Xn}
and structure constants ckij (where 1 ≤ i, j, k ≤ n). Let ϕ ∈ AID(g) be an almost-inner
derivation of g. Then ϕ(Xi) ∈ [Xi,g] holds by definition for all 1 ≤ i ≤ n. Since ϕ is a
linear map, it is clear that

dim(AID(g)) ≤
n

∑
i=1

dim([Xi,g])

holds. This gives an upper bound for dim(AID(g)). Motivated by this equation, the
dimension of a basis vector is introduced.

Definition 2.3.3 (Dimension of a basis vector). Let g be a Lie algebra with basis B =
{X1, . . . ,Xn}. The dimension of the basis vector Xi is defined as

di ∶= dim([Xi,g]).

Every inner derivation is also almost-inner, hence

dim(Inn(g)) ≤ dim(AID(g)) ≤
n

∑
i=1

di. (2.10)
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As explained in the last section, the conditions due to the definition of an almost-inner
derivation can force some visible parameters to be equal. When all visible parameters
belonging to the same basis vector has to be the same, the vector is called fixed.

Definition 2.3.4 (Fixed basis vector). Let g be a Lie algebra over a field K with basis
B = {X1, . . . ,Xn}. Let ϕ ∈ AID(g) be an almost-inner derivation with parameters aij with
respect to B for 1 ≤ i, j ≤ n. A basis vector Xj is fixed if there exists a value aj ∈ K so
that aj = aij for all visible parameters belonging to Xj. Then aj is called the ‘fixed value’
for Xj.

The hard part in this theoretical description is to find which basis vectors are fixed.
However, in some cases, the conditions are trivially satisfied, as is stated in the following
important remark. It will be useful in Chapter 3.

Remark 2.3.5. Let g be a Lie algebra over a field K with basis B = {X1, . . . ,Xn}. Let
ϕ ∈ AID(g) be an almost-inner derivation with parameters aij with respect to B for all
1 ≤ i, j ≤ n. Suppose that Xj is a basis vector with at most one visible parameter. Then
Xj is fixed by definition.

This is for example the case for all basis vectors in the centre. Whether or not a
basis vector is fixed, depends on the choice of a basis. However, when all basis vectors are
fixed, there is a nice relation with a general property of the Lie algebra, namely that every
almost-inner derivation is an inner derivation. This fact is stated in the next lemma.

Lemma 2.3.6. Let g be a n-dimensional Lie algebra over a field K with basis B =
{X1, . . . ,Xn}. Then the equation

Inn(g) = CAID(g) = AID(g)

holds if and only if every basis vector Xi is fixed (1 ≤ i ≤ n).

Proof. Let ϕ ∈ AID(g) be an arbitrary almost-inner derivation with matrix representation
D = (dij). Suppose first that Inn(g) = AID(g). Then ϕ is an inner derivation. Hence, there

exist values ak ∈K (with 1 ≤ k ≤ n) such that ϕ =
n

∑
i=k
akad(Xk). In matrix representation,

this implies that

dij =
n

∑
k=1

−akcjik

holds. It follows from equation (2.8) that every basis vector Xk is fixed with fixed value
−ak (where 1 ≤ k ≤ n).

Conversely, if every basis vector Xk is fixed with fixed value ak ∈K (for 1 ≤ k ≤ n), the
matrix representation of ϕ is given by

dij =
n

∑
k=1

akc
j
ik.

Hence, ϕ is a linear combination of the inner derivations ad(Xk) with coefficients −ak (for
1 ≤ k ≤ n). Since ϕ ∈ AID(g) was arbitrary, this completes the proof.
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Let g be an n-dimensional Lie algebra over a field K with basis B = {X1, . . . ,Xn}.
To prove that a basis vector Xi is fixed, it suffices to show that aji = ali for all visible
parameters belonging to Xi. Next two lemmas are very technical and not very practical
at first sight. They give sufficient conditions for some visible parameters belonging to the
same basis vector to be equal, based on the equations (2.7). By applying those lemmas
several times, it is possible to prove that some basis vectors are fixed. This approach will
be used frequently in the next chapter.

Lemma 2.3.7. Let g be a Lie algebra over K with basis B = {X1, . . . ,Xn} and structure
constants ckij. Let ϕ ∈ AID(g) be an almost-inner derivation with parameters aij (with
1 ≤ i, j, k ≤ n). Let (i, j, k, l) ∈ {1, . . . , n}4 such that the following conditions are satisfied:

• ckij ≠ 0 and ckil ≠ 0;

• ckpj = ckpl = 0 for all 1 ≤ p ≤ n and p ≠ i.

Then, aji = ali follows.

Proof. There is nothing to show when j = l, so suppose that j ≠ l. By equation (2.7), the
condition

n

∑
q=1

n

∑
p=1

xq(aqp − cp)crqp = 0

has to be satisfied for all 1 ≤ r ≤ n and for all xq ∈K with 1 ≤ q ≤ n. Let xj ≠ 0 and xl ≠ 0
and choose xq = 0 when q ≠ j, l. The equation for the basis vector Xk becomes

n

∑
p=1

xj(ajp − cp)ckjp +
n

∑
p=1

xl(alp − cp)cklp = 0.

The values cp (with 1 ≤ p ≤ n) depend on the chosen values of xq (with 1 ≤ q ≤ n). By
assumption on the structure constants, this means that

xj(aji − ci)ckji + xl(ali − ci)ckli = 0

holds for all xj ≠ 0 ≠ xl, which is equivalent to

xjajic
k
ji + xlalickli = (xjckji + xlckli)ci.

Choose now xj = −xl c
k
li

ckji
, then it follows that

xlc
k
li(−aji + ali) = 0.

Since xl ≠ 0 and ckji ≠ 0, this implies that aji = ali.

Many Lie algebras satisfy the conditions of the lemma. In particular, this is true when
the basis vector Xk appears exactly twice, namely for the pairs {Xi,Xj} and {Xi,Xl}.
In this case, it follows that aji = ali. The same result is obtained when the conditions are
slightly changed.

Lemma 2.3.8. Let g be a Lie algebra over K with basis B = {X1, . . . ,Xn} and structure
constants ckij. Let ϕ ∈ AID(g) be an almost-inner derivation with parameters aij (where
1 ≤ i, j, k ≤ n). Let (i, j, k, l,m) ∈ {1, . . . , n}5 with k ≠m such that the following conditions
are satisfied:
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• ckij ≠ 0 and cmil ≠ 0;

• ckpj = cmpl = 0 for all 1 ≤ p ≤ n with p ≠ i;

• ckpl = cmpj = 0 for all 1 ≤ p ≤ n.

Then, aji = ali follows.

Proof. For j = l, the result immediately follows, so suppose that j ≠ l. Again, the condition

n

∑
q=1

n

∑
p=1

xq(aqp − cp)crqp = 0

has to be satisfied for all 1 ≤ r ≤ n and for all xq ∈K with 1 ≤ q ≤ n. Fix xj ≠ 0 and xl ≠ 0
and set xq = 0 for all q ≠ j, l. In particular, the equations for the basis vectors Xk and Xm

become

n

∑
p=1

xj(ajp − cp)ckjp +
n

∑
p=1

xl(alp − cp)cklp = 0

n

∑
p=1

xj(ajp − cp)cmjp +
n

∑
p=1

xl(alp − cp)cmlp = 0.

Note that the values cp (with 1 ≤ p ≤ n) depend on the chosen values of xq (with 1 ≤ q ≤ n).
By assumption on the structure constants, this further reduces to

xj(aji − ci)ckji = 0

xl(ali − ci)cmli = 0,

from which the result easily follows, since ckij ≠ 0 ≠ cmil and xj ≠ 0 ≠ xl.

Although the conditions of this lemma seem to be demanding, next chapter shows that
they are satisfied for a lot of Lie algebras. In particular, suppose that the basis vector Xk

appears once. Then all conditions on the structure constants ckij are satisfied (where 1 ≤
i, j ≤ n). When Xk and Xm both appear once, namely for the pairs {Xi,Xj} respectively
{Xi,Xl}, it follows from the lemma that aji = ali. This situation will frequently occur for
the Lie algebras studied in Chapter 3. Next lemma states that an almost-inner derivation
of a Lie algebra induces an almost-inner derivation of the quotient of that Lie algebra by
an ideal.

Lemma 2.3.9. Let g be a Lie algebra with ideal h. Let ϕ ∈ AID(g) be an almost-inner
derivation of g. Then ϕ(h) ⊆ h. Moreover, ϕ induces an almost-inner derivation of g/h.

Proof. Choose X ∈ h arbitrarily. By definition of an almost-inner derivation, it follows
that

ϕ(X) ∈ [X,g] ⊆ [h,g] ⊆ h.

Since X ∈ h was arbitrary, this proves that ϕ(h) ⊆ h. Define

ϕ ∶ g/h→ g/h ∶X + h↦ ϕ(X + h) ∶= ϕ(X) + h.
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This is a well-defined linear map due to the first statement. Choose X + h, Y + h ∈ g/h
arbitrarily. Then

ϕ([X + h, Y + h]) = ϕ([X,Y ] + h) = ϕ([X,Y ]) + h

holds, as well as

[ϕ(X + h), Y + h] + [X + h, ϕ(Y + h)] = [ϕ(X) + h, Y + h] + [X + h, ϕ(Y ) + h]
= [ϕ(X), Y ] + h + [X,ϕ(Y )] + h.

Combining these equations and using that ϕ is a derivation of g, it follows that ϕ is a
derivation of g/h. Let X + h ∈ g/h be arbitrary. Since ϕ is an almost-inner derivation of
g, there exists Y ∈ g such that ϕ(X) = [X,Y ]. Hence,

ϕ(X + h) = ϕ(X) + h = [X,Y ] + h = [X + h, Y + h],

which shows that ϕ is an almost-inner derivation of g/h.

When a Lie algebra is the direct sum of two Lie algebras, the set of almost-inner
derivations AID(g) satisfy an easy rule. This is worked out in the following proposition.

Proposition 2.3.10. Let g = g1⊕ g2 be the direct sum of two Lie algebras g1 and g2 over
the same field. Then

AID(g) = AID(g1)⊕AID(g2)
holds.

Proof. The proof goes in two steps. First, let ϕ ∈ AID(g) be an almost-inner derivation
and let X ∈ g be arbitrary. Then X = X1 + X2, where X1 ∈ g1 and X2 ∈ g2. Since
ϕ ∈ AID(g), there exists Y = Y1+Y2 ∈ g (with Y1 ∈ g1 and Y2 ∈ g2) such that ϕ(X) = [X,Y ].
By construction,

ϕ(X) = [X,Y ]
= [X1 +X2, Y1 + Y2]
= [X1, Y1] + [X1, Y2] + [X2, Y1] + [X2, Y2]
= [X1, Y1] + [X2, Y2],

where the last equality holds since [g1,g2] = 0, by definition of the direct sum. This means
that ϕ1 ∶= ϕ∣g1 is an almost-inner derivation of g1. Analogously, ϕ2 ∶= ϕ∣g2 ∈ AID(g2) is
satisfied. Hence, ϕ can be written as ϕ = ϕ1 ⊕ ϕ2, which is defined as

ϕ ∶ g1 ⊕ g2 → g1 ⊕ g2 ∶X1 +X2 ↦ (ϕ1 ⊕ ϕ2)(X1 +X2) = ϕ1(X1) + ϕ2(X2).

Moreover, let X =X1+X2 ∈ g be arbitrary, with X1 ∈ g1 and X2 ∈ g2. Let ϕ1 ∈ AID(g1)⊕0
and ϕ2 ∈ 0⊕AID(g1) be arbitrary. Then

[ϕ1, ϕ2](X) = [ϕ1, ϕ2](X1 +X2)
= [ϕ1, ϕ2](X1) + [ϕ1, ϕ2](X2)
= ϕ1ϕ2(X1) − ϕ2ϕ1(X1) + ϕ1ϕ2(X2) − ϕ2ϕ1(X2)
= 0



CHAPTER 2. ALMOST-INNER DERIVATIONS 31

follows. This means that [AID(g1),AID(g2)] = 0 holds and completes the proof of the
first inclusion.

Conversely, let ϕ1 +ϕ2 ∈ AID(g1)⊕AID(g1) be arbitrary, where ϕ1 ∈ AID(g1)⊕ 0 and
ϕ2 ∈ 0⊕AID(g2). Define the map (ϕ1 + ϕ2) as

(ϕ1 + ϕ2) ∶ g→ g ∶X =X1 +X2 ↦ ϕ1(X1) + ϕ2(X2),

where X1 ∈ g1 and X2 ∈ g2. By definition of an almost-inner derivation of g, there exist
Y1 ∈ g1 and Y2 ∈ g2 such that ϕ1(X1) = [X1, Y1] and ϕ2(X2) = [X2, Y2]. Note that these
brackets are in g. Since [X1, Y2] = 0 = [X2, Y1], it follows that

(ϕ1 + ϕ2)(X) ∶= ϕ1(X1) + ϕ2(X2)
= [X1, Y1] + [X2, Y2]
= [X1, Y1] + [X2, Y2] + [X1, Y2] + [X2, Y1]
= [X1 +X2, Y1 + Y2].

Hence, the map ϕ1 + ϕ2 defines an almost-inner derivation of g.

In particular, this proposition is useful for Lie algebras g = g1⊕g2, where g2 is abelian.
In this case, AID(g) = AID(g1) holds. An example of this situation is postponed to the
next chapter.



Chapter 3

Different classes of Lie algebras

The procedure to compute the almost-inner derivations of a Lie algebra will be used for
different classes of Lie algebras. In particular, it is studied for which of these classes of
Lie algebras there exist non-inner almost-inner derivations. The first section concerns
(complex) Lie algebras of dimension n ≤ 4. For these Lie algebras, all almost-inner
derivations are inner. In Section 3.2, filiform Lie algebras are studied. For such a Lie
algebra g which is also metabelian, the dimension of AID(g) is at most one more than the
dimension of Inn(g). Further, two-step nilpotent Lie algebras can be defined by a graph;
this is worked out in the following section. The fourth section is about free nilpotent Lie
algebras; results for this class are only obtained when the nilindex is two or three. Finally,
(strictly) uppertriangular matrices are treated. For the Lie algebras studied in the last
three classes, the only almost-inner derivations are the inner ones. Except for the first
and last class, all types are examples of nilpotent Lie algebras. This is since the geometric
motivation only holds for those Lie algebras.

3.1 Low-dimensional Lie algebras

In this section, all non-isomorphic complex Lie algebras of dimension n ≤ 4 are listed. It
is clear that a one-dimensional Lie algebra can not have non-zero brackets. When the
dimension is equal to n = 2, next proposition even holds for an arbitrary field. This is a
well-known result, see for example [8, page 20].

Proposition 3.1.1. Let K be an arbitrary field and let g be a non-abelian two-dimensional
Lie algebra over K. Then there exists a basis B = {X1,X2} such that the Lie bracket is
given by [X1,X2] = X1. Hence, for every field K, there is, up to isomorphism, a unique
non-abelian two-dimensional Lie algebra over K.

Proof. Let g be a non-abelian two-dimensional Lie algebra over the field K. Let B =
{X,Y } be a basis of g. Since g is non-abelian, [g,g] = span{[X,Y ]} is one-dimensional.
Let X1 ∈ [g,g] be non-zero and extend to a basis {X1, Ỹ } of the vector space g. Then,
[X1, Ỹ ] ∈ [g,g] is non-zero, since [X1, Ỹ ] spans [g,g]. This means that [X1, Ỹ ] = kX1 for
k ∈K∗. For X2 ∶= k−1Ỹ , the Lie bracket of g is given by [X1,X2] =X1, where {X1,X2} is
a basis of g. It is easy to check that this indeed defines a Lie algebra.

The unique non-abelian two dimensional Lie algebra over K is denoted by r2(K) or
aff(K). For Lie algebras of dimension n ≥ 3, it is difficult to classify the Lie algebras over

32
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Table 3.1: Overview of the three-dimensional complex Lie algebras

g Non-zero Lie brackets
C3 -
n3(C) [X1,X2] =X3

r2(C)⊕C [X1,X2] =X1

r3(C) [X1,X2] =X2; [X1,X3] =X2 +X3

r3,λ(C) [X1,X2] =X2; [X1,X3] = λX3 where λ ∈ C∗

sl2(C) [X1,X2] =X3; [X1,X3] = −2X1; [X2,X3] = 2X2

an arbitrary field. However, for complex Lie algebras of dimension n ≤ 4, the result is
known.

Proposition 3.1.2. Every complex three-dimensional Lie algebra is isomorphic to at least
one of the Lie algebras in Table 3.1.

Proof. A proof of this fact can be found in [8].

Moreover, it is also shown in the proof that r3,λ(C) ≅ r3,µ(C) if and only if λ = µ
or λµ = 1 for λ,µ ∈ C. All other Lie algebras in the table are non-isomorphic. The
Lie algebra n3(C) is an example of a standard graded filiform Lie algebra and a strictly
uppertriangular matrix over C. Those classes of Lie algebras will be studied later in this
chapter (in 3.2 respectively 3.5.1). For complex Lie algebras of dimension n = 4, there
also exists a classification.

Proposition 3.1.3. Every complex four-dimensional Lie algebra is isomorphic to at least
one of the Lie algebras in Table 3.2.

Proof. This fact is stated in [3].

One can show that g10(α1) ≅ g10(α2) if and only if α1 = α2 or α1α2 = 1. Moreover,
when α,β ≠ 0, the relation g9(α,β) ≅ g9(α′, β′) holds exactly when (α′, β′) is one of the
following:

(α,β), (β,α), ( 1

α
,
β

α
) , (β

α
,

1

α
) , ( 1

β
,
α

β
) and (α

β
,

1

β
) .

Further, also following relations hold:

g7(0) ≅ r3,1(C)⊕C;

g9(α,0) ≅ r3,α(C)⊕C with α ≠ 0,1;

g9(0,1) ≅ r3(C)⊕C.

All other Lie algebras in the table are non-isomorphic.
Next propositions show that there are no non-inner almost-inner derivations for a

complex Lie algebra g when g has dimension n ≤ 4. For this, the classification of the
non-isomorphic complex Lie algebras is used.

Proposition 3.1.4. Let g be a complex Lie algebra of dimension n ≤ 3. Then all almost-
inner derivations are inner.
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Table 3.2: Overview of the four-dimensional complex Lie algebras, where α,β ∈ C

g Non-zero Lie brackets
g0 = C4 -
g1 = n3(C)⊕C [X1,X2] =X3

g2 = r2(C)⊕C2 [X1,X2] =X1

g3 = r2(C)⊕ r2(C) [X1,X2] =X1; [X3,X4] =X3

g4 = sl2(C)⊕C [X1,X2] =X3; [X1,X3] = −2X1; [X2,X3] = 2X2

g5 = n4(C) [X1,X2] =X3; [X1,X3] =X4

g6 [X1,X2] =X2; [X1,X3] =X3; [X1,X4] =X4

g7(α) [X1,X2] =X2; [X1,X3] =X3; [X1,X4] =X3 + αX4

g8 [X1,X2] =X2; [X1,X3] =X3; [X1,X4] = 2X4; [X2,X3] =X4

g9(α,β) [X1,X2] =X2; [X1,X3] =X2 + αX3; [X1,X4] =X3 + βX4

g10(α) [X1,X2] =X2; [X1,X3] =X2 + αX3; [X1,X4] = (α + 1)X4;
[X2,X3] =X4

Proof. The proof goes by calculation of the almost-inner derivations for all Lie algebras
of the classification of Table 3.1. By Lemma 2.3.6, it suffices to show that every basis
vector is fixed for an arbitrary almost-inner derivation.

• Let ϕ ∈ AID(g) be an arbitrary almost-inner derivation of g, where g is one of the
Lie algebras C, C2, r2(C), C3, n3(C) or r2(C)⊕C. Then every basis vector is fixed
due to Remark 2.3.5.

• For the Lie algebra r3(C) with almost-inner derivation ϕ ∈ AID(r3(C)), Remark
2.3.5 implies that X2 and X3 are fixed. The basis vector X1 is fixed by Lemma 2.3.7
with (i, j, k, l) = (1,2,2,3).

• Let ϕ ∈ AID(r3,λ(C)) be an arbitrary almost-inner derivation of r3,λ(C). Then, the
basis vectors X2 and X3 are fixed by Remark 2.3.5. Lemma 2.3.8 with (i, j, k, l,m) =
(1,2,2,3,3) shows that X1 is fixed too.

• As showed in Example 1.2.21, the Lie algebra sl2(C) is semisimple. The result now
immediately follows from Proposition 2.1.8.

The same result holds for all complex four-dimensional Lie algebras. For this, the
classification of Table 3.2 is used.

Proposition 3.1.5. Let g be a complex Lie algebra of dimension n = 4. Then all almost-
inner derivations are inner.

Proof. The proof goes by calculation of the almost-inner derivations for all Lie algebras
of the classification of Table 3.2. By Lemma 2.3.6, it suffices to show that every basis
vector is fixed for an arbitrary almost-inner derivation ϕ. In the proof, all parameters
with respect to ϕ are denoted with aij (where 1 ≤ i, j ≤ n).

• The first five Lie algebras of the list all are direct sums of lower-dimensional Lie
algebras for which all almost-inner derivations are inner derivations. By Proposition
2.3.10, the result immediately follows.
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• Let ϕ ∈ AID(n4(C)) be an arbitrary almost-inner derivation of n4(C). By Remark
2.3.5, the basis vectors X2, X3 and X4 are fixed. Lemma 2.3.8 with (i, j, k, l,m) =
(1,2,3,3,4) shows that X1 is fixed too, since a21 and a31 are the only visible param-
eters belonging to X1.

• Consider the Lie algebra g6 with arbitrary almost-inner derivation ϕ. Then, the
basis vectors X2, X3 and X4 are fixed by Remark 2.3.5. There are three visible
parameters belonging to X1. Lemma 2.3.8 with (i, j, k, l,m) = (1,2,2,3,3) shows
that a21 = a31. By the same lemma with (i, j, k, l,m) = (1,2,2,4,4), it follows that
a21 = a41. Hence, the basis vector X1 is fixed too, which completes the proof.

• For the Lie algebras g7(α) with arbitrary ϕ ∈ AID(g7(α)), Remark 2.3.5 implies
that the basis vectors X2, X3 and X4 are fixed. By Lemma 2.3.8 with (i, j, k, l,m) =
(1,2,2,3,3), it follows that a21 = a31. Moreover, a31 = a41 holds by Lemma 2.3.7
with (i, j, k, l) = (1,3,3,4). These two equations show that X1 is fixed, since there
are three visible parameters belonging to X1.

• Let ϕ ∈ AID(g8) be an almost-inner derivation of the Lie algebra g8. The basis
vector X4 is fixed by Remark 2.3.5. To show that the other basis vectors are fixed,
the procedure of Subsection 2.3.1 is used. By definition, there exist aij ∈ C with
1 ≤ i, j ≤ 4 such that

ϕ ∶ g8 → g8 ∶
⎛
⎜⎜⎜⎜
⎝

X1

X2

X3

X4

⎞
⎟⎟⎟⎟
⎠
↦

⎛
⎜⎜⎜⎜
⎝

0 a12 a13 2a14
0 −a21 0 a23
0 0 −a31 −a32
0 0 0 −2a41

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

X1

X2

X3

X4

⎞
⎟⎟⎟⎟
⎠
.

By checking the equations (2.3) for a derivation, it is clear that ϕ has to be of the
form

ϕ ∶ g8 → g8 ∶
⎛
⎜⎜⎜⎜
⎝

X1

X2

X3

X4

⎞
⎟⎟⎟⎟
⎠
↦

⎛
⎜⎜⎜⎜
⎝

0 b1 b2 b3
0 b4 b5 b2
0 b6 b7 −b1
0 0 0 b4 + b7

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

X1

X2

X3

X4

⎞
⎟⎟⎟⎟
⎠
,

where bi ∈ C for all 1 ≤ i ≤ 7, hence dim(Der(g8)) = 7. This calculation can be
done by hand, but also with the aid of the computer algorithms of appendix A.2.
By combining the two matrices, it turns out that a12 = a32 = b1 and a13 = a23 =
b2, which shows that both X2 and X3 are fixed, since those are the only visible
parameters belonging to the corresponding basis vectors. Moreover, from Lemma
2.3.8 with (i, j, k, l,m) = (1,2,2,3,3), it follows that a21 = a31 and therefore also
b4 + b7 = −2a21 = −2a41. Hence, X1 is fixed too.

• Let ϕ be an almost-inner derivation of g9(α,β). By Remark 2.3.5, the basis vectors
X2, X3 and X4 are fixed. From Lemma 2.3.7 with (i, j, k, l) = (1,2,2,3), it follows
that a21 = a31. Lemma 2.3.8 with (i, j, k, l,m) = (1,2,2,4,3) shows that a21 = a41.
Since X1 has three visible parameters, it is fixed too.

• Consider the Lie algebras g10(α) with arbitrary almost-inner derivation ϕ. It is clear
that dim(Inn(g10(α))) = 4 when α ≠ −1 and dim(Inn(g10(α))) = 3 otherwise. The
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purpose is to show that the same dimensions hold for AID(g10(α)). By definition
of an almost-inner derivation, there exist aij ∈ C with 1 ≤ i, j ≤ 4 such that

ϕ ∶ g10(α)→ g10(α) ∶
⎛
⎜⎜⎜⎜
⎝

X1

X2

X3

X4

⎞
⎟⎟⎟⎟
⎠
↦

⎛
⎜⎜⎜⎜
⎝

0 a12 + a13 αa13 (α + 1)a14
0 −a21 0 a23
0 −a31 −αa31 −a32
0 0 0 −(α + 1)a41

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

X1

X2

X3

X4

⎞
⎟⎟⎟⎟
⎠
.

By checking the equations (2.3) for a derivation, one sees that ϕ has to be of the
form

ϕ ∶ g10(α)→ g10(α) ∶
⎛
⎜⎜⎜⎜
⎝

X1

X2

X3

X4

⎞
⎟⎟⎟⎟
⎠
↦

⎛
⎜⎜⎜⎜
⎝

0 b1 − b2 αb1 b3
0 b4 0 b1
0 b5 b4 + (α − 1)b5 b2
0 0 0 2b4 + (α − 1)b5

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

X1

X2

X3

X4

⎞
⎟⎟⎟⎟
⎠
,

where bi ∈ C for all 1 ≤ i ≤ 5, hence dim(Der(g10(α))) = 5. Again, this calculation
can be done by hand or with the algorithms of appendix A.2. An almost-inner
derivation is a derivation. Hence, for all possible values of α, the equation b4 = b5
is satisfied, which means that a21 = a31 = a41. Further, a12 + a13 = a23 + a32 holds.
Therefore, ϕ can be written as

ϕ ∶ g10(α)→ g10(α) ∶
⎛
⎜⎜⎜⎜
⎝

X1

X2

X3

X4

⎞
⎟⎟⎟⎟
⎠
↦

⎛
⎜⎜⎜⎜
⎝

0 a23 + a32 αa13 (α + 1)a14
0 −a21 0 a23
0 −a21 −αa21 −a32
0 0 0 −(α + 1)a21

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

X1

X2

X3

X4

⎞
⎟⎟⎟⎟
⎠
.

This implies that dim(AID(g10(α))) = 4 when α ≠ −1 and dim(AID(g10(α))) = 3
otherwise.

The statement of the last two propositions does not hold for Lie algebras of a higher
dimension. In the next section, there are examples of five-dimensional Lie algebras with
non-inner almost-inner derivations.

3.2 Filiform Lie algebras

This section is devoted to filiform Lie algebras: nilpotent Lie algebras which have the
maximal possible nilindex. For this reason, those Lie algebras are regarded as the ‘less’
nilpotent ones. For a filiform Lie algebra g which is moreover metabelian, there exist
general results concerning Der(g) and AID(g). To be able to prove these propositions,
a theorem due to Bratzlavsky is needed. First, the definition of a filiform Lie algebra is
introduced.

Definition 3.2.1 (Filiform Lie algebra). A Lie algebra g of dimension n is filiform if g
is nilpotent with nilindex n − 1.

By definition, dim(gk) = n − k − 1 for 1 ≤ k ≤ n − 1. This explains the name ‘filiform’,
which means threadlike.
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Example 3.2.2. Let gn be the n-dimensional Lie algebra with basis B = {X1, . . . ,Xn} and
Lie brackets defined by

[X1,Xi] = Xi+1 for all 2 ≤ i ≤ n − 1.

This Lie algebra is called the standard graded filiform Lie algebra of dimension n. Of
course, this only makes sense when n ≥ 3.

The complex standard graded filiform Lie algebras of dimension three and four, n3(C)
respectively n4(C), already appeared in 3.1. This is the standard example of a filiform Lie
algebra. Moreover, it is also an example of a metabelian filiform Lie algebra. For those
Lie algebras, there exists a classification result.

Proposition 3.2.3. Let g be a metabelian filiform Lie algebra over a field K with dimen-
sion n ≥ 3. Then there exists a basis B = {X1, . . . ,Xn} such that the Lie brackets are given
by

• [X1,Xi] =Xi+1 for all 2 ≤ i ≤ n − 1;

• [X2,Xi] =
n

∑
k=i+2

ck−i−1Xk for all 3 ≤ i ≤ n − 2,

where cj ∈K for all 1 ≤ j ≤ n − 4.

Proof. A proof of this fact was first given by Bratzlavsky and can be found in [2].

Note that the second set of equations only defines non-zero brackets if n ≥ 5. Hence,
if the dimension is at most 4, all metabelian filiform Lie algebras are standard graded.
Further, it is clear that the metabelian filiform Lie algebra is standard graded if and only
if ci = 0 for all 1 ≤ i ≤ n− 4. The basis in the proposition is called the ‘graded basis’ of the
Lie algebra. With the aid of this basis, it is possible to prove a general result concerning
the almost-inner derivations of metabelian filiform Lie algebras. Last section showed that
complex Lie algebras of dimension n ≤ 4 do not permit non-inner almost-inner derivations.
This property also holds for the standard graded filiform Lie algebras.

Proposition 3.2.4. Let g be a standard graded filiform Lie algebra over a field K. Then
all almost-inner derivations are inner.

Proof. Denote n for the dimension of g. Since g is standard graded filiform, there exists a
basis {X1, . . . ,Xn} such that the non-vanishing Lie brackets of g are given by [X1,Xi] =
Xi+1 for all i ∈ {2, . . . , n − 1}. Let ϕ be an arbitrary almost-inner derivation of g. For all
2 ≤ i ≤ n, the basis vector Xi is fixed by Remark 2.3.5. Due to Lemma 2.3.6, it suffices
to show that X1 is fixed too. Consider 2 ≤ i ≠ j ≤ n − 1 arbitrary, then ci+11i = 1 = cj+11j .
Moreover,

ci+1pi = 0 = cj+1pj and ci+1qj = 0 = cj+1qi

hold for all 1 < p ≤ n and for every 1 ≤ q ≤ n, since Xi+1 and Xj+1 appear once. Hence, by
Lemma 2.3.8 with (i, j, k, l,m) = (1, i, i + 1, j, j + 1), this means that ai1 = aj1. Since i and
j were chosen arbitrarily, this shows that X1 is fixed, which completes the proof.
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Standard graded filiform Lie algebras are a special case of metabelian filiform Lie
algebras. For general metabelian filiform Lie algebras, another approach is needed. Before
the result can be stated, more theory is needed about the derivations of this class of
nilpotent Lie algebras. Let g be an n-dimensional metabelian filiform Lie algebra. By
Proposition 3.2.3, there exists a ‘graded’ basis B = {X1, . . . ,Xn}. For this basis, the matrix
representation of an arbitrary derivation can be computed.

Proposition 3.2.5. Let g be an n-dimensional metabelian filiform Lie algebra (where
n ≥ 5) over a field K with graded basis B = {X1, . . . ,Xn}. Let ϕ ∶ g → g be a linear map
with matrix D = (dij). Then, ϕ is a derivation of g if and only if the following equations
hold:

• dij = 0 for all 1 ≤ j < i ≤ n;

• dii = d22 + (i − 2)d11 for all 3 ≤ i ≤ n;

• di(i+1) = d23 + (i − 3)c1d12 for all 3 ≤ i ≤ n − 1;

• dij = d2(j−i+2) −
j−i+1

∑
k=3

cj−i+2−kd1k + (i − 3)cj−id12 for all 3 ≤ i < j − 1 ≤ n − 1,

together with the extra equations

• c1(2d11 − d22) = 0 when n ≥ 5;

•
j−2

∑
l=1

(l + 1)clcj−l−1d12 + cj−1(jd11 − d22) = 0 for all 3 ≤ j ≤ n − 3 when n ≥ 6.

Proof. Consider first that g is a metabelian filiform Lie algebra and ϕ is a linear map
with matrix D = (dij). The proof of this lemma is very technical, since it consists of
verifying the conditions for a map to be a derivation. For all 1 ≤ i, j ≤ n, the requirement
for [Xi,Xj] is given by

ϕ([Xi,Xj]) = [ϕ(Xi),Xj] + [Xi, ϕ(Xj)],

where 1 ≤ k ≤ n. Due to the specific definition of the Lie brackets, this leads to several
different cases. For the moment, only the first four statements will be proven.

• For the Lie bracket [X1,X2], the condition is

n

∑
j=1

d3jXj = d11X3 −
n−2

∑
j=3

d1j
n

∑
k=j+2

ck−j−1Xk +
n−1

∑
j=2

d2jXj+1

= d11X3 −
n−2

∑
k=3

d1k
n

∑
j=k+2

cj−k−1Xj +
n

∑
j=3

d2(j−1)Xj

= d11X3 −
n

∑
j=5

d1k
j−2

∑
k=3

cj−k−1Xj +
n

∑
j=3

d2(j−1)Xj.
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The second and last equality are obtained by renaming respectively replacing the
summands. This means that the following equations have to be satisfied:

d31 = d32 = 0

d33 = d11 + d22
d34 = d23

d3j = d2(j−1) −
j−2

∑
k=3

cj−k−1d1k for all 5 ≤ j ≤ n.

Those are exactly the expressions for d3j that have to be fulfilled in the four first
statements of the proposition, where 1 ≤ j ≤ n.

• The conditions due to [X1,Xi] where 3 ≤ i ≤ n − 2 are given by

n

∑
j=1

d(i+1)jXj = d11Xi+1 + d12
n

∑
j=i+2

cj−i−1Xj +
n−1

∑
j=2

dijXj+1.

This means that for all 4 ≤ i ≤ n − 1, the equations

n

∑
j=1

dijXj = d11Xi + d12
n

∑
j=i+1

cj−iXj +
n

∑
j=3

d(i−1)(j−1)Xj.

hold. Hence,

di1 = di2 = 0

dij = d(i−1)(j−1) for all 3 ≤ j < i
dii = d11 + d(i−1)(i−1)
dij = d(i−1)(j−1) + cj−id12 for all j > i

have to be fulfilled, where 4 ≤ i ≤ n − 1. Inductively, this gives the equations

dij = d(i−j+2),2 for all 3 ≤ j < i
dii = (i − 3)d11 + d33

di(i+1) = d34 + (i − 3)c1d12 for all j > i
dij = d3(j−i+3) + (i − 3)cj−id12 for all j > i.

All previous equations together give the desired expressions for dij in the first four
requirements of the proposition, where 3 ≤ i ≤ n − 1 and 1 ≤ j ≤ n.

• The condition for [X1,Xn−1] is

n

∑
j=1

dnjXj = d11Xn +
n−1

∑
j=2

d(n−1)jXj+1 = d11Xn +
n

∑
j=3

d(n−1)(j−1)Xj.

This corresponds to the equations

dn1 = dn2 = 0

dnj = d(n−1)(j−1) for all 3 ≤ j ≤ n − 1

dnn = d11 + d(n−1)(n−1).

Hence, the first two statements of the proposition also hold for i = n.
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• The Lie bracket [X1,Xn] has as stipulation that 0 =
n−1

∑
j=2

dnjXj+1 has to be satisfied,

which means that dnj = 0 for all 2 ≤ j ≤ n − 1.

• The requirements for the brackets [X2,Xi] with 3 ≤ i ≤ n − 2 are postponed to the
end of this proof. The Lie bracket [X2,Xn−1] has as condition

0 = d21Xn − d(n−1)1X3 +
n−2

∑
j=3

d(n−1)j
n

∑
k=j+2

ck−j−1Xk.

By previous observations, d(n−1)j = 0 for all 1 ≤ j ≤ n − 2. Hence, this shows that
d21 = 0.

This finishes the proof of the first four requirements of the proposition.

• For [X2,Xn], the condition is given by

0 = −dn1X3 +
n−2

∑
j=3

dnj
n

∑
k=j+2

ck−j−1Xk

This does not define new relations, because dnj = 0 for all 1 ≤ j ≤ n − 1.

• The conditions due to [Xi,Xj] where 3 ≤ i < j ≤ n − 2 are

0 = di1Xj+1 + di2
n

∑
k=j+2

ck−j−1Xk − dj1Xi+1 − dj2
n

∑
k=i+2

ck−i−1Xk.

Since di1 = di2 = 0 for all 3 ≤ i ≤ n, this does not give new conditions.

• The brackets [Xi,Xn−1] where 3 ≤ i ≤ n − 2 give the equations

0 = di1Xn − d(n−1)1Xi+1 − d(n−1)2
n

∑
j=i+2

cj−i−1Xj.

By the same reasoning as before, there are no new relations.

• For [Xi,Xn] where 3 ≤ i ≤ n − 2, the equations

0 = −dn1Xi+1 − dn2
n

∑
j=i+2

cj−i−1Xj.

have to be satisfied. Hence, there are no new conditions.

• The stipulation due to [Xn−1,Xn] is 0 = −dn1Xn.

There is only one case left. It suffices to show that this leads to the fifth and sixth
statement. The conditions due to [X2,Xi] where 3 ≤ i ≤ n − 2 are given by

n

∑
k=i+2

ck−i−1
n

∑
j=1

dkjXj = d21Xi+1 + d22
n

∑
k=i+2

ck−i−1Xk − di1X3 +
n−2

∑
j=3

dij
n

∑
k=j+2

ck−j−1Xk.
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Since dij = 0 for all 1 ≤ i < j ≤ n, the left side can be written as

n

∑
k=i+2

n

∑
j=k

ck−i−1dkjXj =
n

∑
j=i+2

n

∑
k=j

cj−i−1djkXk =
n

∑
k=i+2

k

∑
j=i+2

cj−i−1djkXk,

where the roles of j and k and the summands are changed in the first respectively second
equality. By using that dij = 0 for all 1 ≤ i < j ≤ n, the right side is equal to

d22
n

∑
k=i+2

ck−i−1Xk +
n−2

∑
j=i

dij
n

∑
k=j+2

ck−j−1Xk = d22
n

∑
k=i+2

ck−i−1Xk +
n

∑
k=i+2

dij
k−2

∑
j=i

ck−j−1Xk.

In the last equality, the summands were changed. Combining the left and the right side,
this gives the equation

n

∑
k=i+2

k

∑
j=i+2

cj−i−1djkXk = d22
n

∑
k=i+2

ck−i−1Xk +
n

∑
k=i+2

k−2

∑
j=i

dijck−j−1Xk.

Hence, for all i + 2 ≤ k ≤ n, there is the condition

k

∑
j=i+2

cj−i−1djkXk = d22ck−i−1Xk +
k−2

∑
j=i

dijck−j−1Xk,

or equivalently,

k−i−1

∑
l=1

cld(l+i+1)k = d22ck−i−1 +
k−i−1

∑
l=1

di(l+i−1)ck−l−i = d22ck−i−1 +
k−i−1

∑
l=1

cldi(k−l−1).

The first equality is obtained by renaming the summands, the second by summing in a
different order. This means that

k−i−1

∑
l=1

cl (d(l+i+1)k − di(k−l−1)) − d22ck−i−1 = 0 (3.1)

holds for all i + 2 ≤ k ≤ n, where i ∈ {3, . . . , n − 2}. For k − i = 2, this gives the equation
c1(d55 − d33) − c1d22 = 0, which can be written as

c1(2d11 − d22) = 0.

This is the fifth statement of the proposition and the only case when n = 5. When
i + 3 ≤ k ≤ n and 3 ≤ i ≤ n − 3, equation (3.1) is equivalent to

k−i−2

∑
l=1

cl (d(l+i+1)k − di(k−l−1)) + ck−i−1(dkk − dii − d22) = 0.

When l = k − i − 2, the calculations from before imply that

d(l+i+1)k − di(k−l−1) = (d23 + (l + i − 2)c1d12) − (d23 + (i − 3)c1d12) = (l + 1)ck−l−i−1d12.

For l < k − i − 2, the equations

d(l+i+1)k = d2(k−l−i+1) −
k−l−i

∑
m=3

ck−l−i+1−md1m + (l + i − 2)ck−l−i−1d12

di(k−l−1) = d2(k−l−i+1) −
k−l−i

∑
m=3

ck−l−i+1−md1m + (i − 3)ck−l−i−1d12
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follow from the fourth equation, so the same result holds. By the above observations,

dkk − dii − d22 = (k − i)d11 − d22
is satisfied. Hence, this gives the equation

k−i−2

∑
l=1

(l + 1)clck−l−i−1d12 + ck−i−1((k − i)d11 − d22) = 0

for all i + 3 ≤ k ≤ n and all 3 ≤ i ≤ n − 3, or equivalently,

j−2

∑
l=1

(l + 1)clcj−l−1d12 + cj−1(jd11 − d22) = 0,

which holds for all 3 ≤ j ≤ n − 3 (so only if n ≥ 6). This completes the proof for the fifth
and the sixth statement of the proposition.

Conversely, let ϕ ∶ g → g be a linear map of g for which the matrix entries satisfy the
above equations. It is clear that ϕ is a derivation of g in this case.

As is stated in the previous proposition, d1k and d2k for 3 ≤ k ≤ n can be chosen
arbitrarily in K, which shows that dim(Der(g)) ≥ 2n− 4 for an n-dimensional metabelian
filiform Lie algebra g with n ≥ 5. Moreover, the matrix entry dij (with 3 ≤ i ≤ n and
1 ≤ j ≤ n) can be written as linear combination

dij =
n

∑
k=1

akd1k + bkd2k,

where ak, bk ∈K (for 1 ≤ k ≤ n) are specified in the proposition. Hence, there is no choice
for those values. The relation between d11, d12 and d22 is written down in the last two
equations of the proposition, so this gives zero to three extra degrees of freedom. As a
conclusion,

2n − 4 ≤ dim(Der(g)) ≤ 2n − 1

holds, where g is an n-dimensional metabelian filiform Lie algebra of dimension n ≥ 5.
Note that there are only two metabelian filiform Lie algebras which are not covered by
the proposition, namely the standard graded filiform Lie algebras g3 and g4 of dimension
n = 3 respectively n = 4. By the algorithms of appendix A.2, it is easy to verify that a
general derivation ϕ of g3 is given by

ϕ ∶ g3 → g3 ∶
⎛
⎜⎜
⎝

X1

X2

X3

⎞
⎟⎟
⎠
↦

⎛
⎜⎜
⎝

b1 b2 b3
b4 b5 b6
0 0 b1 + b5

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

X1

X2

X3

⎞
⎟⎟
⎠
,

where bi ∈K for 1 ≤ i ≤ 6. A general derivation ϕ of g4 is of the form

ϕ ∶ g4 → g4 ∶
⎛
⎜⎜⎜⎜
⎝

X1

X2

X3

X4

⎞
⎟⎟⎟⎟
⎠
↦

⎛
⎜⎜⎜⎜
⎝

b1 b2 b3 b4
0 b5 b6 b7
0 0 b1 + b5 b6
0 0 0 2b1 + b5

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

X1

X2

X3

X4

⎞
⎟⎟⎟⎟
⎠
,

with bi ∈K for 1 ≤ i ≤ 7. Hence dim(Der(g3)) = 6 and dim(Der(g4)) = 7 hold.
For metabelian filiform Lie algebras, there exists a global result concerning the almost-

inner derivations. For standard graded filiform ones, this was proven in Proposition 3.2.4.
The other metabelian filiform Lie algebras are treated in the next statement.
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Proposition 3.2.6. Let g be an n-dimensional Lie algebra over a field K and suppose
that g is metabelian filiform and not standard graded. Let B = {X1, . . . ,Xn} be a graded
basis for g. Then

CAID(g) = AID(g) = Inn(g) ⊕ < En,2 >,
where En,2 denotes the derivation

En,2 ∶ g→ g ∶ { X2 ↦ Xn

Xi ↦ 0 for all i ∈ {1,3, . . . , n}.

Proof. Let g be a metabelian filiform Lie algebra. Then there exists a graded basis
B = {X1, . . . ,Xn} as in Proposition 3.2.3. Since g is not standard graded, n ≥ 5. Let
ϕ ∈ AID(g) be an almost-inner derivation with matrix representation D = (dij). By
definition of an almost-inner derivation and of the particular Lie brackets, there exist
aij ∈K for 1 ≤ i, j ≤ n such that

ϕ(X1) = [X1,
n

∑
j=1

a1jXj] =
n−1

∑
j=2

a1jXj+1 =
n

∑
k=3

a1(k−1)Xk,

ϕ(X2) = [X2,
n

∑
j=1

a2jXj] = −a21X3 +
n−2

∑
j=3

n

∑
k=j+2

a2jck−j−1Xk

= −a21X3 +
n

∑
k=5

k−2

∑
j=3

a2jck−j−1Xk,

ϕ(Xi) = [Xi,
n

∑
j=1

aijXj] = −ai1Xi+1 −
n

∑
k=i+2

ai2ck−i−1Xk for all 3 ≤ i ≤ n − 2,

ϕ(Xn−1) = [Xn−1,
n

∑
j=1

a(n−1)jXj] = −a(n−1)1Xn,

and ϕ(Xn) = [Xn,
n

∑
j=1

anjXj] = 0.

From equation (2.8), it follows that dij =
n

∑
k=1

aikc
j
ik for all 1 ≤ i, j ≤ n. Hence, it is clear

that

di(i+1) = −ai1 for all 2 ≤ i ≤ n − 1

d12 = d24 = 0.

Since D has to fulfill the conditions for a derivation too, Proposition 3.2.5 and the above
observations imply moreover that

di(i+1) = d23 + (i − 3)c1d12 = d23 for all 3 ≤ i ≤ n − 1.

This means that d23 = −ai1 = −a21 for all 3 ≤ i ≤ n − 1 and hence X1 is fixed.
Furthermore, let p be the smallest value p ∈ {1, . . . , n−4} such that cp ≠ 0. This exists,

since g is not standard graded. Then, the equation

di(i+p+1) = d2(p+3) −
p+2

∑
k=3

cp+3−kd1k + (i − 3)cp+1d12 = d2(p+3) − cpd13
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is satisfied for all 3 ≤ i ≤ n−p−1. If p = 1, then d2(p+3) = d24 = 0. For p > 1, the same result
follows, since

d2(p+3) =
p+1

∑
j=3

a2jcp+2−j = 0

holds by definition of an almost-inner derivation. This means that

di(i+p+1) = −cpd13 = −cpai2 for all 3 ≤ i ≤ n − p − 1,

where the definition of the almost-inner derivation is used in the second equality. Hence,
ai2 = d13 = a12 for all 3 ≤ i ≤ n − p − 1, thus X2 is fixed.

The next part consists of showing that Xl is fixed for all 3 ≤ l ≤ n − 3. By Proposition
3.2.5,

din = d2(n−i+2) −
n−i+1

∑
k=3

cn−i+2−kd1k + (i − 3)cn−id12 = d2(n−i+2) −
n−i+1

∑
k=3

cn−i+2−kd1k

is satisfied for all 3 ≤ i ≤ n − 2. Hence,

din = d2(n−i+2) − cn−i−1d13 −
n−i+1

∑
k=4

cn−i+2−kd1k

holds for all 3 ≤ i ≤ n − 3. Besides, for 3 ≤ i ≤ n − 2, also the equation din = −ai2cn−i−1 is
fulfilled. Together, this implies that

d2(n−i+2) =
n−i+1

∑
k=4

cn−i+2−kd1k

for all 3 ≤ i ≤ n − 3, or equivalently

d2j =
j−1

∑
k=4

cj−kd1k =
j−1

∑
k=4

cj−ka1(k−1) for all 5 ≤ j ≤ n − 1.

In the second equation, the equivalent expression for the matrix entry d1k is used. More-
over, by definition of an almost-inner derivation,

d2j =
j−2

∑
k=3

cj−k−1a2k =
j−1

∑
k=4

cj−ka2(k−1)

is satisfied for all 5 ≤ j ≤ n. It follows that a2(k−1) = a1(k−1) for all 4 ≤ k ≤ n − 2. Thus,

a2l = a1l for all 3 ≤ l ≤ n − 3

holds, which means that Xl is fixed for all 3 ≤ l ≤ n − 3.
Notice further that Xn−1 is fixed by Remark 2.3.5 since there is only one visible pa-

rameter for Xn−1. Moreover, Xn is fixed because Xn ∈ Z(g). The basis vector Xn−2 has
two visible parameters, which gives rise to at most one extra dimension. Further, En,2 is

indeed an almost-inner derivation. Let X =
n

∑
i=1
xiXi ∈ g be arbitrary (where xi ∈ K for all

1 ≤ i ≤ n). If x1 ≠ 0, then

En,2(X) = x2Xn = [x1X1 + ⋅ ⋅ ⋅ + xnXn,
x2
x1
Xn−1]
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is satisfied. If x1 = 0, then

En,2(X) = x2Xn = [x2X2 + ⋅ ⋅ ⋅ + xnXn,
1

cp
Xn−p−1]

holds, where p is the smallest number such that cp ≠ 0. This exists since g is not standard
graded. This consideration concludes the proof.

The advantage in the metabelian case is the existence of a ‘graded basis’. In this
way, the Lie brackets can be expressed very elegantly and the whole class can be treated
simultaneously. For other classes of filiform Lie algebras, all Lie algebras have to be
studied individually, which means that there is no global result. Next example shows
that there are three-step solvable filiform Lie algebras for which CAID(g) ≠ AID(g).

Example 3.2.7. Let g be the six-dimensional Lie algebra over a field K with basis B =
{X1,X2,X3,X4,X5,X6} and with non-vanishing Lie brackets

[X1,X2] = X3; [X1,X3] = X4; [X1,X4] = X5; [X1,X5] = X6;

[X2,X3] = X5; [X2,X4] = X6; [X2,X5] = X6; [X3,X4] = −X6.

Then, g is three-step solvable filiform with dim(CAID(g)) = 5 and dim(AID(g)) = 6.

The conditions on solvability and nilpotency are not hard to verify. Let ϕ ∈ AID(g)
be an arbitrary almost-inner derivation. By definition, there exist aij ∈K with 1 ≤ i, j ≤ 6
such that

ϕ ∶ g→ g ∶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X1

X2

X3

X4

X5

X6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 a12 a13 a14 a15
0 0 −a21 0 a23 a24 + a25
0 0 0 −a31 −a32 −a34
0 0 0 0 −a41 a43 − a42
0 0 0 0 0 −(a51 + a52)
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X1

X2

X3

X4

X5

X6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

By checking the conditions (2.3) with the computer algorithms of appendix A.2, it is easy
to see that a general derivation is given by

ϕ ∶ g→ g ∶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X1

X2

X3

X4

X5

X6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

b1 b1 b2 b3 b4 b5
0 2b1 b6 b1 b7 b8
0 0 3b1 b6 b1 − b2 −b3 − b4 + b7
0 0 0 4b1 b1 + b6 b1 − b2 + b3
0 0 0 0 5b1 2b1 + b6 − b2
0 0 0 0 0 7b1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X1

X2

X3

X4

X5

X6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where all bi ∈ K (for all 1 ≤ i ≤ 8), which means that dim(Der(g)) = 8. Since an almost-
inner derivation is a derivation, it turns out that a21 = a31 = a41 = −b6 and a12 = a32 = b2.
Moreover, −a34 = −b3−b4+b7 = −a13−a14+a23 holds, as well as a43−a42 = −b2+b3 = −b2+a13
and −(a51 + a52) = b6 − b2. By definition of an almost-inner derivation, the equations

6

∑
i=1

6

∑
j=1

xiaijc
k
ij =

6

∑
i=1

6

∑
j=1

xicjc
k
ij = 0
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have to be fulfilled for all 1 ≤ k ≤ 6 and for all xi ∈K with 1 ≤ i ≤ 6. For k = 6, this means
that

x1a15 + x2(a24 + a25) − x3a34 + x4(a43 − a42) − x5(a51 + a52)
= −x5c1 − (x4 + x5)c2 + x4c3 + (x2 − x3)c4 + (x1 + x2)c5

has to hold for xi ∈ K with 1 ≤ i ≤ 6. For (x1, x2, x3, x4, x5) = (−1,1,1,0,0), this means
that −a15 + a24 + a25 − a34 = 0, or equivalently

a24 + a25 = a15 + a34 = a15 + a13 + a14 − a23.

Combining the above observations, this means that the almost-inner derivation ϕ is of
the form

ϕ ∶ g→ g ∶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X1

X2

X3

X4

X5

X6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 b2 a13 a14 a15
0 0 b6 0 a23 a15 + a13 + a14 − a23
0 0 0 b6 −b2 −a13 − a14 + a23
0 0 0 0 b6 −b2 + a13
0 0 0 0 0 b6 − b2
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X1

X2

X3

X4

X5

X6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Let X =
6

∑
i=1
aiXi ∈ g be arbitrary, where ai ∈ K for all 1 ≤ i ≤ 6. In matrix representation,

ad(X) =
6

∑
i=1
aiad(Xi) is given by

ad(X) ∶ g→ g ∶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X1

X2

X3

X4

X5

X6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 −a2 −a3 −a4 −a5
0 0 a1 0 −a3 −a4 − a5
0 0 0 a1 a2 a4
0 0 0 0 a1 a2 − a3
0 0 0 0 0 a1 + a2
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X1

X2

X3

X4

X5

X6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

which shows that dim(Inn(g)) = 5. Hence, ϕ can be written as

ϕ = b6 ad(X1) − b2 ad(X2) − a13 ad(X3) − a14 ad(X4) − a15 ad(X5) + (a23 − a13) ψ,

where ψ ∶ g→ g is given by

ψ ∶ g→ g ∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

X2 ↦ X5 −X6

X3 ↦ X6

Xi ↦ 0 for all i ∈ {1,4,5,6}.

The map ψ is indeed an almost-inner derivation. Let X =
6

∑
i=1
xiXi with xi ∈ K (for

1 ≤ i ≤ 6). If x1 ≠ 0, then

ψ(X) = x2X5 + (x3 − x2)X6 = [X, x2
x1
X4 +

x3 − x2
x1

X5].
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Further,

ψ(X) = x2X5 + (x3 − x2)X6 = [
6

∑
i=2

xiXi,X3 −X4 −
x4
x2
X5]

is satisfied if x1 = 0 and x2 ≠ 0. For x1 = x2 = 0,

ψ(X) = x3X6 = [
6

∑
i=3

xiXi,−X4]

holds. It is easy to see that ψ is not central almost-inner. For this Lie algebra,

Inn(g) = CAID(g) ⊊ AID(g) ⊊ Der(g)

is fulfilled. Hence, the result for metabelian filiform Lie algebras can not be generalised
to general filiform ones.

3.3 Two-step nilpotent Lie algebras determined by

graphs

There is a strong connection between finite simple graphs and some two-step nilpotent
Lie algebras. Let G(V,E) be a finite simple graph with vertices V = {X1, . . . ,Xn} and
edges E. If there is an edge between Xi and Xj (with i < j), it is denoted with Yij. Let
X be the vector space with basis the elements of V and let Y be the vector space with
basis the edges of E. The vector space g = X ⊕ Y can be viewed as a Lie algebra, where
the brackets are given by

[Xi,Xj] =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Yij if i < j and Yij ∈ E;
−Yji if i > j and Yji ∈ E;

0 if there is no edge between Xi and Xj;

[Xi, Yjk] = 0 for all Xi ∈ V and for all Yjk ∈ E;

[Yij, Ykl] = 0 for all Yij, Ykl ∈ E.

It is easy to see that by construction, this defines a nilpotent Lie algebra with nilindex
two.

Conversely, an arbitrary nilpotent Lie algebra with nilindex two is determined by a
graph when there exists a basis such that every basis vector appears at most once. It is
not always clear at first sight if this condition is satisfied.

Example 3.3.1. The two-step nilpotent Lie algebra g over a field K with basis B =
{X1,X2,X3,X4} and Lie brackets

[X1,X2] = X4 and [X1,X3] = X4

can be determined by a graph.

Consider the basis B′ = {X1,X2,X ′

3,X4}, where X ′

3 =X3 −X2. It is not difficult to see
that for this new basis, the only non-zero Lie bracket is [X1,X2] = X4, since

[X1,X
′

3] = [X1,X3] − [X1,X2] = 0.

This corresponds to a graph with three vertices (X1,X2 and X ′

3) and one edge (X4).
However, not all two-step nilpotent Lie algebras can be formed in that way.
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Example 3.3.2. The two-step nilpotent Lie algebra g over a field K with basis B =
{X1,X2,X3,X4,X5} and Lie brackets

[X1,X2] = X5 and [X3,X4] = X5

can not be determined by a graph.

In this example, it is easy to see that for every basis, there exists a basis vector which
appears twice.

For two-step nilpotent Lie algebras determined by graphs, there exists a global result
about the almost-inner derivations.

Proposition 3.3.3. Let g be a two-step nilpotent Lie algebra determined by a graph.
Then all almost-inner derivations of g are inner.

Proof. Let G(V,E) be the simple graph corresponding to g. Then g can be written as
g = X ⊕ Y , where X is the vector space with basis the elements of V and Y the vector
space with basis the edges of E. Denote the dimension of g with n. Let ϕ be an arbitrary
almost-inner derivation of g with parameters aij, where 1 ≤ i, j ≤ n. It is enough to show
that all basis vectors are fixed. The basis elements of Y belong to the centre of g and are
hence fixed. By Remark 2.3.5, it suffices to consider the basis vectors Xi of X with more
than one visible parameter. Let Xi ∈ X be an arbitrary basis element with at least two
visible parameters. Choose j, k, l and m arbitrarily in {1, . . . , n} so that ckij ≠ 0 ≠ cmil and
j ≠ l. This means that aji and ali are visible parameters belonging to Xi. By construction,
k and m have to be different, since every edge belongs to exactly two vertices. By the
same reasoning, Xk and Xm appear once. Hence, the conditions for Lemma 2.3.8 are
fulfilled for (i, j, k, l,m), which shows that aji = ali. Since j, k, l and m were arbitrary, this
means that Xi has to be fixed. Therefore, all basis vectors of g are fixed. Lemma 2.3.6
concludes the proof.

Note that the converse of this proposition does not hold. Indeed, for the Lie algebra
from Example 3.3.2, all almost-inner derivations are inner. This immediately follows from
equation (2.10), since dim(Inn(g)) = 4 and

5

∑
i=1

di = 1 + 1 + 1 + 1 + 0 = 4,

where di is as in Definition 2.3.3.
The result of the previous proposition can not be generalised for two-step nilpotent

Lie algebras.

Example 3.3.4. Let g be the six-dimensional Lie algebra over a field K with basis B =
{X1,X2,X3,X4,X5,X6} and Lie brackets defined by

[X1,X2] = X5, [X1,X3] = X6 and [X3,X4] = X5.

Then, g is two-step nilpotent with

dim(AID(g)
Inn(g) ) = 6 − 4 = 2.
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Analogously as in Example 3.3.2, the Lie algebra g can not be determined by a graph.
Remark first that six is an upper bound for the dimension of the almost-inner derivations,

since
n

∑
i=1
di = 2 + 1 + 2 + 1 + 0 + 0 = 6. The derivation ϕ1 ∶ g→ g defined as

ϕ1 ∶ g→ g ∶ { X1 ↦ X6

Xi ↦ 0 for all i ∈ {2, . . . ,6}

is almost-inner. Let X =
6

∑
i=1
xiXi with xi ∈K (for 1 ≤ i ≤ 6). The definition is automatically

satisfied when x1 = 0. If x1 ≠ 0, then

ϕ1(X) = x1X6 = x4X5 + x1X6 − x4X5 = [X, x4
x1
X2 +X3].

Further, the derivation

ϕ2 ∶ g→ g ∶ { X3 ↦ X6

Xi ↦ 0 for all i ∈ {1,2,4,5,6}

is almost-inner. Consider X =
6

∑
i=1
xiXi with xi ∈ K (for 1 ≤ i ≤ 6). When x3 = 0, the

definition is immediately satisfied. If x3 ≠ 0, then

ϕ2(X) = x3X6 = x2X5 + x3X6 − x2X5 = [X,−X1 −
x2
x3
X4]

holds. It is easy to see that no linear combination of ϕ1 and ϕ2 belongs to Inn(g).
Moreover, due to Proposition 2.3.10, it is possible to construct a Lie algebra g for

which

dim(AID(g)
Inn(g) )

is arbitrary large. However, CAID(g) = AID(g) will always hold when g is two-step
nilpotent Lie algebra, by Lemma 2.1.10.

3.4 Free nilpotent Lie algebras

Section 3.2 was about filiform Lie algebras, the so-called ‘less’ nilpotent Lie algebras.
Then, a special case of the ‘most’ (non-abelian) nilpotent Lie algebras were treated. The
next class consists of the free nilpotent Lie algebras, where all nilindices can occur. First,
the notion of a free Lie algebra is explained and a suitable basis is worked out. Further,
for free nilpotent Lie algebras with nilindex is equal to two or three, results concerning
the almost-inner derivations are proven.

As is the case for groups, a Lie algebra can be free too.

Definition 3.4.1 (Free Lie algebra). Let X be a set and g a Lie algebra. Let i ∶ X → g
be a set map. The Lie algebra g is free on X if for every Lie algebra g̃ with a set map
f ∶X → g̃, there is a unique Lie algebra morphism ϕ ∶ g→ g̃ with f = ϕ ○ i.

One can show that for every set X, there is a unique free Lie algebra generated by X.
This Lie algebra has M ∶= ∣X ∣ generators and is denoted with gM . By definition, the only
relations for free Lie algebras are due to the skew-symmetry and the Jacobi-identity.
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Definition 3.4.2 (Length of a generator). Let gM be a free Lie algebra with M generators.
The length d of a generator Xi (with 1 ≤ i ≤M) is defined as d(Xi) = 1. The length of a
Lie bracket in the generators is defined recursively as

d([X,Y ]) = d(X) + d(Y ) where X,Y ∈ gM and X ≠ 0 ≠ Y.

Moreover, d(0) = 0 holds.

As an example, consider g5, the free Lie algebra on 5 generators. Then d(X2) = 1 and
d([X3,X4]) = 2, which shows that d([X2, [X3,X4]]) = 3. This implies that

d([X3,X5], [X2, [X3,X4]]) = 5.

Note that d([X2, [[X1,X3], [X1,X3]]]) = 0, since [[X1,X3], [X1,X3]] = 0. Let X ∈ gM
and X ≠ 0, then X can be written as Lie bracket in the generators. The length of X can
more or less be seen as the number of generators which are used in this expression. The
length of a Lie bracket is used in the definition of a Hall set.

Definition 3.4.3 (Hall set). Let gM be a free Lie algebra with M generators. Then a set
BM = {X1,X2, . . .} is called a Hall set for gM when it satisfies the following conditions:

• The first M elements are the generators X1, . . .XM ;

• If i and j are positive integers so that d(Xi) < d(Xj), then i < j holds;

• Let Xi,Xj ∈ gM , then [Xi,Xj] ∈ BM if and only if both Xi,Xj ∈ BM , the inequality
i < j holds and either Xj is a generator, or Xj = [Xl,Xm] for some Xl,Xm ∈ BM
with l ≤ i.

Consider the free Lie algebra with three generators. Then A ∶= [X1, [X1,X3]] ∈ B3 and
B ∶= [X2, [X1,X3]] ∈ B3, but [X1, [X2,X3]] ∉ B3. Since A,B ∈ B, they can be written as
A ∶= Xa respectively B ∶= Xb, where a, b ∈ N. However, there is no fixed rule to decide
whether a < b or b < a. Of course, the Hall set depends on the choice or ordering. Let
Xm1 ,Xm2 ∈ B3 with m1 ≠m2 and suppose that

Xm1 ∶= [Xi,Xj] and Xm2 ∶= [Xk,Xl],

where Xi,Xj,Xk,Xl ∈ B3. In this thesis, the convention is used that the relation

m1 <m2 if and only if (i < k) or (i = k and j < l)

holds. It turns out that the Hall set can be used as a basis for a free Lie algebra.

Theorem 3.4.4. Let gM be a free Lie algebra with M generators. A Hall set for gM
defines a basis for gM .

Proof. A proof of this fact is given in [5, chapter 7].

This basis has infinitely many elements. A related notion is that of a free nilpotent
Lie algebra.

Definition 3.4.5 (Free nilpotent Lie algebra). The free nilpotent Lie algebra gM,r with
M generators and with nilindex r is the quotient of the free Lie algebra with M generators
by the ideal gr+1.
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Hence, the Lie algebra gM,r is generated by all Lie brackets of length ≤ r, since every
Lie bracket existing of more than r elements vanishes. Consider gM , the free Lie algebra
on M generators. Define

B ∶= {X ∈ BM ∣ d(X) ≤ r}
as the basis vectors of the Hall basis for gM with length d ≤ r. Then B is a basis for gM,r.
To ease the notation, each basis vector is denoted as Xi for a suitable i, and not as the Lie
bracket of generators. The ‘length of a basis vector Xi which is no generator’ (so i >M)
is then defined as the length of the corresponding Lie bracket.

The following example shows the construction and calculation of a Hall basis and
computes the dimension of the free nilpotent Lie algebra g2,4.

Example 3.4.6. The Hall basis B of the free nilpotent Lie algebra g2,4 with two generators
and nilindex four contains eight basis vectors.

Below, all non-vanishing Lie brackets of a given length are listed. It is clear that all Lie
brackets of length l ≥ 4 are equal to zero, since g2,4 has nilindex four. When the bracket
belongs to the Hall basis B, it can be written as Xa, for a suitable a ∈ N. To determine
the value of a, the previous convention is used. Of course, the generators X1 and X2 have
length one.

• The only non-vanishing Lie bracket of length two is X3 ∶= [X1,X2].

• There are exactly two non-zero Lie brackets of length three, namely

X4 ∶= [X1, [X1,X2]] and X5 ∶= [X2, [X1,X2]].

• According to Theorem 3.4.4, the Lie brackets of length four which belong to the
Hall basis B are

X6 ∶= [X1, [X1, [X1,X2]]]; X7 ∶= [X1, [X2, [X1,X2]]]
and X8 ∶= [X2, [X2, [X1,X2]]].

The Lie bracket [X1, [X2, [X1,X2]]] is non-zero, but does not belong to the Hall basis,
since it can be written as linear combination of basis vectors. Indeed, it follows from the
Jacobi identity

[X1, [X2, [X1,X2]]] + [X2, [[X1,X2],X1]] + [[X1,X2], [X1,X2]] = 0

that [X1, [X2, [X1,X2]]] = [X2, [X1, [X1,X2]]]. As a result, g2,4 has Hall basis B =
{X1, . . . ,X8} and non-vanishing Lie brackets given by

[X1,X2] = X3; [X1,X3] = X4; [X2,X3] = X5;

[X1,X4] = X6; [X1,X5] = X7; [X2,X4] = X7 and [X2,X5] = X8.

The dimension of a free nilpotent Lie algebra gM,r with M generators and nilindex r
can be computed explicitly due to a theorem of Witt, without constructing the Hall basis.
Therefore, some terminology has to be introduced first.



CHAPTER 3. DIFFERENT CLASSES OF LIE ALGEBRAS 52

Definition 3.4.7 (Möbiusfunction). Let d ∈ N be a natural number with prime factorisa-

tion d =
q

∏
i=1
pni
i . The Möbiusfunction µ ∶ N→ {−1,0,1} is defined as

µ(d) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 when d = 1;
(−1)q if ni = 1 for all 1 ≤ i ≤ q;

0 otherwise.

In this notation, all pi are different prime numbers and ni > 0 holds for all 1 ≤ i ≤ q.

This function appears in Witt’s theorem. The formula, written with the notations of
this thesis, determines the number of basis vectors of a given length.

Theorem 3.4.8 (Witt, 1937). Let gM,r be a free nilpotent Lie algebra with M generators
and nilindex r. For all k ≤ r, the number ψk of basis vectors of length k is given by

ψk(M) = 1

k
∑
d∣k

µ(d)Mk/d.

Proof. A proof of this fact can be found in [16].

Note that

ψ1(M) = M ; ψ2(M) = M2 −M
2

; ψ3(M) = M3 −M
3

and ψ4(M) = M4 −M2

4
.

From Witt’s theorem, the dimension of gM,r immediately follows.

Corollary 3.4.9. Let gM,r be a free nilpotent Lie algebra with M generators and nilindex
r. The dimension of gM,r is given by

dim(gM,r) =
r

∑
i=1

ψr(M).

In the next example, the dimension of g2,4 is checked with Witt’s formula.

Example 3.4.10. The free nilpotent Lie algebra g2,4 with two generators and nilindex
four is eight-dimensional.

It follows from Example 3.4.6 that

dim(g2,4) = ψ1(2) + ψ2(2) + ψ3(2) + ψ4(2) = 2 + 1 + 2 + 3 = 8,

where ψi(2) stands for the number of basis vectors of dimension i (where 1 ≤ i ≤ 4).
Although it is possible to define a Hall basis for all free nilpotent Lie algebras, it is

difficult to give a description of the Lie brackets when the nilindex is large. When the
nilindex is two or three, the basis vectors can easily be written down explicitly. This
makes it possible to prove a general result concerning the almost-inner derivations in that
case. In the next subsections, this is worked out in detail.
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3.4.1 Free nilpotent Lie algebras with nilindex two

The free nilpotent Lie algebras gM,2 with M generators and with nilindex r = 2 are not
so hard to build. Since gM,2 is two-step nilpotent, the Jacobi identity automatically is
satisfied. According to Definition 3.4.3, all Lie brackets [Xi,Xj] with 1 ≤ i < j ≤M belong
to the Hall basis. Moreover, those are the only new elements, because all Lie brackets
with length more than two vanish. Hence, gM,2 has dimension

M + (M
2
) = M + M(M − 1)

2
= M(M + 1)

2
.

Note that this satisfies Witt’s formula, since ψ1(M) =M and ψ2(M) = M(M−1)
2 . The Lie

brackets are given by [Xi,Xj] = Xm for a suitable M + 1 ≤ m ≤ M(M+1)
2 . This m can be

computed exactly if the previous ordering of the basis vectors is used. Let 1 ≤ i < j ≤M
and consider [Xi,Xj] =Xm. With the preceding convention, m is equal to

m =
i−1

∑
l=0

(M − l) + (j − i) = iM −
i−1

∑
l=1

l + (j − i)

= iM − i(i − 1)
2

+ (j − i) = iM − i(i + 1)
2

+ j.

The next example follows this convention.

Example 3.4.11. The free nilpotent Lie algebra g4,2 is ten-dimensional with Lie brackets

[X1,X2] = X5; [X1,X3] = X6; [X1,X4] = X7;

[X2,X3] = X8; [X2,X4] = X9; [X3,X4] = X10.

Consider the Lie algebras gM,2. It is easy to see that, with the above ordering, the
basis vectors X1, . . . ,XM do not appear and all other basis vectors appear exactly once.
It turns out that those Lie algebras gM,2 are a special case of the Lie algebras constructed
Section 3.3. Indeed, this Lie algebra corresponds to a complete graph, where X1, . . . ,Xm

stand for the M vertices and XM+1, . . . ,Xn are the edges.

Proposition 3.4.12. Let gM,2 be a free nilpotent Lie algebra with M generators and with
nilindex r = 2. Then all almost-inner derivations are inner.

Proof. Since the Lie algebra gM,2 corresponds to the complete graph with M generators,
the result immediately follows from Proposition 3.3.3.

Next subsection is devoted to free nilpotent Lie algebras with nilindex r = 3.

3.4.2 Free nilpotent Lie algebras with nilindex three

Let gM,3 be a free nilpotent Lie algebra with M generators and with nilindex equal to
r = 3. As in the previous case, for all 1 ≤ i < j ≤M , the basis vectors of length two can be
written as

[Xi,Xj] = Xm with m = iM − i(i + 1)
2

+ j.
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Since gM,3 has nilindex three, all brackets of the form [Xi,Xj] are non-zero, where Xi is
a generator and Xj a basis vector of length two. This gives M times (M

2
) new brackets

which are non-zero. However, according to Definition 3.4.3, only the brackets of the form

[Xi, [Xj,Xk]] with 1 ≤ j < k ≤M and 1 ≤ j ≤ i ≤M.

are basis vectors. This can be explained as follows. The Jacobi identity

[Xi, [Xj,Xk]] + [Xj, [Xk,Xi]] + [Xk, [Xi,Xj]] = 0 (3.2)

holds for all 1 ≤ i, j, k ≤ M . When two or more values of i, j and k are the same, this
equation is automatically satisfied by skew-symmetry. This means that [Xi, [Xj,Xk]]
defines a new basis vector if i = j or i = k. Otherwise, when 1 ≤ i < j < k ≤ M , equation
(3.2) can be written as

[Xi, [Xj,Xk]] = [Xj, [Xi,Xk]] − [Xk, [Xi,Xj]] = 0.

Hence, only two of the brackets in the expression above can be basis vectors. The next
example will clarify the previous considerations. The ordering on the basis vectors is as
in the previous convention.

Example 3.4.13. The free nilpotent Lie algebra g3,3 has Lie brackets

[X1,X2] = X4; [X1,X3] = X5; [X2,X3] = X6;

[X1,X4] = X7; [X1,X5] = X8; [X1,X6] = X10 −X12;

[X2,X4] = X9; [X2,X5] = X10; [X2,X6] = X11;

[X3,X4] = X12; [X3,X5] = X13; [X3,X6] = X14.

The brackets in the first row already appear for gM,2. The three different possibilities
for the new brackets are treated below. All Lie brackets [Xi,Xj] with 1 ≤ i ≤ M and

M + 1 ≤ j ≤ M(M+1)
2 belong to one of the three cases.

• The Lie bracket [X1,X4] defines a new basis vector, because X4 = [X1,X2].

• The Lie bracket [X2,X5] can be written as [X2, [X1,X3]]. Since 1 ≤ 2, this defines
a new basis vector.

• To see whether or not the Lie bracket [X1,X6] defines a new basis vector, note that
the basis vector X6 can be written as [X2,X3] = X6. According to equation (3.2),
the Lie bracket [X1, [X2,X3]] is equal to the linear combination

[X1, [X2,X3]] = [X2, [X1,X3]] − [X3, [X1,X2]] = [X2,X5] − [X3,X4] = X10 −X12,

since 2 > 1.

As explained before, there are M times (M
2
) new non-zero brackets, from which (M

3
)

elements are linear combinations of the others: all different combinations (i, j, k) with

1 ≤ i < j < k ≤M define only two new basis vectors of gM,3. Hence, the dimension of
g3M,3

g2M,3

is given by

M(M
2
) − (M

3
) = M2(M − 1)

2
− M(M − 1)(M − 2)

3 ⋅ 2

= M(M − 1)
2

⋅ 3M −M + 2

3
= M(M − 1)(M + 1)

3
.



CHAPTER 3. DIFFERENT CLASSES OF LIE ALGEBRAS 55

When M = 2, the dimension of
g32,3
g22,3

is equal to M(M
2
) = 2 = M(M−1)(M+1)

3 . Hence, the

formula for the dimension remains valid. Note that ψ3(M) = M(M2
−1)

3 , which is an appli-
cation of Witt’s formula. This implies that the dimension of gM,3 is

M + M(M − 1)
2

+ M(M − 1)(M + 1)
3

= M (6 + 3(M − 1) + 2(M2 − 1)
6

)

= M (2M2 + 3M + 1

6
) .

As an example, the dimension of g3,3 is given by

M (2M2 + 3M + 1

6
) = 3(2 ⋅ 32 + 3 ⋅ 3 + 1

6
) = 14.

Consider the Lie algebras gM,3. With the above convention, the basis vectors X1, . . . ,XM

do not appear. Further, the basis vectors of length two appear once. Let Xp a basis vector
of length three, so Xp = [Xj,Xs] where Xj is a generator and Xs can be written as Lie
bracket of two generators, say Xs = [Xi,Xk]. When 1 ≤ i < j ≠ k ≤ n, then Xp appears
twice, namely for {Xj,Xs} and also for {Xi,Xt}, where

Xt = [Xj,Xk] (if j < k) or Xt = [Xk,Xj] (if k < j).

Otherwise, Xp appears only once.

Remark 3.4.14. Let gM,3 be a free nilpotent Lie algebra with M generators and nilindex
three. Denote the Hall basis with B = {X1, . . . ,Xn}. The observations from before show
that if Xk appears twice, say for {Xi,Xj} and {Xa,Xb}, then a, b, i and l are pairwise
different.

Next proposition shows that AID(gM,3) = Inn(gM,3) for all possible values of M .

Proposition 3.4.15. Let gM,3 be a free nilpotent Lie algebra with M generators and
nilindex r = 3. Then all almost-inner derivations are inner.

Proof. Denote n for the dimension of gM,3. Let ϕ ∈ AID(gM,3) with parameters aij (where
1 ≤ i, j ≤ n). Choose Xi arbitrarily (where 1 ≤ i ≤ n). By Lemma 2.3.6, it suffices to show
that Xi is fixed. This is satisfied when all visible parameters belonging to Xi are equal.
Let (j, k, l,m) ∈ {1, . . . , n}4 be arbitrary values such that ckij ≠ 0 and cmil ≠ 0, so aji and ali
are visible parameters belonging to Xi. It follows from Remark 3.4.14 that k ≠ m. It is
enough to prove that aji = ali. This is done in different steps.

• Consider first that the basis vector Xi is a generator. Choose 1 ≤ b ≤ M and
M + 1 ≤ r ≤ n so that

crib ≠ 0 and ckbp = 0 = cmbp for all 1 ≤ p ≤ n

holds. This is always possible when Xk and Xm appear just once. When the basis
vector Xk appears twice, then Xk has length three and there is one other generator
Xa such that ckas ≠ 0, for a suitable s. Therefore, a is excluded in the choice for b.
The same reasoning also holds when Xm appears twice. Hence, for M > 3, there are
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thus at least M − 3 possible choices for b, note that b cannot be equal to i. When
M = 2, there are no basis vectors which appear twice; for M = 3, there are only two
basis vectors which appear twice. It is clear from Example 3.4.13 that those vectors
cannot be both Xk and Xm. This means that the values 1 ≤ b ≤ M and 1 ≤ r ≤ n
also can be found in these cases. Further, ckpj = cmpl = 0 for all 1 ≤ p ≤ n with p ≠ i
holds by Remark 3.4.14. Moreover, the basis vector Xr appears once, since it has
length two. Therefore,

crqb = 0 for all 1 ≤ q ≤ n with q ≠ i
and crpj = crpl = 0 for all 1 ≤ q ≤ n

hold. Lemma 2.3.8 can be used with (i, j, k, b, r) respectively (i, l,m, b, r), which
shows that aji = abi respectively ali = abi. Together, this implies that aji = ali, which
was to show.

• Suppose now that Xi is not a generator. If Xi ∉ Z(gM,3), it is automatically fixed.
Otherwise, there exists a unique pair 1 ≤ a < b ≤ M so that [Xa,Xb] = Xi. Denote
Xs and Xt for the basis vectors Xs = [Xa,Xi] respectively Xt = [Xb,Xi]. By
construction, Xs and Xt appear once. Hence, it follows from Lemma 2.3.8 with
(i, a, s, b, t) that aai = abi. The rest of the proof goes in two different steps.

– When ckap = 0 for all 1 ≤ p ≤ n, Lemma 2.3.8 can be used with (i, j, k, a, s), which
shows that aji = aai. Otherwise, since Xk appears at most twice, the equation
ckbp = 0 is satisfied for all 1 ≤ p ≤ n. Hence, Lemma 2.3.8 with (i, j, k, b, t) implies
that aji = abi.

– If clap = 0 holds for all 1 ≤ p ≤ n, it follows from Lemma 2.3.8 with (i, l,m, a, s)
that ali = aai. If this is not the case, cmbp = 0 holds for all 1 ≤ p ≤ n, since the
basis vector Xm appears at most twice. Lemma 2.3.8 with (i, l,m, b, t) then
gives that ali = abi.

Since aai = abi, the above observations show that aji = ali.

In both cases, aji = ali is satisfied. Since aji and ali were two arbitrary visible parameters
belonging to Xi, the basis vector Xi is fixed. This finishes the proof.

The different cases in the proof of the proposition will be clarified with an example.

Example 3.4.16. For the fourteen-dimensional free nilpotent Lie algebra g3,3, it follows
that Inn(g3,3) = AID(g3,3).

The Lie brackets for this Lie algebra are listed in Example 3.4.13. Let ϕ ∈ AID(g3,3)
be an almost-inner derivation with parameters aij (where 1 ≤ i, j ≤ 14).

• Consider the inequalities c924 ≠ 0 and c1025 ≠ 0. The way to show that a42 = a52 is
written down in the first part of the proof, since X2 is a generator. Consider the
Lie brackets

[X2,X4] = [X2, [X1,X2]] = X9 and [X2,X5] = [X2, [X1,X3]] = X10.

The basis vector X9 appears once, but X10 appear twice. Indeed, the equation
c1016 = 1 holds. Thus, b cannot be equal to one or two, which means that b = 3 is the
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only possibility (and r = 6). Further, the basis vector X6 = [X2,X3] appears only
once. Hence, Lemma 2.3.8 with (i, j, k, l,m) = (2,4,9,3,6) shows that a42 = a32.
Moreover, it follows from the same lemma with (i, j, k, l,m) = (2,5,10,3,6) that
a52 = a32. Those equations imply that a52 = a42.

• Consider the inequalities c1061 ≠ 0 and c1162 ≠ 0. The corresponding visible parameters
a16 and a26 belong to X6, which can be written as X6 = [X2,X3]. Further, the basis
vectors X11 = [X2,X6] and X14 = [X3,X6] appear once, so (a, b, s, t) = (2,3,11,14).
Lemma 2.3.8 with (6,2,11,3,14) shows that a26 = a36. Further, c102p ≠ 0 holds for
p = 5, but c103p = 0 is satisfied for all 1 ≤ p ≤ 14. Lemma 2.3.8 can be used with
(i, j, k, l,m) = (6,1,10,3,14) to show that a16 = a36. Next, c1126 = 1, but c113p = 0 holds
for all 1 ≤ p ≤ n, since X11 appears only once. It follows from Lemma 2.3.8 with
(i, j, k, l,m) = (6,2,11,3,14) that a26 = a36. Both observations together give the
desired a16 = a26.

All other cases are analogous. Of course, in the last example, it can already be derived
that a16 = a26 without the last step. However, the example is worked out completely to
illustrate that the procedure is valid whether or not one or both of the values j and l are
equal to a or b in the proof of the proposition.

Let gM,r be a free nilpotent Lie algebra with M generators and nilindex r > 3. It is
still possible to build a Hall basis and to determine the number of basis vectors. However,
it becomes difficult to describe the relations between the basis vectors and hence the Lie
brackets, since there are a lot of different cases which have to be treated. Therefore, it is
hard to compute AID(gM,r), since the first step in the procedure mentioned in Subsection
2.3.1 cannot be executed. Hence, there is no general result known concerning the almost-
inner derivations of free nilpotent Lie algebras gM,r with M generators and nilindex r > 3.

3.5 Triangular matrices

This section is devoted to the study of the set of all strictly uppertriangular matrices and
the set of all uppertriangular matrices. It will turn out that those two subsets of gl(n,K)
are in fact Lie subalgebras. First, some notation is introduced. Fix an n ∈ N and a field
K. Consider gl(n,K), the Lie algebra of all (n×n)-matrices over the field K, introduced
in Example 1.2.6. The matrix Eij is defined as

(Eij)k,l = { 1 if (k, l) = (i, j);
0 otherwise.

It is clear that Bn = {Eij ∈Kn×n ∣ 1 ≤ i, j ≤ n} forms a basis of gl(n,K). Further, the Lie
brackets are given by

[Eij,Ekl] = δjkEil − δliEkj.
Next subsections describe the definition and the almost-inner derivations for the Lie al-
gebras of (strictly) uppertriangular matrices. Of course, all properties obtained for these
classes of Lie algebras also hold for the Lie algebras of all (strictly) lowertriangular ma-
trices.
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3.5.1 Strictly uppertriangular matrices

The notation nn(K) ⊂ gl(n,K) stands for the set of all strictly uppertriangular (n × n)-
matrices over the field K. Throughout this section, it will be assumed that n ≥ 2, since
n1(K) only contains zero. A basis for the vector space nn(K) is given by

Bn = {Eij ∈Kn×n ∣ 1 ≤ i < j ≤ n}.

Choose 1 ≤ i < j ≤ n and 1 ≤ k < l ≤ n arbitrarily. Since

[Eij,Ekl] = δjkEil − δliEkj

holds, the Lie bracket of two strictly uppertriangular matrices is again strictly uppertri-
angular. Hence, nn(K) is a Lie subalgebra of gl(n,K). From the basis of nn(K), it is
clear that the dimension of this Lie algebra is

dim(nn(K)) = n(n − 1)
2

.

The Lie algebra n2(K) ≅ K is abelian. When n > 2, the Lie algebra nn(K) is nilpotent
with nilindex n − 1.

Example 3.5.1. The Lie algebra n3(K) over the field K is three-dimensional and has
B = {E12,E23,E13} as basis. The only non-zero Lie bracket is [E12,E23] = E13. This is
the standard graded filiform Lie algebra of dimension n = 3.

In the next lemma, the dimension of the Lie algebra of inner derivations of nn(K) is
determined.

Lemma 3.5.2. Let nn(K) be the Lie algebra of all strictly uppertriangular (n×n)-matrices
over the field K. When n > 1, it follows that

dim(Inn(nn(K))) = dim(nn(K)) − 1 = n2 − n − 2

2
.

Proof. The dimension of Inn(nn(K)) is equal to the dimension of

vct{ad(Eij) ∶ nn(K)→ nn(K) ∣ 1 ≤ i < j ≤ n}.

Remark first that E1n belongs to the centre of nn(K), which shows the result for n = 2.
Further, when n > 2, all inner derivations ad(Eij) ∶ nn(K)→ nn(K) are linear independent
when 1 ≤ i < j ≤ n and (i, j) ≠ (1, n). Indeed, for all 1 ≤ j < k < n, the only inner derivation
of a basis vector which maps Ekn to (a non-zero multiple of) Ejn is ad(Ejk). Further,
ad(Ejn) is the only adjoint map belonging to a basis vector which maps E1j to (a non-zero
multiple of) −E1n, where 1 < j < n. This completes the proof.

Next proposition shows that the only almost-inner derivations for nn(K) are the inner
ones. The proof is based on the fact that an almost-inner derivation also satisfies the
conditions for an arbitrary derivation.

Proposition 3.5.3. Let nn(K) be the Lie algebra of all strictly uppertriangular (n × n)-
matrices over the field K. Then all almost-inner derivations are inner derivations.
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Proof. An abelian Lie algebra does not admit inner derivation, which shows the result
for n = 2. When n = 3, the result immediately follows from Proposition 3.2.4. Suppose
now that n > 3. Let ϕ ∈ AID(nn(K)) be an almost-inner derivation of nn(K). Then there
exist parameters aklij with 1 ≤ i, j, k, l ≤ n such that

ϕ(E1i) =
n

∑
t=i+1

ait1iE1t with 1 < i < n;

ϕ(E1n) = 0;

ϕ(Ejk) =
j−1

∑
t=1

−atjjkEtk +
n

∑
t=k+1

aktjkEjt with 1 < j < k < n;

ϕ(Ejn) =
j−1

∑
t=1

−atjjnEtn with 1 < j < n.

To enlarge the readability, the second index of the parameters is now written as a super-
script. By Lemma 2.3.6, it suffices to show that all basis vectors are fixed. This goes in
different steps.

• Remark that E1n belongs to the centre and is hence fixed by Remark 2.3.5.

• Choose E1i arbitrarily with 1 < i < n. The visible parameters belonging to E1i are
a1iij (with i < j ≤ n). When i = n − 1, there is only one visible parameter, namely

a1,n−1n−1,n. Hence, E1,n−1 is fixed by Remark 2.3.5. Otherwise, let i < j < n be arbitrary.
By definition of the Lie brackets and of an arbitrary almost-inner derivation,

ϕ([Eij,Ejn]) = ϕ(Ein) =
i−1

∑
t=1

−atiinEtn

holds. Moreover, ϕ is a derivation and therefore,

ϕ([Eij,Ejn]) = [ϕ(Eij),Ejn] + [Eij, ϕ(Ejn)]

= [
i−1

∑
t=1

−atiijEtj +
n

∑
t=j+1

ajtijEit,Ejn] + [Eij,
j−1

∑
t=1

−atjjnEtn]

=
i−1

∑
t=1

−atiijEtn

has to be satisfied. Combining both equations leads to the following result:

atiin = atiij where 1 ≤ t < i < j < n.

In particular, this shows that for t = 1, all visible parameters belonging to E1i are
the same, thus E1i is fixed.

• Consider an arbitrary basis vector Ejk, where 1 < j < k < n. The visible parameters
belonging to Ejk are

ajkij and ajkkl , with 1 ≤ i < j < k < l ≤ n,

because the Lie brackets [Eij,Ejk] and [Ejk,Ekl] are non-zero for all values 1 ≤ i <
j < k < l ≤ n. To show that Ejk is fixed, it suffices to prove that all those visible
parameters are equal.
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Since ϕ is a derivation,

0 = ϕ([E1j,Ekn])
= [ϕ(E1j),Ekn] + [E1j, ϕ(Ekn)]

= [
n

∑
t=j+1

ajt1jE1t,Ekn] + [E1j,
k−1

∑
t=1

−atkknEtn]

= ajk1jE1n − ajkknE1n

follows. This means that

ajk1j = ajkkn where 1 < j < k < n (3.3)

holds. When j = 2 and k = n − 1, those are the only two visible parameters.

Suppose now that k < n − 1. Choose an arbitrary k < l < n. It follows then that

0 = ϕ([E1j,Ekl])
= [ϕ(E1j),Ekl] + [E1j, ϕ(Ekl)]

= [
n

∑
t=j+1

ajt1jE1t,Ekl] + [E1j,
k−1

∑
t=1

−atkklEtl +
n

∑
t=l+1

altklEkt]

= ajk1jE1l − ajkklE1l,

since ϕ is a derivation. Therefore,

ajk1j = ajkkl where 1 < j < k < l < n (3.4)

holds. When j = 2 and k < n − 1, equations (3.3) and (3.4) show that all visible
parameters belonging to E2k are the same.

When 2 < j, choose an arbitrary 1 < i < j. By the same reasoning, it follows from
the definition of a derivation that

0 = ϕ([Eij,Ekn])
= [ϕ(Eij),Ekn] + [Eij, ϕ(Ekn)]

= [
i−1

∑
t=1

−atiijEtj +
n

∑
t=j+1

ajtijEit,Ekn] + [Eij,
k−1

∑
t=1

−atkknEtn]

= ajkij Ein − a
jk
knEin.

This means that
ajkij = ajkkn where 1 < i < j < k < n. (3.5)

For j > 2 and k = n−1, the equations (3.3) and (3.5) imply that the visible parameters
belonging to Ej,n−1 are equal.

The only case left is when 2 < j < k < n−1. Choose now 1 < i < j and k < l < n. Since
ϕ is an almost-inner derivation, the conditions for a derivation have to be satisfied.
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Hence,

0 = ϕ([Eij,Ekl])
= [ϕ(Eij),Ekl] + [Eij, ϕ(Ekl)]

= [
i−1

∑
t=1

−atiijEtj +
n

∑
t=j+1

ajtijEit,Ekl] + [Eij,
k−1

∑
t=1

−atkklEtl +
n

∑
t=l+1

altklEkt]

= ajkij Eil − a
jk
klEil

follows. This means that

ajkij = ajkkl where 1 < i < j < k < l < n. (3.6)

Combining the equations (3.4), (3.5) and (3.6), it is clear that ajkij = a
jk
kl holds, where

1 ≤ i < j < k < l ≤ n. This means that all visible basis vectors belonging to Ejk are
the same, thus Ejk is fixed.

• Let Ejn be an arbitrary basis vector with 1 < j < n. The visible parameters belonging
to Ejn are ajnij (with 1 ≤ i < j). When j = 2, there is only one visible parameter,
namely a2n12 . Therefore, E2n is fixed by Remark 2.3.5. Otherwise, choose 1 < i < j
arbitrarily. The equation

ϕ([E1i,Eij]) = ϕ(E1j) =
n

∑
t=j+1

ajt1jE1t

holds by definition of the Lie brackets. Further,

ϕ([E1i,Eij]) = [ϕ(E1i),Eij] + [E1i, ϕ(Eij)]

= [
n

∑
t=i+1

ait1iE1t,Eij] + [E1i,
i−1

∑
t=1

−atiijEtj +
n

∑
t=j+1

ajtijEit]

=
n

∑
t=j+1

ajtijE1t.

is satisfied, since ϕ is a derivation. It follows from these equations that

ajt1j = ajtij where 1 < i < j < t ≤ n.

For t = n, this shows that all visible parameters belonging to Ejn are the same, thus
Ejn is fixed.

This finishes the proof, since all basis vectors are fixed.

For the Lie algebra of all uppertriangular matrices, the same result as before can be
obtained. The approach is similar, but it requires more work since there are more non-zero
brackets.
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3.5.2 Uppertriangular matrices

This subsection is devoted to tn(K), the set of all uppertriangular (n × n)-matrices over
the field K. A basis for this vector space is given by

Bn = {Eij ∈Kn×n ∣ 1 ≤ i ≤ j ≤ n}.

Let Eij and Ekl be two uppertriangular matrices, so 1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ l ≤ n. Then,
the Lie bracket

[Eij,Ekl] = δjkEil − δliEkj
is again uppertriangular. This means that tn(K) is a Lie subalgebra of gl(n,K) and the
dimension is

dim(tn(K)) = n(n + 1)
2

.

Note that the Lie algebra nn(K) is an ideal of tn(K), since the Lie bracket of an upper-
triangular matrix with a strictly uppertriangular matrix is again strictly uppertriangular.
It is easy to see that t1(K) ≅ K, so this Lie algebra is abelian (and hence nilpotent
and solvable). When n > 1, the Lie algebras tn(K) are not nilpotent, since for example
[E11,E12] = E12. Therefore, E12 ∈ tn(K)k for all k ≥ 1. However, the Lie algebras are still
solvable for n > 1.

Example 3.5.4. The Lie algebra t2(K) over the field K is three-dimensional and has
B = {E11,E12,E22} as basis. The non-zero Lie brackets are

[E11,E12] = E12; and [E12,E22] = E12.

Define X3 ∶= E11 + E22. Then B′ = {E12,E22,X3} is also a basis for t2(K). The Lie
brackets are now given by

[E12,E22] = E12; [E12,X3] = −E12 +E12 = 0 and [E22,X3] = 0.

Let ϕ ∈ AID(t2(K)) be an arbitrary almost-inner derivation. For the basis B′, all basis
vectors are fixed due to Remark 2.3.5, since they have at most one visible parameter.

The following proposition describes the dimension of the inner derivations of tn(K).

Proposition 3.5.5. Let tn(K) be the Lie algebra of all uppertriangular (n × n)-matrices
over the field K. It follows that

dim(Inn(tn(K))) = dim(tn(K)) − 1 = n2 + n − 2

2
.

Proof. The dimension of Inn(tn(K)) is equal to the dimension of

vct{ad(Eij) ∶ tn(K)→ tn(K) ∣ 1 ≤ i ≤ j ≤ n}.

Let X =
n

∑
i=1

n

∑
j=i
xijEij be an arbitrary element of tn(K), where xij ∈ K for all 1 ≤ i ≤ j ≤ n.

By definition of an inner derivation,

ad(Ejk)(X) =
j

∑
i=1

−xijEik +
n

∑
i=k

xkiEji with 1 ≤ i < j ≤ n
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holds. It is easy to see that all those maps are linear independent. Indeed, ad(Ejk) is
the only adjoint map of a basis vector which maps Ekk to (a non-zero multiple of) Ejk.
Further, the inner derivations of the basis vectors Eii (with 1 ≤ i ≤ n) are given by

ad(E11)(X) =
n

∑
i=2

x1iE1i;

ad(Ejj)(X) =
j−1

∑
i=1

−xijEij +
n

∑
i=j+1

xjiEji where 1 < j < n;

ad(Enn)(X) =
n−1

∑
i=1

−xinEin.

For these maps, it follows that

n

∑
j=1

ad(Ejj)(X) =
n

∑
i=2

x1iE1i +
n−1

∑
j=2

j−1

∑
i=1

−xijEij +
n−1

∑
j=2

n

∑
i=j+1

xjiEji +
n−1

∑
i=1

−xinEin

=
n−1

∑
j=1

n

∑
i=j+1

xjiEji +
n

∑
j=2

j−1

∑
i=1

−xijEij

=
n

∑
i=2

i−1

∑
j=1

xjiEji +
n

∑
j=2

j−1

∑
i=1

−xijEij

= 0.

In the last two equations, the summands respectively the roles of i and j are changed.
This means that the maps ad(Eii) with 1 ≤ i ≤ n are linearly dependent. Hence,

B ∶= vct{ad(Eii) ∶ tn(K)→ tn(K) ∣ 1 ≤ i ≤ n}.

has dimension dim(B) ≤ n − 1. It is clear that this is in fact an equality. Indeed,consider
C ∶= {ad(Eii) ∶ tn(K) → tn(K) ∣ 1 ≤ i ≤ n − 1}. For all 1 ≤ i ≤ n − 1, the only derivation of
C which maps Ein to (a non-zero multiple of) Ein is ad(Eii). Therefore, all derivations
of C are linearly independent. This completes the proof.

Next proposition shows that AID(tn(K)) = Inn(tn(K)) for the Lie algebra tn(K) of
all uppertriangular (n×n)-matrices over the field K. The proof is more complicated than
the case of the Lie algebra nn(K).

Proposition 3.5.6. Let tn(K) be the Lie algebra of all uppertriangular (n × n)-matrices
over the field K. Then all almost-inner derivations are inner derivations.

Proof. The statement is satisfied when n = 1, since t1(K) is abelian. The result for t2(K)
is already shown in Example 3.5.4. Hence, it can be assumed without loss of generality
that n > 2. Let ϕ ∈ AID(tn(K)) be an almost-inner derivation of tn(K). Then there exist
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parameters aklij with 1 ≤ i, j, k, l ≤ n such that

ϕ(E11) =
n

∑
t=2

a1t11E1t;

ϕ(Ejk) =
j

∑
t=1

−atjjkEtk +
n

∑
t=k

aktjkEjt with 1 ≤ j < k ≤ n;

ϕ(Ejj) =
j−1

∑
t=1

−atjjjEtj +
n

∑
t=j+1

ajtjjEjt with 2 ≤ j ≤ n − 1;

ϕ(Enn) =
n−1

∑
t=1

−atnnnEtn.

In the notation of the parameters, the second index is again written as a superscript. By
Lemma 2.3.6, it suffices to prove that all basis vectors are fixed. This is done in different
steps.

• Choose E1i arbitrarily with 1 < i < n. The visible parameters belonging to E1i are
a1i11 and a1iij (with 1 < i ≤ j ≤ n).

For an arbitrary i < j ≤ n, the equations

0 = ϕ([E11,Eij])
= [ϕ(E11),Eij] + [E11, ϕ(Eij)]

= [
n

∑
t=2

a1t11E1t,Eij] + [E11,
i

∑
t=1

−atiijEtj +
n

∑
t=j

ajtijEit]

= a1i11E1j − a1iijE1j

are satisfied. Therefore, a1i11 = a1iij holds, where 1 < i < j ≤ n.

Further,

0 = ϕ([E11,Eii])
= [ϕ(E11),Eii] + [E11, ϕ(Eii)]

= [
n

∑
t=2

a1t11E1t,Eii] + [E11,
i−1

∑
t=1

−atiiiEti +
n

∑
t=i+1

aitiiEit]

= a1i11E1i − a1iiiE1i

implies that a1i11 = a1iii . Those two observations show that all values a1iij with 1 <
i ≤ j ≤ n are the same and equal to a1i11. Those are exactly the visible parameters
belonging to E1i. Since 1 < i < n was arbitrary, this means that E1i is fixed for all
values 1 < i < n.

• The visible parameters belonging to E1n are a1n11 and a1nnn. By definition of a deriva-
tion,

0 = ϕ([E11,Enn])
= [ϕ(E11),Enn] + [E11, ϕ(Enn)]

= [
n

∑
t=2

a1t11E1t,Enn] + [E11,
n−1

∑
t=1

−atnnnEtn]

= a1n11E1n − a1nnnE1n



CHAPTER 3. DIFFERENT CLASSES OF LIE ALGEBRAS 65

holds. Therefore, a1n11 = a1nnn is satisfied, which implies that E1n is fixed.

• Choose Ejn arbitrarily with 1 < j < n. The visible parameters belonging to Ejn are
ajnij and ajnnn (with 1 ≤ i ≤ j < n). It will be shown that all these visible parameters
are equal. Let 1 ≤ i < j be arbitrary. By definition,

0 = ϕ([Eij,Enn])
= [ϕ(Eij),Enn] + [Eij, ϕ(Enn)]

= [
i

∑
t=1

−atiijEtj +
n

∑
t=j

ajtijEit,Enn] + [Eij,
n−1

∑
t=1

−atnnnEtn]

= ajnij Ein − ajnnnEin

is fulfilled. This implies that ajnij = ajnnn holds, for all 1 ≤ i < j < n.

Moreover, by the same reasoning,

0 = ϕ([Ejj,Enn])
= [ϕ(Ejj),Enn] + [Ejj, ϕ(Enn)]

= [
j−1

∑
t=1

−atjjjEtj +
n

∑
t=j+1

ajtjjEjt,Enn] + [Ejj,
n−1

∑
t=1

−atnnnEtn]

= ajnjjEjn − ajnnnEjn

is satisfied. Therefore, ajnjj = a
jn
nn holds, where 2 ≤ j < n. Together, above calculations

show that all values ajnij with 1 ≤ i ≤ j < n are the same and equal to ajnnn. Those
are exactly the visible parameters belonging to Ejn. Therefore, Ejn is fixed for all
values 1 < j < n.

• When n = 3, the only basis vectors Eij with 1 ≤ i < j ≤ n were treated in the previous
cases. Suppose in this case that n ≥ 4. Choose Ejk arbitrarily with 1 < j < k < n.
The visible parameters belonging to Ejk are

ajkij and ajkkl with 1 ≤ i ≤ j < k ≤ l ≤ n.

Let 1 ≤ i < j and k < l ≤ n be arbitrary values. It follows from the definition of a
derivation that

0 = ϕ([Eij,Ekl])
= [ϕ(Eij),Ekl] + [Eij, ϕ(Ekl)]

= [
i

∑
t=1

−atiijEtj +
n

∑
t=j

ajtijEit,Ekl] + [Eij,
k

∑
t=1

−atkklEtl +
n

∑
t=l

altklEkt]

= ajkij Eil − a
jk
klEil.

This means that

ajkij = ajkkl where 1 ≤ i < j < k < l ≤ n. (3.7)
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The definition of the Lie brackets implies that

ϕ([Eij,Ejj]) = ϕ(Eij) =
i

∑
k=1

−akiijEkj +
n

∑
k=j

ajkij Eik

holds. Further, also

ϕ([Eij,Ejj]) = [ϕ(Eij),Ejj] + [Eij, ϕ(Ejj)]

= [
i

∑
k=1

−akiijEkj +
n

∑
k=j

ajkij Eik,Ejj] + [Eij,
j−1

∑
k=1

−akjjjEkj +
n

∑
k=j+1

ajkjjEjk]

=
i

∑
k=1

−akiijEkj + ajjijEij +
n

∑
k=j+1

ajkjjEik

is fulfilled. Combining these equations gives

ajkij = ajkjj where 1 ≤ i < j < k ≤ n. (3.8)

By definition of the Lie brackets,

ϕ([Ekk,Ekl]) = ϕ(Ekl) =
k

∑
j=1

−ajkklEjl +
n

∑
j=l

aljklEkj

holds. Since ϕ is a derivation,

ϕ([Ekk,Ekl]) = [ϕ(Ekk),Ekl] + [Ekk, ϕ(Ekl)]

= [
k−1

∑
j=1

−ajkkkEjk +
n

∑
j=k+1

akjkkEkj,Ekl] + [Ekk,
k

∑
j=1

−ajkklEjl +
n

∑
j=l

aljklEkj]

=
k−1

∑
j=1

−ajkkkEjl − akkklEkl +
n

∑
j=l

aljklEkj

is satisfied. It follows from these equations that

ajkkl = ajkkk where 1 ≤ j < k < l ≤ n. (3.9)

Combining the equations (3.7), (3.8) and (3.9), it is clear that ajkij = a
jk
kl holds, where

1 ≤ i ≤ j < k ≤ l ≤ n. This means that all visible parameters belonging to Ejk are the
same. Since 1 < j < k < n were arbitrary, Ejk is fixed for all 1 < j < k < n.

• For the basis vectors Ejj with 1 ≤ j ≤ n, there is another approach needed. The
visible parameters belonging to Ejj are ajjij for all 1 ≤ i < j when j > 1 and ajjjk for
all j < k ≤ n when j < n. The basis vectors Eij are fixed, where 1 ≤ i < j ≤ n.
Hence, there exist (n

2
) values aij ∈ K such that aij = aijkl for all 1 ≤ i < j ≤ n and

all 1 ≤ k, l ≤ n. Using this, it’s possible to reformulate the beginning of the proof.
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Hence, for all 1 ≤ j ≤ k ≤ n, the image ϕ(Ejk) is given by

ϕ(E11) =
n

∑
t=2

a1tE1t;

ϕ(Ejk) = (akkjk − ajjjk)Ejk +
j−1

∑
t=1

−atjEtk +
n

∑
t=k+1

aktEjt with 1 ≤ j < k ≤ n.

ϕ(Ejj) =
j−1

∑
t=1

−atjEtj +
n

∑
t=j+1

ajtEjt with 2 ≤ j ≤ n − 1;

ϕ(Enn) =
n−1

∑
t=1

−atnEtn,

where ϕ ∈ AID(tn(K)) is an almost-inner derivation. Define now for all 1 ≤ j < k ≤ n
the value bjk as

bjk ∶= akkjk − ajjjk;

there are thus (n
2
) such values. Choose 1 ≤ i < j < k ≤ n arbitrarily. By definition,

ϕ([Eij,Ejk]) = ϕ(Eik) =
i

∑
t=1

−atiikEtk +
n

∑
t=k

aktikEit

holds. Since ϕ is a derivation,

ϕ([Eij,Ejk]) = [ϕ(Eij),Ejk] + [Eij, ϕ(Ejk)]

= [
i

∑
t=1

−atiijEtj +
n

∑
t=j

ajtijEit,Ejk] + [Eij,
j

∑
t=1

−atjjkEtk +
n

∑
t=k

aktjkEjt]

=
i

∑
t=1

−atiijEtk + ajjijEik − a
jj
jkEik +

n

∑
t=k

aktjkEit

is satisfied. In particular, the coefficients of Eik have to be equal in both equations.
Hence, it follows that

−aiiik + akkik = −aiiij + ajjij − a
jj
jk + akkjk where 1 ≤ i < j < k ≤ n. (3.10)

Let 1 < i ≤ n and consider aii1i − a111i where 1 < i ≤ n. It follows from equation (3.10)
that

akkjk − ajjjk = (akk1k − a111k) − (ajj1j − a111j) where 1 < j < k ≤ n.
Hence, the values for bjk, with 1 < j < k ≤ n) are linear combinations of the n − 1
values b1i where 1 < i ≤ n.

From the above observations, it is clear that an upper bound for the dimension of
AID(tn(K)) is given by

dim(AID(tn(K))) ≤ (n
2
) + (n − 1) = n2 − n + 2(n − 1)

2
= n2 + n − 2

2
.

The claim now follows from Proposition 3.5.5.
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In total, five different classes were studied: the low-dimensional complex Lie algebras,
the metabelian filiform Lie algebras, Lie algebras defined by graphs, free nilpotent Lie
algebras with nilindex two or three and (strictly) uppertriangular matrices. For most of
the previous classes, the only almost-inner derivations are the inner ones. Only for the
metabelian filiform Lie algebras which are not standard graded, there is a different result.
Even in that case, the dimension of AID(g)/Inn(g) is small (namely equal to one). This
may give the impression that an almost-inner derivation which is not inner is a very rare
phenomenom. Nevertheless, for general Lie algebras, this is not the case. Illustrations
of this fact are provided in Examples 2.3.2, 3.2.7 and 3.3.4, were the first and last are
more general two-step nilpotent Lie algebras. The second is an instance of a three-step
solvable filiform. However, it is more difficult to classify such Lie algebras and prove a
general result, since there is, contrary to the treated classes, no general way to write the
basis and Lie brackets.



Conclusion

The aim of this thesis is the study of almost-inner derivations of Lie algebras. Those
derivations arise in a geometric context by the construction of isospectral and non-
isometric manifolds, but are here treated algebraically.

The first chapter contains an introduction to Lie algebras. The geometrical definition
is given with the aid of Lie goups. Then, some basic concepts about Lie algebras are
introduced.

The second chapter is devoted to almost-inner derivations. First, the set of all derivations
Der(g) of a Lie algebra g is introduced, as well as the subsets

Inn(g) ⊆ CAID(g) ⊆ AID(g) ⊆ Der(g).
Then, some basic notions concerning spectral geometry are explained to understand the
geometric importance of the almost-inner derivations. Further, the notions of the param-
eters and a fixed vector are defined. There is a procedure to calculate AID(g), which
consists of different steps. There has to be an easy basis for g and an efficient way to
construct the non-vanishing Lie brackets. Further, the matrix representation containing
the parameters with respect to this basis can be worked out. The conditions due to the
definition of a derivation and an almost-inner derivation reveal the underlying relations
on the parameters.

Some properties concerning almost-inner derivations were elaborated, in particular the
two Lemmas 2.3.7 and 2.3.8. They ease the check on the conditions due to the definition.

In the third chapter, this procedure is used for some types of Lie algebras. Those classes
are the low-dimensional Lie algebras, the filiform Lie algebras, the two-step nilpotent Lie
algebras defined by graphs, the free nilpotent Lie algebras and the (strictly) uppertrian-
gular matrices. There is a focus on nilpotent Lie algebras, because those are, for this
notion, geometrically of most importance.

For certain classes, the only almost-inner derivations are inner. This is the case for the
low-dimensional complex Lie algebras, the standard graded filiform Lie algebras, the two-
step nilpotent Lie algebras defined by graphs and the (strictly) uppertriangular matrices.
The same result holds for free nilpotent Lie algebras with nilindex two and three. It is not
sure if this is also true for higher nilindices. The difficulty in that case is the description
of the Lie brackets.

For metabelian filiform Lie algebras (which are not standard graded), the dimension
of AID(g)/Inn(g) is equal to one. However, this is not true for more general filiform Lie
algebras.

69
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The appendix contains some computer programs implemented in Matlab. The first part
checks whether or not given structure constants define a Lie algebra. The second section
is devoted to some algorithms concerning the computation of a basis for Der(g).



Appendix A

Algorithms

In the appendix, some computer algorithms implemented in Matlab are given. Those
algorithms ease the computations. The first part is devoted to the check whether or not
the Jacobi identity is satisfied for a given set of structure constants. The second section
concerns algorithms which allow to compute a basis and the dimension of Der(g), where
g is a Lie algebra. Note that the algorithms are programmed to work only for Q, R
and C. However, in some cases, it is not very difficult to modify it to be valid for more
general fields. For example, the first two algorithms can be adjusted for the field Fp with
p elements, where p is a prime.

A.1 Check of the Jacobi identity

An n-dimensional Lie algebra g is represented by a (n × n × n)-matrix C where the entry
C(i, j, k) stands for the structure constant ckij. For the convenience, only the non-zero
entries C(i, j, k) are implemented when i < j. The first algorithm, complete(C) fills up
the matrix C so that the skew-symmetry is respected.

Code A.1: complete.m

1 function [ C ] = complete (C )
2 % Input
3 % 'C' i s an (n x n x n)−matrix with a l l non−zero
4 % st ru c tu r e cons tant s ( f o r which only C( i , j , k )
5 % i s implemented when i<j ) .
6 %
7 % Output
8 % 'C' i s an (n x n x n)−matrix with a l l non−zero s t r u c tu r e
9 % constant s .
10

11 n = size (C , 1 ) ;
12 for i=1:n
13 for j=i : n
14 for k=1:n
15 C (j , i , k )= −C (i , j , k ) ;
16 end

71
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17 end

18 end

19 end

The algorithm checkJacobi(C) verifies whether or not the Jacobi identity is satisfied
for the given structure constants, represented by the (n × n × n)-matric C. Therefore, the
equations (1.1) are checked.

Code A.2: checkJacobi.m

1 function [ B ] = checkJacobi (C )
2 % Input
3 % 'C' i s a (n x n x n)−matrix with a l l non−zero s t r u c tu r e
4 % constant s ( f o r which only C( i , j , k ) i s implemented when i<j ) .
5 %
6 % Output
7 % 'B ' i s t rue or f a l s e , depending whether or not the s t r u c tu r e
8 % constant s d e f i n e a Lie a lgebra .
9

10 C = complete (C ) ;
11 n = size (C , 1 ) ;
12 D = zeros (1 , n ) ;
13 B = true ;
14 for i=1:n
15 for j=1:n
16 for k=1:n
17 for l=1:n
18 for m=1:n
19 D (m ) = C (j , k , m ) ∗C (i , m , l )+C (k , i , m ) ∗C (j , m , l )+↩

C (i , j , m ) ∗C (k , m , l ) ;
20 end

21 if ˜isequal ( sum (D ) , 0 )
22 B = false ;
23 end

24 end

25 end

26 end

27 end

28 if ˜B
29 error ('The given structure constants do not define a Lie ↩

algebra!' )
30 end

31 end

A.2 Computation of a basis for Der(g)
Let g be an n-dimensional Lie algebra. With the next two algorithms, it is possible
to compute the dimension of Der(g). The algorithm derivations(C) implements the
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equations (2.3) for an arbitrary derivation of g, represented by the (n × n × n)-matrix C.
The output is an (n2 × n2)-system where all relations on the matrix entries are listed.
Column (i − 1)n + j in the system represents the information for dij. This algorithm is
based on [1].

Code A.3: derivations.m

1 function [ D ] = derivations (C )
2 % Input
3 % 'C' i s an (n x n x n)−matrix with a l l non−zero s t r u c tu r e
4 % constant s ( f o r which only C( i , j , k ) i s implemented when i<j ) .
5 %
6 % Output
7 % 'D' i s an (nˆ2 x nˆ2)−system , f o r which every row r ep r e s en t s
8 % a r e l a t i o n on the matrix e n t r i e s o f an a rb i t r a r y de r i v a t i on .
9 % The ( ( i −1)n+j )−th column r ep r e s en t s the matrix entry d { i j } .
10

11 checkJacobi (C ) ;
12 C = complete (C ) ;
13 n = size (C , 1 ) ;
14 D = zeros (nˆ2) ;
15 L = zeros (1 , nˆ2) ;
16 r1 = zeros (1 , nˆ2) ;
17 r2 = zeros (1 , nˆ2) ;
18 t = 1 ;
19 for i = 1 : n−1
20 for j = i+1:n
21 for k = 1 : n
22 for l = 1 : n
23 L ( ( l−1)∗n+k ) = C (i , j , l ) ;
24 r1 ( ( i−1)∗n+l ) = C (l , j , k ) ;
25 r2 ( ( j−1)∗n+l ) = C (i , l , k ) ;
26 end

27 for m = 1 : nˆ2
28 D (t , m ) = L (m ) − r1 (m ) − r2 (m ) ;
29 end

30 L = zeros (1 , nˆ2) ;
31 r1 = zeros (1 , nˆ2) ;
32 r2 = zeros (1 , nˆ2) ;
33 t = t+1;
34 end

35 end

36 end

37 end

Let g be n-dimensional Lie algebra represented by the (n×n×n)-matrix C. The algorithm
dimensionDerivations(A) computes the dimension of Der(g). As input, the output of
derivations(C) can be used.
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Code A.4: dimensionDerivations.m

1 function [ d ] = dimensionDerivations (A )
2 % Input
3 % 'A' i s a matrix with nˆ2 columns , f o r which every row conta in s
4 % a r e l a t i o n on the matrix e n t r i e s .
5 % The ( ( i −1)n+j )−th column r ep r e s en t s the matrix entry d { i j } .
6 %
7 % Output
8 % 'd ' i s the dimension o f the space o f a l l d e r i v a t i o n s .
9

10 [ R , jb ] = rref ( derivations (A ) ) ;
11 d = size (R , 2 ) − size (jb , 2 ) ;
12 end

For low-dimensional Lie algebras, the algorithm makeBasisDerivations(C) is very
useful. The output is an (n × n)-matrix, which is a matrix representation of an arbitrary
derivation for the Lie algebra g, represented by the (n × n × n)-matrix C. Moreover, also
the dimension of Der(g) is printed. When n is large, it takes too long to compute the
right answer.

Code A.5: makeBasisDerivations.m

1 function [ D , m ] = makeBasisDerivations (C )
2 % Input
3 % 'C' i s an (n x n x n)−matrix with a l l non−zero s t r u c tu r e
4 % constant s ( f o r which only C( i , j , k ) i s implemented when i<j ) .
5 %
6 % Output
7 % 'D' i s an (n x n)−matrix , which g i v e s a matrix r ep r e s en t a t i on
8 % fo r an a rb i t r a r y d e r i v a t i on .
9 % 'm' i s the dimension o f the space o f a l l d e r i v a t i o n s .
10

11 A = derivations (C ) ;
12 [ D , m ] = makeBasis (A ) ;
13 end

In this algorithm, makeBasis(A) is used. The input is a matrix with n2 columns for which
every row represents a relation between the matrix entries. This algorithm visualises how
an arbitrary (n × n)-matrix which satisfy certain conditions looks like. Here, the values
for dij can be chosen arbitrarily. The conditions are listed in a matrix with n2 columns
and implemented as input. The ((i − 1)n + j)-th column corresponds with the matrix
entry dij.

Code A.6: makeBasis.m

1 function [ D , m ] = makeBasis (A )
2 % Input
3 % 'A' i s a matrix with nˆ2 columns , f o r which every row conta in s
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4 % a r e l a t i o n on the matrix e n t r i e s .
5 % The ( ( i −1)n+j )−th column r ep r e s en t s the matrix entry d { i j } .
6 %
7 % Output
8 % 'D' g i v e s a matrix r ep r e s en t a t i on f o r an a rb i t r a r y matrix which
9 % s a t i s f i e s a l l c ond i t i on s l i s t e d in 'A ' .
10 % 'm' i s the dimension o f the space o f matr i ce s which s a t i s f y a l l
11 % cond i t i on s l i s t e d in 'A ' .
12

13 [ R , jb ] = rref (A ) ;
14 m = size (R , 2 ) − size (jb , 2 ) ;
15 d = sqrt ( size (A , 2 ) ) ;
16 D = sym ('d' , [ d , d ] ) ;
17 V = sym ('v' , [ 1 , d ˆ2 ] ) ;
18 T = 0 ;
19 k = 1 ;
20 for i = 1 : size (R , 1 )
21 for j=k : dˆ2
22 g = R ( size (R , 1 )−i+1,dˆ2−j+1) ;
23 if g ˜= 0 && T==0;
24 for p=1:dˆ2
25 V (p )= R ( size (R , 1 )−i+1,p ) ∗D ( ceil (p/d ) , isequal (0 ,↩

mod (p , d ) ) ∗d+mod (p , d ) ) ;
26 end

27 V (dˆ2−j+1)=0;
28 D ( ceil ( ( dˆ2−j+1)/d ) , isequal (0 , mod (dˆ2−j+1,d ) ) ∗d+mod↩

(dˆ2−j+1,d ) ) = −1/g∗sum (V ) ;
29 T = 1 ; k = j ;
30 end

31 end

32 T=0;
33 end

34 end

Note that this is only useful for low-dimensional Lie algebras, since this algorithm requires
a long computational time.



Bibliography
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